SlideShare ist ein Scribd-Unternehmen logo
1 von 28
Department of Civil Engineering                                                            NPIC




                                  X.   tMNsMrab;Ggát;ebtugeRbkugRtaMg
                  Connections for Prestressed Concrete Elements


10.1.    esckþIepþIm                    Introduction
        tYnaTIrbs;tMNKWkarepÞrbnÞúk nigkugRtaMgBIEpñkmYyrbs;rcnasm<½n§eTAEpñkEdlenAEk,rRbkb
edaylkçN³esdækic© ehIypþl;nUvesßrPaBdl;RbB½n§eRKOgbgÁúM. bnÞúkEdleFVIGMeBIRtg;tMNminRtwmEt
ekItecjEtBIbnÞúkTMnajb:ueNÑaHeT vak¾GacekItBIbnÞúkxül; T§iBlrBa¢ÜydI karpøas;bþÚrmaDEdlekIteLIg
edaysar long-term creep nig shrinkage/ differential movement rbs;kMral nigT§iBlrbs;
sItuNðPaB.
        edaysartMNCacMnuctP¢ab;EdlmanlkçN³exSayCageKenAkñúgRbB½n§eRKOgbgÁúMTaMgmUl dUcenH
vaRtUvman nominal design strength FMCag nominal design strength rbs;Ggát;EdlvaRtUvtP¢ab;. em
KuNbnÞúkbEnßmy:agehacNas; 1.3 RtUv)aneKeRbIenAkñúgkarsikSaKNnakartP¢ab; EtelIkElgkrNI
insensitive connection dUcCa pad sMrab; column base. eKsikSaKNnatMNTaMgGs;sMrab;kMlaMgTaj

tamTisedkGb,brma 0.2 dgénbnÞúkefrbBaÄr elIkElgEteKRtUveRbI bearing pad Edl)ansikSa
KNnad¾RtwmRtUv.
        krNIEdlRtUv)aneKKitBicaNasMrab;ersIusþg;enAkñúgkarsikSaKNnatMNmandUcxageRkam³
        !> Load transfer mechanism
        @> emKuNbnÞúk (load factors)
        #> karpøas;bþÚrmaD (volumetric changes)
        $> PaBsVit (ductility)
        %> PaBrwgmaM (Durability)
        ^> karTb;Tl;nwgGKÁIP½y (fire resistance)
        &> kMritGt;eGan nigRbeLaHtMrUvkar (required tolerance and clearance)
        *> karBicarNaEdlTak;TgnwgkargartMeLIg (erection-related consideration)
        (> karBicarNaEdlTak;TgnwgGakasFatuekþA nigGakasFatuRtCak;
        !0> esdækic©énkarlMGittMN (economics of the details of the connection)


tMNsMrab;Ggát;ebtugeRbkugRtaMg                                                            639
T.Chhay                                                                  viTüasßanCatiBhubec©keTskm<úCa

10.2.     kMritGt;eGan                   Tolerance




        eKRtUvkMNt;)a:n;RbmaNRbeLaHrvagGgát;tamPaBCak;Esþg. eKRtUvkMNt;TItaMgEdlmankMrit
Gt;eGanx<s;RtUv)anGnuBaØat nigkEnøgEdlkMritlMeGanminRtUv)anGnuBaØat ehIyeKk¾KitbBa©ÚlRbeLaH
sMrab;ktþaTaMgenH. xageRkamCakMritlMeGanEdlENnaMsMrab;TMhMlMgakenAkñúgFñwm ssr nig spandrel
panel³

        !> karERbRbYlkñúgbøg;BITItaMgEdl)ankMNt;enAkñúgbøg;³ ± 0.5in. sMrab;ssr b¤Fñwm
        @> kargakecjenAkñúgbøg;BIbnÞat;Rtg;EdlRsbeTAnigG½kSGaKar³ 1 / 40in. kñúg 1 ft RKb;FñwmEdl
           xøICag 20 ft b¤KMlatrbs;ssrBIrEdlenAEk,rKñatUcCag 20 ft / 0.5in. sMrab;KMlatssr
           EdlXøatq¶ayBIKña 20 ft .
Connections for Prestressed Concrete Elements                                              640
Department of Civil Engineering                                                               NPIC




          #> PaBxusKñaén relative position rbs;ssrEdlenAEk,rBI relative position Edl)ankMNt;³
             0.5in. enARtg;nIv:UkMral (deck level).

          $> lMgakBIkUnRbeyal (plumb)³ ± 0.25in. sMrab;ral;kMBs; 10 ft / GtibrmaRtwm 1in. sMrab;
             kMBs;TaMgmUl.
          %> PaBERbRbYlénkMritkMBs;rbs; bearing surface BIkMritkMBs;Edl)ankMNt;³ ± 0.5in. sMrab;
             ssr nigFñwmTaMgGs; nigsMrab;RKb;TItaMg.
          ^> lMgakEpñkxagelIrbs; spandrel BIkMritkMBs;Edl)ankMNt;³ 0.5in. / sMrab;RKb; spandrel
          &> lMgakénkMritkMBs;rbs; bearing surface BIExSRsbeTAExSrnIv:UEdl)ankMNt;³ 1 / 40in. kñúg
             1 ft sMrab;RKb;FñwmxøICag 20 ft b¤ssrEk,rBIrEdlXøatBIKñaticCag 20 ft / GtibrmaRtwm

             0.5in. sMrab;RKb;FñwmEvgCag b¤esμI 20 ft b¤ssrEk,rBIrXøatBIKñaeRcInCag b¤esμI 20 ft .

          *> bMErbMrYlBI bearing length Edl)ankMNt;enAelITMr³ 3 / 4in. .
          (> bMErbMrYlBI bearing width enAelITMr³ ± 0.5in. .
          !0> PaBrt;Rtg;rbs;RCugEKm³ 0.25in.
          tarag 10>1 eGaynUvkMritlMeGogEdlGacGnuvtþsMrab;tMN.

10.3.    Ggát;smas                Composite Members
       dUcEdl)anerobrab;lMGitenAkñúgCMBUkTI5 BIEpñkEpñk5>7 eTAEpñk5>11/ eKRtUvFanakarepÞr
kMlaMgkat;tamTisedkenARtg;épÞb:HrvagGgát;cak;Rsab; nig situ-cast-topping. ]TahrN_ 5>14
bgðajBIkMlaMgGnþrGMeBI (interaction forces) nig flowchart énEpñk 5>8>2 eGay operational step-
by-step design procedure nigsmIkarKNnaEdlGacGnuvtþ)an (applicable design equation). rUbTI

5>18 én]TahrN_ 5>3 ehIykarsikSaKNnapþl;nUvTMhM nigKMlatrbs; dowel EdlmanT§iBldl;kar
epÞreBj eljénkMlaMgkat;tamTisedkrvagGgát;EdlP¢ab;Kña.

10.4.    RTnab;TMrebtugGarem:enAkñúgGgát;smas
          Reinforced Concrete Bearing in Composite Members
       rUbTI 10>1 bgðajBI composite-action dowel reinforcement. edIm,IkarBarebtugEdlb:H
bearing edaypÞal;kuMeGaypÞúHEbkedaysarkMlaMgsgát;FelIslub eKRtUvGnuvtþkMlaMgxageRkAeTAelI
                                                    M
bearing EdlmanTMhMFMRKb;RKan;. kareFVIEbbenHkugRtaMgEdlTTYl)anBIsßanPaBkMNt;nwgminFMelIs


tMNsMrab;Ggát;ebtugeRbkugRtaMg                                                              641
T.Chhay                                                                  viTüasßanCatiBhubec©keTskm<úCa

ersIusþg;sgát;rbs;ebtugeT. eKGackMNt; nominal bearing strength rbs;ebtugsuT§tamsmIkarxag
eRkam




                    Vn = C r (0.85 f ' c A1 ) A2 / A1 ≤ 1.2 f ' c A1                   (10.1)
Edl       C r = 1 .0enAeBleKdak;EdkBRgwgenAkñúgTisrbs;kMlaMgb:HtamTisedk (horizontal frictional
                force) N u dUceXIjenAkñúgrUbTI 10>2 b¤enAeBlEdleKyk N u = 0 . eKGackMNt; C r

                = (S × W / 200) Nu / Vu EdlRkLaépÞ S × W minRtUvFMCag 9.0in.2 ehIyvaRtUv)anbgðaj

                enAkñúgrUbTI 10>3 .
          A1 = RkLaépÞ direct bearing

          A2 = RkLaépÞGtibrmarbs;cMENkénépÞTMrEdlmanragFrNImaRtRsedogKñanwgRkLaépÞrg

               bnÞúk dUcbgðajkñúgrUbTI 10>3.
          Design bearing strength KW

                                 Vu = φVn
Edl φ = 0.70 . edIm,IeCosvagsñameRbH nig spalling EdlekIteLIgedayécdnüenAxagcugrbs; thin-
stemmed member, eKENnaMeGayeRbIEdkGb,brmaEdlesμInwg N u / φf y b:uEnþminRtUvtUcCag 1#3

¬Ggát;p©it 9.52mm ¦ enAeBlEdl bearing area tUcCag 2in.2 (12.9cm 2 ).
         RbsinebIbnÞúkemKuN Vu FMCag design bearing strength Vu = φVn dUcEdl)anKNnaBI
smIkar 10>1/ enaHeKRtUvkarEdkBRgwgenAkñúg bearing area. eKGacsikSaKNnaEdkenHedayRTwsþI

Connections for Prestressed Concrete Elements                                              642
Department of Civil Engineering                                                          NPIC




     -
shear friction Edlerobrab;enAkñúgCMBUk 5. eKRtUvsikSaKNna reinforced bearing sMrab;Ggát;cak;
Rsab;TaMgGs; elIkElgEtkMraltan; nig hollow-core slab edIm,IkarBarsñameRbHtamTisedk nigsñam
eRbHtamTisbBaÄrenARtg;EdkxageRkAbMputrbs;FñwmRtg;TMr. eKGacsnμt;PaBeRTtrbs;sñameRbHxag
cugedaysuvtßiPaBRbhak;RbEhlnwg 20o dUceXIjenAkñúgrUbTI 10>2. RbsinebI Vu esμInwgkMlaMgkat;
emKuN ¬EdlRsbeTAnwgbøg;sñameRbHsnμt;¦ eKKYrkMNt;tMélrbs;kMlaMgkat;dUcbgðajenAkñúgtarag
10>2 sMrab;emKuN shear-friction RbsiT§PaBGtibrma μe .




          eKGacrkRkLaépÞEdkEdlEkgeTAnwgbøg;sñameRbHsnμt;BIsmIkarxageRkam³
                                  Vup
                     Avf =                                                      (10.2)
                              φμe f y
Edl       Vu / φ = nominal strength Vn

           f y = yield strength         rbs; Avf
tMNsMrab;Ggát;ebtugeRbkugRtaMg                                                        643
T.Chhay                                                                    viTüasßanCatiBhubec©keTskm<úCa

          Vup =   kMlaMgkat;emKuNGnuvtþn_ EdlkMNt;edaytMélEdleGayenAkñúgtarag 10>2 ehIy
                            1,000λAcr μ
                     μe =
                                Vup

Edl       λ = 1 .0sMrab;ebtugTMgn;Rsal/ 0.85 sMrab; sand-lightweight nig 0.75 sMrab; all-lightweight
               concrete.

           Acr = RkLaépÞrbs;épÞb:Hbøg;sñameRbH EdleKGacykvaesμInwg l d b Edl l d Ca development

                 length rbs; Avf ehIy b CaTTwgmFümrbs;Ggát;.




      tarag 10>3 eGay development length ld sMrab;TMhMEdkepSg². eKGackMNt;EdkbBaÄr
Ash Edlkat;tamsñameRbHtamTisedkdUcxageRkam




Connections for Prestressed Concrete Elements                                                644
Department of Civil Engineering                                                            NPIC




                     Ash =
                              (Avf + An ) f y                                     (10.4)
                                  μ 'e f ys
                              1,000λAcr μ
Edl                  μ 'e =
                              (
                              Avf + An f y)                                       (10.5)

ehIy                         rbs; Ash
           f ys = yield strength

           An = RkLaépÞrbs;EdkedIm,ITb;Tl;kMlaMgTajtamG½kS N u enAkñúgrUbTI 10>2 Edl

                                  ( )
                     An = N u / φf y                                              (10.6)

Edl        Nu = kMlaMgTajtamTisedkGnuvtþn_emKuNEdlEkgeTAnwgbøg;sñameRbHsnμt;
          φ = emKuNkat;bnßyersIusþg; = 0.75




tMNsMrab;Ggát;ebtugeRbkugRtaMg                                                         645
T.Chhay                                                                                    viTüasßanCatiBhubec©keTskm<úCa

        cMNaMfa eKRtUvf<k;EdkBRgwgTaMgGs;enAelIRCugNak¾edayrbs;bøg;sñameRbHsnμt;eGay)an
l¥eday development length b¤edaykarpSareTAnwgEdkEkg (angles)/ EdkbnÞH b¤EdkTMBk; (hooks)
edIm,IbegáItkMlaMgTb;Tl;Edl)anKNna.

