SlideShare ist ein Scribd-Unternehmen logo
1 von 42
T.chhay


                                        VI. Fñwm-ssr
                                       Beam-Columns
6>1> esckþIepþIm Introduction
        enAeBlEdlGgát;eRKOgbgÁúMCaeRcInRtUv)anKitCassrrgkMlaMgtamGkS½ b¤CaFñwmEdlrgEtkM
laMgBt; (flexural loading) Fñwm nigssrCaeRcInrgnUvkMlaMgTaMgBIrKw kMlaMgBt; nigkMlaMgtamGkS½.
vaCakarBitCaBiesssMrab;eRKOgbgÁúMsþaTicminkMNt;. sUmbIEtTMr roller rbs;FñwmsamBaØGacpþl;nUvkM
laMgkkitEdlGacTb;Fñwmclt½tambeNþay enAeBkEdlbnÞúkGnuvtþEkgnwgGkS½beNþayrbs;Fñwm. b:uEnþ
kñúgkrNIBiessenH CaTUeTAT§iBlrg ¬TIBIr¦mantMéltUc ehIyGacecal)an. ssrCaeRcInRtUv)anCa
Ggát;rgkMlaMgsgát;suT§CamYynwgkMrwtlMeGogEdlGacecal)an. RbsinebIssrCaGgát;sMrab;eRKOgbgÁúM
mYyCan; ehIyTMrrbs;vaTaMgBIrRtUv)anKitCaTMr pinned FñwmnwgrgEt bending EdlCalT§plBIbnÞúkcM
Nakp©itEdleRKaHfñak;tictYc.
        b:uEnþ sMrab;Ggát;eRKOgbgÁúMCaeRcIn T§iBlTaMgBIrnwgmantMélFM EdlGgát;TaMgenaHRtUv)aneKehA
fa beam-columns. BicarNa rigid frame enAkñúgrUbTI 6>1. sMrab;lkçxNÐbnÞúkEdleGay Ggát;edk
 AB minRtwmEtRTbnÞúkbBaÄrBRgayesμIeT EfmTaMgCYyGgát;bBaÄredIm,ITb;nwgbnÞúkxagcMcMnuc P .

Ggát; CD CakrNIEdleRKaHfñak;Cag eRBaHvaTb;;nwgbnÞúk P1 + P2 edayminmanCMnYyBIGgát;bBaÄrNa
eT. mUlehtuKWfa x-bracing EdlbgðajedayExSdac; karBar sidesway enACan;xageRkam. sMrab;kar
bgðajTisedArbs; P2 Ggát; ED nwgrgkMlaMgTaj ehIyGgát; CF nwgFUr RbsinebI bracing element
RtUv)anKNnaedIm,ITb;EtkMlaMgTaj. b:uEnþsMrab;krNIenH Ggát; CD RtUvbBa¢ÚnbnÞúk P1 + P2 BI C eTA
 D.




       Ggát;bBaÄrrbs;eRKagenHk¾RtUv)anKitCa beam-columns. enACan;xagelI Ggát; AC nig BD
nigekageRkamT§iBlrbs; P1 . elIsBIenH enARtg; A nig B m:Um:g;Bt;RtUv)anbBa¢ÚnBIGgát;edktamry³

                                            188                                    Fñwm -ssr
T.chhay


tMNrwg. karbBa¢Únm:Um:g;enHk¾ekIteLIgenARtg; C nig D ehIyvaBitsMrab;RKb; rigid frame eTaHbI
m:Um:g;TaMgenHtUcCagm:Um:g;Edl)anBIbnÞúkxagk¾eday. ssrCaeRcInenAkñúg rigid frames Ca beam-
columns ehIyT§iBlrbs;m:Um:g;Bt;minRtUv)anecal. b:uEnþ ssrrbs;GaKarmYyCan;EdlenAdac;BIeK

GacRtUv)anKitCaGgát;rgkMlaMgsgát;cMGkS½.
          eBlxøH]TahrN_epSgeTotrbs; beam-columns GacCYbenAkñúg roof trusses. eTaHbICaFmμta
top chord RtUv)anKitCaGgát;rgkMlaMgsgát;tamGkS½k¾eday RbsinebI purlins RtUv)andak;enAcenøaH

tMN kMlaMgRbtikmμrbs;vanwgbegáItCa bending Edldac;xatRtUv)anKitkñúgkarKNna. krNIenHnwg
RtUv)anerobrab;enAkñúgCMBUkenH.

6>2> smIkarGnþrkmμ Interaction Formulas
     vismPaBrbs;smIkar @># GacRtUv)ansresrkñúgTMrg;xageRkam³
                  ∑ γ i Qi ≤ 1.0                                                 ¬^>!¦
                    φRn
        b¤ ∑resistance ≤ 1.0
                   load effects


        RbsinebIman resistance eRcInRbePTBak;Bn§½ smIkar ^>! GacRtUv)ansresrkñúgTMrg;eKalrbs;
interaction formulas. dUcEdl)anerobrab;enAkñúgCMBUk 5 Rtg;Epñkm:Um:g;Bt;BIrTis plbUkénpleFob

load-to-resistance RtUv)ankMNt;RtwmmYyÉktþa. ]TahrN_ RbsinebIeKGnuvtþTaMgm:Um:g;Bt; nigkMlaMg

tamGkS½ interaction formulas GacsresrCa
                 Pu
                      +
                          Mu
                φc Pn φb M n
                                ≤ 1 .0                                             ¬^>@¦
        Edl Pu = bnÞúksgát;tamGkS½emKuN
                  φc Pn = compressive design strength
                  Mu =    m:Um:g;Bt;emKuN
                  φb M n = design moment
          sMrab;m:Um:g;Bt;BIrTis vanwgmanpleFobm:Um:g;Bt;Bt;BIr
                        ⎛ M ux     M uy       ⎞
                   Pu
                       +⎜        +
                  φc Pn ⎜ φb M nx φb M ny
                                              ⎟ ≤ 1.0
                                              ⎟
                                                                                 ¬^>#¦
                        ⎝                     ⎠
          Edl x nig y sMedAelIkarBt;eFobGkS½ x nigGkS½ y .

                                               189                             Fñwm -ssr
T.chhay


       smIkar ^># CasmIkareKalrbs; AISC sMrab;Ggát;rgkarBt; nigrgkMlaMgtamGkS½. eKeGay
smIkarBIrenAkñúg Specification: mYysMrab;bnÞúkcMGkS½EdlmantMéltUc nigmYyeTotsMrab;bnÞúkcMGkS½
EdlmantMélFM. RbsinebIbnÞúktamGkS½mantMéltUc tYbnÞúktamGkS½RtUv)ankat;bnßy. sMrab;bnÞúktam
GkS½EdlmantMélFM tYkMlaMgBt;RtUv)ankat;bnßybnþic. tMrUvkarrbs; AISC RtUv)aneGayenAkñúg
Chapter H, “Members Under Combined Forces and Torsion,” ehIyRtUv)ansegçbdUcxageRkam³

       sMrab; φPu ≥ 0.2
                 P c n
           Pu    8 ⎛ M ux     M uy    ⎞
               + ⎜          +         ⎟ ≤ 1.0                     (AISC Equation H1-1a)
          φc Pn 9 ⎜ φb M nx φb M ny
                   ⎝
                                      ⎟
                                      ⎠
          sMrab;Pu
               φc Pn
                     < 0 .2

            Pu   ⎛ M ux     M uy      ⎞
                +⎜        +           ⎟ ≤ 1.0                     (AISC Equation H1-1b)
          2φc Pn ⎜ φb M nx φb M ny
                 ⎝
                                      ⎟
                                      ⎠
          ]TahrN_6>1 bgðajBIkarGnuvtþn_smIkarTaMgenH.

]TahrN_6>1³ Fñwm-ssrEdlbgðajenAkñúg rUbTI6>@ manTMr pinned enAcugsgçag ehIyrgnUvbnÞúkem
KuNdUcbgðaj. karBt;KWeFobnwgGkS½xøaMg. kMNt;faetIGgát;enHbMeBjsmIkarGnþrkmμrbs; AISC
Specification b¤eT.




dMeNaHRsay³ dUcEdl)anbkRsayenAkñúgEpñk 6>3 m:Um:g;EdlGnuvtþenAkñúg AISC Equations H1-1a
nig b eBlxøHnwgRtUv)anbegáInedaym:Um:g;bEnßm (moment amplification). eKalbMNgén]TahrN_
enHKWbgðajBIrebobeRbIsmIkarGnþrkmμ.
                                                190                            Fñwm -ssr
T.chhay


          BI                  ersIusþg;KNnakMlaMgsgát;tamGkS½ (axial compression design
               column load table

strength) rbs; W 8× 58 CamYynwg F y = 50ksi nigRbEvgRbsiT§PaB K y L = 1.0 × 17 = 17 ft KW

          φc Pn = 365kips
edaysarkarBt;eFobGkS½xøaMg m:Um:g;KNna (design moment) φb M n sMrab; Cb = 1.0 GacTTYl)an
BI beam design chart in Part 4 of the Manual.
       sMrab; unbraced length Lb = 17 ft /
          φb M n = 202 ft − kips
          sMrab;lkçxNÐbnÞúk niglkçxNÐcugsMrab;bBaðaenH Cb = 1.32 ¬emIlrUbTI 5>15 c¦.
          sMrab; Cb = 1.32 /
          φb M n = 1.32(202) = 267 ft − kips
b:uEnþm:Um:g;enHFMCag φb M p = 224 ft − kips ¬EdlTTYl)andUcKñaBI         beam design charts ¦/ dUcenH
design moment RtUv)ankMNt;Rtwm φb M p . dUcenH

          φb M n = 224 ft − kips
m:Um:g;Bt;GtibrmaenAkNþalElVgKW
                 22(17 )
          Mu =           = 93.5 ft − kips
                   4
kMNt;faetIsmIkarGnþrkmμmYyNalub
           Pu
               =
                 200
          φc Pn 365
                     = 0.547 > 0.2           dUcenHeRbI AISC Eq.H1-1a.
           Pu   8 ⎛ M ux     M uy           ⎞
                                            ⎟ = 0.5479 + 8 ⎛ 93.5 + 0 ⎞ = 0.919 ≤ 1.0
               + ⎜         +                               ⎜          ⎟                   (OK)
          φc Pn 9 ⎜ φb M nx φb M ny
                  ⎝
                                            ⎟
                                            ⎠            9 ⎝ 224      ⎠

cMeLIy³ Ggát;enHbMeBj AISC Specification.

6>3> m:Um:g;bEnßm Moment Amplification
       viFIBImunsMrab;karKNnaGgát;rgkarBt; nigkMlaMgtamGkS½GaceRbI)ansMrab;EtkMlaMgtamGkS½
mantMélminFMeBk. vtþmanrbs;bnÞúktamGkS½ ¬elIkElgenAeBlvamantMéltUc¦ begáItm:Um:g;TIBIr
EdlRtUv)anKitbBa©ÚlkñúgkarKNna. rUb TI 6>3 bgðajBIFñwm-ssrCamYybnÞúktamGkS½ nigbnÞúkTTwg
GkS½BRgayesμI. Rtg;cMnuc O NamYyEdlmanmanm:Um:g;Bt;EdlbegáIteLIgedaybnÞúkBRgayesμInwg
                                                   191                                  Fñwm -ssr
T.chhay


m:Um:g;bEnßm Py EdlbegáIteLIgedaybnÞúktamGkS½eFVIGMeBIcMNakp©itBIGkS½beNþayrbs;Ggát;. m:Um:g;
TIBIrenaHmantMélkan;EtFMenAkEnøgNaEdlmanPaBdabkan;EtFM. kñúgkrNIenH Rtg;kMBs;Bak;kNþal
m:Um:g;srubesμInwg wL2 / 8 + Pδ . vaCakarBitEdl m:Um:g;bEnßmbegáItPaBdabbEnßmBIelIPaBdab
Edl)anBIbnÞúkTTwgGkS½. edaysareKminGacrkPaBdabsrubedaypÞal; ¬bBaðaenHCa nonlinear¦
ehIyedaysarEteKminsÁal;PaBdab eKk¾minGacKNnam:Um:g;)anEdr.




        viFIviPaKeRKOgbgÁúMFmμta (ordinary structural analysis methode) Edlminykragpøas;TImk
KitRtUv)aneKKitCa viFIdWeRkTImYy (first-order method). eKeRbI Iterative numerical technique
¬EdleKehAfa viFIdWeRkTIBIr (second-order method)¦ edIm,IrkPaBdab nigm:Um:g;TIBIr b:uEnþviFIenHmin
GaceRbIsMrab;karKNnaedayéd EdlvaRtUv)aneRbICaTUeTACamYynwgkmμviFIkMuBüÚT½r. Design codes nig
specifications bc©úb,nñPaKeRcIn rYmbBa©ÚlTaMg AIsc Specification GnuBaØatkareRbIR)as; second-

order analysis b¤ moment amplification method. viFIenHtMrUvkarKNnam:Um:g;Bt;GtibrmaEdl)anBI

lT§plBI flexural loading ¬bnÞúkTTwgGkS½ b¤m:Um:g;cugGgát;¦ eday first-order analysis bnÞab;mk
KuNnwgemKuNm:Um:g;bEnßm (moment amplification factor) edIm,IKitm:Um:g;TIBIr.
        rUbTI 6>4 bgðajGgát;TMrsamBaØCamYynwgbnÞúkcMGkS½ nigPaBminRtg;dMbUg (initial out-of-
straightness). PaBdabdMbUg (initial crookedness) enHGacsMEdgeday³
                       πx
          yo = e sin
                       L
Edl e CabMlas;TIGtibrmadMbUg EdlekIteLIgenAkNþalElVg.
                                            192                                   Fñwm -ssr
T.chhay




       sMrab;RbBn§½kUGredaendUcEdl)anbgðaj eKGacsresrTMnak;TMngExSkMeNag-m:Um:g; (moment-
curvature relationship) dUcxageRkam³
          d2y           M
                   =−
               2        EI
          dx
        m:Um:g;Bt; M ekIteLIgedaysarcMNakp©iténkMlaMgtamGkS½ Pu eFobGkS½rbs;Ggát;. cMNak
p©itenHpSMeLIgeday initial crookedness yo bUknwgPaBdabbEnßm y EdlekItBIkarBt;. enARtg;TI
taMgNamYy m:Um:g;KW
          M = Pu ( yo + y )
          edayCMnYssmIkarenHeTAkñúgsmIkarDIepr:g;Esül eyIgTTYl)an
          d2y     P ⎛       πx   ⎞
               = − u ⎜ e sin + y ⎟
          dx 2    EI ⎝       L   ⎠
           2
          d y Pu           Pe  πx
               +   y = − u sin
          dx 2 EI          EI   L
        EdlCa ordinary, nonhomogenous differential equation. edaysarvaCasmIkardWeRkTIBIr
dUcenHvamanlkçxNÐRBMEdnBIr. sMrab;lkçxNÐTMrEdlbgðaj lkçxNÐRBMEdnKW
        enARtg; x = 0 / y = 0 nigenARtg; x = L / y = 0
        enHmann½yfa PaBdabesμIsUnüenAcugsgçag. GnuKmn_EdlbMeBjTaMgsmIkarDIepr:g;Esül
niglkçxNÐRBMEdnKW
                        πx
          y = B sin
                        L
          Edl B CatMélefr. CMnYsvaeTAkñúgsmIkarDIepr:g;Esül eyIgTTYl)an
              π2           πx P       πx  Pe     πx
          −        B sin     + u B sin = − u sin
               2            L EI      L    EI    L
              L

                                              193                           Fñwm -ssr
T.chhay


          eKTTYl)antMélefr
               Pe
              − u
                EI =    −e        e
          B=                  =
             Pu π 2
                        π EI Pe − 1
                         2
               −     1−         Pu
             EI L2      Pu L2

          Edl Pe = π
                       2
                           EI
                                = Euler buckling load
                           2
                       L

          dUcenH y = B sin πLx = ⎡ (P / P ) − 1⎤ sin πLx
                                 ⎢
                                        e
                                               ⎥
                                    ⎣ e   u       ⎦
          M = Pu ( yo + y )
                  ⎧
                  ⎪     πx ⎡      e       ⎤ πx ⎫⎪
             = Pu ⎨e sin + ⎢              ⎥ sin ⎬
                  ⎪
                  ⎩     L ⎣ (Pe / Pu ) − 1⎦    L⎪
                                                ⎭
          m:Um:g;GtibrmaekItenARtg; x = L / 2 ³
                     ⎡          e       ⎤
          M max = Pu ⎢e +               ⎥
                     ⎣ (Pe / Pu ) − 1⎦
                       ⎡ (P / P ) − 1 + 1 ⎤
                = Pu e ⎢ e u              ⎥
                       ⎣ (Pe / Pu ) − 1 ⎦
                       ⎡      1       ⎤
                  = Mo ⎢              ⎥
                       ⎣1 − (Pu / Pe )⎦
        Edl M o minEmnCam:Um:g;bEnßmGtibrma (unampliflied maximum moment). kñúgkrNIenH
vaTTYl)anBI initial crookedness b:uEnþCaTUeTAvaGacCalTßplénbnÞúkTTwgGkS½ b¤m:Um:g;cug. dUcenHem
KuNm:Um:g;bEnßm (moment amplification factor) KW
              1
        1 − (Pu / Pe )
                                                                                     ¬^>$¦
        dUcEdl)anerobrab;mkehIy TMrg;emKuNm:Um:g;bEnßmrbs; AISC GacxusEbøkBIsmIkar ^>$
bnþic.