      KNnaRTnab;TMrebtugGarem:
10.4.1.                                   Reinforced Bearing Design
]TahrN_ 10>1³ FñwmebtugeRbkugRtaMgragctuekaN PCI standard 16RB28 rgkMlaMgkat;emKuNbBaÄr
Vu = 90,000lb(400kN )     nigkMlaMgTajtamTisedk N u = 21,000lb(93.4kN ) . FñwmRtUv)anRTenAelI
Teflon pad TMhM 4in. × 4in.(10cm × 10cm ) . KNna end reinforcement enAkñúgFñwmEdlGackarBarkar

ekItman bearing crack tamTisedk b¤tamTisQr. eKeGayTinñn½yxageRkam³
                f 'c = 5,000 psi (34.47 MPa ) ebtugTMgn;Fmμta

                f y = 60,000 psi sMrab;EdkFmμtaTaMgGs; (413.7 MPa )

                    θ = 20 o
dMeNaHRsay³
        EdktamTisedk (Avf + An )
        sMrab;karkMNt;EdkBRgwgtamTisedk/ sakl,gEdk #6
                kMBs;Fñwm h = 28in. b = 16in.
BItarag 10>3/ ld = 29in.
                     Acr = l d b = 29 × 16 = 464in.2
BItarag 10>2/ μ = 1.4 nigBIsmIkar 10.3
                            1,000λAcr μ 1,000 × 1.0 × 464 × 1.4
                     μe =
                                Vup
                                       =
                                                90,000
                                                                = 10.61 > μ e            GnuBaØat = 3.4
dUcenHeRbI μe = 3.4
        BIsmIkar 10.2
                     Avf =
                               Vup
                             φf y μ e
                                        =
                                                  90,000
                                            0.75 × 60,000 × 3.4
                                                                          (
                                                                = 0.59in.2 3.4cm 2   )
                     N u = 21,000lb
                     N u 21,000
                        =
                     Vu 90,000
                                = 0.23 >           tMélGb,brma 0.20
dUcenH yk N u = 21,000lb .

Connections for Prestressed Concrete Elements                                                                646
Department of Civil Engineering                                                              NPIC




        BIsmIkar 10.6/ An = N u / φf y = 21,000 /(0.75 × 60,000) = 0.47in.2 (2.94cm 2 )
        Edksrub
                As = Avf + An = 0.59 + 0.47 = 1.06in.2 (6.63cm 2 )

dUcenH eRbI 3#6 = 1.32in.2 (8.52cm 2 )
        EdkbBaÄr ¬ Ash ¦
        BItarag 10>3/ ld = development length rbs;Edk #6 = 29in.(74cm) nig Acr = ld b =
29 × 16 = 464in 2 (3,159cm 2 ). BIsmIkar 10.5
                        1,000λAcr μ 1,000 × 1.0 × 464 × 1.4
                μ 'e =
                       (A + A ) f = 0.93 × 60,000 = 11.64 > μe GnuBaØat = 3.4
                                  vf     n     y

dUcenH eRbI μ 'e = 3.4 . BIsmIkar 10.4
                     Ash =
                              (Avf + An ) f y = 0.93 × 60,000 = 0.27in.2 (1.74cm 2 )
                                   μ 'e f ys           3.4 × 60,000

dUcenH eRbIEdkkg (stirrup)                         (
                                       = 0.66in.2 4.26cm 2     )

10.5. Dapped-End Beam Connections




                     -
          Dapped end beam     CaGgát;eRKOgbgÁúMEdlmankarbnßykMBs;FñwmPøam²enAxagcugrbs;vaedIm,I
nUv seating b¤ bearing caM)ac;enAelI corbel b¤ bracket edayKμankar)at;bg; clear height rvagkMral.
tMNsMrab;Ggát;ebtugeRbkugRtaMg                                                              647
T.Chhay                                                                    viTüasßanCatiBhubec©keTskm<úCa

rUbTI 10>4 bgðajBIFñwmebtugeRbkugRtaMgEdlman dapped end KMrUenAxagcug. sñameRbHBIrRbePTGac
ekItman³ sñameRbHelx @ CasñameRbHkMlaMgkat;edaypÞal; (direct shear crack) cMENkÉsñameRbH
elx #/ elx $ nigelx % CasñameRbHkMlaMgTajGgát;RTUgEdlbgáedaykMlaMgTajtamG½kS nigkMlaMg
begáagenAkñúgkMBs;FñwmEdlkat;bnßy ehIykugRtaMgRbmUlpþúMenAmþúMkac;RCug. dUcenH eKRtUvdak;RbePT
EdkBRgwgxageRkam dUcbgðajenAkñúgrUb³
        !> EdkrgkarBt; (flexural reinforcement) A f bUknwgEdkrgkarTajtamG½kS An Edl
            As = A f + An edIm,IkarBar cantilever bending stresses.

        @> Shear-friction reinforcement A f + An bUknwgEdkrgkarTajtamG½kS An edIm,IkarBar
           kMlaMgkat;bBaÄredaypÞal; (direct vertical shear force) enARtg;RbsBVénEpñk dapped nig
           EpñkEdlmin dapped rbs;FñwmEdlbgáeGaymansñameRbHelx @.
        #> EdkrgkMlaMgkat; (shear reinforcement) Ash edIm,ITb;Tl;nwgkugRtaMgTajGgát;RTUgEdl
           ekItmanenARtg;cMnuckac;RCugEdlbgáeGaymansñameRbHelx #.
        $> EdkrgkMlaMgTajGgát;RTUg (diagonal tension reinforcement) Ah + Av edIm,IkarBarsñam
           eRbHelx$ EdlekItBIkugRtaMgTajGgát;RTUgenAkñúgEpñk papped rbs;Fñwm.
        %> Development length As = A f + Ah edIm,IkarBarsñameRbHelx% EdlbNþalBIkugRtaMg
           TajGgát;RTUg enAkñúgEpñkmin dapped rbs;Fñwm.

10.5.1.     karkMNt;EdkBRgwgedIm,ITb;Tl;kar)ak;
            Determination of Reinforcement to Resist Failure
10.5.1.1.      EdkrgkarBt; nigEdkrgkarTajtamG½kS                 Flexure and Axial Tension
       sMrab;lMnwgm:Um:g;enAkñúgrUbTI 10>4/ m:Um:g;emKuNsrubEdleFVIGMeBIenAelIEpñk cantilever dapped
enARtg;bøg;rbs; As KW
                     M u = Vu a + N u (h + d )                                           (10.7a)
Edl       h=  kMBs;rbs;Ggát;BIelI dap
          d = kMBs;RbsiT§PaBrbs; dap eTATIRbCMuTMgn;rbs;EdkBRgwg As

          a = ElVgkMlaMgkat; (shear span)

          M u RtUvTb;Tl;edayersIusþg;m:Um:g; nominal M n = M u / φ / b¤




Connections for Prestressed Concrete Elements                                                648
Department of Civil Engineering                                                                       NPIC



                              Vu a + N u (h − d )
                     Mn =                                                                   (10.7b)
                                      φ
edaysnμt;faédXñas;m:Um:g;           jd ≅ 0.9d
                             Vu a + N u (h − d )
                     Fn =                                                                   (10.8)
                                   0.9φd
Edl φ = 0.90 sMrab;karBt;begáag. edaysar 0.9φ = 0.81 edIm,ICakarsMrYleKeRbItMél φ = 0.85 enA
kñúgsmIkar 10.8 edIm,ITTYl)an
                         Vu a + N u (h − d )
                     Fn =                                                                   (10.9a)
                                φd
                         V ⎛a⎞ N ⎛h−d ⎞
b¤                   Fn = u ⎜ ⎟ + u ⎜
                          φ ⎝d ⎠ φ ⎝ d ⎠
                                             ⎟                                              (10.9b)

enaHEdkrgkarBt;begáagKW
                             Fn Vu a + N u (h − d )
                     As =       =                                                           (10.10)
                             fy       φf y d
ehIyEdkrgkarTajedaypÞal;EdlbNþalBIkMlaMgTaj Nu KW
                             Nu
                     An =                                                                   (10.11)
                             φf y
BIsmIkar 10.10 nig 10.11/ RkLaépÞsrubrbs;EdkrgkarBt;begáag nigEdkrgkarTajedaypÞal;køayCa
                                           1     ⎡ ⎛a⎞           ⎛ h ⎞⎤
                     As = A f + An =             ⎢Vu ⎜ d ⎟ + N u ⎜ d ⎟⎥                     (10.12)
                                          φf y   ⎣ ⎝ ⎠           ⎝ ⎠⎦
Edl tMélEksMrYlrbs; φ = 0.85 .

10.5.1.2.      EdkrgkMlaMgkat;bBaÄredaypÞal;                        Direct Vertical Shear
        sñameRbHelx@ EdlekItBIkMlaMgkat;edaypÞal;RtUv)anTb;edaybnSMénEdk As nig Ah enAkñúg
rUbTI 10>4. eKGackMNt;EdkBRgwgtamTisedk Ah EdlRtUvkaredIm,ITb;Tl;nwgkMlaMgkat;edaypÞal;
tamsmIkarxageRkam
                     Ah = 0.5( As − An )                                                    (10.13)

Edl                  As =
                            2Vu
                          3φf y μ e
                                    + An                                                    (10.14a)

                             Nu
                     An =                                                                   (10.14b)
                             φFy
                             1,000λbhμ
                     μe =
                                 Vu
CamYynwg φ = 0.85 nig μe dUcenAkñúgsmIkar 10.3. dUcenH
tMNsMrab;Ggát;ebtugeRbkugRtaMg                                                                   649
T.Chhay                                                               viTüasßanCatiBhubec©keTskm<úCa

                             1     ⎛ 2Vu      ⎞
                     As =          ⎜ 3μ + N u ⎟
                                   ⎜          ⎟                                     (10.15)
                            φf y   ⎝ e        ⎠
        tMélrbs; As EdleRbIenAkñúgsmIkar 10.13 KYrFMCagtMélTaMgBIrEdlTTYl)anBIsmIkar 10.12
nig 10.15.
        eKRtUvbgðÚtEdk As edaytMélGb,brma 1.7ld kat;tamcMnuccugénEpñk dap b¤ ld kat;sñameRbH
elx% ehIyf<k;enAxagcugrbs;FñwmedaypSarP¢ab;eTAnwg cross bar/ angle b¤ plates. ekRtUvbgðÚtEdk
tamTisedk Ah dUcKña ehIyEdkbBaÄr Ash nigEdkbBaÄr b¤EdkeRTt Av k¾RtUv)anf<k;edayTMBk;
(hook) tamkarTamTarrbs; ACI Code.

        ersIusþg;kMlaMgkat; nominal rbs; dap end RtUv)ankMNt;Rtwm
                    Vn ≤ 0.30 f 'c bd ≤ 1,000bd                                     (10.16a)
sMrab;ebtugTMgn;Fmμta/
                         ⎛        0.07a ⎞
                    Vn ≤ ⎜ 0.20 −       ⎟ f 'c bd                                   (10.16b)
                         ⎝          d ⎠
                         ⎛       280a ⎞
b¤                  Vn ≤ ⎜ 800 −
                         ⎝         d ⎠
                                      ⎟bd                                    (10.16c)

sMrab; sand-lightweight b¤ all-lightweight concrete, edayykmYyNaEdltUcCag Edl a Ca shear
span nig d CakMBs;RbsiT§PaBrbs;Fñwm.



10.5.1.3.      EdkrgkMlaMgTajGgát;RTUgRtg;kac;RCug
               Diagonal Tension at Reentrant Corner
     eKTTYl)anEdkBRgwgEdlRtUvkaredIm,ITb;Tl;nwgsñameRbHedaysarkMlaMgTajGgát;RTUgeRTtE
dlralBIp©iténkugRtaMgRbmUlpþúMenARtg;kac;RCugeTAkan;EpñkEdlmin dapped BIsmIkarxageRkam
                             Vu
                     Ash =                                                          (10.17)
                             φf y
Edl φ = 0.85 ehIy f y Ca yield strength rbs;EdkBRgwg Ash .

10.5.1.4.      EdkrgkMlaMgTajGgát;RTUgenAkñúg Dapped end
               Diagonal Tension in the Dapped end
        edIm,IkarBarsñameRbHGgát;RTUgelx$ enAkñúg dapped end/ eKRtUvdak;EdkbEnßm As y:agNa
edIm,IeGayersIusþg;kMlaMgkat; nominal srub Vn bMeBjsmIkar

Connections for Prestressed Concrete Elements                                           650
Department of Civil Engineering                                                           NPIC



                            Vu
                     Vn =         = Av f y + Ah f y + 2λbd f 'c                    (10.18)
                             φ
y:agehacNas;k¾eKRtUvdak;EdkBak;kNþalénEdkBRgwgenHbBaÄr dUcenHsmIkar 10.18 eGay
                                   1     ⎛ Vu          ⎞
                     Av, min =           ⎜ − 2λbd f 'c ⎟
                                         ⎜φ            ⎟                           (10.19)
                                  2 fy   ⎝             ⎠
cMNaMfa karKitBIkareFVIkarTamTardUcxageRkam³
        !> kMBs;rbs; dapped end y:agehack¾esμIBak;kNþalénkMBs;Fñwm elIkElgkMBs;FñwmFMCag
           tMrUvkar.
        @> RbsinebIkugRtaMgBt;begáagEdlKNnasMrab;kMBs;eBjelj (full depth) rbs;muxkat;eday
           eRbIbnÞúkemKuN nig gross section propertied FMCag 6 f 'c Pøam²BIeRkay dap/ eKKYrdak;
           EdkBRgwgbeNþaybEnßmenAkñúgFñwmedIm,IbegáItersIusþg;Bt;begáagtMrUvkar.
        #> eKRtUvdak;EdkrgkarTajGgát;RTUg Ash eGaykan;EtEk,rkac;RCug. EdkBRgwgenHCaEdk
           bEnßmeTAelIEdkrgkMlaMgkat;KNna (design shear reinforcement) EdlRtUvkarsMrab;mux
           kat;FñwmEdlmankMBs;eBj.

10.5.2.     KNnatMNrbs; Dapped end Beam
            Dapped-End Beam Connection Design
]TahrN_ 10>2³ FñwmebtugeRbkugRtaMg PCI standard 16RB28 Edl dapped enAxagcugsMrab;
bearing  enAelI column corbel/ rgnUvkMlaMgkat;TMnajemKuNenAxagcug Vu = 110,000lb(489kN )
nigkMlaMgTajtamG½kStamTisedk Nu = 20,000lb(97.9kN ) . KNnaEdkrgkarBt;begáag Edkrg
kMlaMgkat;edaypÞal; nigEdkrgkarTajGgát;RTUg As / Ash / Ah nig Av EdlRtUvkarsMrab;karBarsñam
eRbH EdlbNþalBI dapping énFñwmxagcug. Tinñn½yEdleKeGayman f 'c = 5,000 psi(34.5MPa)
ebtugTMgn;Rsal ehIy f y = 60,000 psi(414Mpa) .
dMeNaHRsay³
        snμt;fa shear span a = 6in.(152mm) / kMBs;RbsiT§PaB dapped-end d = 16in.(406mm)
nig h = 18in.(457mm) .
EdkrgkarBt; nigEdkrgkarTajtamG½kS As
                      Nu   20,000
                         =        = 0.18 < 0.20
                      Vu 110,000
dUcenH N u = 0.20 ×110,000 = 22,000lb(97.9kN )
tMNsMrab;Ggát;ebtugeRbkugRtaMg                                                           651
T.Chhay                                                                           viTüasßanCatiBhubec©keTskm<úCa

                              1         ⎡ ⎛a⎞           ⎛ h ⎞⎤
                     As =               ⎢Vn ⎜ d ⎟ + N u ⎜ d ⎟⎥
                             φf y       ⎣ ⎝ ⎠           ⎝ ⎠⎦
                                   1       ⎡          6            18 ⎤
                         =                 ⎢110,00 × 16 + 22,000 × 16 ⎥ = 1.46in.
                                                                                  2
                             0.75 × 60,000 ⎣                          ⎦
EdkrgkMlaMgkat;edaypÞal; As nig Ah
BItarag 10>2 / μ = 1.4λ Edl λ = 1.0 . bnÞab;mk BIsmIkar 10.14c Edl b sMrab;muxkat; 16RB28
esμInwg 16in.
                      1,000λbhμ 1,000 × 1.0 × 16 × 18 × 1.4
                μe =             =                          = 3.67 > μ e GnuBaØatGtibrma = 3.4
                          Vu              110,000
dUcenH eRbI μe = 3.4 . bnÞab;mk BIsmIkar 10.5
                              1     ⎛ 2Vu      ⎞         1       ⎛ 2 × 110,000      ⎞
                     As =           ⎜
                                    ⎜ 3μ + N u ⎟ = 0.75 × 60,000 ⎜ 3 × 3.4 + 22,000 ⎟ = 0.96in.
                                               ⎟
                                                                                                2
                             φf y   ⎝ e        ⎠                 ⎝                  ⎠
                                                         )anmkBIelImun
                                                      < As = 1.46in.2

dUcenH eRbI As = 1.46in.2 (9.1cm2 ) . enaHEdk 3#7 = 1.80in.2 EdlRKb;RKan;.
        BIsmIkar 10.4b
                                            = 0.49in.2 (3.0cm 2 )
                      N          22,000
                An = u =
                      φf      0.75 × 60,000
                                y

BIsmIkar 10.13/ EdkrgkMlaMgkat;tamTisedkkat;tamkMBs;rbs;FñwmKW Ah = 0.5( As − An ) =
0.5(1.29 − 0.43) = 0.43in.2 (2.77cm 2 ) . dUcenH sakl,gEdk 2#3 = 2(2 × 0.11) = 0.44in.2

(2.84cm 2 ) EdleKRtUvepÞógpÞat;vaCabnþbnÞab;. tamkarRtYtBinitüBIsmIkar 10.16a ersIusþg;kMlaMgkat;
nominal KW

               Vn EdlGacekItman = 800bd = 800 ×16 ×16 = 204,800lb

               Vn tMrUvkar = u =
                               V    110,000
                                              = 146,667lb < 204,800lb       O.K.
                               φ      0.75
EdkBRgwgbBaÄrrgkarTajGgát;RTUgenAkac;RCug
       BIsmIkar 10.19
                                             = 2.45in.2 (15.3cm 2 )
                       V         110,000
                Ash = u =
                      φf      0.75 × 60,000
                                    y

dUcenH sakl,gEdkkgbiTCit #4 / As = 2 × 0.20 = 0.40in.2 . cMnYnrbs;Edkkg 2.16 / 0.4 = 5.4
dUcenHeRbI 6#4 EdlRtUv)anRbmUlpþúMenAmþúMkac;RCug.
EdkBRgwgkarTajGgát;RTUg Av enAkñúg Dapped End
        BIsmIkar 10.19
Connections for Prestressed Concrete Elements                                                       652
Department of Civil Engineering                                                            NPIC




                              1 ⎛ Vu              ⎞
                     Av =         ⎜ − 2λbd f 'c   ⎟
                             2 fv ⎜ φ
                                  ⎝
                                                  ⎟
                                                  ⎠
ersIusþg;kMlaMgkat; nominal rbs;ebtugsuT§KW
                     2λbd f 'c = 2 × 1.0 × 16 × 16 5,000 = 36,204lb
                                 ⎛ 110,000          ⎞
bnÞab;mk       Av =
                           1
                                 ⎜
                     2 × 60,000 ⎝ 0.75
                                           − 36,204 ⎟ = 0.92in.2
                                                    ⎠
sakl,gEdkkgGkSr U 4#4 = 4(2 × 0.20) = 1.60in.2 . BIelIkmun/ Ah = 0.44in.2 . dUcenH
BIsmIkar 10.18 ersIusþg; kMlaMgkat; nominal srubrbs;muxkat;KW
               Vn EdlGacekItman = Av f y + Ah f y + 2λbd f 'c

                                         = 1.60 × 60,000 + 0.44 × 60,000 + 36,034
                                                      V
                                         = 158,434 > u = 146,667lb        O.K.
                                                      φ
RtYtBinitütMrUvkar Development Length sMrab;karf<k;
         EdkBRgwg As KW 3#7 . BItarag 10>3/ sMrab;Edk #7 / f 'c = 5,000 psi nig ld = 42in. .
kMBs;FñwmEdlmin dapped = 2 ft 4in. = 28in. ehIy development length srub = 28 − d + ld =
28 − 16 + 42 = 54in. . edaysar development length Gb,brma l d = 42in. eRbI l d = 54in.

= 4 ft 6in.(108cm ) .




tMNsMrab;Ggát;ebtugeRbkugRtaMg                                                            653
T.Chhay                                                                   viTüasßanCatiBhubec©keTskm<úCa

       EdkBRgwg Ah KWEdkGkSr U #4 . dUcenHBItarag 10>3/ 1.7ld = 32in.(81cm) BIeRkayFñwm
dap. rUbTI 10>5 bgðajBIkarlMGitEdksMrab;tMNFñwm dapped.



10.6. Brackets           nig Corbel ebtugGarem:
          Reinforced Concrete Brackets and Corbels
          Corbel CaFñwm cantilever xøI EdlpleFob shear span elIkMBs; a / d minRtUvFMCag 1.0 . varg
kMlaMgkat;edaypÞal; Vu nigkMlaMgTajtamTisedk N u . Epñk 5.14 enAkñúgCMBUk5/ design flowchart
enAkñúgEpñk 5.14.4 nig]TahrN_ 5>7 bgðajBIkMlaMgsgát; nigkarGnuvtþénRTwsþI shear-friction enAkñúg
karsikSaKNna corbel. karlMGitsrésEdkrbs;tMNCakargard¾sMxan;mYyedIm,ITTYleCaKC½ykñúgkar
sikSaKNna corbel edayKitBIlT§PaBrbs;vaedIm,ITb;Tl;nwgGnuvtþkMlaMgGnuvtþn_. srésEdklMGit
rbs; corbel KMrURtUv)anbgðajenAkñúgrUbTI 10>6.




Connections for Prestressed Concrete Elements                                               654
Department of Civil Engineering                                                             NPIC




10.7.    Epñklyecjrbs;FñwmebtugGarem:
         Concrete Beam Ledges
          eKeRbI beam ledge edIm,IRTbnÞúkcMcMnuccugFñwmebtugeRbkugRtaMgcak;Rsab;tamTisTTwg ehIyva
eFVIkarkñúgTMrg;RsedogKñanwg corbel Edr. kM;laMgedaypÞal;EdleFVIGMeBIelI ledge GacbgáeGaymansñam
bBaÄrdUcbgðajenAkñúgrUbTI 10>7. RbsinebIbnÞúkCabnÞúkminCab; ehIymkBIRCugmçag/ ledge beam kñúg
TMrg;GkSr L eFVIGMeBIdUc spandrel beam nigrgm:Um:g;rmYlbEnßmBIelIkMlaMgkat;edaypÞal;. karKNna
ledge beam KWGnuvtþtamkarsikSaKNna nig]TahrN_enAkñúgCMBUk5. enAkñúgemeronenHbgðajBIkar

sikSaKNnaEdkrgkMlaMgkat;sMrab; cantilevering ledge EdlCaTUeTAmanpleFob shear span elI
kMBs; l p / d tUcCag b¤esμInwg 0.5 .




      eKRtUvkMNt;esIusþg;kMlaMgkat; nominal rbs; ledge Rtg;kac;RCugedaytMéltUcCageKkñúg
cMeNamtMélEdlTTYlBIsmIkar nigeRkamlkçxNÐEdleKeGaydUcxageRkam
      !> s > b + h

tMNsMrab;Ggát;ebtugeRbkugRtaMg                                                             655
T.Chhay                                                                 viTüasßanCatiBhubec©keTskm<úCa

                                                    (
                               Vn = 3hλ f 'c 2l p + b + h   )                         (10.20a)
                                                (
                               Vn = hλ f 'c 2l p + b + h + 2d e   )                   (10.20b)

          @> s < b + h nigbnÞúkcMcMnucesμIKña
                                                        (
                               Vn = 1.5hλ f 'c 2l p + b + h + s   )                   (10.21a)
                                            ⎛       b+h          ⎞
                               Vn = hλ f 'c ⎜ l p +     + de + s ⎟                    (10.21b)
                                            ⎝        2           ⎠
          Edl      RbEvglyecjrbs; ledge
                     lp =

              b = TTwgrbs; bearing area

              h = kMBs;rbs; ledge

              s = KMlaténbnÞúkcMcMnuc

              d e = cMgayBIG½kSénbnÞúkeTAcugFñwm

      RbsinebI ledge RTbnÞúkCab; b¤bnÞúkcMcMnucEdlmanKMlatEk,rKña eKkMNt;ersIusþg;kMlaMgkat;
nominal rbs;muxkat; ledge BI
                    Vn = 24hλ f 'c                                                    (10.22)