]TahrN_6>2³ eRbIsmIkar ^>$ edIm,IKNnaemKuNm:Um:g;bEnßmsMrab;Fñwm-ssrén]TahrN_ 6>1.
dMeNaHRsay³ edaysar Euler load Pe CaEpñkrbs;emKuNm:Um:g;bEnßm eKRtUvKNnavasMrab;GkS½én
karBt; EdlkñúgkrNIenHKWGkS½ x . eKGacsresr Euler load Pe edayeRbI effective length nig
slenderness ratio dUcxageRkam³


                                                      194                        Fñwm -ssr
T.chhay


                 π 2 EAg
          Pe =
                 (KL / r )2
¬emIlCMBUk 4 smIkar $>^ a¦. sMrab;GkS½énkarBt;
          KL K x L 1.0(17 )(12 )
             =    =              = 55.89
           r   rx     3.65
                 π 2 EAg          π 2 (29000)(17.1)
          Pe =                =                         = 1567kips
                 (KL / r )2              (55.89)2
BIsmIkar ^>$
                1               1
                        =                  = 1.15
          1 − (Pu / Pe ) 1 − (200 / 1567 )
EdlbgðajkarekIneLIg 15% BIelIm:Um:g;Bt;. m:Um:g;bEnßmKW
          1.15 × M u = 1.15(93.5) = 107.5 ft − kips
cMeLIy³ emKuNm:Um:g;bEnßm 1.15

6>4>      Web Local Buckling in Beam-Columns
        karkMNt;rbs; design moment tMrUveGayRtYtBinitümuxkat;sMrab; compactness . enAeBl
EdlKμanbnÞúktamGkS½ RTnugrbs;RKb;rUbragEdlmanenAkñúgtaragsuT§Et compact. RbsinebImanvtþ
manbnÞúktamGkS½ RTnugTaMgenaHGacnwgmin compact. enAeBlEdleyIgeGay λ = h / t w /
        RbsinebI λ ≤ λ p rUbragKW compact.
        RbsinebI λ p < λ ≤ λr rUbragKW noncompact.
        RbsinebI λ > λr rUbragKW slender.
        ASIC B5 enAkñúg Table B5.1 erobrab;nUvkarkMNt;xageRkam³

        sMrab; φ PP ≤ 0.125 / λ p = 640 ⎛1 − 2φ.75Pu ⎞ ¬xñat US¦
                  u
                                      F
                                          ⎜
                                          ⎜      P ⎟
                                                     ⎟
                   b y                              y⎝       b y ⎠

                                                1680 ⎛ 2.75 Pu ⎞
                                         λp   =      ⎜1 −
                                                  Fy ⎜     φb Py ⎟
                                                                  ⎟  ¬xñat ¦
                                                                      IS
                                                     ⎝            ⎠
                                                 191 ⎛              ⎞
          sMrab; φ PP
                    u    > 0.125 λ p /        =      ⎜ 2.33 − Pu ⎟ ≥ 253
                                                  Fy ⎜        φb Py ⎟ Fy
                                                                               ¬xñat US¦
                   b y                               ⎝              ⎠
                                                 500 ⎛              ⎞
                                         λp   =      ⎜ 2.33 − Pu ⎟ ≥ 665
                                                  Fy ⎜        φb Py ⎟ Fy
                                                                               ¬xñat IS¦
                                                     ⎝              ⎠
                                                        195                                Fñwm -ssr
T.chhay



          sMrab;tMélepSg²rbs; φ PP / λr = 970 ⎛1 − 0.74 φ PP ⎞ ¬xñat US¦
                                 u
                                           F
                                              ⎜
                                              ⎜
                                                           u ⎟
                                                             ⎟
                                   b y           y ⎝         b y    ⎠
                                              2550 ⎛                ⎞
                                         λr =
                                               Fy ⎜
                                                   ⎜1 − 0.74 Pu
                                                            φb Py
                                                                    ⎟
                                                                    ⎟
                                                                        ¬xñat IS¦
                                                   ⎝                ⎠
Edl Py = Ag Fy / bnÞúktamGkS½caM)ac;edIm,IeTAdl;sßanPaBkMNt; yielding.
        edaysar Pu CaGBaØti eKminGacRtYtBinitü compactness rbs;RTnug nigminGacerobcMCata
ragTukCamun)aneT. b:uEnþ rolled shape xøHbMeBjnUvkrNId¾GaRkk;bMput 665 / Fy Edlmann½yfarUb
ragenaHmanRTnug compact edayminTak;TgnwgbnÞúktamGkS½. rUbragEdlmanenAkñúg column load
table in Part 3 of the Manual EdlminbMeBjlkçxNÐRtUv)ankMNt;bgðaj enaHeKRtUvRtYtBinitü

compactness rbs;RTnugrbs;va. rUbragEdlmansøabmin compact k¾RtUv)ankMNt;bgðaj dUcenHRKb;

rUbragTaMgGs;Edlmin)anbgðaj enaHmann½yfarUbragTaMgenaHKW compact.

]TahrN_6>3³ Edk A36 EdlmanrUbrag W12 × 65 RtUv)andak;eGayrgm:Um:g;Bt; nigbnÞúktamGkS½em
KuN 300kips . RtYtBinitü compactness rbs;RTnug.
dMeNaHRsay³ rUbragenHKW compact sMrab;RKb;tMélbnÞúktamGkS½ BIeRBaHminmankarkMNt;cMNaMNa
mYyenAkñúg column load table. b:uEnþ edIm,Ibgðaj eyIgRtYtBinitü width-thickness ratio rbs;RTnug
           Pu      Pu         300
               =        =              = 0.4848 > 0.125
                       (   )
          φb Py φb Ag Fy 0.9(19.1)(36)
                   ⎛              ⎞
dUcenH    λp =     ⎜ 2.33 − Pu ⎟ = 191 (2.33 − 0.4848) = 58.74
                 191
                   ⎜
                  Fy        φb Py ⎟   36
                   ⎝              ⎠
           253   253
               =      = 42.17 < 58.74
            Fy    36

dUcenH λ p = 58.74
BI dimensions and properties tables/
                h
          λ=      = 24.9 < 58.74
               tw

dUcenH RTnugKW compact. cMNaMfa sMrab;RKb;tMélrbs; Fy enaH th nwgmantMéltUcCag
                                                                   w

253 / F y EdlCatMélEdltUcbMputrbs; λ p dUcenHRTnugrbs; W 12 × 65 nwgenAEtCa compact.



                                               196                                  Fñwm -ssr
T.chhay


6>5> eRKagBRgwg nigeRKagGt;BRgwg Braced versus Unbraced Frame
        AISC Specification erobrab;BI moment amplification in Chapter C, Frames and other

Structures”. eKmanemKuNbEnßmBIrEdleRbIenAkñúg LRFD: mYyedIm,IKitBIm:Um:g;bEnßmEdlCalT§plBI

PaBdabrbs;Ggát; nigmYyeTotsMrab;KitBIT§iBl sway enAeBlEdlGgát;CaEpñkrbs; unbraced
frame. viFIenHmanlkçN³RsedogKñaeTAnwgviFIEdleRbIenAkñúg ACI Building Code sMrab;ebtugBRgwg

edayEdk (ACI, 1995). rUbTI 6>5 nwgbgðajBIGgát;TaMgBIr. enAkñúg rUbTI 6>5 a Ggát;RtUv)anTb;Rb
qaMgnwg sidesway ehIym:Um:g;TIBIrGtibrmaKW Pδ EdlRtUvbEnßmeTAelIm:Um:g;GtibrmaenAkñúgGgát;enaH.
RbsinebIeRKagminRtUv)anBRgwg vanwgelceLIgnUvm:Um:g;TIBIr EdlbgðajenAkñúg rUbTI 6>5 b EdlbegáIt
eday sidesway. m:Um:g;TIBIrenHmantMélGtibrma PΔ EdlbgðajBIkarbEnßménm:Um:g;cug.




         edIm,IKItBIT§iBlTaMgBIrenH emKuNm:Um:g;bEnßm B1 nig B2 RtUv)aneRbIsMrab;m:Um:g;BIrRbePT.
m:Um:g;bEnßmEdleRbIsMrab;KNnaRtUv)anKNnaBIbnÞúkemKuN nigm:Um:g;emKuNdUcxageRkam³
          M u = B1M nt + B2 M lt                                      (AISC Equation C1-1)
Edl       M nt = m:Um:g;GtibrmaEdlsnμt;faminman sidesway ekIteLIg eTaHbICaeRKagBRgwgb¤minBRgwg
                 k¾eday ¬ nt mann½yfa no translation¦
          M lt = m:Um:g;GtibrmaEdlekIteLIgeday sidesway ekIteLIg ¬ lt mann½yfa lateral

                 translation¦. m:Um:g;enHGacekItBI lateral load b¤edaysar unbalanced gravity

                 loads . bnÞúkTMnajGacbegáIt sidesway RbsinebIeRKagGt;sIuemRTI b¤k¾bnÞúkTMnaj

                 enaHRtUv)andak;edayminmanlkçN³sIuemRTI. M lt nwgmantMélesμIsUnüRbsinebIeRKag
                 RtUv)anBRgwg.

                                            197                                    Fñwm -ssr
T.chhay


     B1 = emKuNm:Um:g;bEnßmsMrab;m:Um:g;EdlekIteLIgenAkñúgGgát;EdlRtUv)anBRgwgTb;nwg sidesway.
      B2 = emKuNm:Um:g;bEnßmsMrab;m:Um:g;Edl)anBI sidesway.

        eyIgnwgerobrab;BIkarkMNt;emKuNTaMgBIr B1 nig B2 enAkñúgEpñkxageRkam.
6>6> Ggát;enAkñúgeRKagEdlBRgwg                 Members in Braced Frames
        emKuNm:Um:g;bEnßmEdleGayedaysmIkar ^>$ RtUv)anbMEbksMrab;Ggát;EdlBRgwgRbqaMgnwg
sidesway. rUbTI 6>6 bgðajBIGgát;RbePTenHEdlrgm:Um:g;enAxagcugesμIKñaEdlbegáIt single-

curvature bending ¬kMeNagEdlbegáItkarTaj nigkarsgát;enAEtEpñkmçagrbs;Ggát;¦. m:Um:g;bEnßm

GtibrmaekItenARtg;Bak;kNþalkMBs; EdlPaBdabmantMélFMbMput. dUcenHm:Um:g;TIBIrGtibrma nigm:U
m:g;emGtibrmaRtUv)anbUkbBa©ÚlKña. eTaHRbsinebIm:Um:g;enAxagcugminesIμKñak¾eday RbsinebIm:Um:g;mYy
vilRsbTisRTnicnaLika nigmYyeTotvilRcasRTnicnaLika vanwgbegáIt single-curvature bending
ehIym:Um:g;emGtibrma nigm:Um:g;TIBIrGtibrmanwgekIteLIgenAEk,Kña.




         vanwgminEmnCakrNIeT enAeBlEdlm:Um:g;enAcugEdlGnuvtþbegáIt reverse-curvature bending
dUcbgðajenAkñúg rUbTI 6>7 . enAeBlenH m:Um:g;emGtibrmaKWenAcugmçag ehIym:Um:g;TIBIrGtibrmaekIt
eLIgenAcenøaHcugTaMgBIr. m:Um:g;bEnßmGacFMCag b¤tUcCagm:Um:g;cugGaRs½ynwgbnÞúktamGkS½.
         dUcenHm:Um:g;GtibrmaenAkñúg beam-column GaRs½ynwgkarEbgEckm:Um:g;Bt;enAkñúgGgát;. kar
EbgEckenHRtUv)anKitedayemKuN Cm EdlGnuvtþenAkñúgemKuNm:Um:g;bEnßm B1 . emKuNm:Um:g;bEnßm
EdleGayedaysmIkar ^>$ RtUv)anbMEbksMrab;krNIGaRkk;bMput dUcenH Cm nwgminRtUvFMCag 1.0 .
TMrg;cugeRkayrbs;emKuNm:Um:g;bEnßmKW³

                                            198                                   Fñwm -ssr
T.chhay


                      Cm
          B1 =                   ≥1                              (AISC Equation C1-2)
                 1 − (Pu / Pe1 )
             Ag F y       π 2 EAg
Edl Pe1 =             =
                 λc
                  2
                          (KL / r )2
enAeBlKNna Pe1 eRbI KL / r sMrab;GkS½énkarBt; ehIyemKuNRbEvgRbsiT§PaB K ≤ 1.0 ¬EdlRtUv
KñanwglkçxNÐEdlBRgwg¦.




karKNnaemKuN Cm
        emKuN Cm GnuvtþEtelIlkçxNÐEdlBRgwgEtb:ueNÑaH. eKmanGgát;BIrRbePT EdlmYyman
bnÞúkTTwgGkS½GnuvtþenAcenøaHcug nigmYyeTotminmanbnÞúkTTwgGkS½.
        rUbTI 6>8 b nig c bgðajBIkrNITaMgBIrxagelIenH ¬Ggát; AB Ca beam-column EdlRtUvKit¦.
        !> RbsinebIminmanbnÞúkTTwgGkS½eFVIGMeBIenAelIGgát;
                                  ⎛M ⎞
                   C m = 0.6 − 0.4⎜ 1 ⎟
                                  ⎜M ⎟                           (AISC Equation C1-3)
                                  ⎝ 2⎠


                                          199                                Fñwm -ssr
T.chhay


          M1 / M 2CapleFobénm:Um:g;Bt;enAcugrbs;Ggát;. M1 CatMéldac;xaténm:Um:g;cugEdltUcCag
eK ehIy M 2 CatMélFMCag enaHpleFobnwgviC¢mansMrab;Ggát;EdlekagkñúgTMrg; reversecurvature
nigGviC¢mansMrab; single-curvature bending ¬rUbTI 6>9 ¦. Reverse curvature ¬pleFobviC¢man¦
ekIteLIgenAeBlEdl M1 nig M 2 vilRsbRTnicnaLikaTaMgBIr b¤RcasRTnicnaLikaTaMgBIr.




        @> sMrab;Ggát;rgbnÞúkTTwgGkS½ eKGacyk Cm = 0.85 RbsinebIcugrbs;vaRtUv)anTb;RbqaMg
nwgkarvil nigesμInwg 1.0 RbsinebIcugrbs;vaminRtUv)anTb;nwgkarvil ¬pinned¦. CaTUeTAkarTb;cug
(end restraint) ekItBIPaBrwgRkaj (stiffness) rbs;Ggát;EdlP¢ab;eTAnwg beam-column. lkçxNÐTMr

pinned CalkçxNÐmYyEdlRtUv)aneRbIsMrab;TajrkemKuNm:Um:g;bEnßm dUcenHvaminmankarkat;bnßytM

élemKuNm:Um:g;bEnßmsMrab;krNIenHeT EdlvaRtUvKñanwg Cm = 1.0 . eTaHbICalkçxNÐcugBitR)akdsßit
enAcenøaHkarbgáb;eBj (fully fixity) nigknøas;Kμankkit (frictionless pin) k¾eday eKGaceRbItMélNa
mYyk¾)anEdr eRBaHvanwgpþl;lT§plCaTIeBjcitþ.




                                           200                                   Fñwm -ssr
T.chhay


      viFIsaRsþEdl)aneFVIeGayRbesIreLIgsMrab;Ggát;rgbnÞúkxagTTwgGkS½ ¬krNITIBIr¦ RtUv)anpþl;
eGayenAkñúg section C1 of the commentary to the Specification. emKuNkat;bnßyKW
                    P
          Cm = 1 +ψ u
                   Pe1
          sMrab;Ggát;TMrsamBaØ
               π 2δ o EI
          ψ=               −1
                M o L2
         Edl δ o CaPaBdabGtibrmaEdlekItBIbnÞúkxagTTwgGkS½ ehIy M o Cam:Um:g;GtibrmaenA
cenøaHTMrEdl)anBIbnÞúkxagTTwgGkS½. emKuN ψ RtUv)anKNnaBIsßanPaBFmμtaCaeRcInehIyRtUv)an
pþl;eGayenAkñúg commentary Table C-C1.1.

]TahrN_6>4³ Ggát;EdlbgðajenAkñúg rUbTI 6>10 CaEpñkrbs; braced frame. bnÞúk nigm:Um:g;RtUv)an
KNnaCamYybnÞúkemKuN ehIykarBt;KWwFobnwgGkS½xøaMg. RbsinebIeKeRbI A572 Grade 50 etIGgát;
enHRKb;RKan;b¤eT? KL = KL y = 14 ft .




dMeNaHRsay³ kMNt;faetIRtUveRbIrUbmnþGnþrkmμmYyNa
                     KL K y L 14(12)
          maximum       =    =       = 55.63
                      r   ry   3.02

          BI AISC Table 3-50, φc Fcr = 33.89ksi dUcenH
          φc Pn = Ag (φc Fcr ) = 19.1(33.89 ) = 647.4kips
           Pu    420
               =      = 0.6487 > 0.2
          φc Pn 647.4

                                               201                             Fñwm -ssr
T.chhay


          dUcenHeRbI AISC Equation H1-1a.
          enAkñúgbøg;énkarBt;
          KL K x L 14(12 )
             =    =        = 31.82
           r   rx   5.28
                  Ag F y         π 2 EAg            π 2 (29000 )(19.1)
          Pe1 =            =                    =                        = 5399kips
                   λc
                    2
                               (K x L / rx )2           (31.82)2
                          ⎛M ⎞               ⎛ 70 ⎞
          C m = 0.6 − 0.4⎜ 1 ⎟ = 0.6 − 0.4⎜ − ⎟ = 0.9415
                          ⎜M ⎟
                          ⎝ 2⎠               ⎝ 82 ⎠
                    Cm              0.9415
          B1 =                =                  = 1.021
               1 − (Pu / Pe1 ) 1 − (420 / 5399 )
          BI Beam design charts,CamYynwg Cb = 1.0 nig Lb = 14 ft. moment strength KW
          φb M n = 347 ft − kips
          sMrab;tMél Cb BitR)akd edayeyagtamdüaRkam:Um:g;enAkñúg rUbTI 6>10³
                            12.5M max                        1.25(82 )
          Cb =                                  =                                   = 1.06
                  2.5M max + 3M A + 4 M B + 3M C 2.5(82 ) + 3(73) + 4(76 ) + 3(79 )
          dUcenH φb M n = Cb (347) = 1.06(347) = 368 ft − kips
          b:uEnþ φb M p = 358 ft − kips ¬BItarag¦ < 368 ft − kips
          dUcenHeRbI φb M n = 358 ft − kips
          m:Um:g;emKuNKW M nt = 85 ft − kips M lt = 0
          BI AISC Equation C1-1,
          M u = B1M nt + B2 M lt = 1.021(82) + 0 = 83.72 ft − kips = M ux
          BI AISC Equation H1-1a,
           Pu   8 ⎛ M ux     M uy               ⎞
                                                ⎟ = 0.6487 + 8 ⎛ 83.72 ⎞ = 0.857 < 1.0
               + ⎜         +                                   ⎜       ⎟                   (OK)
          φc Pn 9 ⎜ φb M nx φb M ny
                  ⎝
                                                ⎟
                                                ⎠            9 ⎝ 358 ⎠

          cMeLIy³ Ggát;enHKWRKb;RKan;.

]TahrN_ 6>5³ Fñwm-ssredkEdlbgðajenAkñúgrUbTI 6>11 rgnUv service live loads dUcEdlbgðaj
kñúgrUb. Ggát;enHRtUv)anBRgwgxagenAxagcugrbs;vaTaMgBIr ehIykarBt;KWeFobnwgGkS½ x . RtYtBinitü
faetIGgát;enHRKb;RKan;tam AISC Specification.