Edl Vn CakMlaMgkat;kñúgmYyÉktþaRbEvg. y:agehacNas; eKRtUveGayersIusþg;KNna Vu esμInwgkM
laMgemKuN Vu = φVn sMrab; φ = 0.85 . RbsinebIbnÞúkemKuNGnuvtþn_ Vu FMCagersIusþg;KNna dUc
EdlkMNt;BIsmIkar 10.20, 10.21 b¤ 10.22/ eKRtUvdak;EdkBiessEdlKNnaRsedogKñaeTAnwgEdk
EdlRtUvkarenAkñúgcug dapped beam dUcEdl)anerobrab;enAkñúgEpñk 10.5. enAkñúgkrNIenH eKRtUv
kMNt;EdkrgkarBt; As BIsmIkar 10.12/ EdkBRgwgrgkarTajGgát;RTUgbBaÄr (hanger) Ash BI
smIkar 10.17 ehIyEdkBRgwgbEnßm At Edldak;enAsrésxagelI nigsrésxageRkamrbs; ledge BI
                            200l p d
                     At =                                                             (10.23)
                                fy

Edl At CaRkLaépÞrbs;EdkbeNþayenAkñúg ledge. eKdak;EdkBRgwg Ash edayKMlatesμIKñaelITTwg
6h énRCugnImYy²rbs; bearing b:uEnþminRtUvFMCagBak;kNþalcMgayeTAkan;bnÞúkbnÞab;. KMlatEdkmin

RtUvFMCagkMBs; ledge h b¤ 18in. ehIy Ash RtUv)ansikSaKNnasMrab; ledge EdlminRtUvbEnßmeTAelI
EdkrgkMlaMgkat; nigEdkrgkMlaMgrmYlrbs; ledge beam srub.

      karKNnatMNFñwmlyecj
10.7.1.                                 Design of Ledge Beam Connection
]TahrN_ 10>3³ eRKOgbgÁúMkMralGaKarcMNtrfynþRtUv)anpSMeLIgBI 10 ft -wide double-T RtUv)an

Connections for Prestressed Concrete Elements                                             656
Department of Civil Engineering                                                              NPIC




RTenAmuxkat;FñwmGkSr L sþg;dar. eKRtUvdak;eCIgrbs; double-T y:agNaenAelIRKb;cMnucTaMgGs;enA
elI ledge. kMlaMgkat;emKuNbBaÄrxagcug Vu = 24,000lb(107kN ) kñúgeCIgmYy nigkMlaMgTajtamTis
edk Nu = 5,000lb(22.4kN ) kñúgeCIgmYy. KNnaersIusþg;kMlaMgkat; nominal rbs; ledge nigsikSa
KNnaEdkRbsinebIcaM)ac;. eKeGay
                     b = 4in.

                     h = 12in.

                     d = 10.5in.
                     l p = 6in.(15cm )

                     s = 48in.(122cm )
                      f 'c = 5,000 psi (34.5MPa )    ebtugTMgn;Rsal
                      f y = 60,000 psi (414MPa )

dMeNaHRsay³
                     Vu = 24,000lb

                     N u = 5,000lb

                     s = 48in.

                     b + h = 4 + 12 = 16in.
                     tMélGb,brmarbs; d e = 1 b = 2in.
                                           2
                     2l p + b + h = 2 × 6 + 4 + 12 = 28in.

edaysar s > b + h nig d e < 2l p + b + h ehIyGnuvtþsmIkr 10.20b ehIyersIusþg;kMlaMgkat;Edl
GacekItman Vn = hλ f 'c (2l p + b + h + 2de ) = 12 ×1.0 5,000 (2 × 6 + 4 + 12 + 2 × 2) = 27,153lb
(120.8kN ) . dUcenHersIusþg;kMlaMgkat;KNna Vu = φVu = 0.75 × 27,153 = 20,365lb < kMlaMgkat;em
KuN Vu = 24,000lb ehIyeyIgRtUveRbIEdkBRgwgEdlKNnadUcEdkBRgwgsMrab;muxkat; dapped Edr.
EdkrgkarBt;begáag As
          Shear span a ≅ 3l p / 4 + 1.5 = 3 × 6 / 4 + 1.5 = 6in.(15cm )

edaysar Nu / Vu = 5,000 / 24,000 = 0.21 > 20% dUcenHeKeRbI Nu = 5,000lb .
BIsmIkar 10.12
                             1 ⎡ ⎛a⎞             ⎛ h ⎞⎤
                     As =        ⎢Vu ⎜ d ⎟ + N u ⎜ d ⎟⎥
                            φf y ⎣ ⎝ ⎠           ⎝ ⎠⎦



tMNsMrab;Ggát;ebtugeRbkugRtaMg                                                              657
T.Chhay                                                                         viTüasßanCatiBhubec©keTskm<úCa

                         =
                                   1       ⎡        6            12 ⎤
                                                                        (       )
                                           ⎢24,000 10.5 + 5,000 10.5 ⎥ = 0.38in. 2.45cm
                             0.85 × 60,000 ⎣                         ⎦
                                                                                2       2



edaysar 6h = 6 ×12 > s / 2 = 24in. / EbgEckEdkBRgwg s / 2 = 24in. enARCugnImYy²énbnÞúk.
       TTwgrbs; band sMrab;kardak;EdkrgkarBt;begáag A = 2 × 24 = 48in. ehIyKMlatEdkGti-
                                                                       s

brma h = 12in. . dUcenHeRbIEdk 4#3 enAkñúg band width 48in. nImYy² = 0.44in. > EdktMrUvkar
                                                                                     2


0.38in. . dUcenH dak;EdkbEnßmBIrenARtg;cugFñwmedIm,Ipþl;EdksmmUlsMrab;eCIgFñwmEdldak;Ek,r
          2


xagcug.
EdkbBaÄrrgkarTajGgát;RTUg A                 sh

       BIsmIkar 10.17
                                           = 0.53in. (3.42cm )
                      V         24,000
                A =       =     u                               2          2
                      φf
                       sh
                             0.75 × 60,000
                                y

elI hand width 48in. . dUcenH Ash / ft = 0.47 / 4 = 0.12in.2 / ft b¤ #3@11in. . Cavi)akeRbIEdkkg
biTCit 5#3 enAkñúg bad width 48in. = 0.55in.2 > muxkat;EdktMrUvkar 0.53in.2 . bnÞab;mk sMrab;kargar
Gnuvtþn_ eRbIcMnYn nigKMlatdUcKñasMrab;Edk As nig Ash ¬EdkkgbiTCit 5#3 ¦. cMNaMfa manEteCIgmçag
rbs;Edkkg Ash RtUv)anKitbBa©ÚleTAkñúgmuxkat;én 5#3 edIm,Ipþl;karRbmUlpþúMtMrUvkarénEdkEk,rkac;
RCug.
EdkbeNþay Al
         BIsmIkar 10.23
                             200l p d       200 × 6 ×10.5
                     Al =               =                 = 0.21in.2
                                fy            60,000

sMrab;kargarGnuvtþn_ eRbIEdk #4 mYyenARtg;kac;RCugrbs; ledge edayeGay 4#4 = 0.80in.2 ¬Ggát;
p©it 12.7mm ¦ > 0.21in.2 / O.K.
        CakarBit karKNnaEdlmanlkçN³eBjeljTamTarkarviPaKkMlaMgkat; nigkMlaMgrmYlrbs;
muxkat;srubedIm,ITb;Tl;nwgkMlaMgkat;srubEdlbBa¢ÚnedayeCIgrbs; double-T TaMgGs; nigm:Um:g;rmYl
EdlekIteLIgedaykarGnuvtþrbs;kMlaMgcakp©itBIeCIgrbs; double-T. karerobrab;BIRkLaépÞEdkBRgwg
rbs; ledge Edl)anKNnaenAkñúg]TahrN_enHCaRkLaépÞEdkbEnßmeTAelIelIEdkrgkMlaMgTaj nig
Edkrg kMlaMgrmYlEdlTamTarsMrab;Fñwmsrub.
        rUbTI 10>8 bgðajBIkarlMGitrbs;srésEdksMrab;tMN ledge, b:uEnþmin)anrab;bBa©ÚlEdkrgkM-
laMgTaj nigEdkrgkMlaMgrmYlEdlRtUvsikSasMrab;FñwmGkS L TaMgmUl.

Connections for Prestressed Concrete Elements                                                     658
Department of Civil Engineering                                                             NPIC




10.8.    lMGittMNEdl)aneRCIserIs              Selected Connection Details
         dUcEdl)aneerobrab;enAkñúgEpñk 10.1 tMNCaeRKOgP¢ab;cMbgenAkñúgRbB½n§eRKOgbgÁúMTaMgmUl Edl
kareFVIkarrbs;vakMNt;faeRKOgbgÁúMmansuvtßiPaB nigmanesßrPaB. dUcenH design engineer RtUvmankar
Rby½tñy:agxøaMgkñúgkarsikSaKNna nigeRCIserIsnUvmuxkat;EdlsmRsbsMrab;mUlehtu suvtßiPaB nig
esdækic©. BIrUbTI 10>9 dl;rUbTI 10>16 manbgðajBIkarlMGiténRbePTtMNEdl)aneRCIserIsCaeRcIn.




tMNsMrab;Ggát;ebtugeRbkugRtaMg                                                             659
T.Chhay                                         viTüasßanCatiBhubec©keTskm<úCa




Connections for Prestressed Concrete Elements                     660
Department of Civil Engineering    NPIC




tMNsMrab;Ggát;ebtugeRbkugRtaMg    661
T.Chhay                                         viTüasßanCatiBhubec©keTskm<úCa




Connections for Prestressed Concrete Elements                     662
Department of Civil Engineering    NPIC




tMNsMrab;Ggát;ebtugeRbkugRtaMg    663
T.Chhay                                         viTüasßanCatiBhubec©keTskm<úCa




Connections for Prestressed Concrete Elements                     664
Department of Civil Engineering    NPIC




tMNsMrab;Ggát;ebtugeRbkugRtaMg    665
T.Chhay                                         viTüasßanCatiBhubec©keTskm<úCa




Connections for Prestressed Concrete Elements                     666

Weitere ähnliche Inhalte

Was ist angesagt?

Xvi continuous beams and frames
Xvi continuous beams and framesXvi continuous beams and frames
Xvi continuous beams and framesChhay Teng
 
Xii slender column
Xii slender columnXii slender column
Xii slender columnChhay Teng
 
Xv design for torsion
Xv design for torsionXv design for torsion
Xv design for torsionChhay Teng
 
Ix one way slab
Ix one way slabIx one way slab
Ix one way slabChhay Teng
 
Iii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteIii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteChhay Teng
 
I. basic concepts
I. basic conceptsI. basic concepts
I. basic conceptsChhay Teng
 
Xiv retaining walls
Xiv retaining wallsXiv retaining walls
Xiv retaining wallsChhay Teng
 
1.introduction
1.introduction1.introduction
1.introductionChhay Teng
 
9.composite construction
9.composite construction9.composite construction
9.composite constructionChhay Teng
 
Vi deflection and control of cracking
Vi deflection and control of cracking Vi deflection and control of cracking
Vi deflection and control of cracking Chhay Teng
 
7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structuresChhay Teng
 
1.types of structures and loads
1.types of structures and loads1.types of structures and loads
1.types of structures and loadsChhay Teng
 
13.combined stresses
13.combined stresses13.combined stresses
13.combined stressesChhay Teng
 
7.simple connections
7.simple connections7.simple connections
7.simple connectionsChhay Teng
 
Ii properties of reinforced concrete
Ii properties of reinforced concreteIi properties of reinforced concrete
Ii properties of reinforced concreteChhay Teng
 
4.compression members
4.compression members4.compression members
4.compression membersChhay Teng
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distributionChhay Teng
 

Was ist angesagt? (20)

Xvi continuous beams and frames
Xvi continuous beams and framesXvi continuous beams and frames
Xvi continuous beams and frames
 
Xii slender column
Xii slender columnXii slender column
Xii slender column
 
Xv design for torsion
Xv design for torsionXv design for torsion
Xv design for torsion
 
Xiii footings
Xiii footingsXiii footings
Xiii footings
 
Ix one way slab
Ix one way slabIx one way slab
Ix one way slab
 
Iii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteIii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concrete
 
Xviii stairs
Xviii stairsXviii stairs
Xviii stairs
 
I. basic concepts
I. basic conceptsI. basic concepts
I. basic concepts
 
Xiv retaining walls
Xiv retaining wallsXiv retaining walls
Xiv retaining walls
 
1.introduction
1.introduction1.introduction
1.introduction
 
9.composite construction
9.composite construction9.composite construction
9.composite construction
 
Vi deflection and control of cracking
Vi deflection and control of cracking Vi deflection and control of cracking
Vi deflection and control of cracking
 
7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures
 
1.types of structures and loads
1.types of structures and loads1.types of structures and loads
1.types of structures and loads
 
13.combined stresses
13.combined stresses13.combined stresses
13.combined stresses
 
7.simple connections
7.simple connections7.simple connections
7.simple connections
 
Ii properties of reinforced concrete
Ii properties of reinforced concreteIi properties of reinforced concrete
Ii properties of reinforced concrete
 
4.compression members
4.compression members4.compression members
4.compression members
 
8. deflection
8. deflection8. deflection
8. deflection
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution
 

Andere mochten auch

Vi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresVi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresChhay Teng
 