                                                          202                            Fñwm -ssr
T.chhay




dMeNaHRsay³ bnÞúkemKuNKW
          Pu = 1.6(20) = 32.0kips
ehIym:Um:g;GtibrmaKW
          M nt =
                   (1.6 × 20)(10) + (1.2 × 0.035)(10)2       = 80.52 ft − kips
                          4                       8
Ggát;enHRtUv)anBRgwgTb;nwgkarbMlas;TIxagcug dUcenH M lt = 0 .
KNnaemKuNm:Um:g;bEnßm
sMrab;Ggát;rgbnÞúkxagEdlRtUv)anBRgwgTb;nwg sidesway ehIy unrestrained end enaH Cm = 1.0 .
tMélEdlsuRkitCagEdl)anBI AISC Commentary Table C-C1.1 KW
                        P
          C m = 1 − 0 .2 u
                        Pe1
sMrab;GkS½énkarBt;
          KL K x L 1.0(10 )(12 )
             =    =              = 34.19
           r   rx     3.51
                  π 2 EAg          π 2 (29000)(10.3)
          Pe1 =                =                       = 2522kips
                  (KL / r )2           (34.19)2
                       ⎛ 32.0 ⎞
          C m = 1 − 0.2⎜      ⎟ = 0.9975
                       ⎝ 2522 ⎠
emKuNm:Um:g;bEnßm
                      Cm              0.9975
          B1 =                  =                   = 1.010 > 1.0
                 1 − (Pu / Pe1 ) 1 − (32.0 / 2522 )
sMrab;GkS½énkarBt;
          M u = B1M nt + B2 M lt = 1.010(80.52) + 0 = 81.33 ft − kips
edIm,ITTYl design strengths dMbUgemIleTA column load tables in Part 3 of the Manual Edl
eGay φc Pn = 262kips
BI beam design charts in Part 4 of the Manual sMrab; Lb = 10 ft nig Cb = 1.0
                                                       203                       Fñwm -ssr
T.chhay


          φb M n = 91.8 ft − kips
edaysarTMgn;FñwmtUcNas;ebIeRbobeFobnwgbnÞúkGefrcMcMnuc enaH Cb = 1.32 BI rUbTI 5>13 c.
          φb M n = 1.32(91.8) = 121 ft − kips
m:Um:g;enHFMCag φb M p = 93.6 ft − kips EdlTTYl)anBI beam design chart dUcKña dUcenH design
strength RtUv)ankMNt;RtwmtMélenH. dUcenH

          φb M n = 93.6 ft − kips
RtYtBinitürUbmnþGnþrkmμ³
           Pu    32.0
               =      = 0.1221 < 0.2
          φc Pn 262
dUcenHeRbI AISC Equation H1-1b³
            Pu   ⎛ M ux     M uy         ⎞ 0.1221 ⎛ 81.33     ⎞
                +⎜        +              ⎟=      +⎜       + 0 ⎟ = 0.930 < 1.0         (OK)
          2φc Pn ⎜ φb M nx φb M ny
                 ⎝
                                         ⎟
                                         ⎠    2   ⎝ 93.6      ⎠

cMeLIy³          W 8× 35   KWRKb;RKan;

]TahrN_ 6>6³ Ggát;EdlbgðajenAkñúg rUbTI6>12 eFVIBIEdk A242 EdlmanrUbrag W 12 × 65 ehIy
RtUvRTnUvbnÞúksgát;tamGkS½emKuN 300kips . enAcugTMenrmçagCa pinned nigcugmçageTotrgnUvm:Um:g;
emKuN 135 ft − kips eFobGkS½xøaMg nig 30 ft − kips eFobGkS½exSay. eRbII K x = K y = 1.0 cUreFVIkar
GegátBIGgát;enH.




dMeNaHRsay³ dMbUg kMNt; yield stress Fy . BI Table 1-2, Part 1 of the Manual, W 12 × 65
CarUbragRkumTIBIr. BI Table 1-1, Edk A242 manersIusþg;EtmYyKW Fy = 50ksi .
                                                204                                 Fñwm -ssr
T.chhay


bnÞab;mkeTot rk compressive strength. sMrab; KL = 1.0(15) = 15 ft axial compressive design
strength BI column load table KW³

          φc Pn = 626kips
cMNaMfa taragbgðajfasøabrbs; W 12 × 65 KW noncompact sMrab; Fy = 50ksi .
KNnam:Um:g;Bt;eFobGkS½xøaMg (strong axis bending moment).
                                     = 0.6 − 0.4(0) = 0.6
                                  M1
          C mx = 0.6 − 0.4
                                  M2
          K x L 15(12 )
               =        = 34.09
           rx    5.28
                         π 2 EAg            π 2 (29000 )(19.1)
          Pe1x =                        =                        = 4704kips
                    (K x L / rx )2              (34.09)2
                        C mx               0 .6
          B1x =                    =                  = 0.641 < 1.0
                   1 − (Pu / Pe1x ) 1 − (300 / 4704 )
dUcenH eRbI B1x = 1.0
          M ux = B1x M ntx + B2 x M ltx = 1.0(135) + 0 = 135 ft − kips
BI beam design charts CamYy Lb = 15 ft / φb M nx = 342 ft − kips sMrab; Cb = 1.0 ehIy
φb M px = 357.8 ft − kips . BI rUbTI 5>15 g, Cb = 1.67 ehIy

          Cb × (φb M nx for Cb = 1.0) = 1.67(342) = 571 ft − kips
lT§plenHFMCag φb M px dUcenHeRbI φb M nx = φb M px = 357.8 ft − kips
KNna m:Um:g;Bt;eFobGkS½exSay (weak axis bending moment).
                                     = 0.6 − 0.4(0) = 0.6
                                  M1
          C my = 0.6 − 0.4
                                  M2
          K yL         15(12)
                   =          = 59.60
           ry           3.02
                         π 2 EAg            π 2 (29000)(19.1)
          Pe1 y =                       =                        = 1539kips
                       (K y L / ry )2           (59.60)2
                       C mx             0.6
          B1 y =                 =                  = 0.745 < 1.0
                          (             )
                   1 − Pu / Pe1 y 1 − (300 / 1539 )

dUcenH eRbI B1y = 1.0
          M uy = B1 y M nty + B2 y M lty = 1.0(30 ) + 0 = 30 ft − kips


                                                           205                 Fñwm -ssr
T.chhay


edaysarsøabrbs;rUbragenH noncompact enaHersIusþg;m:Um:g;Bt;eFobGkS½exSayRtUv)ankMNt;eday
FLB.
                 bf
          λ=           = 9.9
               2t f
                      65           65
          λp =             =            = 9.192
                      Fy           50
                       141               141
          λr =                     =               = 22.29
                      F y − 10          50 − 10

edaysar λ p < λ < λr
                                 ⎛ λ − λp ⎞
                             (
          Mn = M p − M p − Mr ⎜             ⎟
                                 ⎜ λr − λ p ⎟
                                               )                               (AISC Equation A-F1-3)
                                 ⎝          ⎠
                                50(44.1)
          M p = M py = Fy Z y =           = 183.8 ft − kips
                                   12
                               (           )
          M r = M ry = F y − Fr S y = (50 − 10 )(29.1) = 1164in. − kips = 97.0 ft − kips

edayCMnYscUleTAkñúgsmIkar AISC Equation A-F1-3 eyIgTTYl)an
                                             ⎛ 9.9 − 9.192 ⎞
          M n = M ny = 183.8 − (183.8 − 97.0)⎜               ⎟ = 179.1 ft − kips
                                             ⎝ 22.29 − 9.192 ⎠
          φb M ny = 0.90(179.1) = 161.2 ft − kips

rUbmnþGnþrkmμeGay
           Pu    300
               =     = 0.4792 > 0.2
          φc Pn 626
dUcenHeRbI AISC Equation H1-1a³
           Pu   8 ⎛ M ux     M uy                  ⎞
                                                   ⎟ = 0.4792 + 8 ⎛ 135 + 30 ⎞ = 0.980 < 1.0 (OK)
               + ⎜         +                                      ⎜             ⎟
          φc Pn 9 ⎜ φb M nx φb M ny
                  ⎝
                                                   ⎟
                                                   ⎠            9 ⎝ 357.8 161.2 ⎠

cMeLIy³ W12 × 65 RKb;RKan;

6>7> Ggát;enAkñúgeRKagEdlminBRgwg Members in Unbraced Frames
        Fñwm-ssrEdlcugrbs;vaGacrMkil)an m:Um:g;dMbUgGtibrmaEdl)anBI sidesway CaTUeTAeRcIn
sßitenAelIEtcugmçag. dUcEdl)anbgðajenAkñúgrUbTI 6>5 m:Um:g;TIBIrGtibrmaEdl)anBI sidesway Etg
EtsßitenAelIcugmçag. dUcenHsMrab;krNIenH m:Um:g;TImYy nigm:Um:g;TIBIrGtibrmaCaTUeTARtUv)anbUkbBa©Úl
Kña ehIyminRtUvkaremKuN Cm eT ¬karBit Cm = 1.0 ¦. eTaHbICaenAeBlEdlmankarkat;bnßy k¾va
                                                             206                          Fñwm -ssr
T.chhay


mantMéltictYc nigGacecal)an. cUrBicarNaFñwm-ssrEdlbgðajenAkñúgrUbTI 6>13. m:Um:g;esμIKñaenA
xagcug)anmkBI sidesway ¬BIbnÞúkedk¦. bnÞúktamGkS½ ¬EdlCaEpñkmYyénbnÞúkEdlmanGMeBIelIFñwm-
ssrminbNþaleGayman sidesway¦RtUv)anKitbBa©ÚleTAkñúgm:Um:g;cugEdr.




     emKuNm:Um:g;bEnßmsMrab; sidesway moments B2 RtUv)aneGaysmIkarBIr. eKGaceRbIsmIkar
NamYyk¾)anEdr GaRs½ynwgPaBgayRsYlsMrab;GñkKNna³
                          1
          B2 =                                                      (AISC Equation C1-4)
               1 − ∑ Pu (Δ oh / ∑ HL )

b¤        B2 =
                       1
               1 − (∑ Pu / ∑ Pe 2 )
                                                                    (AISC Equation C1-5)

Edl       ∑ Pu =  plbUkbnÞúkemKuNenAelIRKb;ssrenAelICan;EdlBicarNa
          Δ oh = drift (sidesway displacement) rbs;Can;EdlBIcarNa

          ∑ H = plbUkénbnÞúkedkTaMgGs;EdlbegáIt Δ oh

          L = kMBs;Can;

          ∑ Pe 2 = plbUkén Euler loads rbs;ssrTaMgGs;enAelICan;EdlBicarNa ¬enAeBlEdl

                   KNna Pe2 eKRtUveRbI KL / r sMrab;GkS½énkarBt; ehIy K CatMélEdlRtUvKñanwg
                   unbraced condition.


                                            207                                 Fñwm -ssr
T.chhay


        plbUkén Pu nigplbUkén Pe2 GnuvtþeTARKb;ssrEdlsßitenAkñúgCan;EdlBicarNaCamYyKña.
eKeRbIplEckrvagplbUkbnÞúkTaMgBIrsMrab;smIkarxagelIedaysar B2 GnuvtþsMrab; unbraced frames
ehIyRbsinebI sidesway nwgekItman enaHssrTaMggs;enAkñúgCan;EdlBicarNanwg sway kñúgeBlCa
mYyKña. enAkñúgkrNICaeRcIn eRKOgbgÁúMRtUv)anKNnaenAkñúgbøg; dUcenH ∑ Pu nig ∑ Pe2 KWsMrab;ssr
enACan;rbs;eRKag ehIybnÞúkxag H CabnÞúkxagEdleFVIGMeBIenAelIeRKag nigBIelICan;EdlBicarNa.
CamYynwg Δ oh EdlekIteLIgeday ∑ H pleFob Δ oh / ∑ H GacQrelIbnÞúkemKuN b¤bnÞúkKμanem
KuN. TMrg;epSgeTotrbs; B2 RtUv)aneGayeday AISC Equation C1-5 manlkçN³RsedognwgsmI
karsMrab; B1 elIkElgsMrab;plbUk.
        AISC Equations C1-4 nig C1-5 RtUv)anbMEbkedayviFIBIrepSgKña b:uEnþenAkñúgkrNICaeRcInva

nwgpþl;nUvlT§pldUcKña (Yura, 1988). enAkñúgkrNICaeRcInEdltMél B2 TaMgBIrxusKñaxøaMg tYénbnÞúk
cMGkS½rbs;rUbmnþGnþrkmμnwglub ehIylT§plcugeRkaynwgminxusKñaeRcIneT. dUcEdl)anerobrab;BI
xagedIm kareRCIserIsKWsßitenAelIPaBgayRsYl vaGaRs½ynwgtYenAkñúgsmIkar.
        kñúgkrNIEdl M nt nig M lt eFVIGMeBIenAcMnucBIrepSgKñaenAelIGgát; dUcbgðajenAkñúgrUbTI 6>14/
AISC Equation C1-1 nwgpþl;nUvlT§plEdlsnSMsMéc.




                                            208                                    Fñwm -ssr
T.chhay


          rUbTI 6>14 bgðajbEnßmeTotBI superposition concept. rUbTI 6>14 a bgðajBI braced frame
rgnUvTaMgbnÞúkTMnaj (gravity load) nigbnÞúkxag (lateral load). m:Um:g;enA M nt enAkñúgGgát; AB
RtUv)anKNnaedayeRbIEt gravity load. edayPaBsIuemRTI eKminRtUvkar bracing edIm,IkarBar
sidesway BIbnÞúkenH. m:Um:g;enHRtUv)anbEnßmCamYyCamYynwgemKuN B1 edIm,IkarBarT§iBl Pδ .

M lt m:Um:g;EdlRtUvKñanwg sway ¬EdlbegáIteLIgedaybnÞúkedk H ¦ nwgRtUv)anbEnßmeday B2 edIm,I

karBarnwgT§iBl PΔ .
         enAkñúg rUbTI 6>14 b unbraced frame RTEtbnÞúkbBaÄr. edaysarkardak;bnÞúkenHminsIuemRTI
vanwgman sidesway bnþic. m:Um:g; M nt RtUv)anKNnaedayBicarNafaeRKagRtUv)anBRgwg ¬kñúgkrNI
enH edaysarTMredkkkit nigkMlaMgRbtikmμRtUvKμaEdleKehAfa tMNTb;nimitþ (artificial joint restraint
AJR). edIm,IKNnam:Um:g; sidesway eKRtUvykTMrkkitecj ehIyCMnYsedaykMlaMgEdlmantMélesμInwg

artificial joint restraint b:uEnþmanTisedApÞúyKña. kñúgkrNIenH m:Um:g;TIBIr PΔ nwgmantMéltUcNas;

ehIyeKGacecal M lt )an.
         RbsinebITaMgbnÞúkxag nigbnÞúkTMnaj minsIuemRTI eKGacbEnßmkMlaMg AJR eTAelIbnÞúkxagBit
R)akd enAeBlEdl M lt RtUv)ankMNt;.

]TahrN_ 6>7³ Edk W 12 × 65 RbePT A572 grade 50 RbEvg 15 ft sMrab;eRbICassrenAkñúg
unbraced frame. bnÞúkcMGkS½ nigm:Um:g;cugTTYl)anBI first-order analysis énbnÞúkTMnaj ¬bnÞúkefr

nigbnÞúkGefr¦ RtUv)anbgðajenAkñúg rUbTI 6>15 a . eRKagmanlkçN³sIuemRTI ehIybnÞúkTMnajk¾
RtUv)andak;sIuemRTIEdr. rUbTI 6>15 b bgðajBIm:Um:g;énbnÞúkxül;Edl)anBI first-order analysis. m:U
m:g;Bt;TaMgGs;KWeFobnwgGkS½xøaMg. emKuNRbEvgRbsiT§PaB K x = 1.2 sMrab;krNI sway nig
 K x = 1.0 sMrab;krNI nonsway ehIy K y = 1.0 . kMNt;faetIGgát;enHeKarBtam AISC

Specification b¤eT?

dMeNaHRsay³ karbnSMbnÞúkTaMgGs;EdleGayenAkñúg AISC A4.1 suT§EtmanbnÞúkGefr ehIyelIk
ElgEtkarbnSMbnÞúkTImYyecj EdlkarbnSMbnÞúkTaMgGs;manbnÞúkxül; b¤bnÞúkGefr b¤TaMgBIr. Rbsin
ebIRbePTbnÞúk ¬ E, Lr , S , nig R ¦ enAkñúg]TahrN_enHminRtUv)anbgðaj lkçxNÐénkarbnSMbnÞúk
RtUv)ansegçbdUcxageRkam³
          1 .4 D                                                                     (A4-1)
          1 .2 D + 1 .6 L                                                            (A4-2)
                                            209                                    Fñwm -ssr
T.chhay


          1.2 D + (0.5 L or 0.8W )                                              (A4-3)
          1.2 D + 1.3W + 0.5 L                                                  (A4-4)
          1 .2 D + 0 .5 L                                                       (A4-5)
          0.9 D ± 1.3W                                                          (A4-5)




         enAeBlEdlbnÞúkefrtUcCagbnÞúkGefrR)aMbIdg enaHbnSMbnÞúk (A4-1) GacminRtUvKit. bnSM
bnÞúk (A4-4) nwgmantMélFMCag (A4-3) dUcenH (A4-3) Gacdkecj)an. bnSMbnÞúk (A4-5) k¾Gac
ecal)anedaysarvanwgpþl;eRKaHfñak;tUcCag (A4-2). cugeRkay karbnSMbnÞúk (A4-6) nwgmineRKaH
fñak;dUc (A4-4) ehIyk¾Gacdkecj)anBIkarBicarNa EdlenAsl;EtbnSMbnÞúkBIrEdlRtUveFVIkarGegátKW
(A4-2)nig (A4-4) ³

         1.2 D + 1.6 L nig      1.2 D + 1.3W + 0.5 L

         rUbTI 6>16 bgðajBIbnÞúktamGkS½ nigm:Um:g;Bt;EdlKNnaecjBIbnSMbnÞúkTaMgBIrenH
         kMNt;GkS½eRKaHfñak;sMrab;ersIusþg;kMlaMgsgát;tamGkS½
          K y L = 15 ft
           K x L 1.2(15)
                  =      = 10.29 ft < 15 ft
          rx / ry   1.75

      dUcenHeRbI KL = 15 ft
      BI column load tables CamYynwg KL = 15 ft / φc Pn = 626kips
      sMrab;lkçxNÐbnÞúk (A4-2)/ Pu = 454kips / M nt = 104.8 ft − kips nig M lt = 0 ¬eday
sarEtsIuemRTI vaminmanm:Um:g; sidesway¦. emKuNm:Um:g;Bt;KW

                                              210                             Fñwm -ssr
T.chhay


                         ⎛M ⎞             ⎛ 90 ⎞
          C m = 0.6 − 0.4⎜ 1 ⎟ = 0.6 − 0.4⎜
                         ⎜M ⎟                     ⎟ = 0.2565
                         ⎝ 2⎠             ⎝ 104.8 ⎠
          sMrab;GkS½énkarBt;
          KL K x L 1.0(15)(12 )
             =    =             = 34.09
           r   rx     5.28




          ¬krNIenHKμan sidesway dUcenHeKeRbI K x sMrab; braced condition¦. enaH
                  π 2 EAg          π 2 (29000)(19.1)
          Pe1 =                =                       = 4704kips
                  (KL / r )2           (34.09)2
          emKuNm:Um:g;bEnßmsMrab;m:Um:g; nonsway KW
                      Cm              0.2565
          B1 =                  =                  = 0.284 < 1.0
                 1 − (Pu / Pe1 ) 1 − (454 / 4704 )


                                                       211                        Fñwm -ssr
T.chhay


          dUcenHeRbI B1 = 1.0
          M u = B1M nt + B2 M lt = 1.0(104.8) + 0 = 104.8 ft − kips
          BI beam design charts CamYynwg Lb = 15 ft
          φb M n = 343 ft − kips ¬sMrab; Cb = 1.0 ¦
          φb M p = 358 ft − kips

          rUbTI 6>17 bgðajBIdüaRkamm:Um:g;Bt;sMrab;m:Um:g;énbnÞúkTMnaj. ¬karKNna Cb KWQrelItMél
dac;xat dUcsBaØaenAkñúgdüaRkamenHminmansar³sMxan;eT¦. dUcenH
                           12.5M max
          Cb =
                2.5M max + 3M A + 4M B + 3M C
                            12.5 × (104.8)
              =                                        = 2.24
                2.5(104.8) + 3(41.3) + 4(74) + 3(56.1)




          sMrab; Cb = 2.24
          φb M n = 2.24(343) > φb M p = 358 ft − kips

          dUcenHeRbI φb M n = 358 ft − kips
          kMNt;smIkarGnþrkmμEdlsmRsb
           Pu    454
               =     = 0.7252 > 0.2
          φc Pn 626
          eRbIsmIkar AISC Equation H1-1a.
           Pu   8 ⎛ M ux     M uy      ⎞
                                       ⎟ = 0.7252 + 8 ⎛ 104.8 + 0 ⎞ = 0.985 < 1.0
               + ⎜         +                          ⎜           ⎟                   (OK)
          φc Pn 9 ⎜ φb M nx φb M ny
                  ⎝
                                       ⎟
                                       ⎠            9 ⎝ 358       ⎠

        sMrab;lkçxNÐbnÞúk (A4-4), Pu = 212kips / M nt = 47.6 ft − kips ehIy
M lt = 171.6 ft − kips . sMrab; unbraced condition/



                                              212                                   Fñwm -ssr
T.chhay


                         ⎛M ⎞             ⎛ 40.5 ⎞
          C m = 0.6 − 0.4⎜ 1 ⎟ = 0.6 − 0.4⎜
                         ⎜M ⎟                    ⎟ = 0.2597
                         ⎝ 2⎠             ⎝ 47.6 ⎠
          Pe1 = 4704kips                 ¬ Pe1 minGaRs½ynwglkçxNÐbnÞúk¦
                      Cm              0.2597
          B1 =                  =                  = 0.272 < 1.0
                 1 − (Pu / Pe1 ) 1 − (212 / 4704 )
      dUcenH B1 = 1.0
      eyIgminmanTinñy½nRKb;RKan;edIm,IKNnaemKuNm:Um:g;bEnßmeGay)ansuRkitsMrab; sway
moment B2 BI AISC Equation C1-4 b¤ C1-5. RbsinebIeyIgsnμt;fapleFobrvagbnÞúktamGkS½

EdlGnuvtþmkelIGgát; nig Euler load capacity mantMéldUcKñasMrab;RKb;ssrenAkñúgCan; nigsMrab;
ssrEdleyIgBicarNa enaHeyIgGacsresr Equation C1-5³
                            1                       1
          B2 =                            ≈
                 1 − (∑ Pu / ∑ Pe 2 ) 1 − (Pu / Pe 2 )
          sMrab; Pe2 eRbI K x EdlRtUvnwg unbraced condition³
          KL K x L 1.2(15)(12 )
             =    =             = 40.91
           r   rx     5.28
                   π 2 EAg          π 2 (29000)(19.1)
          Pe 2 =                =                       = 3266kips
                   (KL / r )2            (40.91)2
          BI AISC Equation C1-5/
                        1                      1
          B2 ≈                      =                    = 1.069
                 1 − (Pu / Pe 2 )       1 − (212 / 3266)
          m:Um:g;bEnßmsrubKW
          M u = B1M nt + B2 M lt = 1.0(47.6 ) + 1.069(171.6) = 231.0 ft − kips
       eTaHbICam:Um:g; M nt nig M lt mantMélxusKñak¾eday k¾BYkvaRtUv)anEbgEckdUcKña ehIy Cb
nwgenAdEdl . enARKb;GRtaTaMgGs; BYkvamantMélFRKb;RKan;Edl φb M p = 358 ft − kips Ca design
strength edayminKitBIm:Um:g;NamYyeLIy.
           Pu    212
               =     = 0.3387 > 0.2
          φc Pn 626
dUcenHeRbI AISC Epuation H1-1a³
           Pu   8 ⎛ M ux     M uy               ⎞
                                                ⎟ = 0.3387 + 8 ⎛ 231.0 + 0 ⎞ = 0.912 < 1.0
               + ⎜         +                                   ⎜           ⎟                   (OK)
          φc Pn 9 ⎜ φb M nx φb M ny
                  ⎝
                                                ⎟
                                                ⎠            9 ⎝ 358       ⎠

cMeLIy³ Ggát;enHbMeBjtMrUvkarrbs; AISC Specification.
                                                        213                                  Fñwm -ssr
T.chhay


6>8 KNnamuxkat;Fñwm-ssr Design of Beam-Column
         edaysarenAkñúgrUbmnþGnþrkmμmanGBaØtiCaeRcIn enaHkarKNnamuxkat;Fñwm-ssrCadMeNIrkar
KNnaEdlRtUvkarCacaM)ac;nUv trial-and-error process. sMrab;kareRCIserIscugeRkay KWeKeRCIserIs
rUbragNakan;EtEk,r kan;Etl¥. muxkat;sakl,gRtUv)aneRCIserIs nigRtUv)anepÞógpÞat;eLIgvijeday
eRbIrUbmnþGnþrkmμ. dMeNIrkard¾manRbsiT§PaBbMputkñúgkareRCIserIsmuxkat;sakl,gRtUv)anbegáIteLIg
CadMbUgsMrab; allowable stress design (Burgett, 1973), ehIyRtUv)anTTYl ykmkeRbIsMrab; LRFD
Edlmanerobrab;enAkñúg part 3 of the Manual, “Column Design”. lkçN³sMxan;sMrab;viFIenHKWCa
karbMElgBIm:Um:g;Bt;eTACabnÞúktamGkS½smmUl. bnÞúkEdl)anBIkarbMElgRtUv)anyk eTAbEnßmelI
bnÞúkCak;Esþg ehIyrUbragEdlRtUvRTbnÞúksrubRtUv)aneRCIserIsBI column load tables. bnÞab;mk eK
RtUvBinitürUbragsakl,genHCamYy Equation H1-1a b¤ H1-1b. bnÞúktamGkS½RbsiT§PaBsrubRtUv)an
eGayeday
          Pu eq = Pu + M ux m + M uy mu

Edl       Pu =  bnÞújktamGkS½emKuNCak;Esþg
          M ux = m:Um:g;emKuNeFobGkS½ x

          M uy = m:Um:g;emKuNeFobGkS½ y

          m = tMélefrEdlmanenAkúñgtarag

          n = tMélefrEdlmanenAkúñgtarag

          eKalkarN_énkarviFIenHGacRtUv)anRtYtBinitüedaysresrsmIkar ^># eLIgvijdUcxageRkam.
          dMbUgKuNGgÁTaMgBIreday φc Pn ³
              φ PM      φc Pn M uy
          Pu + c n ux +            ≤ φc Pn
               φb M nx   φb M ny
       b¤ Pu + (M ux × a constant ) + (M uy × a constant ) ≤ φc Pn
       GgÁxagsþaMénvismIkarCa design strength rbs;Ggát;EdlBicarNa ehIyGgÁxageqVgGacCa
bnÞúkemKuNxageRkAEdlRtUvTb;Tl;. tYnImYy²énGgÁxageqVgmanxñatkMlaMg dUcenHtMélefrCaGñkbM
Elgm:Um:g;Bt; M ux nig M uy eTACakMub:Usg;bnÞúktamGkS½.
       tMélefrmFüm m RtUv)anKNnasMrab;RkumepSgKñarbs; W-shape ehIyRtUv)aneGayenAkñúg
Table 3-2 in Part 3 of the Manual. tMél u RtUv)aneGayenAkñúg column load table sMrab;rUbrag

                                             214                               Fñwm -ssr
T.chhay


nImYy²EdlmanenAkñúgtarag. edIm,IeRCIserIsrUbragsakl,gsMrab;Ggát;CamYynwgbnÞúktamGkS½ nigm:U
m:g;Bt;eFobGkS½TaMgBIr eKRtUvGnuvtþdUcxageRkam.
        !> eRCIserIstMélsakl,g m edayQrelIRbEvgRbsiT§PaB KL . yk u = 2.0
        @> KNnabnÞúksgát;tamGkS½RbsiT§PaB³
                     Pu eq = Pu + M ux m + M uy mu

             eRbIbnÞúkenHedIm,IeRCIserIsrUbragBI column load tables.
          #> eRbItMél u EdleGayenAkñúg column load tables nigtMélfμIrbs; m BI Table 3-2 edIm,I
             KNnatMélfμIrbs; Pu eq . eRCIserIsrUbragepSgeTot.
          $> eFVIeLIgvijrhUtdl;tMél Pu eq ElgERbRbYl.

]TahrN_ 6>8³ Ggát;eRKOgbgÁúMxøHenAkñúg braced frame RtUvRTbnÞúksgát;tamGkS½emKuN 150kips nig
m:Um:g;cugemKuN 75 ft − kips eFobnwgGkS½xøaMg ehIy 30 ft − kips eFobnwgGkS½exSay. m:Um:g;TaMgBIr
enHeFVIGMeBIenAelIcugmçag ÉcugmçageTotCaTMr pinned. RbEvgRbsiT§PaBeFobnwgGkS½nImYy²KW 15 ft .
minmanbnÞúkxageFVIGMeBIelIGgát;enHeT, eRbIEdk A36 nigeRCIserIs W-shape EdlRsalCageK.
dMeNaHRsay³ emKuNm:Um:g;bEnßm B1 Gacsnμt;esμInwg 1.0 edIm,IeFVIkareRCIserIsmuxkat;sakl,g.
sMrab;GkS½nImYy²
          M ux = B1M ntx ≈ 1.0(75) = 75 ft − kips
          M uy = B1M nty ≈ 1.0(30 ) = 30 ft − kips

BI Table 3-2, part 3 of the Manual, m = 1.75 edayeFVI interpolation
        eRbItMéledIm u = 2.0
          Pu eq = Pu + M ux m + M uy mu = 150 + 75(1.75) + 30(1.75)(2.0 ) = 386kips

cab;epþImCamYynwgrUbragtUcCageKenAkñúg column load tables, sakl,g W 8 × 67 ¬ φc Pn = 412kips /
u = 2.03 ¦³

          m = 2 .1
          Pu eq = 150 + 75(2.1) + 30(2.1)(2.03) = 435kips

tMélenHFMCag design strength= 412 ft − kips dUcenHeKRtUvsakl,gmuxkat;epSgeTot.
sakl,g W 10 × 60 ¬ φc Pn = 416kips / u = 2.0 ¦³
                                                215                                   Fñwm -ssr
T.chhay



          m = 1.85
          Pu eq = 150 + 75(1.85) + 30(1.85)(2.00 ) = 400kips < 416kips                    (OK)

dUcenH W 10 × 60 CarUbragsakl,gEdlGaceRbIkar)an. RtYtBinitü W 12s nig W 14s . sakl,g
W 12 × 58 ¬ φc Pn = 397kips / u = 2.41 ¦³

          m = 1.55
          Pu eq = 150 + 75(1.55) + 30(1.55)(2.41) = 378kips < 397 kips                    (OK)

dUcenH W 12 × 58 CarUbragsakl,gEdlGaceRbIkar)an. W 14 EdlRsalCageKsMrab;eFVIkarCamYy
nwgbnÞúkxageRkAKW W 14 × 61 EtvaF¶n;Cag W 12 × 58 . dUcenHeRbI W 12 × 58 CarUbragsakl,g³
           Pu    150
               =     0.3778 > 0.2
          φc Pn 397
dUcenHeRbI AISC Equatiom H-1-1a
KNnam:Um:g;Bt;eFobGkS½ x
          K x L 15(12 )
               =        = 34.09
           rx    5.28
                  π 2 EAg          π 2 (29000)(17.0)
          Pe1 =                =                       = 4187kips
                  (KL / r )2     (34.09)2
          C m = 0.6 − 0.4(M 1 / M 2 ) = 0.6 − 0.4(0 / M 2 ) = 0.6 ¬sMrab;GkS½TaMgBIr¦
                      Cm                0 .6
          B1 =                  =                  = 0.622 < 1.0
                 1 − (Pu / Pe1 ) 1 − (150 / 4187 )
dUcenHeRbI B1 = 1.0
          M ux = B1M ntx = 1.0(75) = 75 ft − kips
bnÞab;mk kMNt; design strength. BI beam designth curves, sMrab; Cb = 1 nig Lb = 15 ft /
φb M n = 220 ft − kips . BIrUbTI 5>15g, Cb = 1.67 . sMrab; Cb = 1.67 design strength KW

          Cb × 220 = 1.67(220) = 367 ft − kips
m:Um:g;enHFMCag φb M p = 233 ft − kips
dUcenHeRbI φb M n = 233 ft − kips
KNnam:Um:g;Bt;eFobGkS½ y
          K yL        15(12)
                  =          = 71.71
           ry          2.51



                                                       216                              Fñwm -ssr
T.chhay


                   π 2 EAg         π 2 (29000)(17.0)
          Pe1 =                =                       = 946.2kips
                  (KL / r )2           (71.71)2
                      Cm                0 .6
          B1 =                  =                   = 0.713 < 1.0
                 1 − (Pu / Pe1 ) 1 − (150 / 946.2 )
dUcenHeRbI B1 = 1.0
          M uy = B1M nty = 1.0(30 ) = 30 ft − kips

W 12 × 58CarUbrag compact sMrab;RKb;tMélrbs; Pu dUcenH nomical strength KW M py ≤ 1.5M yy .
Design strength KW

          φb M ny = φb M py = φb Z y F y = 0.90(32.5)(36) = 1053in. − kips

                    = 87.75 ft − kips
b:uEnþ Z y / S y = 32.5 / 21.4 = 1.52 > 1.5 Edlmann½yfa φb M ny KYrEtykesμInwg
          φb (1.5M yy ) = φb (1.5F y S y ) = 0.90(1.5)(36 )(21.4) = 1040in. − kips = 86.67 ft − kips

BI AISC Equation H1-1a,
           Pu   8 ⎛ M ux     M uy            ⎞
                                             ⎟ = 0.3778 + 8 ⎛ 75 + 30 ⎞
               + ⎜         +                                ⎜           ⎟
          φc Pn 9 ⎜ φb M nx φb M ny
                  ⎝
                                             ⎟
                                             ⎠            9 ⎝ 233 86.67 ⎠
                                               = 0.972 < 1.0                         (OK)
cMeLIy³ eRbI      W 12 × 58    .

       ebIeTaHbICaviFIEdleTIbnwgbgðajsMrab;eRCIserIsrUbragsakl,gqab;rkeXIjk¾eday k¾viFIEdl
manlkçN³smBaØCagenHRtUv)anesñIeLIgeday Yura (1988). bnÞúktamGkS½EdlsmmUlEdlRtUv)an
eRbIKW
                       2M x 7.5M y
        Pequiv = P +
                        d
                           +
                                b
                                                                                ¬^>%¦
Edl P = bnÞúktamGkS½emKuN
       M x = m:Um:g;emKuNeFobGkS½ x

       M y = m:Um:g;emKuNeFobGkS½ y

       d = kMBs;Fñwm

       b = TTwgFñwm

       tYTaMgGs;enAkñúgsmIkar ^>@ RtUvEtmanxñatRtUvKña.
                                                       217                                  Fñwm -ssr
T.chhay


]TahrN_ 6>9³ eRbI Yura’s method edIm,IeRCIserIsrUbragsakl,g W 12 sMrab;Fñwm-ssrén]TahrN_
6>8.
dMeNaHRsay³ BIsmIkar 6>5 bnÞúktamGkS½smmUlKW
                         2M x 7.5M y         2(75 × 12) 7.5(30 × 12)
          Pequiv = P +       +       = 150 +           +             = 525kips
                          d      b              12          12
EdlTTwg b RtUv)ansnμt;esμInwg 12inches . BI column load tables, sakl,g W 12 × 72
¬ φc Pn = 537kips ¦.
CamYynwg Yura’s method eKTTYl)anrUbragsakl,gFMCag Manual method Etvaminy:agdUcenH
rhUteT.

       enAeBlEdltYm:Um:g;Bt;lub ¬]TahrN_ Ggát;manlkçN³CaFñwmCagssr¦ Yura ENnaMfa bnÞúk
tamGkS½RtUvbMElgeTACam:Um:g;Bt;smmUleFobGkS½GkS½ x . bnÞab;mkrUbragsakl,gRtUv)aneRCIserIs
BI beam design charts in part 3 of the Manual. m:Um:g;smmUlKW³
                              d
          M equiv = M x + P
                              2



karKNnamuxkat;Fñwm-ssrEdlminBRgwg                     Design of Unbraced Beam-Column

         karKNnamuxkat;dMbUgrbs;Fñwm-ssrenAkñúg braced frame RtUv)anbgðajrYcehIy. emKuNm:U
m:g;bEnßm B1 RtUv)ansnμt;esμI 1.0 edIm,IeRCIserIsmuxkat;sakl,g bnÞab;mk B1 RtUv)ankMNt;sMrab;
rUbragenaH. sMrab;Fñwm-ssrRbQmnwg sidesway emKuNm:Um:g;bEnßm B2 EdlQrelIGBaØtiCaeRcIn
EdlminsÁal;rhUtdl;ssrTaMgGs;enAkñúgeRKagRtUv)aneRCIserIs. RbsinebI AISC Equation C1-4
RtUv)aneRbIsMrab; B2 enaHeKminman sidesway deflection Δ oh sMrab;karKNnamuxkat;dMbUgeT. Rb
sinebIeKeRbI AISC Equation C1-5 enaHeKGacminsÁal; ∑ Pe2 . viFIxageRkamRtUv)anesñIeLIgedIm,Irk
 B2 .

viFITI1> snμt; B2 = 1.0 . bnÞab;BIeRCiserIsrUbragsakl,g KNna B2 BI AISC Equation C1-5 eday
         snμt;fa ∑ Pu / ∑ Pe2 KWdUcKñanwg Pu / Pe2 sMrab;Ggát;EdlBicarNa ¬dUcenAkñúg]TahrN_6>7¦.
viFITI2> eRbIkarkMNt;dMbUg (predetermined limit) sMrab; drift index Δ oh / L EdlCapleeFob story
         drift elIkMBs;Can;. kareRbInUv drift index GnuBaØatGtibrmasMrab; serviceability

                                             218                                 Fñwm -ssr
T.chhay


          requirement   RsedogKñanwgkarkMNt;PaBdabrbs;Fñwm. eKENnaMeGayeRbI drift index cenøaHBI
          1 / 500 eTA 1 / 200 . cMNaMfa Δ oh Ca drift EdlekItBI ∑ H dUcenHRbsinebI drift index

          QrenAelI service load enaHbnÞúkxag H RtUvEtCa service load Edr.