Viii. prestressed compression and tension member
Viii. prestressed compression and tension memberViii. prestressed compression and tension member
Viii. prestressed compression and tension memberChhay Teng
 
Construction work
Construction work Construction work
Construction work Chhay Teng
 
Computer graphic
Computer graphicComputer graphic
Computer graphicChhay Teng
 
14. truss analysis using the stiffness method
14. truss analysis using the stiffness method14. truss analysis using the stiffness method
14. truss analysis using the stiffness methodChhay Teng
 
Computer aided achitecture design
Computer aided achitecture design Computer aided achitecture design
Computer aided achitecture design Chhay Teng
 
Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bendingChhay Teng
 
Construction plan
Construction planConstruction plan
Construction planChhay Teng
 
Construction design drawing practice
Construction design drawing practiceConstruction design drawing practice
Construction design drawing practiceChhay Teng
 
Carpentering work
Carpentering work Carpentering work
Carpentering work Chhay Teng
 
Xix introduction to prestressed concrete
Xix introduction to prestressed concreteXix introduction to prestressed concrete
Xix introduction to prestressed concreteChhay Teng
 
13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic membersChhay Teng
 
8.eccentric connections
8.eccentric connections8.eccentric connections
8.eccentric connectionsChhay Teng
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy methodChhay Teng
 

Andere mochten auch (18)

Vi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresVi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structures
 
Viii. prestressed compression and tension member
Viii. prestressed compression and tension memberViii. prestressed compression and tension member
Viii. prestressed compression and tension member
 
Appendix
AppendixAppendix
Appendix
 
Construction work
Construction work Construction work
Construction work
 
Computer graphic
Computer graphicComputer graphic
Computer graphic
 
Euro upe
Euro upeEuro upe
Euro upe
 
14. truss analysis using the stiffness method
14. truss analysis using the stiffness method14. truss analysis using the stiffness method
14. truss analysis using the stiffness method
 
Computer aided achitecture design
Computer aided achitecture design Computer aided achitecture design
Computer aided achitecture design
 
Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bending
 
Construction plan
Construction planConstruction plan
Construction plan
 
Construction design drawing practice
Construction design drawing practiceConstruction design drawing practice
Construction design drawing practice
 
Carpentering work
Carpentering work Carpentering work
Carpentering work
 
Xix introduction to prestressed concrete
Xix introduction to prestressed concreteXix introduction to prestressed concrete
Xix introduction to prestressed concrete
 
Euron fl
Euron flEuron fl
Euron fl
 
13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members
 
8.eccentric connections
8.eccentric connections8.eccentric connections
8.eccentric connections
 
5.beams
5.beams5.beams
5.beams
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy method
 

Ähnlich wie X. connections for prestressed concrete element

3.tension members
3.tension members3.tension members
3.tension membersChhay Teng
 
Appendix a plastic analysis and design
Appendix a plastic analysis and designAppendix a plastic analysis and design
Appendix a plastic analysis and designChhay Teng
 
Xvii design of two way slab
Xvii design of two way slabXvii design of two way slab
Xvii design of two way slabChhay Teng
 
Cement knowledge revised 160110
Cement knowledge revised 160110Cement knowledge revised 160110
Cement knowledge revised 160110Chhay Teng
 
X axial loaded column
X axial loaded columnX axial loaded column
X axial loaded columnChhay Teng
 
Iv flexural design on reinforced concrete beams
Iv flexural design on reinforced concrete beamsIv flexural design on reinforced concrete beams
Iv flexural design on reinforced concrete beamsChhay Teng
 
3. analysis of statically determinate trusses
3. analysis of statically determinate trusses3. analysis of statically determinate trusses
3. analysis of statically determinate trussesChhay Teng
 
2.analysis of statically determinate structure
2.analysis of statically determinate structure2.analysis of statically determinate structure
2.analysis of statically determinate structureChhay Teng
 
4.internal loading developed in structural members
4.internal loading developed in structural members4.internal loading developed in structural members
4.internal loading developed in structural membersChhay Teng
 

Ähnlich wie X. connections for prestressed concrete element (10)

3.tension members
3.tension members3.tension members
3.tension members
 
Appendix a plastic analysis and design
Appendix a plastic analysis and designAppendix a plastic analysis and design
Appendix a plastic analysis and design
 
Xvii design of two way slab
Xvii design of two way slabXvii design of two way slab
Xvii design of two way slab
 
Cement knowledge revised 160110
Cement knowledge revised 160110Cement knowledge revised 160110
Cement knowledge revised 160110
 
X axial loaded column
X axial loaded columnX axial loaded column
X axial loaded column
 
Iv flexural design on reinforced concrete beams
Iv flexural design on reinforced concrete beamsIv flexural design on reinforced concrete beams
Iv flexural design on reinforced concrete beams
 
3. analysis of statically determinate trusses
3. analysis of statically determinate trusses3. analysis of statically determinate trusses
3. analysis of statically determinate trusses
 
2.analysis of statically determinate structure
2.analysis of statically determinate structure2.analysis of statically determinate structure
2.analysis of statically determinate structure
 
4.internal loading developed in structural members
4.internal loading developed in structural members4.internal loading developed in structural members
4.internal loading developed in structural members
 
មេកានិកនៃសន្ទនីយ៍
មេកានិកនៃសន្ទនីយ៍មេកានិកនៃសន្ទនីយ៍
មេកានិកនៃសន្ទនីយ៍
 

Mehr von Chhay Teng

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_studentsChhay Teng
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countriesChhay Teng
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix designChhay Teng
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelinesChhay Teng
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto contentChhay Teng
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-camChhay Teng
 
Concrete basics
Concrete basicsConcrete basics
Concrete basicsChhay Teng
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryoutChhay Teng
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapesChhay Teng
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shapeChhay Teng
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shapeChhay Teng
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shapeChhay Teng
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shapeChhay Teng
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shapeChhay Teng
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipnChhay Teng
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angleChhay Teng
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upeChhay Teng
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upnChhay Teng
 

Mehr von Chhay Teng (20)

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_students
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countries
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix design
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
 
Type of road
Type of roadType of road
Type of road
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto content
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-cam
 
Concrete basics
Concrete basicsConcrete basics
Concrete basics
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryout
 
Mix design
Mix designMix design
Mix design
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapes
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shape
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shape
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shape
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shape
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipn
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upe
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upn
 