]TahrN_ 6>10³ rUbTI 6>18 bgðajBI single-story unbraced frame EdlrgnUvbÞúkefr bnÞúkGefrelI
dMbUl nigxül;. rUbTI 6>18 a bgðajBI service gravity load nig rUbTI6>18 b bgðajBI service wind
load ¬EdlrYmbBa©ÚlTaMg uplift b¤ suction enAelIdMbUl¦. eRbIEdk A572 grade 50 nigeRCIserIs

rUbrag W 12 sMrab;ssr ¬Ggát;bBaÄr¦. KNnamuxkat;sMrab; drift index 1/ 400 edayQrelI service
wind load. m:Um:g;Bt;eFobnwgGkS½xøaMg ehIyssrnImYy²BRgwgxagenAxagcug nigKl;.




dMeNaHRsay³ eRKagenHCaeRKagsþaTicminkMNt;mYydWeRk. karviPaKrcnasm<n§½minkMNt;minRtUv)aneFVI
enATIednHeT. lT§plénkarviPaKeRKagRtUv)anbgðajenAkñúgrUbTI 6>19edaysegçb. bnÞúktamGkS½ nig
m:Um:g;cugRtUv)aneGaydac;edayELkBIKñasMrab;bnÞúkefr bnÞúkGefr bnÞúkxül;EdlmanGMeBIelIdMbUl nig
bnÞúkxül;xag. bnÞúkbBaÄrTaMgGs;RtUv)andak;sIuemRTIKña ehIycUlrYmEtCamYynwgm:Um:g; M nt b:ueNÑaH.
bnÞúkxagbegáItm:Um:g; M lt .
bnSMbnÞúkEdlBak;Bn§½CamYynwgbnÞúkefr D / bnÞúkGefrelIdMbUl Lr nigbnÞúkxül; W KWdUcxageRkam³
          A4-2: 1.2 D + 0.5 Lr
                  Pu = 1.2(14) + 0.5(26) = 29.8kips

                 M nt = 1.2(50) + 0.5(94) = 107 ft − kips

                 M lt = 0
          A4-3: 1.2 D + 1.6 Lr + 0.8W
                  Pu = 1.2(14) + 1.6(26) + 08(− 9 + 1) = 52.0kips
                                               219                                Fñwm -ssr
T.chhay


                 M nt = 1.2(50) + 1.6(94) + 0.8(− 32) = 184.8 ft − kips

                 M lt = 0.8(20) = 16.0 ft − kips
          A4-4: 1.2 D + 0.5 Lr + 1.3W
                 Pu = 1.2(14) + 0.5(26 ) + 1.3(26) = 19.4kips

                 M nt = 1.2(50) + 0.5(94) + 1.3(− 32 ) = 65.4 ft − kips

                 M lt = 1.3(20) = 26 ft − kips
                 bnSMbnÞúk A4-3 pþl;nUvtMélFMCageK.




        sMrab;eKalbMNgénkareRCIserIsrUbragsakl,g snμt;fa B1 = 1.0 . tMélrbs; B2 Gac
RtUv)anKNnaBI AISC Equation C1-4 nig design drift index³
                  1                         1                             1
B2 =                          =                            =                              = 1.107
       1 − ∑ Pu (Δ oh / ∑ HL ) 1 − (∑ Pu / ∑ H )(Δ oh / L ) 1 − [2(52.0 ) / 2.7](1 / 400)
bnÞúkedkKμanemKuN ∑ H RtUv)aneRbIBIeRBaH drift index KWQrelI drift GtibrmaEdlbNþalmkBI
service load. dUcenH

          M u = B1M nt + B2 M lt = 1.0(184.8) + 1.107(16) = 202.5 ft − kips
edayminsÁal;TMhMrbs;Ggát; eKminGaceRbI alignment chart sMrab;emKuNRbEvgRbsiT§PaB)aneT.
Table C-C2.1 enAkñúg Commentary to the Specification bgðajfakrNI (f) RtUvKñay:agxøaMgeTAnwg

lkçxNÐcugsMrab;krNI sidesway én]TahrN_enH ehIyEdl K x = 2.0 .
                                                 220                                     Fñwm -ssr
T.chhay


       sMrab; braced condition, eKeRbI K x = 1.0 . edaysarEtGgát;TaMgGs;RtUv)anBRgwgTisedA
mYyeTotEdr enaHeKyk K y = 1.0 . bnÞab;mk eKGaceRCIserIsmuxkat;sakl,gEdlmaneGayenAkñúg
Part 3 of the Manual. BI Table 3-2 emKuNm:Um:g;Bt; m = 1.5 sMrab; W 12 CamYynwg KL = 15 ft .

          Pu eq = Pu + M ux m + M uy mu = 52.0 + 202.5(1.5) + 0 = 356kips

sMrab; KL = K y L = 15 ft / W 12 × 53 man design strength φc Pn = 451kips . sMrab;GkS½ x
           K x L 2.0(15)
                  =      = 14.2 ft < 15 ft
          rx / ry   2.11

dUcenH KL = 15 ft lub
sakl,g W 12 × 53 . sMrab; braced condtition
          K x L 1.0(15)(15)
               =            = 34.42
           rx      5.23
                     π 2 EAg            π 2 (29000 )(15.6)
          Pe1x =                    =                        = 3769
                   (K x L / rx )2           (34.42)2
                         ⎛M ⎞             ⎛ 0 ⎞
          C m = 0.6 − 0.4⎜ 1 ⎟ = 0.6 − 0.4⎜
                         ⎜M ⎟             ⎜ M ⎟ = 0 .6
                                              ⎟
                         ⎝ 2⎠             ⎝ 2⎠
          BI AISC Equation C1-2
                      Cm                0 .6
          B1 =                  =                   = 0.608 < 1.0
                 1 − (Pu / Pe1 ) 1 − (52.0 / 3769 )
        dUcenHeRbI B1 = 1.0
        cMNaMfa B1 = 1.0 CatMélsnμt;dMbUg ehIyedaysarEt B2 minRtUv)anpøas;bþÚr enaHtMél
M u = 202.5 ft − kips Edl)anKNnaBIdMbUgk¾minRtUv)anpøas;bþÚrEdr. BI beam design chart in Part

4 of the manual CamYynwg Lb = 15 ft design moment sMrab; W 12 × 53 CamYynwg Cb = 1.0 KW

          φb M n = 262 ft − kips
       sMrab;m:Um:g;Bt;EdlERbRbYlsmamaRtBIsUnüenAcugmçag eTAGtibrmaenAcugmçageTot tMélrbs;
Cb = 1.67 ¬emIlrUbTI 5>15 g¦. dUcenHtMélEdlEktMrUvén design moment KW

          φb M n = 1.67(262) = 438 ft − kips
        b:uEnþ m:Um:g;enHFMCag plastic moment capasity φb M p = 292 ft − kips / EdleKGacek)anenA
kñúg charts. dUcenH design strength RtUv)ankMNt;Rtwm
          φb M n = φb M p = 292 ft − kips

                                                       221                        Fñwm -ssr
T.chhay


          kMNt;rUbmnþGnþrkmμEdlsmRsb
           Pu    52
               =    = 0.1153 < 0.2
          φc Pn 451
          dUcenHeRbI AISC Equation H1-1b:
            Pu   ⎛ M ux     M uy               ⎞ 0.1153 ⎛ 202.5     ⎞
                +⎜        +                    ⎟=      +⎜       + 0 ⎟ = 0.751 < 1.0 (OK)
          2φc Pn ⎜ φb M nx φb M ny
                 ⎝
                                               ⎟
                                               ⎠    2   ⎝ 292       ⎠

          edaysarlT§plenHtUcCag 1.0 xøaMg dUcenHsakl,grUbragEdltUcCagenHBIrTMhM.
          sakl,g W 12 × 45 . sMrab; KL = K y L = 15 ft, φc Pn = 299kips . sMrab;GkS½ x
           K x L 2.0(15)
                  =      = 11.3 ft < 15 ft
          rx / ry   2.65

          dUcenH KL = 15 ft lub
          sMrab; braced condtition
          K x L 1.0(15)(15)
               =            = 34.95
           rx      5.15
                     π 2 EAg            π 2 (29000 )(13.2)
          Pe1x =                    =                        = 3093
                   (K x L / rx )2           (34.95)2
          BI AISC Equation C1-2,
                      Cm                0 .6
          B1 =                  =                  = 0.610 < 1.0
                 1 − (Pu / Pe1 ) 1 − (52.0 / 3093)
       dUcenHeRbI B1 = 1.0
       BI beam design charts CamYynwg Lb = 15 ft m:Um:g;KNnasMrab; W 12 × 45 CamYynwg
Cb = 1.0 KW

          φb M n = 201 ft − kips
          sMrab; Cb = 1.67
          φb M n = 1.67(201) = 336 ft − kips > φb M p = 242.5 ft − kips

          dUcenH design strength KW
          φb M n = φb M p = 242.5 ft − kips

          kMNt;rUbmnþGnþrkmμEdlsmRsb³
           Pu    52.0
               =      = 0.1739 < 0.2
          φc Pn 299

                                                       222                                 Fñwm -ssr
T.chhay


          dUcenHeRbI AISC Equation H1-1b:
            Pu   ⎛ M ux     M uy                 ⎞ 0.1739 ⎛ 202.5     ⎞
                +⎜        +                      ⎟=      +⎜       + 0 ⎟ = 0.922 < 1.0     (OK)
                 ⎜
          2φc Pn ⎝ φb M nx φb M ny               ⎟    2   ⎝ 242.5     ⎠
                                                 ⎠
cMeLIy³ eRbI W 12 × 45 .

       enA]TahrN_6>10 karkMNt; drift index CaviFIkñúgkarKNna ehIyeKminmanviFINaedIm,I
KNnaemKuNm:Um:g;bEnßm B2 . RbsinebIeKminR)ab; drift index tMélrbs; B2 GacRtUv)ankMNt;ecj
BI AISC Equation C1-5 dUcxageRkam ¬edayeRbIlkçN³rbs; W 12 × 45 ¦³
          K x L 2.0(15)(12)
               =            = 69.90
           rx      5.15
                      π 2 EAg            π 2 (29000)(13.2)
          Pe2 x =                    =                         = 773.2kips
                    (K x L / rx )2            (69.90)2
                           1                             1
          B2 =                            =                            = 1.072
                 1 − (∑ Pu / ∑ Pe 2 )         1 − [2(52.0) / 2(773.2)]



6>9>      Trusses With Top Chord Loads Between Joints
         RbssinebIGgát;rgkarsgát;rbs; truss RtUvRTbnÞúkEdlmanGMeBIenAcenøaHcugsgçagrbs;va enaH
vanwgRtUvrgnUvm:Um:g;Bt; k¾dUcCabnÞúksgát;tamGkS½ dUcenHGgát;enHCa beam-colum. krNIenHGacekIt
manenAelI top chord of the roof truss edayédrEngsßitenAcenøaHtMN. eKk¾RtUvKNna top chord of
an open-web steel joist Ca beam-column Edr BIeRBaH open-web steel joist RtUvRTbnÞúkTMnajEdl

BRgayesμIenAelI top chord rbs;va. edIm,IkarBarbnÞúkenH eKRtUveFVIm:UEdl truss CakarpSMeLIgeday
man continuous chord member nig pin-connected web members. bnÞab;mkeKGacedaHRsayrk
bnÞúktamGkS½ nigm:Um:g;Bt;edayeRbIkarviPaKeRKOgbgÁúMdUcCag stiffness method. eK)anesñIeLIgnUvviFI
saRsþdUcxageRkam³
         !> KitGgát;nImYy²rbs; top chord CaFñwmbgáb;cug. eRbIm:Um:g;bgáb;cugCam:Um:g;GtibrmaenAkñúg
            Ggát;. Cak;Esþg top chord CaGgát;Cab; CagCaesrIénGgát;tMNsnøak; dUcenHkarcat;TukenH
            manlkçN³suRkitCagkarEdlcat;TukGgát;nImYy²CaFñwmsmBaØ.
         @> bEnßmkMlaMgRbtikmμBIFñwmbgáb;cugenHeTAbnÞúkenARtg;tMNedIm,ITTYl)anbnÞúkelItMNsrub.

                                                         223                            Fñwm -ssr
T.chhay


       #> viPaK truss CamYynwgbnÞúkRtg;tMNTaMgenH. bnÞúktamGkS½EdlCalT§plenAkñúg top chord
           member CabnÞúksgát;tamGkS½EdlRtUvykeTAeRbIkñúgkarKNna.

       viFIenHRtUv)anbgðajCalkçN³düaRkamenAkñúg rUbTI 6>20. müa:gvijeTot eKGacrkm:Um:g;Bt;
nigRbtikmμrbs;Fñwmedaycat;Tuk top chord CaFñwmCab;EdlmanTMrenARtg;tMNnImYy².




]TahrN_ 6>11³ rUbTI 6>21 bgðajBI parallel-chord roof trussEdl top chord RTédrENgenA
Rtg;tMN nigenARtg;cenøaHtMN. bnÞúkemKuNEdlbBa¢ÚnedayédrENgRtUv)anbgðaj. KNnamuxkat;
top chord. eRbIEdk A36 nigeRCIserIs structural tee Edlkat;ecjBI W-shape.




                                         224                                 Fñwm -ssr
T.chhay


dMeNaHRsay³ m:Um:g;Bt; nigkMlaMgelItMNEdlbNþalmkBIbnÞúkEdlmanGMeBIenAcenøaHtMNRtUv)anrk
edaycat;Tuk top chord nImYy²CaFñwmbgáb;cug. BI Part 4 of the Manual, “Beam and girder
Design,”m:Um:g;bgáb;cugsMrab;Ggát; top chord nImYy²KW
                       PL 2.4(10)
          M = M nt =      =       = 3.0 ft − kips
                        8    8
m:Um:g;cug nigkMlaMgRbtikmμTaMgenHRtUv)anbgðajenAkñúg rUbTI 6>22 a. enAeBlEdleKbEnßmkMlaMg
RbtikmμeTAelIbnÞúkelItMN enaHeKTTYl)ankardak;bnÞúkdUcbgðajenAkñúgrUbTI 6>22 b. kMlaMgsgát;
GtibrmatamGkS½nwgekItmanenAkñúgGgát; DE ¬nwgenAkñúgGgát;EdlenAEk,r EdlenAxagsþaMGkS½rbs;
ElVg¦ nigGacRtUv)anrkedayBicarNalMnwgrbs;GgÁesrIrbs;Epñkrbs; truss EdlenAxageqVgmuxkat;
a-a³

          ∑ M I = (19.2 − 2.4 )(30 ) − 4.8(10 + 20 ) + FDE (4 ) = 0
          FDE = −90kips¬rgkarsgát;¦
KNnamuxkat;sMrab;bnÞúktamGkS½ 90kips nigm:Um:g;Bt;         3.0 ft − kips




                                                 225                          Fñwm -ssr
T.chhay


    Table 3-2 in Part 3 of the Manual    min)anpþl;eGaysMrab; structural tee. eKGaceRbI Yura’s
method (Yura, 1988) Edl)anbegáIteLIgsMrab;Ggát; I- nig H-shape. eKRtUvkarrUbragtUc BIeRBaH

bnÞúktamGkS½tUc ehIym:Um:g;k¾tUcebIeFobnwgbnÞúktamGkS½. RbsinebIeKeRbI tee EdlmankMBs; 6in.
                                2M x 7.5M y        2(3)(12)
          Pequiv = P +              +       = 90 +          + 0 = 102kips
                                 d      b             6
BI column load table CamYynwg K x L = 10 ft nig K y L = 5 ft / sakl,g WT 6 ×17.5
¬ φc Pn = 124kips ¦. m:Um:g;Bt;KWeFobnwgGkS½ x ehIyGgát;RtUv)anBRgwgRbqaMgnwg sidesway³
          M nt = 3.0 ft − kips M lt = 0/
edaysarmankMlaMgxagmanGMeBIelIGgát; ehIycugRtUv)anTb;enaH Cm = 0.85 ¬Commentary
approach minRtUv)aneRbIenATIenHeT¦. KNna B1 ³
          KL K x L 10(12 )
             =    =        = 68.18
           r   rx   1.76
                   π 2 EAg            π 2 (29000)(5.17 )
          Pe1 =                   =                        = 318.3kips
                   (KL / r )2              (68.18)2
                       Cm              0.85
          B1 =                  =                 = 1.185
                  1 − (P / Pe1 ) 1 − (90 / 318.3)
                        1

m:Um:g;bEnßmKW
          M u = B1M nt + B2 M lt = 1.185(3.0) + 0 = 3.555 ft − kips
RbsinebImuxkat;RtUv)ancat;fñak;Ca slender enaH nominal moment strength rbs; structural tee
nwgQrelI local buckling EtRbsinebImindUecñaHeT vanwgQrelI lateral-torsional buckling ¬emIl
AISC Equation F1.2c nig Epñk 5>14 kñúgesovePAenH¦. sMrab;søab
                 bf          6.560
          λ=            =            = 6.308
                 2t f       2(0.520)
                    95           95
          λr =              =        = 15.83 > λ
                      Fy          36

sMrab;RTnug
               d     6.25
          λ=      =        = 20.83
              t w 0.300
                 127    127
          λr =        =      = 21.17 > λ
                  Fy      26



                                                           226                  Fñwm -ssr
T.chhay


edaysar λ < λr sMrab;TaMgsøab nigRTnug rUbragminEmnCa slender eT ehIy lateral-torsional
buckling lub. BI AISC Equation F1-15/
                         π EI y GJ ⎛         2⎞
          M n = M cr =             ⎜ B + 1+ B ⎟                                (AISC Equation F1-15)
                              Lb        ⎝                ⎠
                       ≤ 1 .5 M ysMrab;eCIg b¤tYxøÜnrgkarTaj
                       ≤ 1.0 M y sMrab;eCIg b¤tYxøÜnrgkarsgát;

BI AISC Eqution F1-16,
                                          ⎡ 6.25 ⎤ 12.2
          B = ±2.3(d / Lb ) I y / J = ±2.3⎢        ⎥       = ±1.378
                                          ⎣ 5(12 ) ⎦ 0.369
ehIy nominal strength BI AISC Equation F1-15 KW`
                 π 29000(12.2 )(11200)(0.369) ⎛                             2⎞
          Mn =                                       ⎜ ± 1.378 + 1 + (1.378) ⎟
                               5(12)                 ⎝                       ⎠
               = 2002(± 1.378 + 1.703) = 6168in. − kips       b¤   650.5in. − kips

tMélviC¢manrbs; B RtUvKñanwgkMlaMgTajenAkñúgtYxøÜnrbs; tee ehIysBaØaGviC¢manRtUv)aneRbIedIm,ITTYl
ersIusþg;enAeBltYxøÜnrgkMlaMgsgát;. sMrab;kardak;bnÞúkenAkñúg]TahrN_enH m:Um:g;GtibrmaekItmanenA
TaMgcugbgáb; nigkNþalElVg dUcenHersIusþg;RtUv)anRKb;RKgedaykMlaMgsgát;enAkñúgtYxøÜn ehIy
          M n = 650.5in. − kips = 54.12 ft − kips
RbQmnwgtMélGtibrmaén
                                    1.0(36)(3.23)
          1.0 M y = 1.0 Fy S x =                  = 9.690 ft − kips < 54.21 ft − kips
                                         12
dUcenHeRbI M n = 9.690 ft − kips
          φb M n = 0.90(9.690) = 8.721 ft − kips
kMNt;rkrUbmnþGnþrkmμEdlRtUveRbI
           Pu    90
               =    = 0.7258 > 0.2
          φc Pn 124
dUcenHeRbI AISC Equation H1-1a:
           Pu   8 ⎛ M ux     M uy           ⎞
                                            ⎟ = 0.7258 + 8 ⎛ 3.555 + 0 ⎞
               + ⎜         +                               ⎜           ⎟
          φc Pn 9 ⎜ φb M nx φb M ny
                  ⎝
                                            ⎟
                                            ⎠            9 ⎝ 8.721     ⎠

                                              = 1.09 > 1.0    (N>G)

                                                   227                                    Fñwm -ssr
T.chhay


enAkñúg]TahrN_enH m:Um:g;Bt;mantMéltUc ehIydUcKñasMrab; bending strength dUcenHehIyeFVIeGaytY
m:Um:g;Bt;rbs;rUbmnþGnþrkmμmantMélFM. kñúgkareRCIserIsmuxkat;EdlsmRsb GñkKNnaRtUvdwgc,as;
fa bending strength nig axial compressive strength mantMélFM. rUbragbnÞab;enAkñúg column load
tables KW WT 6 × 20 CamYynwg axial compressive strength 133kips . tamkarGegátenAelI

dimensions and peoperties tables bgðajfaeyIgkMBugbBa©ÚlRkumrUbragEdlmanGkS½ x CaGkS½

exSay. dUcenHkarBt;rbs;eyIgLÚvenHKWeFobnwgGkS½exSay ehIyvaKμansßanPaBkMNt; lateral-
torsional buckling. elIsBIenH RbsinebIrUbrag slender enaH nominal strength nwgQrelI yielding

ehIyesμInwg plastic moment capacity EdlRtUvnwgEdlx<s;bMputRtwm 1.5M y .
         dUcenHsakl,g WT 6 × 20 ¬ φc Pn = 133kips ¦. dMbUg KNna B1 ³
          KL K x L 10(12 )
             =    =        = 76.43
           r   rx   1.57
                   π 2 EAg          π 2 (29000)(5.89 )
          Pe1 =                 =                        = 288.6kips
                   (KL / r )2           (76.43)2
                       Cm              0.85
          B1 =                  =                  = 1.235
                  1 − (P / Pe1 ) 1 − (90 / 288.6 )
                        1

m:Um:g;bEnßmKW
          M u = B1M nt = 1.235(3.0 ) = 3.705 ft − kips
RtYtBinitü slenderness parameters. sMrab;søab
                 bf          8.005
          λ=            =            = 7.772 < λr = 15.83
                 2t f       2(0.515)

sMrab;RTnug λ = td = 5..970 = 20.2 < λr = 21.17
                      0 295
                  w

edaysarkarBt;eFobnwgGkS½exSay
                                        5.30(36)
          M n = M p = Z x Fy =                   = 15.9 ft − kips
                                           12
RbQmnwgtMélGtibrmaén
                                       1.5(36)(2.95)
          1.5M y = 1.5Fy S x =                       = 13.28 ft − kips
                                            12
edaysarEt M p > 1.5M y
          φb M n = φb (1.5M y ) = 0.90(13.28) = 11.95 ft − kips

kMNt;rkrUbmnþGnþrkmμEdlRtUveRbI
                                                         228                   Fñwm -ssr
T.chhay


           Pu    90
               =    = 0.6767 > 0.2
          φc Pn 133
dUcenHeRbI AISC Equation H1-1a:
           Pu   8 ⎛ M ux     M uy     ⎞
                                      ⎟ = 0.6767 + 8 ⎛ 3.705 + 0 ⎞ = 0.952 < 1.0
               + ⎜         +                         ⎜           ⎟                   (OK)
          φc Pn 9 ⎜ φb M nx φb M ny
                  ⎝
                                      ⎟
                                      ⎠            9 ⎝ 11.95     ⎠

cMeLIy³ eRbI WT 6 × 20 .




                                            229                                    Fñwm -ssr

Weitere ähnliche Inhalte

Was ist angesagt?

Xvi continuous beams and frames
Xvi continuous beams and framesXvi continuous beams and frames
Xvi continuous beams and framesChhay Teng
 
7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structuresChhay Teng
 
Xii slender column
Xii slender columnXii slender column
Xii slender columnChhay Teng
 
9.composite construction
9.composite construction9.composite construction
9.composite constructionChhay Teng
 
Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bendingChhay Teng
 
Xv design for torsion
Xv design for torsionXv design for torsion
Xv design for torsionChhay Teng
 
Appendix a plastic analysis and design
Appendix a plastic analysis and designAppendix a plastic analysis and design
Appendix a plastic analysis and designChhay Teng
 
13.combined stresses
13.combined stresses13.combined stresses
13.combined stressesChhay Teng
 
13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic membersChhay Teng
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy methodChhay Teng
 
Xiv retaining walls
Xiv retaining wallsXiv retaining walls
Xiv retaining wallsChhay Teng
 
1.types of structures and loads
1.types of structures and loads1.types of structures and loads
1.types of structures and loadsChhay Teng
 
14. truss analysis using the stiffness method
14. truss analysis using the stiffness method14. truss analysis using the stiffness method
14. truss analysis using the stiffness methodChhay Teng
 
1.introduction
1.introduction1.introduction
1.introductionChhay Teng
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distributionChhay Teng
 
3.tension members
3.tension members3.tension members
3.tension membersChhay Teng
 
4.compression members
4.compression members4.compression members
4.compression membersChhay Teng
 

Was ist angesagt? (20)

Xvi continuous beams and frames
Xvi continuous beams and framesXvi continuous beams and frames
Xvi continuous beams and frames
 
7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures
 
Xiii footings
Xiii footingsXiii footings
Xiii footings
 
Xii slender column
Xii slender columnXii slender column
Xii slender column
 
9.composite construction
9.composite construction9.composite construction
9.composite construction
 
Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bending
 
Xv design for torsion
Xv design for torsionXv design for torsion
Xv design for torsion
 
Appendix a plastic analysis and design
Appendix a plastic analysis and designAppendix a plastic analysis and design
Appendix a plastic analysis and design
 
13.combined stresses
13.combined stresses13.combined stresses
13.combined stresses
 
Xviii stairs
Xviii stairsXviii stairs
Xviii stairs
 
13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy method
 
Xiv retaining walls
Xiv retaining wallsXiv retaining walls
Xiv retaining walls
 
1.types of structures and loads
1.types of structures and loads1.types of structures and loads
1.types of structures and loads
 
14. truss analysis using the stiffness method
14. truss analysis using the stiffness method14. truss analysis using the stiffness method
14. truss analysis using the stiffness method
 
1.introduction
1.introduction1.introduction
1.introduction
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution
 
fluid khmer-Chapter5
fluid khmer-Chapter5fluid khmer-Chapter5
fluid khmer-Chapter5
 
3.tension members
3.tension members3.tension members
3.tension members
 
4.compression members
4.compression members4.compression members
4.compression members
 

Andere mochten auch

7.simple connections
7.simple connections7.simple connections
7.simple connectionsChhay Teng
 
Computer graphic
Computer graphicComputer graphic
Computer graphicChhay Teng
 
8.eccentric connections
8.eccentric connections8.eccentric connections
8.eccentric connectionsChhay Teng
 
Xix introduction to prestressed concrete
Xix introduction to prestressed concreteXix introduction to prestressed concrete
Xix introduction to prestressed concreteChhay Teng
 
Construction work
Construction work Construction work
Construction work Chhay Teng
 
Vi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresVi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresChhay Teng
 
Computer aided achitecture design
Computer aided achitecture design Computer aided achitecture design
Computer aided achitecture design Chhay Teng
 
Construction plan
Construction planConstruction plan
Construction planChhay Teng
 
Carpentering work
Carpentering work Carpentering work
Carpentering work Chhay Teng
 
Viii. prestressed compression and tension member
Viii. prestressed compression and tension memberViii. prestressed compression and tension member
Viii. prestressed compression and tension memberChhay Teng
 

Andere mochten auch (16)

7.simple connections
7.simple connections7.simple connections
7.simple connections
 
Tiling
Tiling Tiling
Tiling
 
Computer graphic
Computer graphicComputer graphic
Computer graphic
 
8.eccentric connections
8.eccentric connections8.eccentric connections
8.eccentric connections
 
5.beams
5.beams5.beams
5.beams
 
Appendix
AppendixAppendix
Appendix
 
Appendix
AppendixAppendix
Appendix
 
Xix introduction to prestressed concrete
Xix introduction to prestressed concreteXix introduction to prestressed concrete
Xix introduction to prestressed concrete
 
Construction work
Construction work Construction work
Construction work
 
Vi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresVi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structures
 
Computer aided achitecture design
Computer aided achitecture design Computer aided achitecture design
Computer aided achitecture design
 
Euro upe
Euro upeEuro upe
Euro upe
 
Euro l
Euro lEuro l
Euro l
 
Construction plan
Construction planConstruction plan
Construction plan
 
Carpentering work
Carpentering work Carpentering work
Carpentering work
 
Viii. prestressed compression and tension member
Viii. prestressed compression and tension memberViii. prestressed compression and tension member
Viii. prestressed compression and tension member
 

Ähnlich wie 6.beam columns

I. basic concepts
I. basic conceptsI. basic concepts
I. basic conceptsChhay Teng
 
Vi deflection and control of cracking
Vi deflection and control of cracking Vi deflection and control of cracking
Vi deflection and control of cracking Chhay Teng
 
Ix one way slab
Ix one way slabIx one way slab
Ix one way slabChhay Teng
 
11e.deflection of beam the energy methode10
11e.deflection of beam the energy methode1011e.deflection of beam the energy methode10
11e.deflection of beam the energy methode10Chhay Teng
 
X axial loaded column
X axial loaded columnX axial loaded column
X axial loaded columnChhay Teng
 
4.internal loading developed in structural members
4.internal loading developed in structural members4.internal loading developed in structural members
4.internal loading developed in structural membersChhay Teng
 
Viii shear and diagonal tension
Viii shear and diagonal tensionViii shear and diagonal tension
Viii shear and diagonal tensionChhay Teng
 
Ii properties of reinforced concrete
Ii properties of reinforced concreteIi properties of reinforced concrete
Ii properties of reinforced concreteChhay Teng
 
6. influence lines for statically determinate structures
6. influence lines for statically determinate structures6. influence lines for statically determinate structures
6. influence lines for statically determinate structuresChhay Teng
 
Iii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteIii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteChhay Teng
 
5. cables and arches
5. cables and arches5. cables and arches
5. cables and archesChhay Teng
 
2.analysis of statically determinate structure
2.analysis of statically determinate structure2.analysis of statically determinate structure
2.analysis of statically determinate structureChhay Teng
 
A.matrix algebra for structural analysisdoc
A.matrix algebra for structural analysisdocA.matrix algebra for structural analysisdoc
A.matrix algebra for structural analysisdocChhay Teng
 
11. displacement method of analysis slope deflection equations
11. displacement method of analysis  slope deflection equations11. displacement method of analysis  slope deflection equations
11. displacement method of analysis slope deflection equationsChhay Teng
 

Ähnlich wie 6.beam columns (17)

I. basic concepts
I. basic conceptsI. basic concepts
I. basic concepts
 
Vi deflection and control of cracking
Vi deflection and control of cracking Vi deflection and control of cracking
Vi deflection and control of cracking
 
Ix one way slab
Ix one way slabIx one way slab
Ix one way slab
 
Assignment fluid year 3
Assignment fluid  year 3Assignment fluid  year 3
Assignment fluid year 3
 
11e.deflection of beam the energy methode10
11e.deflection of beam the energy methode1011e.deflection of beam the energy methode10
11e.deflection of beam the energy methode10
 
X axial loaded column
X axial loaded columnX axial loaded column
X axial loaded column
 
8. deflection
8. deflection8. deflection
8. deflection
 
4.internal loading developed in structural members
4.internal loading developed in structural members4.internal loading developed in structural members
4.internal loading developed in structural members
 
Viii shear and diagonal tension
Viii shear and diagonal tensionViii shear and diagonal tension
Viii shear and diagonal tension
 
Ii properties of reinforced concrete
Ii properties of reinforced concreteIi properties of reinforced concrete
Ii properties of reinforced concrete
 
6. influence lines for statically determinate structures
6. influence lines for statically determinate structures6. influence lines for statically determinate structures
6. influence lines for statically determinate structures
 
Iii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteIii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concrete
 
5. cables and arches
5. cables and arches5. cables and arches
5. cables and arches
 
2.analysis of statically determinate structure
2.analysis of statically determinate structure2.analysis of statically determinate structure
2.analysis of statically determinate structure
 
A.matrix algebra for structural analysisdoc
A.matrix algebra for structural analysisdocA.matrix algebra for structural analysisdoc
A.matrix algebra for structural analysisdoc
 
11. displacement method of analysis slope deflection equations
11. displacement method of analysis  slope deflection equations11. displacement method of analysis  slope deflection equations
11. displacement method of analysis slope deflection equations
 
មេកានិកនៃសន្ទនីយ៍
មេកានិកនៃសន្ទនីយ៍មេកានិកនៃសន្ទនីយ៍
មេកានិកនៃសន្ទនីយ៍
 

Mehr von Chhay Teng

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_studentsChhay Teng
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countriesChhay Teng
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix designChhay Teng
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelinesChhay Teng
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto contentChhay Teng
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-camChhay Teng
 
Concrete basics
Concrete basicsConcrete basics
Concrete basicsChhay Teng
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryoutChhay Teng
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapesChhay Teng
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shapeChhay Teng
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shapeChhay Teng
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shapeChhay Teng
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shapeChhay Teng
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shapeChhay Teng
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipnChhay Teng
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angleChhay Teng
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upeChhay Teng
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upnChhay Teng
 

Mehr von Chhay Teng (20)

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_students
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countries
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix design
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
 
Type of road
Type of roadType of road
Type of road
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto content
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-cam
 
Concrete basics
Concrete basicsConcrete basics
Concrete basics
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryout
 
Mix design
Mix designMix design
Mix design
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapes
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shape
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shape
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shape
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shape
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipn
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upe
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upn
 