X. connections for prestressed concrete element

  • 1. Department of Civil Engineering NPIC X. tMNsMrab;Ggát;ebtugeRbkugRtaMg Connections for Prestressed Concrete Elements 10.1. esckþIepþIm Introduction tYnaTIrbs;tMNKWkarepÞrbnÞúk nigkugRtaMgBIEpñkmYyrbs;rcnasm<½n§eTAEpñkEdlenAEk,rRbkb edaylkçN³esdækic© ehIypþl;nUvesßrPaBdl;RbB½n§eRKOgbgÁúM. bnÞúkEdleFVIGMeBIRtg;tMNminRtwmEt ekItecjEtBIbnÞúkTMnajb:ueNÑaHeT vak¾GacekItBIbnÞúkxül; T§iBlrBa¢ÜydI karpøas;bþÚrmaDEdlekIteLIg edaysar long-term creep nig shrinkage/ differential movement rbs;kMral nigT§iBlrbs; sItuNðPaB. edaysartMNCacMnuctP¢ab;EdlmanlkçN³exSayCageKenAkñúgRbB½n§eRKOgbgÁúMTaMgmUl dUcenH vaRtUvman nominal design strength FMCag nominal design strength rbs;Ggát;EdlvaRtUvtP¢ab;. em KuNbnÞúkbEnßmy:agehacNas; 1.3 RtUv)aneKeRbIenAkñúgkarsikSaKNnakartP¢ab; EtelIkElgkrNI insensitive connection dUcCa pad sMrab; column base. eKsikSaKNnatMNTaMgGs;sMrab;kMlaMgTaj tamTisedkGb,brma 0.2 dgénbnÞúkefrbBaÄr elIkElgEteKRtUveRbI bearing pad Edl)ansikSa KNnad¾RtwmRtUv. krNIEdlRtUv)aneKKitBicaNasMrab;ersIusþg;enAkñúgkarsikSaKNnatMNmandUcxageRkam³ !> Load transfer mechanism @> emKuNbnÞúk (load factors) #> karpøas;bþÚrmaD (volumetric changes) $> PaBsVit (ductility) %> PaBrwgmaM (Durability) ^> karTb;Tl;nwgGKÁIP½y (fire resistance) &> kMritGt;eGan nigRbeLaHtMrUvkar (required tolerance and clearance) *> karBicarNaEdlTak;TgnwgkargartMeLIg (erection-related consideration) (> karBicarNaEdlTak;TgnwgGakasFatuekþA nigGakasFatuRtCak; !0> esdækic©énkarlMGittMN (economics of the details of the connection) tMNsMrab;Ggát;ebtugeRbkugRtaMg 639
  • 2. T.Chhay viTüasßanCatiBhubec©keTskm<úCa 10.2. kMritGt;eGan Tolerance eKRtUvkMNt;)a:n;RbmaNRbeLaHrvagGgát;tamPaBCak;Esþg. eKRtUvkMNt;TItaMgEdlmankMrit Gt;eGanx<s;RtUv)anGnuBaØat nigkEnøgEdlkMritlMeGanminRtUv)anGnuBaØat ehIyeKk¾KitbBa©ÚlRbeLaH sMrab;ktþaTaMgenH. xageRkamCakMritlMeGanEdlENnaMsMrab;TMhMlMgakenAkñúgFñwm ssr nig spandrel panel³ !> karERbRbYlkñúgbøg;BITItaMgEdl)ankMNt;enAkñúgbøg;³ ± 0.5in. sMrab;ssr b¤Fñwm @> kargakecjenAkñúgbøg;BIbnÞat;Rtg;EdlRsbeTAnigG½kSGaKar³ 1 / 40in. kñúg 1 ft RKb;FñwmEdl xøICag 20 ft b¤KMlatrbs;ssrBIrEdlenAEk,rKñatUcCag 20 ft / 0.5in. sMrab;KMlatssr EdlXøatq¶ayBIKña 20 ft . Connections for Prestressed Concrete Elements 640
  • 3. Department of Civil Engineering NPIC #> PaBxusKñaén relative position rbs;ssrEdlenAEk,rBI relative position Edl)ankMNt;³ 0.5in. enARtg;nIv:UkMral (deck level). $> lMgakBIkUnRbeyal (plumb)³ ± 0.25in. sMrab;ral;kMBs; 10 ft / GtibrmaRtwm 1in. sMrab; kMBs;TaMgmUl. %> PaBERbRbYlénkMritkMBs;rbs; bearing surface BIkMritkMBs;Edl)ankMNt;³ ± 0.5in. sMrab; ssr nigFñwmTaMgGs; nigsMrab;RKb;TItaMg. ^> lMgakEpñkxagelIrbs; spandrel BIkMritkMBs;Edl)ankMNt;³ 0.5in. / sMrab;RKb; spandrel &> lMgakénkMritkMBs;rbs; bearing surface BIExSRsbeTAExSrnIv:UEdl)ankMNt;³ 1 / 40in. kñúg 1 ft sMrab;RKb;FñwmxøICag 20 ft b¤ssrEk,rBIrEdlXøatBIKñaticCag 20 ft / GtibrmaRtwm 0.5in. sMrab;RKb;FñwmEvgCag b¤esμI 20 ft b¤ssrEk,rBIrXøatBIKñaeRcInCag b¤esμI 20 ft . *> bMErbMrYlBI bearing length Edl)ankMNt;enAelITMr³ 3 / 4in. . (> bMErbMrYlBI bearing width enAelITMr³ ± 0.5in. . !0> PaBrt;Rtg;rbs;RCugEKm³ 0.25in. tarag 10>1 eGaynUvkMritlMeGogEdlGacGnuvtþsMrab;tMN. 10.3. Ggát;smas Composite Members dUcEdl)anerobrab;lMGitenAkñúgCMBUkTI5 BIEpñkEpñk5>7 eTAEpñk5>11/ eKRtUvFanakarepÞr kMlaMgkat;tamTisedkenARtg;épÞb:HrvagGgát;cak;Rsab; nig situ-cast-topping. ]TahrN_ 5>14 bgðajBIkMlaMgGnþrGMeBI (interaction forces) nig flowchart énEpñk 5>8>2 eGay operational step- by-step design procedure nigsmIkarKNnaEdlGacGnuvtþ)an (applicable design equation). rUbTI 5>18 én]TahrN_ 5>3 ehIykarsikSaKNnapþl;nUvTMhM nigKMlatrbs; dowel EdlmanT§iBldl;kar epÞreBj eljénkMlaMgkat;tamTisedkrvagGgát;EdlP¢ab;Kña. 10.4. RTnab;TMrebtugGarem:enAkñúgGgát;smas Reinforced Concrete Bearing in Composite Members rUbTI 10>1 bgðajBI composite-action dowel reinforcement. edIm,IkarBarebtugEdlb:H bearing edaypÞal;kuMeGaypÞúHEbkedaysarkMlaMgsgát;FelIslub eKRtUvGnuvtþkMlaMgxageRkAeTAelI M bearing EdlmanTMhMFMRKb;RKan;. kareFVIEbbenHkugRtaMgEdlTTYl)anBIsßanPaBkMNt;nwgminFMelIs tMNsMrab;Ggát;ebtugeRbkugRtaMg 641
  • 4. T.Chhay viTüasßanCatiBhubec©keTskm<úCa ersIusþg;sgát;rbs;ebtugeT. eKGackMNt; nominal bearing strength rbs;ebtugsuT§tamsmIkarxag eRkam Vn = C r (0.85 f ' c A1 ) A2 / A1 ≤ 1.2 f ' c A1 (10.1) Edl C r = 1 .0enAeBleKdak;EdkBRgwgenAkñúgTisrbs;kMlaMgb:HtamTisedk (horizontal frictional force) N u dUceXIjenAkñúgrUbTI 10>2 b¤enAeBlEdleKyk N u = 0 . eKGackMNt; C r = (S × W / 200) Nu / Vu EdlRkLaépÞ S × W minRtUvFMCag 9.0in.2 ehIyvaRtUv)anbgðaj enAkñúgrUbTI 10>3 . A1 = RkLaépÞ direct bearing A2 = RkLaépÞGtibrmarbs;cMENkénépÞTMrEdlmanragFrNImaRtRsedogKñanwgRkLaépÞrg bnÞúk dUcbgðajkñúgrUbTI 10>3. Design bearing strength KW Vu = φVn Edl φ = 0.70 . edIm,IeCosvagsñameRbH nig spalling EdlekIteLIgedayécdnüenAxagcugrbs; thin- stemmed member, eKENnaMeGayeRbIEdkGb,brmaEdlesμInwg N u / φf y b:uEnþminRtUvtUcCag 1#3 ¬Ggát;p©it 9.52mm ¦ enAeBlEdl bearing area tUcCag 2in.2 (12.9cm 2 ). RbsinebIbnÞúkemKuN Vu FMCag design bearing strength Vu = φVn dUcEdl)anKNnaBI smIkar 10>1/ enaHeKRtUvkarEdkBRgwgenAkñúg bearing area. eKGacsikSaKNnaEdkenHedayRTwsþI Connections for Prestressed Concrete Elements 642
  • 5. Department of Civil Engineering NPIC - shear friction Edlerobrab;enAkñúgCMBUk 5. eKRtUvsikSaKNna reinforced bearing sMrab;Ggát;cak; Rsab;TaMgGs; elIkElgEtkMraltan; nig hollow-core slab edIm,IkarBarsñameRbHtamTisedk nigsñam eRbHtamTisbBaÄrenARtg;EdkxageRkAbMputrbs;FñwmRtg;TMr. eKGacsnμt;PaBeRTtrbs;sñameRbHxag cugedaysuvtßiPaBRbhak;RbEhlnwg 20o dUceXIjenAkñúgrUbTI 10>2. RbsinebI Vu esμInwgkMlaMgkat; emKuN ¬EdlRsbeTAnwgbøg;sñameRbHsnμt;¦ eKKYrkMNt;tMélrbs;kMlaMgkat;dUcbgðajenAkñúgtarag 10>2 sMrab;emKuN shear-friction RbsiT§PaBGtibrma μe . eKGacrkRkLaépÞEdkEdlEkgeTAnwgbøg;sñameRbHsnμt;BIsmIkarxageRkam³ Vup Avf = (10.2) φμe f y Edl Vu / φ = nominal strength Vn f y = yield strength rbs; Avf tMNsMrab;Ggát;ebtugeRbkugRtaMg 643
  • 6. T.Chhay viTüasßanCatiBhubec©keTskm<úCa Vup = kMlaMgkat;emKuNGnuvtþn_ EdlkMNt;edaytMélEdleGayenAkñúgtarag 10>2 ehIy 1,000λAcr μ μe = Vup Edl λ = 1 .0sMrab;ebtugTMgn;Rsal/ 0.85 sMrab; sand-lightweight nig 0.75 sMrab; all-lightweight concrete. Acr = RkLaépÞrbs;épÞb:Hbøg;sñameRbH EdleKGacykvaesμInwg l d b Edl l d Ca development length rbs; Avf ehIy b CaTTwgmFümrbs;Ggát;. tarag 10>3 eGay development length ld sMrab;TMhMEdkepSg². eKGackMNt;EdkbBaÄr Ash Edlkat;tamsñameRbHtamTisedkdUcxageRkam Connections for Prestressed Concrete Elements 644
  • 7. Department of Civil Engineering NPIC Ash = (Avf + An ) f y (10.4) μ 'e f ys 1,000λAcr μ Edl μ 'e = ( Avf + An f y) (10.5) ehIy rbs; Ash f ys = yield strength An = RkLaépÞrbs;EdkedIm,ITb;Tl;kMlaMgTajtamG½kS N u enAkñúgrUbTI 10>2 Edl ( ) An = N u / φf y (10.6) Edl Nu = kMlaMgTajtamTisedkGnuvtþn_emKuNEdlEkgeTAnwgbøg;sñameRbHsnμt; φ = emKuNkat;bnßyersIusþg; = 0.75 tMNsMrab;Ggát;ebtugeRbkugRtaMg 645
  • 8. T.Chhay viTüasßanCatiBhubec©keTskm<úCa cMNaMfa eKRtUvf<k;EdkBRgwgTaMgGs;enAelIRCugNak¾edayrbs;bøg;sñameRbHsnμt;eGay)an l¥eday development length b¤edaykarpSareTAnwgEdkEkg (angles)/ EdkbnÞH b¤EdkTMBk; (hooks) edIm,IbegáItkMlaMgTb;Tl;Edl)anKNna. KNnaRTnab;TMrebtugGarem: 10.4.1. Reinforced Bearing Design ]TahrN_ 10>1³ FñwmebtugeRbkugRtaMgragctuekaN PCI standard 16RB28 rgkMlaMgkat;emKuNbBaÄr Vu = 90,000lb(400kN ) nigkMlaMgTajtamTisedk N u = 21,000lb(93.4kN ) . FñwmRtUv)anRTenAelI Teflon pad TMhM 4in. × 4in.(10cm × 10cm ) . KNna end reinforcement enAkñúgFñwmEdlGackarBarkar ekItman bearing crack tamTisedk b¤tamTisQr. eKeGayTinñn½yxageRkam³ f 'c = 5,000 psi (34.47 MPa ) ebtugTMgn;Fmμta f y = 60,000 psi sMrab;EdkFmμtaTaMgGs; (413.7 MPa ) θ = 20 o dMeNaHRsay³ EdktamTisedk (Avf + An ) sMrab;karkMNt;EdkBRgwgtamTisedk/ sakl,gEdk #6 kMBs;Fñwm h = 28in. b = 16in. BItarag 10>3/ ld = 29in. Acr = l d b = 29 × 16 = 464in.2 BItarag 10>2/ μ = 1.4 nigBIsmIkar 10.3 1,000λAcr μ 1,000 × 1.0 × 464 × 1.4 μe = Vup = 90,000 = 10.61 > μ e GnuBaØat = 3.4 dUcenHeRbI μe = 3.4 BIsmIkar 10.2 Avf = Vup φf y μ e = 90,000 0.75 × 60,000 × 3.4 ( = 0.59in.2 3.4cm 2 ) N u = 21,000lb N u 21,000 = Vu 90,000 = 0.23 > tMélGb,brma 0.20 dUcenH yk N u = 21,000lb . Connections for Prestressed Concrete Elements 646
  • 9. Department of Civil Engineering NPIC BIsmIkar 10.6/ An = N u / φf y = 21,000 /(0.75 × 60,000) = 0.47in.2 (2.94cm 2 ) Edksrub As = Avf + An = 0.59 + 0.47 = 1.06in.2 (6.63cm 2 ) dUcenH eRbI 3#6 = 1.32in.2 (8.52cm 2 ) EdkbBaÄr ¬ Ash ¦ BItarag 10>3/ ld = development length rbs;Edk #6 = 29in.(74cm) nig Acr = ld b = 29 × 16 = 464in 2 (3,159cm 2 ). BIsmIkar 10.5 1,000λAcr μ 1,000 × 1.0 × 464 × 1.4 μ 'e = (A + A ) f = 0.93 × 60,000 = 11.64 > μe GnuBaØat = 3.4 vf n y dUcenH eRbI μ 'e = 3.4 . BIsmIkar 10.4 Ash = (Avf + An ) f y = 0.93 × 60,000 = 0.27in.2 (1.74cm 2 ) μ 'e f ys 3.4 × 60,000 dUcenH eRbIEdkkg (stirrup) ( = 0.66in.2 4.26cm 2 ) 10.5. Dapped-End Beam Connections - Dapped end beam CaGgát;eRKOgbgÁúMEdlmankarbnßykMBs;FñwmPøam²enAxagcugrbs;vaedIm,I nUv seating b¤ bearing caM)ac;enAelI corbel b¤ bracket edayKμankar)at;bg; clear height rvagkMral. tMNsMrab;Ggát;ebtugeRbkugRtaMg 647
  • 10. T.Chhay viTüasßanCatiBhubec©keTskm<úCa rUbTI 10>4 bgðajBIFñwmebtugeRbkugRtaMgEdlman dapped end KMrUenAxagcug. sñameRbHBIrRbePTGac ekItman³ sñameRbHelx @ CasñameRbHkMlaMgkat;edaypÞal; (direct shear crack) cMENkÉsñameRbH elx #/ elx $ nigelx % CasñameRbHkMlaMgTajGgát;RTUgEdlbgáedaykMlaMgTajtamG½kS nigkMlaMg begáagenAkñúgkMBs;FñwmEdlkat;bnßy ehIykugRtaMgRbmUlpþúMenAmþúMkac;RCug. dUcenH eKRtUvdak;RbePT EdkBRgwgxageRkam dUcbgðajenAkñúgrUb³ !> EdkrgkarBt; (flexural reinforcement) A f bUknwgEdkrgkarTajtamG½kS An Edl As = A f + An edIm,IkarBar cantilever bending stresses. @> Shear-friction reinforcement A f + An bUknwgEdkrgkarTajtamG½kS An edIm,IkarBar kMlaMgkat;bBaÄredaypÞal; (direct vertical shear force) enARtg;RbsBVénEpñk dapped nig EpñkEdlmin dapped rbs;FñwmEdlbgáeGaymansñameRbHelx @. #> EdkrgkMlaMgkat; (shear reinforcement) Ash edIm,ITb;Tl;nwgkugRtaMgTajGgát;RTUgEdl ekItmanenARtg;cMnuckac;RCugEdlbgáeGaymansñameRbHelx #. $> EdkrgkMlaMgTajGgát;RTUg (diagonal tension reinforcement) Ah + Av edIm,IkarBarsñam eRbHelx$ EdlekItBIkugRtaMgTajGgát;RTUgenAkñúgEpñk papped rbs;Fñwm. %> Development length As = A f + Ah edIm,IkarBarsñameRbHelx% EdlbNþalBIkugRtaMg TajGgát;RTUg enAkñúgEpñkmin dapped rbs;Fñwm. 10.5.1. karkMNt;EdkBRgwgedIm,ITb;Tl;kar)ak; Determination of Reinforcement to Resist Failure 10.5.1.1. EdkrgkarBt; nigEdkrgkarTajtamG½kS Flexure and Axial Tension sMrab;lMnwgm:Um:g;enAkñúgrUbTI 10>4/ m:Um:g;emKuNsrubEdleFVIGMeBIenAelIEpñk cantilever dapped enARtg;bøg;rbs; As KW M u = Vu a + N u (h + d ) (10.7a) Edl h= kMBs;rbs;Ggát;BIelI dap d = kMBs;RbsiT§PaBrbs; dap eTATIRbCMuTMgn;rbs;EdkBRgwg As a = ElVgkMlaMgkat; (shear span) M u RtUvTb;Tl;edayersIusþg;m:Um:g; nominal M n = M u / φ / b¤ Connections for Prestressed Concrete Elements 648
  • 11. Department of Civil Engineering NPIC Vu a + N u (h − d ) Mn = (10.7b) φ edaysnμt;faédXñas;m:Um:g; jd ≅ 0.9d Vu a + N u (h − d ) Fn = (10.8) 0.9φd Edl φ = 0.90 sMrab;karBt;begáag. edaysar 0.9φ = 0.81 edIm,ICakarsMrYleKeRbItMél φ = 0.85 enA kñúgsmIkar 10.8 edIm,ITTYl)an Vu a + N u (h − d ) Fn = (10.9a) φd V ⎛a⎞ N ⎛h−d ⎞ b¤ Fn = u ⎜ ⎟ + u ⎜ φ ⎝d ⎠ φ ⎝ d ⎠ ⎟ (10.9b) enaHEdkrgkarBt;begáagKW Fn Vu a + N u (h − d ) As = = (10.10) fy φf y d ehIyEdkrgkarTajedaypÞal;EdlbNþalBIkMlaMgTaj Nu KW Nu An = (10.11) φf y BIsmIkar 10.10 nig 10.11/ RkLaépÞsrubrbs;EdkrgkarBt;begáag nigEdkrgkarTajedaypÞal;køayCa 1 ⎡ ⎛a⎞ ⎛ h ⎞⎤ As = A f + An = ⎢Vu ⎜ d ⎟ + N u ⎜ d ⎟⎥ (10.12) φf y ⎣ ⎝ ⎠ ⎝ ⎠⎦ Edl tMélEksMrYlrbs; φ = 0.85 . 10.5.1.2. EdkrgkMlaMgkat;bBaÄredaypÞal; Direct Vertical Shear sñameRbHelx@ EdlekItBIkMlaMgkat;edaypÞal;RtUv)anTb;edaybnSMénEdk As nig Ah enAkñúg rUbTI 10>4. eKGackMNt;EdkBRgwgtamTisedk Ah EdlRtUvkaredIm,ITb;Tl;nwgkMlaMgkat;edaypÞal; tamsmIkarxageRkam Ah = 0.5( As − An ) (10.13) Edl As = 2Vu 3φf y μ e + An (10.14a) Nu An = (10.14b) φFy 1,000λbhμ μe = Vu CamYynwg φ = 0.85 nig μe dUcenAkñúgsmIkar 10.3. dUcenH tMNsMrab;Ggát;ebtugeRbkugRtaMg 649
  • 12. T.Chhay viTüasßanCatiBhubec©keTskm<úCa 1 ⎛ 2Vu ⎞ As = ⎜ 3μ + N u ⎟ ⎜ ⎟ (10.15) φf y ⎝ e ⎠ tMélrbs; As EdleRbIenAkñúgsmIkar 10.13 KYrFMCagtMélTaMgBIrEdlTTYl)anBIsmIkar 10.12 nig 10.15. eKRtUvbgðÚtEdk As edaytMélGb,brma 1.7ld kat;tamcMnuccugénEpñk dap b¤ ld kat;sñameRbH elx% ehIyf<k;enAxagcugrbs;FñwmedaypSarP¢ab;eTAnwg cross bar/ angle b¤ plates. ekRtUvbgðÚtEdk tamTisedk Ah dUcKña ehIyEdkbBaÄr Ash nigEdkbBaÄr b¤EdkeRTt Av k¾RtUv)anf<k;edayTMBk; (hook) tamkarTamTarrbs; ACI Code. ersIusþg;kMlaMgkat; nominal rbs; dap end RtUv)ankMNt;Rtwm Vn ≤ 0.30 f 'c bd ≤ 1,000bd (10.16a) sMrab;ebtugTMgn;Fmμta/ ⎛ 0.07a ⎞ Vn ≤ ⎜ 0.20 − ⎟ f 'c bd (10.16b) ⎝ d ⎠ ⎛ 280a ⎞ b¤ Vn ≤ ⎜ 800 − ⎝ d ⎠ ⎟bd (10.16c) sMrab; sand-lightweight b¤ all-lightweight concrete, edayykmYyNaEdltUcCag Edl a Ca shear span nig d CakMBs;RbsiT§PaBrbs;Fñwm. 10.5.1.3. EdkrgkMlaMgTajGgát;RTUgRtg;kac;RCug Diagonal Tension at Reentrant Corner eKTTYl)anEdkBRgwgEdlRtUvkaredIm,ITb;Tl;nwgsñameRbHedaysarkMlaMgTajGgát;RTUgeRTtE dlralBIp©iténkugRtaMgRbmUlpþúMenARtg;kac;RCugeTAkan;EpñkEdlmin dapped BIsmIkarxageRkam Vu Ash = (10.17) φf y Edl φ = 0.85 ehIy f y Ca yield strength rbs;EdkBRgwg Ash . 10.5.1.4. EdkrgkMlaMgTajGgát;RTUgenAkñúg Dapped end Diagonal Tension in the Dapped end edIm,IkarBarsñameRbHGgát;RTUgelx$ enAkñúg dapped end/ eKRtUvdak;EdkbEnßm As y:agNa edIm,IeGayersIusþg;kMlaMgkat; nominal srub Vn bMeBjsmIkar Connections for Prestressed Concrete Elements 650
  • 13. Department of Civil Engineering NPIC Vu Vn = = Av f y + Ah f y + 2λbd f 'c (10.18) φ y:agehacNas;k¾eKRtUvdak;EdkBak;kNþalénEdkBRgwgenHbBaÄr dUcenHsmIkar 10.18 eGay 1 ⎛ Vu ⎞ Av, min = ⎜ − 2λbd f 'c ⎟ ⎜φ ⎟ (10.19) 2 fy ⎝ ⎠ cMNaMfa karKitBIkareFVIkarTamTardUcxageRkam³ !> kMBs;rbs; dapped end y:agehack¾esμIBak;kNþalénkMBs;Fñwm elIkElgkMBs;FñwmFMCag tMrUvkar. @> RbsinebIkugRtaMgBt;begáagEdlKNnasMrab;kMBs;eBjelj (full depth) rbs;muxkat;eday eRbIbnÞúkemKuN nig gross section propertied FMCag 6 f 'c Pøam²BIeRkay dap/ eKKYrdak; EdkBRgwgbeNþaybEnßmenAkñúgFñwmedIm,IbegáItersIusþg;Bt;begáagtMrUvkar. #> eKRtUvdak;EdkrgkarTajGgát;RTUg Ash eGaykan;EtEk,rkac;RCug. EdkBRgwgenHCaEdk bEnßmeTAelIEdkrgkMlaMgkat;KNna (design shear reinforcement) EdlRtUvkarsMrab;mux kat;FñwmEdlmankMBs;eBj. 10.5.2. KNnatMNrbs; Dapped end Beam Dapped-End Beam Connection Design ]TahrN_ 10>2³ FñwmebtugeRbkugRtaMg PCI standard 16RB28 Edl dapped enAxagcugsMrab; bearing enAelI column corbel/ rgnUvkMlaMgkat;TMnajemKuNenAxagcug Vu = 110,000lb(489kN ) nigkMlaMgTajtamG½kStamTisedk Nu = 20,000lb(97.9kN ) . KNnaEdkrgkarBt;begáag Edkrg kMlaMgkat;edaypÞal; nigEdkrgkarTajGgát;RTUg As / Ash / Ah nig Av EdlRtUvkarsMrab;karBarsñam eRbH EdlbNþalBI dapping énFñwmxagcug. Tinñn½yEdleKeGayman f 'c = 5,000 psi(34.5MPa) ebtugTMgn;Rsal ehIy f y = 60,000 psi(414Mpa) . dMeNaHRsay³ snμt;fa shear span a = 6in.(152mm) / kMBs;RbsiT§PaB dapped-end d = 16in.(406mm) nig h = 18in.(457mm) . EdkrgkarBt; nigEdkrgkarTajtamG½kS As Nu 20,000 = = 0.18 < 0.20 Vu 110,000 dUcenH N u = 0.20 ×110,000 = 22,000lb(97.9kN ) tMNsMrab;Ggát;ebtugeRbkugRtaMg 651
  • 14. T.Chhay viTüasßanCatiBhubec©keTskm<úCa 1 ⎡ ⎛a⎞ ⎛ h ⎞⎤ As = ⎢Vn ⎜ d ⎟ + N u ⎜ d ⎟⎥ φf y ⎣ ⎝ ⎠ ⎝ ⎠⎦ 1 ⎡ 6 18 ⎤ = ⎢110,00 × 16 + 22,000 × 16 ⎥ = 1.46in. 2 0.75 × 60,000 ⎣ ⎦ EdkrgkMlaMgkat;edaypÞal; As nig Ah BItarag 10>2 / μ = 1.4λ Edl λ = 1.0 . bnÞab;mk BIsmIkar 10.14c Edl b sMrab;muxkat; 16RB28 esμInwg 16in. 1,000λbhμ 1,000 × 1.0 × 16 × 18 × 1.4 μe = = = 3.67 > μ e GnuBaØatGtibrma = 3.4 Vu 110,000 dUcenH eRbI μe = 3.4 . bnÞab;mk BIsmIkar 10.5 1 ⎛ 2Vu ⎞ 1 ⎛ 2 × 110,000 ⎞ As = ⎜ ⎜ 3μ + N u ⎟ = 0.75 × 60,000 ⎜ 3 × 3.4 + 22,000 ⎟ = 0.96in. ⎟ 2 φf y ⎝ e ⎠ ⎝ ⎠ )anmkBIelImun < As = 1.46in.2 dUcenH eRbI As = 1.46in.2 (9.1cm2 ) . enaHEdk 3#7 = 1.80in.2 EdlRKb;RKan;. BIsmIkar 10.4b = 0.49in.2 (3.0cm 2 ) N 22,000 An = u = φf 0.75 × 60,000 y BIsmIkar 10.13/ EdkrgkMlaMgkat;tamTisedkkat;tamkMBs;rbs;FñwmKW Ah = 0.5( As − An ) = 0.5(1.29 − 0.43) = 0.43in.2 (2.77cm 2 ) . dUcenH sakl,gEdk 2#3 = 2(2 × 0.11) = 0.44in.2 (2.84cm 2 ) EdleKRtUvepÞógpÞat;vaCabnþbnÞab;. tamkarRtYtBinitüBIsmIkar 10.16a ersIusþg;kMlaMgkat; nominal KW Vn EdlGacekItman = 800bd = 800 ×16 ×16 = 204,800lb Vn tMrUvkar = u = V 110,000 = 146,667lb < 204,800lb O.K. φ 0.75 EdkBRgwgbBaÄrrgkarTajGgát;RTUgenAkac;RCug BIsmIkar 10.19 = 2.45in.2 (15.3cm 2 ) V 110,000 Ash = u = φf 0.75 × 60,000 y dUcenH sakl,gEdkkgbiTCit #4 / As = 2 × 0.20 = 0.40in.2 . cMnYnrbs;Edkkg 2.16 / 0.4 = 5.4 dUcenHeRbI 6#4 EdlRtUv)anRbmUlpþúMenAmþúMkac;RCug. EdkBRgwgkarTajGgát;RTUg Av enAkñúg Dapped End BIsmIkar 10.19 Connections for Prestressed Concrete Elements 652