6.beam columns

  • 1. T.chhay VI. Fñwm-ssr Beam-Columns 6>1> esckþIepþIm Introduction enAeBlEdlGgát;eRKOgbgÁúMCaeRcInRtUv)anKitCassrrgkMlaMgtamGkS½ b¤CaFñwmEdlrgEtkM laMgBt; (flexural loading) Fñwm nigssrCaeRcInrgnUvkMlaMgTaMgBIrKw kMlaMgBt; nigkMlaMgtamGkS½. vaCakarBitCaBiesssMrab;eRKOgbgÁúMsþaTicminkMNt;. sUmbIEtTMr roller rbs;FñwmsamBaØGacpþl;nUvkM laMgkkitEdlGacTb;Fñwmclt½tambeNþay enAeBkEdlbnÞúkGnuvtþEkgnwgGkS½beNþayrbs;Fñwm. b:uEnþ kñúgkrNIBiessenH CaTUeTAT§iBlrg ¬TIBIr¦mantMéltUc ehIyGacecal)an. ssrCaeRcInRtUv)anCa Ggát;rgkMlaMgsgát;suT§CamYynwgkMrwtlMeGogEdlGacecal)an. RbsinebIssrCaGgát;sMrab;eRKOgbgÁúM mYyCan; ehIyTMrrbs;vaTaMgBIrRtUv)anKitCaTMr pinned FñwmnwgrgEt bending EdlCalT§plBIbnÞúkcM Nakp©itEdleRKaHfñak;tictYc. b:uEnþ sMrab;Ggát;eRKOgbgÁúMCaeRcIn T§iBlTaMgBIrnwgmantMélFM EdlGgát;TaMgenaHRtUv)aneKehA fa beam-columns. BicarNa rigid frame enAkñúgrUbTI 6>1. sMrab;lkçxNÐbnÞúkEdleGay Ggát;edk AB minRtwmEtRTbnÞúkbBaÄrBRgayesμIeT EfmTaMgCYyGgát;bBaÄredIm,ITb;nwgbnÞúkxagcMcMnuc P . Ggát; CD CakrNIEdleRKaHfñak;Cag eRBaHvaTb;;nwgbnÞúk P1 + P2 edayminmanCMnYyBIGgát;bBaÄrNa eT. mUlehtuKWfa x-bracing EdlbgðajedayExSdac; karBar sidesway enACan;xageRkam. sMrab;kar bgðajTisedArbs; P2 Ggát; ED nwgrgkMlaMgTaj ehIyGgát; CF nwgFUr RbsinebI bracing element RtUv)anKNnaedIm,ITb;EtkMlaMgTaj. b:uEnþsMrab;krNIenH Ggát; CD RtUvbBa¢ÚnbnÞúk P1 + P2 BI C eTA D. Ggát;bBaÄrrbs;eRKagenHk¾RtUv)anKitCa beam-columns. enACan;xagelI Ggát; AC nig BD nigekageRkamT§iBlrbs; P1 . elIsBIenH enARtg; A nig B m:Um:g;Bt;RtUv)anbBa¢ÚnBIGgát;edktamry³ 188 Fñwm -ssr
  • 2. T.chhay tMNrwg. karbBa¢Únm:Um:g;enHk¾ekIteLIgenARtg; C nig D ehIyvaBitsMrab;RKb; rigid frame eTaHbI m:Um:g;TaMgenHtUcCagm:Um:g;Edl)anBIbnÞúkxagk¾eday. ssrCaeRcInenAkñúg rigid frames Ca beam- columns ehIyT§iBlrbs;m:Um:g;Bt;minRtUv)anecal. b:uEnþ ssrrbs;GaKarmYyCan;EdlenAdac;BIeK GacRtUv)anKitCaGgát;rgkMlaMgsgát;cMGkS½. eBlxøH]TahrN_epSgeTotrbs; beam-columns GacCYbenAkñúg roof trusses. eTaHbICaFmμta top chord RtUv)anKitCaGgát;rgkMlaMgsgát;tamGkS½k¾eday RbsinebI purlins RtUv)andak;enAcenøaH tMN kMlaMgRbtikmμrbs;vanwgbegáItCa bending Edldac;xatRtUv)anKitkñúgkarKNna. krNIenHnwg RtUv)anerobrab;enAkñúgCMBUkenH. 6>2> smIkarGnþrkmμ Interaction Formulas vismPaBrbs;smIkar @># GacRtUv)ansresrkñúgTMrg;xageRkam³ ∑ γ i Qi ≤ 1.0 ¬^>!¦ φRn b¤ ∑resistance ≤ 1.0 load effects RbsinebIman resistance eRcInRbePTBak;Bn§½ smIkar ^>! GacRtUv)ansresrkñúgTMrg;eKalrbs; interaction formulas. dUcEdl)anerobrab;enAkñúgCMBUk 5 Rtg;Epñkm:Um:g;Bt;BIrTis plbUkénpleFob load-to-resistance RtUv)ankMNt;RtwmmYyÉktþa. ]TahrN_ RbsinebIeKGnuvtþTaMgm:Um:g;Bt; nigkMlaMg tamGkS½ interaction formulas GacsresrCa Pu + Mu φc Pn φb M n ≤ 1 .0 ¬^>@¦ Edl Pu = bnÞúksgát;tamGkS½emKuN φc Pn = compressive design strength Mu = m:Um:g;Bt;emKuN φb M n = design moment sMrab;m:Um:g;Bt;BIrTis vanwgmanpleFobm:Um:g;Bt;Bt;BIr ⎛ M ux M uy ⎞ Pu +⎜ + φc Pn ⎜ φb M nx φb M ny ⎟ ≤ 1.0 ⎟ ¬^>#¦ ⎝ ⎠ Edl x nig y sMedAelIkarBt;eFobGkS½ x nigGkS½ y . 189 Fñwm -ssr
  • 3. T.chhay smIkar ^># CasmIkareKalrbs; AISC sMrab;Ggát;rgkarBt; nigrgkMlaMgtamGkS½. eKeGay smIkarBIrenAkñúg Specification: mYysMrab;bnÞúkcMGkS½EdlmantMéltUc nigmYyeTotsMrab;bnÞúkcMGkS½ EdlmantMélFM. RbsinebIbnÞúktamGkS½mantMéltUc tYbnÞúktamGkS½RtUv)ankat;bnßy. sMrab;bnÞúktam GkS½EdlmantMélFM tYkMlaMgBt;RtUv)ankat;bnßybnþic. tMrUvkarrbs; AISC RtUv)aneGayenAkñúg Chapter H, “Members Under Combined Forces and Torsion,” ehIyRtUv)ansegçbdUcxageRkam³ sMrab; φPu ≥ 0.2 P c n Pu 8 ⎛ M ux M uy ⎞ + ⎜ + ⎟ ≤ 1.0 (AISC Equation H1-1a) φc Pn 9 ⎜ φb M nx φb M ny ⎝ ⎟ ⎠ sMrab;Pu φc Pn < 0 .2 Pu ⎛ M ux M uy ⎞ +⎜ + ⎟ ≤ 1.0 (AISC Equation H1-1b) 2φc Pn ⎜ φb M nx φb M ny ⎝ ⎟ ⎠ ]TahrN_6>1 bgðajBIkarGnuvtþn_smIkarTaMgenH. ]TahrN_6>1³ Fñwm-ssrEdlbgðajenAkñúg rUbTI6>@ manTMr pinned enAcugsgçag ehIyrgnUvbnÞúkem KuNdUcbgðaj. karBt;KWeFobnwgGkS½xøaMg. kMNt;faetIGgát;enHbMeBjsmIkarGnþrkmμrbs; AISC Specification b¤eT. dMeNaHRsay³ dUcEdl)anbkRsayenAkñúgEpñk 6>3 m:Um:g;EdlGnuvtþenAkñúg AISC Equations H1-1a nig b eBlxøHnwgRtUv)anbegáInedaym:Um:g;bEnßm (moment amplification). eKalbMNgén]TahrN_ enHKWbgðajBIrebobeRbIsmIkarGnþrkmμ. 190 Fñwm -ssr
  • 4. T.chhay BI ersIusþg;KNnakMlaMgsgát;tamGkS½ (axial compression design column load table strength) rbs; W 8× 58 CamYynwg F y = 50ksi nigRbEvgRbsiT§PaB K y L = 1.0 × 17 = 17 ft KW φc Pn = 365kips edaysarkarBt;eFobGkS½xøaMg m:Um:g;KNna (design moment) φb M n sMrab; Cb = 1.0 GacTTYl)an BI beam design chart in Part 4 of the Manual. sMrab; unbraced length Lb = 17 ft / φb M n = 202 ft − kips sMrab;lkçxNÐbnÞúk niglkçxNÐcugsMrab;bBaðaenH Cb = 1.32 ¬emIlrUbTI 5>15 c¦. sMrab; Cb = 1.32 / φb M n = 1.32(202) = 267 ft − kips b:uEnþm:Um:g;enHFMCag φb M p = 224 ft − kips ¬EdlTTYl)andUcKñaBI beam design charts ¦/ dUcenH design moment RtUv)ankMNt;Rtwm φb M p . dUcenH φb M n = 224 ft − kips m:Um:g;Bt;GtibrmaenAkNþalElVgKW 22(17 ) Mu = = 93.5 ft − kips 4 kMNt;faetIsmIkarGnþrkmμmYyNalub Pu = 200 φc Pn 365 = 0.547 > 0.2 dUcenHeRbI AISC Eq.H1-1a. Pu 8 ⎛ M ux M uy ⎞ ⎟ = 0.5479 + 8 ⎛ 93.5 + 0 ⎞ = 0.919 ≤ 1.0 + ⎜ + ⎜ ⎟ (OK) φc Pn 9 ⎜ φb M nx φb M ny ⎝ ⎟ ⎠ 9 ⎝ 224 ⎠ cMeLIy³ Ggát;enHbMeBj AISC Specification. 6>3> m:Um:g;bEnßm Moment Amplification viFIBImunsMrab;karKNnaGgát;rgkarBt; nigkMlaMgtamGkS½GaceRbI)ansMrab;EtkMlaMgtamGkS½ mantMélminFMeBk. vtþmanrbs;bnÞúktamGkS½ ¬elIkElgenAeBlvamantMéltUc¦ begáItm:Um:g;TIBIr EdlRtUv)anKitbBa©ÚlkñúgkarKNna. rUb TI 6>3 bgðajBIFñwm-ssrCamYybnÞúktamGkS½ nigbnÞúkTTwg GkS½BRgayesμI. Rtg;cMnuc O NamYyEdlmanmanm:Um:g;Bt;EdlbegáIteLIgedaybnÞúkBRgayesμInwg 191 Fñwm -ssr
  • 5. T.chhay m:Um:g;bEnßm Py EdlbegáIteLIgedaybnÞúktamGkS½eFVIGMeBIcMNakp©itBIGkS½beNþayrbs;Ggát;. m:Um:g; TIBIrenaHmantMélkan;EtFMenAkEnøgNaEdlmanPaBdabkan;EtFM. kñúgkrNIenH Rtg;kMBs;Bak;kNþal m:Um:g;srubesμInwg wL2 / 8 + Pδ . vaCakarBitEdl m:Um:g;bEnßmbegáItPaBdabbEnßmBIelIPaBdab Edl)anBIbnÞúkTTwgGkS½. edaysareKminGacrkPaBdabsrubedaypÞal; ¬bBaðaenHCa nonlinear¦ ehIyedaysarEteKminsÁal;PaBdab eKk¾minGacKNnam:Um:g;)anEdr. viFIviPaKeRKOgbgÁúMFmμta (ordinary structural analysis methode) Edlminykragpøas;TImk KitRtUv)aneKKitCa viFIdWeRkTImYy (first-order method). eKeRbI Iterative numerical technique ¬EdleKehAfa viFIdWeRkTIBIr (second-order method)¦ edIm,IrkPaBdab nigm:Um:g;TIBIr b:uEnþviFIenHmin GaceRbIsMrab;karKNnaedayéd EdlvaRtUv)aneRbICaTUeTACamYynwgkmμviFIkMuBüÚT½r. Design codes nig specifications bc©úb,nñPaKeRcIn rYmbBa©ÚlTaMg AIsc Specification GnuBaØatkareRbIR)as; second- order analysis b¤ moment amplification method. viFIenHtMrUvkarKNnam:Um:g;Bt;GtibrmaEdl)anBI lT§plBI flexural loading ¬bnÞúkTTwgGkS½ b¤m:Um:g;cugGgát;¦ eday first-order analysis bnÞab;mk KuNnwgemKuNm:Um:g;bEnßm (moment amplification factor) edIm,IKitm:Um:g;TIBIr. rUbTI 6>4 bgðajGgát;TMrsamBaØCamYynwgbnÞúkcMGkS½ nigPaBminRtg;dMbUg (initial out-of- straightness). PaBdabdMbUg (initial crookedness) enHGacsMEdgeday³ πx yo = e sin L Edl e CabMlas;TIGtibrmadMbUg EdlekIteLIgenAkNþalElVg. 192 Fñwm -ssr
  • 6. T.chhay sMrab;RbBn§½kUGredaendUcEdl)anbgðaj eKGacsresrTMnak;TMngExSkMeNag-m:Um:g; (moment- curvature relationship) dUcxageRkam³ d2y M =− 2 EI dx m:Um:g;Bt; M ekIteLIgedaysarcMNakp©iténkMlaMgtamGkS½ Pu eFobGkS½rbs;Ggát;. cMNak p©itenHpSMeLIgeday initial crookedness yo bUknwgPaBdabbEnßm y EdlekItBIkarBt;. enARtg;TI taMgNamYy m:Um:g;KW M = Pu ( yo + y ) edayCMnYssmIkarenHeTAkñúgsmIkarDIepr:g;Esül eyIgTTYl)an d2y P ⎛ πx ⎞ = − u ⎜ e sin + y ⎟ dx 2 EI ⎝ L ⎠ 2 d y Pu Pe πx + y = − u sin dx 2 EI EI L EdlCa ordinary, nonhomogenous differential equation. edaysarvaCasmIkardWeRkTIBIr dUcenHvamanlkçxNÐRBMEdnBIr. sMrab;lkçxNÐTMrEdlbgðaj lkçxNÐRBMEdnKW enARtg; x = 0 / y = 0 nigenARtg; x = L / y = 0 enHmann½yfa PaBdabesμIsUnüenAcugsgçag. GnuKmn_EdlbMeBjTaMgsmIkarDIepr:g;Esül niglkçxNÐRBMEdnKW πx y = B sin L Edl B CatMélefr. CMnYsvaeTAkñúgsmIkarDIepr:g;Esül eyIgTTYl)an π2 πx P πx Pe πx − B sin + u B sin = − u sin 2 L EI L EI L L 193 Fñwm -ssr
  • 7. T.chhay eKTTYl)antMélefr Pe − u EI = −e e B= = Pu π 2 π EI Pe − 1 2 − 1− Pu EI L2 Pu L2 Edl Pe = π 2 EI = Euler buckling load 2 L dUcenH y = B sin πLx = ⎡ (P / P ) − 1⎤ sin πLx ⎢ e ⎥ ⎣ e u ⎦ M = Pu ( yo + y ) ⎧ ⎪ πx ⎡ e ⎤ πx ⎫⎪ = Pu ⎨e sin + ⎢ ⎥ sin ⎬ ⎪ ⎩ L ⎣ (Pe / Pu ) − 1⎦ L⎪ ⎭ m:Um:g;GtibrmaekItenARtg; x = L / 2 ³ ⎡ e ⎤ M max = Pu ⎢e + ⎥ ⎣ (Pe / Pu ) − 1⎦ ⎡ (P / P ) − 1 + 1 ⎤ = Pu e ⎢ e u ⎥ ⎣ (Pe / Pu ) − 1 ⎦ ⎡ 1 ⎤ = Mo ⎢ ⎥ ⎣1 − (Pu / Pe )⎦ Edl M o minEmnCam:Um:g;bEnßmGtibrma (unampliflied maximum moment). kñúgkrNIenH vaTTYl)anBI initial crookedness b:uEnþCaTUeTAvaGacCalTßplénbnÞúkTTwgGkS½ b¤m:Um:g;cug. dUcenHem KuNm:Um:g;bEnßm (moment amplification factor) KW 1 1 − (Pu / Pe ) ¬^>$¦ dUcEdl)anerobrab;mkehIy TMrg;emKuNm:Um:g;bEnßmrbs; AISC GacxusEbøkBIsmIkar ^>$ bnþic. ]TahrN_6>2³ eRbIsmIkar ^>$ edIm,IKNnaemKuNm:Um:g;bEnßmsMrab;Fñwm-ssrén]TahrN_ 6>1. dMeNaHRsay³ edaysar Euler load Pe CaEpñkrbs;emKuNm:Um:g;bEnßm eKRtUvKNnavasMrab;GkS½én karBt; EdlkñúgkrNIenHKWGkS½ x . eKGacsresr Euler load Pe edayeRbI effective length nig slenderness ratio dUcxageRkam³ 194 Fñwm -ssr
  • 8. T.chhay π 2 EAg Pe = (KL / r )2 ¬emIlCMBUk 4 smIkar $>^ a¦. sMrab;GkS½énkarBt; KL K x L 1.0(17 )(12 ) = = = 55.89 r rx 3.65 π 2 EAg π 2 (29000)(17.1) Pe = = = 1567kips (KL / r )2 (55.89)2 BIsmIkar ^>$ 1 1 = = 1.15 1 − (Pu / Pe ) 1 − (200 / 1567 ) EdlbgðajkarekIneLIg 15% BIelIm:Um:g;Bt;. m:Um:g;bEnßmKW 1.15 × M u = 1.15(93.5) = 107.5 ft − kips cMeLIy³ emKuNm:Um:g;bEnßm 1.15 6>4> Web Local Buckling in Beam-Columns karkMNt;rbs; design moment tMrUveGayRtYtBinitümuxkat;sMrab; compactness . enAeBl EdlKμanbnÞúktamGkS½ RTnugrbs;RKb;rUbragEdlmanenAkñúgtaragsuT§Et compact. RbsinebImanvtþ manbnÞúktamGkS½ RTnugTaMgenaHGacnwgmin compact. enAeBlEdleyIgeGay λ = h / t w / RbsinebI λ ≤ λ p rUbragKW compact. RbsinebI λ p < λ ≤ λr rUbragKW noncompact. RbsinebI λ > λr rUbragKW slender. ASIC B5 enAkñúg Table B5.1 erobrab;nUvkarkMNt;xageRkam³ sMrab; φ PP ≤ 0.125 / λ p = 640 ⎛1 − 2φ.75Pu ⎞ ¬xñat US¦ u F ⎜ ⎜ P ⎟ ⎟ b y y⎝ b y ⎠ 1680 ⎛ 2.75 Pu ⎞ λp = ⎜1 − Fy ⎜ φb Py ⎟ ⎟ ¬xñat ¦ IS ⎝ ⎠ 191 ⎛ ⎞ sMrab; φ PP u > 0.125 λ p / = ⎜ 2.33 − Pu ⎟ ≥ 253 Fy ⎜ φb Py ⎟ Fy ¬xñat US¦ b y ⎝ ⎠ 500 ⎛ ⎞ λp = ⎜ 2.33 − Pu ⎟ ≥ 665 Fy ⎜ φb Py ⎟ Fy ¬xñat IS¦ ⎝ ⎠ 195 Fñwm -ssr