  • 15. Department of Civil Engineering NPIC 1 ⎛ Vu ⎞ Av = ⎜ − 2λbd f 'c ⎟ 2 fv ⎜ φ ⎝ ⎟ ⎠ ersIusþg;kMlaMgkat; nominal rbs;ebtugsuT§KW 2λbd f 'c = 2 × 1.0 × 16 × 16 5,000 = 36,204lb ⎛ 110,000 ⎞ bnÞab;mk Av = 1 ⎜ 2 × 60,000 ⎝ 0.75 − 36,204 ⎟ = 0.92in.2 ⎠ sakl,gEdkkgGkSr U 4#4 = 4(2 × 0.20) = 1.60in.2 . BIelIkmun/ Ah = 0.44in.2 . dUcenH BIsmIkar 10.18 ersIusþg; kMlaMgkat; nominal srubrbs;muxkat;KW Vn EdlGacekItman = Av f y + Ah f y + 2λbd f 'c = 1.60 × 60,000 + 0.44 × 60,000 + 36,034 V = 158,434 > u = 146,667lb O.K. φ RtYtBinitütMrUvkar Development Length sMrab;karf<k; EdkBRgwg As KW 3#7 . BItarag 10>3/ sMrab;Edk #7 / f 'c = 5,000 psi nig ld = 42in. . kMBs;FñwmEdlmin dapped = 2 ft 4in. = 28in. ehIy development length srub = 28 − d + ld = 28 − 16 + 42 = 54in. . edaysar development length Gb,brma l d = 42in. eRbI l d = 54in. = 4 ft 6in.(108cm ) . tMNsMrab;Ggát;ebtugeRbkugRtaMg 653
  • 16. T.Chhay viTüasßanCatiBhubec©keTskm<úCa EdkBRgwg Ah KWEdkGkSr U #4 . dUcenHBItarag 10>3/ 1.7ld = 32in.(81cm) BIeRkayFñwm dap. rUbTI 10>5 bgðajBIkarlMGitEdksMrab;tMNFñwm dapped. 10.6. Brackets nig Corbel ebtugGarem: Reinforced Concrete Brackets and Corbels Corbel CaFñwm cantilever xøI EdlpleFob shear span elIkMBs; a / d minRtUvFMCag 1.0 . varg kMlaMgkat;edaypÞal; Vu nigkMlaMgTajtamTisedk N u . Epñk 5.14 enAkñúgCMBUk5/ design flowchart enAkñúgEpñk 5.14.4 nig]TahrN_ 5>7 bgðajBIkMlaMgsgát; nigkarGnuvtþénRTwsþI shear-friction enAkñúg karsikSaKNna corbel. karlMGitsrésEdkrbs;tMNCakargard¾sMxan;mYyedIm,ITTYleCaKC½ykñúgkar sikSaKNna corbel edayKitBIlT§PaBrbs;vaedIm,ITb;Tl;nwgGnuvtþkMlaMgGnuvtþn_. srésEdklMGit rbs; corbel KMrURtUv)anbgðajenAkñúgrUbTI 10>6. Connections for Prestressed Concrete Elements 654
  • 17. Department of Civil Engineering NPIC 10.7. Epñklyecjrbs;FñwmebtugGarem: Concrete Beam Ledges eKeRbI beam ledge edIm,IRTbnÞúkcMcMnuccugFñwmebtugeRbkugRtaMgcak;Rsab;tamTisTTwg ehIyva eFVIkarkñúgTMrg;RsedogKñanwg corbel Edr. kM;laMgedaypÞal;EdleFVIGMeBIelI ledge GacbgáeGaymansñam bBaÄrdUcbgðajenAkñúgrUbTI 10>7. RbsinebIbnÞúkCabnÞúkminCab; ehIymkBIRCugmçag/ ledge beam kñúg TMrg;GkSr L eFVIGMeBIdUc spandrel beam nigrgm:Um:g;rmYlbEnßmBIelIkMlaMgkat;edaypÞal;. karKNna ledge beam KWGnuvtþtamkarsikSaKNna nig]TahrN_enAkñúgCMBUk5. enAkñúgemeronenHbgðajBIkar sikSaKNnaEdkrgkMlaMgkat;sMrab; cantilevering ledge EdlCaTUeTAmanpleFob shear span elI kMBs; l p / d tUcCag b¤esμInwg 0.5 . eKRtUvkMNt;esIusþg;kMlaMgkat; nominal rbs; ledge Rtg;kac;RCugedaytMéltUcCageKkñúg cMeNamtMélEdlTTYlBIsmIkar nigeRkamlkçxNÐEdleKeGaydUcxageRkam !> s > b + h tMNsMrab;Ggát;ebtugeRbkugRtaMg 655
  • 18. T.Chhay viTüasßanCatiBhubec©keTskm<úCa ( Vn = 3hλ f 'c 2l p + b + h ) (10.20a) ( Vn = hλ f 'c 2l p + b + h + 2d e ) (10.20b) @> s < b + h nigbnÞúkcMcMnucesμIKña ( Vn = 1.5hλ f 'c 2l p + b + h + s ) (10.21a) ⎛ b+h ⎞ Vn = hλ f 'c ⎜ l p + + de + s ⎟ (10.21b) ⎝ 2 ⎠ Edl RbEvglyecjrbs; ledge lp = b = TTwgrbs; bearing area h = kMBs;rbs; ledge s = KMlaténbnÞúkcMcMnuc d e = cMgayBIG½kSénbnÞúkeTAcugFñwm RbsinebI ledge RTbnÞúkCab; b¤bnÞúkcMcMnucEdlmanKMlatEk,rKña eKkMNt;ersIusþg;kMlaMgkat; nominal rbs;muxkat; ledge BI Vn = 24hλ f 'c (10.22) Edl Vn CakMlaMgkat;kñúgmYyÉktþaRbEvg. y:agehacNas; eKRtUveGayersIusþg;KNna Vu esμInwgkM laMgemKuN Vu = φVn sMrab; φ = 0.85 . RbsinebIbnÞúkemKuNGnuvtþn_ Vu FMCagersIusþg;KNna dUc EdlkMNt;BIsmIkar 10.20, 10.21 b¤ 10.22/ eKRtUvdak;EdkBiessEdlKNnaRsedogKñaeTAnwgEdk EdlRtUvkarenAkñúgcug dapped beam dUcEdl)anerobrab;enAkñúgEpñk 10.5. enAkñúgkrNIenH eKRtUv kMNt;EdkrgkarBt; As BIsmIkar 10.12/ EdkBRgwgrgkarTajGgát;RTUgbBaÄr (hanger) Ash BI smIkar 10.17 ehIyEdkBRgwgbEnßm At Edldak;enAsrésxagelI nigsrésxageRkamrbs; ledge BI 200l p d At = (10.23) fy Edl At CaRkLaépÞrbs;EdkbeNþayenAkñúg ledge. eKdak;EdkBRgwg Ash edayKMlatesμIKñaelITTwg 6h énRCugnImYy²rbs; bearing b:uEnþminRtUvFMCagBak;kNþalcMgayeTAkan;bnÞúkbnÞab;. KMlatEdkmin RtUvFMCagkMBs; ledge h b¤ 18in. ehIy Ash RtUv)ansikSaKNnasMrab; ledge EdlminRtUvbEnßmeTAelI EdkrgkMlaMgkat; nigEdkrgkMlaMgrmYlrbs; ledge beam srub. karKNnatMNFñwmlyecj 10.7.1. Design of Ledge Beam Connection ]TahrN_ 10>3³ eRKOgbgÁúMkMralGaKarcMNtrfynþRtUv)anpSMeLIgBI 10 ft -wide double-T RtUv)an Connections for Prestressed Concrete Elements 656
  • 19. Department of Civil Engineering NPIC RTenAmuxkat;FñwmGkSr L sþg;dar. eKRtUvdak;eCIgrbs; double-T y:agNaenAelIRKb;cMnucTaMgGs;enA elI ledge. kMlaMgkat;emKuNbBaÄrxagcug Vu = 24,000lb(107kN ) kñúgeCIgmYy nigkMlaMgTajtamTis edk Nu = 5,000lb(22.4kN ) kñúgeCIgmYy. KNnaersIusþg;kMlaMgkat; nominal rbs; ledge nigsikSa KNnaEdkRbsinebIcaM)ac;. eKeGay b = 4in. h = 12in. d = 10.5in. l p = 6in.(15cm ) s = 48in.(122cm ) f 'c = 5,000 psi (34.5MPa ) ebtugTMgn;Rsal f y = 60,000 psi (414MPa ) dMeNaHRsay³ Vu = 24,000lb N u = 5,000lb s = 48in. b + h = 4 + 12 = 16in. tMélGb,brmarbs; d e = 1 b = 2in. 2 2l p + b + h = 2 × 6 + 4 + 12 = 28in. edaysar s > b + h nig d e < 2l p + b + h ehIyGnuvtþsmIkr 10.20b ehIyersIusþg;kMlaMgkat;Edl GacekItman Vn = hλ f 'c (2l p + b + h + 2de ) = 12 ×1.0 5,000 (2 × 6 + 4 + 12 + 2 × 2) = 27,153lb (120.8kN ) . dUcenHersIusþg;kMlaMgkat;KNna Vu = φVu = 0.75 × 27,153 = 20,365lb < kMlaMgkat;em KuN Vu = 24,000lb ehIyeyIgRtUveRbIEdkBRgwgEdlKNnadUcEdkBRgwgsMrab;muxkat; dapped Edr. EdkrgkarBt;begáag As Shear span a ≅ 3l p / 4 + 1.5 = 3 × 6 / 4 + 1.5 = 6in.(15cm ) edaysar Nu / Vu = 5,000 / 24,000 = 0.21 > 20% dUcenHeKeRbI Nu = 5,000lb . BIsmIkar 10.12 1 ⎡ ⎛a⎞ ⎛ h ⎞⎤ As = ⎢Vu ⎜ d ⎟ + N u ⎜ d ⎟⎥ φf y ⎣ ⎝ ⎠ ⎝ ⎠⎦ tMNsMrab;Ggát;ebtugeRbkugRtaMg 657
  • 20. T.Chhay viTüasßanCatiBhubec©keTskm<úCa = 1 ⎡ 6 12 ⎤ ( ) ⎢24,000 10.5 + 5,000 10.5 ⎥ = 0.38in. 2.45cm 0.85 × 60,000 ⎣ ⎦ 2 2 edaysar 6h = 6 ×12 > s / 2 = 24in. / EbgEckEdkBRgwg s / 2 = 24in. enARCugnImYy²énbnÞúk. TTwgrbs; band sMrab;kardak;EdkrgkarBt;begáag A = 2 × 24 = 48in. ehIyKMlatEdkGti- s brma h = 12in. . dUcenHeRbIEdk 4#3 enAkñúg band width 48in. nImYy² = 0.44in. > EdktMrUvkar 2 0.38in. . dUcenH dak;EdkbEnßmBIrenARtg;cugFñwmedIm,Ipþl;EdksmmUlsMrab;eCIgFñwmEdldak;Ek,r 2 xagcug. EdkbBaÄrrgkarTajGgát;RTUg A sh BIsmIkar 10.17 = 0.53in. (3.42cm ) V 24,000 A = = u 2 2 φf sh 0.75 × 60,000 y elI hand width 48in. . dUcenH Ash / ft = 0.47 / 4 = 0.12in.2 / ft b¤ #3@11in. . Cavi)akeRbIEdkkg biTCit 5#3 enAkñúg bad width 48in. = 0.55in.2 > muxkat;EdktMrUvkar 0.53in.2 . bnÞab;mk sMrab;kargar Gnuvtþn_ eRbIcMnYn nigKMlatdUcKñasMrab;Edk As nig Ash ¬EdkkgbiTCit 5#3 ¦. cMNaMfa manEteCIgmçag rbs;Edkkg Ash RtUv)anKitbBa©ÚleTAkñúgmuxkat;én 5#3 edIm,Ipþl;karRbmUlpþúMtMrUvkarénEdkEk,rkac; RCug. EdkbeNþay Al BIsmIkar 10.23 200l p d 200 × 6 ×10.5 Al = = = 0.21in.2 fy 60,000 sMrab;kargarGnuvtþn_ eRbIEdk #4 mYyenARtg;kac;RCugrbs; ledge edayeGay 4#4 = 0.80in.2 ¬Ggát; p©it 12.7mm ¦ > 0.21in.2 / O.K. CakarBit karKNnaEdlmanlkçN³eBjeljTamTarkarviPaKkMlaMgkat; nigkMlaMgrmYlrbs; muxkat;srubedIm,ITb;Tl;nwgkMlaMgkat;srubEdlbBa¢ÚnedayeCIgrbs; double-T TaMgGs; nigm:Um:g;rmYl EdlekIteLIgedaykarGnuvtþrbs;kMlaMgcakp©itBIeCIgrbs; double-T. karerobrab;BIRkLaépÞEdkBRgwg rbs; ledge Edl)anKNnaenAkñúg]TahrN_enHCaRkLaépÞEdkbEnßmeTAelIelIEdkrgkMlaMgTaj nig Edkrg kMlaMgrmYlEdlTamTarsMrab;Fñwmsrub. rUbTI 10>8 bgðajBIkarlMGitrbs;srésEdksMrab;tMN ledge, b:uEnþmin)anrab;bBa©ÚlEdkrgkM- laMgTaj nigEdkrgkMlaMgrmYlEdlRtUvsikSasMrab;FñwmGkS L TaMgmUl. Connections for Prestressed Concrete Elements 658
  • 21. Department of Civil Engineering NPIC 10.8. lMGittMNEdl)aneRCIserIs Selected Connection Details dUcEdl)aneerobrab;enAkñúgEpñk 10.1 tMNCaeRKOgP¢ab;cMbgenAkñúgRbB½n§eRKOgbgÁúMTaMgmUl Edl kareFVIkarrbs;vakMNt;faeRKOgbgÁúMmansuvtßiPaB nigmanesßrPaB. dUcenH design engineer RtUvmankar Rby½tñy:agxøaMgkñúgkarsikSaKNna nigeRCIserIsnUvmuxkat;EdlsmRsbsMrab;mUlehtu suvtßiPaB nig esdækic©. BIrUbTI 10>9 dl;rUbTI 10>16 manbgðajBIkarlMGiténRbePTtMNEdl)aneRCIserIsCaeRcIn. tMNsMrab;Ggát;ebtugeRbkugRtaMg 659
  • 22. T.Chhay viTüasßanCatiBhubec©keTskm<úCa Connections for Prestressed Concrete Elements 660
  • 23. Department of Civil Engineering NPIC tMNsMrab;Ggát;ebtugeRbkugRtaMg 661
  • 24. T.Chhay viTüasßanCatiBhubec©keTskm<úCa Connections for Prestressed Concrete Elements 662
  • 25. Department of Civil Engineering NPIC tMNsMrab;Ggát;ebtugeRbkugRtaMg 663
  • 26. T.Chhay viTüasßanCatiBhubec©keTskm<úCa Connections for Prestressed Concrete Elements 664
  • 27. Department of Civil Engineering NPIC tMNsMrab;Ggát;ebtugeRbkugRtaMg 665
  • 28. T.Chhay viTüasßanCatiBhubec©keTskm<úCa Connections for Prestressed Concrete Elements 666