  • 9. T.chhay sMrab;tMélepSg²rbs; φ PP / λr = 970 ⎛1 − 0.74 φ PP ⎞ ¬xñat US¦ u F ⎜ ⎜ u ⎟ ⎟ b y y ⎝ b y ⎠ 2550 ⎛ ⎞ λr = Fy ⎜ ⎜1 − 0.74 Pu φb Py ⎟ ⎟ ¬xñat IS¦ ⎝ ⎠ Edl Py = Ag Fy / bnÞúktamGkS½caM)ac;edIm,IeTAdl;sßanPaBkMNt; yielding. edaysar Pu CaGBaØti eKminGacRtYtBinitü compactness rbs;RTnug nigminGacerobcMCata ragTukCamun)aneT. b:uEnþ rolled shape xøHbMeBjnUvkrNId¾GaRkk;bMput 665 / Fy Edlmann½yfarUb ragenaHmanRTnug compact edayminTak;TgnwgbnÞúktamGkS½. rUbragEdlmanenAkñúg column load table in Part 3 of the Manual EdlminbMeBjlkçxNÐRtUv)ankMNt;bgðaj enaHeKRtUvRtYtBinitü compactness rbs;RTnugrbs;va. rUbragEdlmansøabmin compact k¾RtUv)ankMNt;bgðaj dUcenHRKb; rUbragTaMgGs;Edlmin)anbgðaj enaHmann½yfarUbragTaMgenaHKW compact. ]TahrN_6>3³ Edk A36 EdlmanrUbrag W12 × 65 RtUv)andak;eGayrgm:Um:g;Bt; nigbnÞúktamGkS½em KuN 300kips . RtYtBinitü compactness rbs;RTnug. dMeNaHRsay³ rUbragenHKW compact sMrab;RKb;tMélbnÞúktamGkS½ BIeRBaHminmankarkMNt;cMNaMNa mYyenAkñúg column load table. b:uEnþ edIm,Ibgðaj eyIgRtYtBinitü width-thickness ratio rbs;RTnug Pu Pu 300 = = = 0.4848 > 0.125 ( ) φb Py φb Ag Fy 0.9(19.1)(36) ⎛ ⎞ dUcenH λp = ⎜ 2.33 − Pu ⎟ = 191 (2.33 − 0.4848) = 58.74 191 ⎜ Fy φb Py ⎟ 36 ⎝ ⎠ 253 253 = = 42.17 < 58.74 Fy 36 dUcenH λ p = 58.74 BI dimensions and properties tables/ h λ= = 24.9 < 58.74 tw dUcenH RTnugKW compact. cMNaMfa sMrab;RKb;tMélrbs; Fy enaH th nwgmantMéltUcCag w 253 / F y EdlCatMélEdltUcbMputrbs; λ p dUcenHRTnugrbs; W 12 × 65 nwgenAEtCa compact. 196 Fñwm -ssr
  • 10. T.chhay 6>5> eRKagBRgwg nigeRKagGt;BRgwg Braced versus Unbraced Frame AISC Specification erobrab;BI moment amplification in Chapter C, Frames and other Structures”. eKmanemKuNbEnßmBIrEdleRbIenAkñúg LRFD: mYyedIm,IKitBIm:Um:g;bEnßmEdlCalT§plBI PaBdabrbs;Ggát; nigmYyeTotsMrab;KitBIT§iBl sway enAeBlEdlGgát;CaEpñkrbs; unbraced frame. viFIenHmanlkçN³RsedogKñaeTAnwgviFIEdleRbIenAkñúg ACI Building Code sMrab;ebtugBRgwg edayEdk (ACI, 1995). rUbTI 6>5 nwgbgðajBIGgát;TaMgBIr. enAkñúg rUbTI 6>5 a Ggát;RtUv)anTb;Rb qaMgnwg sidesway ehIym:Um:g;TIBIrGtibrmaKW Pδ EdlRtUvbEnßmeTAelIm:Um:g;GtibrmaenAkñúgGgát;enaH. RbsinebIeRKagminRtUv)anBRgwg vanwgelceLIgnUvm:Um:g;TIBIr EdlbgðajenAkñúg rUbTI 6>5 b EdlbegáIt eday sidesway. m:Um:g;TIBIrenHmantMélGtibrma PΔ EdlbgðajBIkarbEnßménm:Um:g;cug. edIm,IKItBIT§iBlTaMgBIrenH emKuNm:Um:g;bEnßm B1 nig B2 RtUv)aneRbIsMrab;m:Um:g;BIrRbePT. m:Um:g;bEnßmEdleRbIsMrab;KNnaRtUv)anKNnaBIbnÞúkemKuN nigm:Um:g;emKuNdUcxageRkam³ M u = B1M nt + B2 M lt (AISC Equation C1-1) Edl M nt = m:Um:g;GtibrmaEdlsnμt;faminman sidesway ekIteLIg eTaHbICaeRKagBRgwgb¤minBRgwg k¾eday ¬ nt mann½yfa no translation¦ M lt = m:Um:g;GtibrmaEdlekIteLIgeday sidesway ekIteLIg ¬ lt mann½yfa lateral translation¦. m:Um:g;enHGacekItBI lateral load b¤edaysar unbalanced gravity loads . bnÞúkTMnajGacbegáIt sidesway RbsinebIeRKagGt;sIuemRTI b¤k¾bnÞúkTMnaj enaHRtUv)andak;edayminmanlkçN³sIuemRTI. M lt nwgmantMélesμIsUnüRbsinebIeRKag RtUv)anBRgwg. 197 Fñwm -ssr
  • 11. T.chhay B1 = emKuNm:Um:g;bEnßmsMrab;m:Um:g;EdlekIteLIgenAkñúgGgát;EdlRtUv)anBRgwgTb;nwg sidesway. B2 = emKuNm:Um:g;bEnßmsMrab;m:Um:g;Edl)anBI sidesway. eyIgnwgerobrab;BIkarkMNt;emKuNTaMgBIr B1 nig B2 enAkñúgEpñkxageRkam. 6>6> Ggát;enAkñúgeRKagEdlBRgwg Members in Braced Frames emKuNm:Um:g;bEnßmEdleGayedaysmIkar ^>$ RtUv)anbMEbksMrab;Ggát;EdlBRgwgRbqaMgnwg sidesway. rUbTI 6>6 bgðajBIGgát;RbePTenHEdlrgm:Um:g;enAxagcugesμIKñaEdlbegáIt single- curvature bending ¬kMeNagEdlbegáItkarTaj nigkarsgát;enAEtEpñkmçagrbs;Ggát;¦. m:Um:g;bEnßm GtibrmaekItenARtg;Bak;kNþalkMBs; EdlPaBdabmantMélFMbMput. dUcenHm:Um:g;TIBIrGtibrma nigm:U m:g;emGtibrmaRtUv)anbUkbBa©ÚlKña. eTaHRbsinebIm:Um:g;enAxagcugminesIμKñak¾eday RbsinebIm:Um:g;mYy vilRsbTisRTnicnaLika nigmYyeTotvilRcasRTnicnaLika vanwgbegáIt single-curvature bending ehIym:Um:g;emGtibrma nigm:Um:g;TIBIrGtibrmanwgekIteLIgenAEk,Kña. vanwgminEmnCakrNIeT enAeBlEdlm:Um:g;enAcugEdlGnuvtþbegáIt reverse-curvature bending dUcbgðajenAkñúg rUbTI 6>7 . enAeBlenH m:Um:g;emGtibrmaKWenAcugmçag ehIym:Um:g;TIBIrGtibrmaekIt eLIgenAcenøaHcugTaMgBIr. m:Um:g;bEnßmGacFMCag b¤tUcCagm:Um:g;cugGaRs½ynwgbnÞúktamGkS½. dUcenHm:Um:g;GtibrmaenAkñúg beam-column GaRs½ynwgkarEbgEckm:Um:g;Bt;enAkñúgGgát;. kar EbgEckenHRtUv)anKitedayemKuN Cm EdlGnuvtþenAkñúgemKuNm:Um:g;bEnßm B1 . emKuNm:Um:g;bEnßm EdleGayedaysmIkar ^>$ RtUv)anbMEbksMrab;krNIGaRkk;bMput dUcenH Cm nwgminRtUvFMCag 1.0 . TMrg;cugeRkayrbs;emKuNm:Um:g;bEnßmKW³ 198 Fñwm -ssr
  • 12. T.chhay Cm B1 = ≥1 (AISC Equation C1-2) 1 − (Pu / Pe1 ) Ag F y π 2 EAg Edl Pe1 = = λc 2 (KL / r )2 enAeBlKNna Pe1 eRbI KL / r sMrab;GkS½énkarBt; ehIyemKuNRbEvgRbsiT§PaB K ≤ 1.0 ¬EdlRtUv KñanwglkçxNÐEdlBRgwg¦. karKNnaemKuN Cm emKuN Cm GnuvtþEtelIlkçxNÐEdlBRgwgEtb:ueNÑaH. eKmanGgát;BIrRbePT EdlmYyman bnÞúkTTwgGkS½GnuvtþenAcenøaHcug nigmYyeTotminmanbnÞúkTTwgGkS½. rUbTI 6>8 b nig c bgðajBIkrNITaMgBIrxagelIenH ¬Ggát; AB Ca beam-column EdlRtUvKit¦. !> RbsinebIminmanbnÞúkTTwgGkS½eFVIGMeBIenAelIGgát; ⎛M ⎞ C m = 0.6 − 0.4⎜ 1 ⎟ ⎜M ⎟ (AISC Equation C1-3) ⎝ 2⎠ 199 Fñwm -ssr
  • 13. T.chhay M1 / M 2CapleFobénm:Um:g;Bt;enAcugrbs;Ggát;. M1 CatMéldac;xaténm:Um:g;cugEdltUcCag eK ehIy M 2 CatMélFMCag enaHpleFobnwgviC¢mansMrab;Ggát;EdlekagkñúgTMrg; reversecurvature nigGviC¢mansMrab; single-curvature bending ¬rUbTI 6>9 ¦. Reverse curvature ¬pleFobviC¢man¦ ekIteLIgenAeBlEdl M1 nig M 2 vilRsbRTnicnaLikaTaMgBIr b¤RcasRTnicnaLikaTaMgBIr. @> sMrab;Ggát;rgbnÞúkTTwgGkS½ eKGacyk Cm = 0.85 RbsinebIcugrbs;vaRtUv)anTb;RbqaMg nwgkarvil nigesμInwg 1.0 RbsinebIcugrbs;vaminRtUv)anTb;nwgkarvil ¬pinned¦. CaTUeTAkarTb;cug (end restraint) ekItBIPaBrwgRkaj (stiffness) rbs;Ggát;EdlP¢ab;eTAnwg beam-column. lkçxNÐTMr pinned CalkçxNÐmYyEdlRtUv)aneRbIsMrab;TajrkemKuNm:Um:g;bEnßm dUcenHvaminmankarkat;bnßytM élemKuNm:Um:g;bEnßmsMrab;krNIenHeT EdlvaRtUvKñanwg Cm = 1.0 . eTaHbICalkçxNÐcugBitR)akdsßit enAcenøaHkarbgáb;eBj (fully fixity) nigknøas;Kμankkit (frictionless pin) k¾eday eKGaceRbItMélNa mYyk¾)anEdr eRBaHvanwgpþl;lT§plCaTIeBjcitþ. 200 Fñwm -ssr
  • 14. T.chhay viFIsaRsþEdl)aneFVIeGayRbesIreLIgsMrab;Ggát;rgbnÞúkxagTTwgGkS½ ¬krNITIBIr¦ RtUv)anpþl; eGayenAkñúg section C1 of the commentary to the Specification. emKuNkat;bnßyKW P Cm = 1 +ψ u Pe1 sMrab;Ggát;TMrsamBaØ π 2δ o EI ψ= −1 M o L2 Edl δ o CaPaBdabGtibrmaEdlekItBIbnÞúkxagTTwgGkS½ ehIy M o Cam:Um:g;GtibrmaenA cenøaHTMrEdl)anBIbnÞúkxagTTwgGkS½. emKuN ψ RtUv)anKNnaBIsßanPaBFmμtaCaeRcInehIyRtUv)an pþl;eGayenAkñúg commentary Table C-C1.1. ]TahrN_6>4³ Ggát;EdlbgðajenAkñúg rUbTI 6>10 CaEpñkrbs; braced frame. bnÞúk nigm:Um:g;RtUv)an KNnaCamYybnÞúkemKuN ehIykarBt;KWwFobnwgGkS½xøaMg. RbsinebIeKeRbI A572 Grade 50 etIGgát; enHRKb;RKan;b¤eT? KL = KL y = 14 ft . dMeNaHRsay³ kMNt;faetIRtUveRbIrUbmnþGnþrkmμmYyNa KL K y L 14(12) maximum = = = 55.63 r ry 3.02 BI AISC Table 3-50, φc Fcr = 33.89ksi dUcenH φc Pn = Ag (φc Fcr ) = 19.1(33.89 ) = 647.4kips Pu 420 = = 0.6487 > 0.2 φc Pn 647.4 201 Fñwm -ssr
  • 15. T.chhay dUcenHeRbI AISC Equation H1-1a. enAkñúgbøg;énkarBt; KL K x L 14(12 ) = = = 31.82 r rx 5.28 Ag F y π 2 EAg π 2 (29000 )(19.1) Pe1 = = = = 5399kips λc 2 (K x L / rx )2 (31.82)2 ⎛M ⎞ ⎛ 70 ⎞ C m = 0.6 − 0.4⎜ 1 ⎟ = 0.6 − 0.4⎜ − ⎟ = 0.9415 ⎜M ⎟ ⎝ 2⎠ ⎝ 82 ⎠ Cm 0.9415 B1 = = = 1.021 1 − (Pu / Pe1 ) 1 − (420 / 5399 ) BI Beam design charts,CamYynwg Cb = 1.0 nig Lb = 14 ft. moment strength KW φb M n = 347 ft − kips sMrab;tMél Cb BitR)akd edayeyagtamdüaRkam:Um:g;enAkñúg rUbTI 6>10³ 12.5M max 1.25(82 ) Cb = = = 1.06 2.5M max + 3M A + 4 M B + 3M C 2.5(82 ) + 3(73) + 4(76 ) + 3(79 ) dUcenH φb M n = Cb (347) = 1.06(347) = 368 ft − kips b:uEnþ φb M p = 358 ft − kips ¬BItarag¦ < 368 ft − kips dUcenHeRbI φb M n = 358 ft − kips m:Um:g;emKuNKW M nt = 85 ft − kips M lt = 0 BI AISC Equation C1-1, M u = B1M nt + B2 M lt = 1.021(82) + 0 = 83.72 ft − kips = M ux BI AISC Equation H1-1a, Pu 8 ⎛ M ux M uy ⎞ ⎟ = 0.6487 + 8 ⎛ 83.72 ⎞ = 0.857 < 1.0 + ⎜ + ⎜ ⎟ (OK) φc Pn 9 ⎜ φb M nx φb M ny ⎝ ⎟ ⎠ 9 ⎝ 358 ⎠ cMeLIy³ Ggát;enHKWRKb;RKan;. ]TahrN_ 6>5³ Fñwm-ssredkEdlbgðajenAkñúgrUbTI 6>11 rgnUv service live loads dUcEdlbgðaj kñúgrUb. Ggát;enHRtUv)anBRgwgxagenAxagcugrbs;vaTaMgBIr ehIykarBt;KWeFobnwgGkS½ x . RtYtBinitü faetIGgát;enHRKb;RKan;tam AISC Specification. 202 Fñwm -ssr
  • 16. T.chhay dMeNaHRsay³ bnÞúkemKuNKW Pu = 1.6(20) = 32.0kips ehIym:Um:g;GtibrmaKW M nt = (1.6 × 20)(10) + (1.2 × 0.035)(10)2 = 80.52 ft − kips 4 8 Ggát;enHRtUv)anBRgwgTb;nwgkarbMlas;TIxagcug dUcenH M lt = 0 . KNnaemKuNm:Um:g;bEnßm sMrab;Ggát;rgbnÞúkxagEdlRtUv)anBRgwgTb;nwg sidesway ehIy unrestrained end enaH Cm = 1.0 . tMélEdlsuRkitCagEdl)anBI AISC Commentary Table C-C1.1 KW P C m = 1 − 0 .2 u Pe1 sMrab;GkS½énkarBt; KL K x L 1.0(10 )(12 ) = = = 34.19 r rx 3.51 π 2 EAg π 2 (29000)(10.3) Pe1 = = = 2522kips (KL / r )2 (34.19)2 ⎛ 32.0 ⎞ C m = 1 − 0.2⎜ ⎟ = 0.9975 ⎝ 2522 ⎠ emKuNm:Um:g;bEnßm Cm 0.9975 B1 = = = 1.010 > 1.0 1 − (Pu / Pe1 ) 1 − (32.0 / 2522 ) sMrab;GkS½énkarBt; M u = B1M nt + B2 M lt = 1.010(80.52) + 0 = 81.33 ft − kips edIm,ITTYl design strengths dMbUgemIleTA column load tables in Part 3 of the Manual Edl eGay φc Pn = 262kips BI beam design charts in Part 4 of the Manual sMrab; Lb = 10 ft nig Cb = 1.0 203 Fñwm -ssr
  • 17. T.chhay φb M n = 91.8 ft − kips edaysarTMgn;FñwmtUcNas;ebIeRbobeFobnwgbnÞúkGefrcMcMnuc enaH Cb = 1.32 BI rUbTI 5>13 c. φb M n = 1.32(91.8) = 121 ft − kips m:Um:g;enHFMCag φb M p = 93.6 ft − kips EdlTTYl)anBI beam design chart dUcKña dUcenH design strength RtUv)ankMNt;RtwmtMélenH. dUcenH φb M n = 93.6 ft − kips RtYtBinitürUbmnþGnþrkmμ³ Pu 32.0 = = 0.1221 < 0.2 φc Pn 262 dUcenHeRbI AISC Equation H1-1b³ Pu ⎛ M ux M uy ⎞ 0.1221 ⎛ 81.33 ⎞ +⎜ + ⎟= +⎜ + 0 ⎟ = 0.930 < 1.0 (OK) 2φc Pn ⎜ φb M nx φb M ny ⎝ ⎟ ⎠ 2 ⎝ 93.6 ⎠ cMeLIy³ W 8× 35 KWRKb;RKan; ]TahrN_ 6>6³ Ggát;EdlbgðajenAkñúg rUbTI6>12 eFVIBIEdk A242 EdlmanrUbrag W 12 × 65 ehIy RtUvRTnUvbnÞúksgát;tamGkS½emKuN 300kips . enAcugTMenrmçagCa pinned nigcugmçageTotrgnUvm:Um:g; emKuN 135 ft − kips eFobGkS½xøaMg nig 30 ft − kips eFobGkS½exSay. eRbII K x = K y = 1.0 cUreFVIkar GegátBIGgát;enH. dMeNaHRsay³ dMbUg kMNt; yield stress Fy . BI Table 1-2, Part 1 of the Manual, W 12 × 65 CarUbragRkumTIBIr. BI Table 1-1, Edk A242 manersIusþg;EtmYyKW Fy = 50ksi . 204 Fñwm -ssr
  • 18. T.chhay bnÞab;mkeTot rk compressive strength. sMrab; KL = 1.0(15) = 15 ft axial compressive design strength BI column load table KW³ φc Pn = 626kips cMNaMfa taragbgðajfasøabrbs; W 12 × 65 KW noncompact sMrab; Fy = 50ksi . KNnam:Um:g;Bt;eFobGkS½xøaMg (strong axis bending moment). = 0.6 − 0.4(0) = 0.6 M1 C mx = 0.6 − 0.4 M2 K x L 15(12 ) = = 34.09 rx 5.28 π 2 EAg π 2 (29000 )(19.1) Pe1x = = = 4704kips (K x L / rx )2 (34.09)2 C mx 0 .6 B1x = = = 0.641 < 1.0 1 − (Pu / Pe1x ) 1 − (300 / 4704 ) dUcenH eRbI B1x = 1.0 M ux = B1x M ntx + B2 x M ltx = 1.0(135) + 0 = 135 ft − kips BI beam design charts CamYy Lb = 15 ft / φb M nx = 342 ft − kips sMrab; Cb = 1.0 ehIy φb M px = 357.8 ft − kips . BI rUbTI 5>15 g, Cb = 1.67 ehIy Cb × (φb M nx for Cb = 1.0) = 1.67(342) = 571 ft − kips lT§plenHFMCag φb M px dUcenHeRbI φb M nx = φb M px = 357.8 ft − kips KNna m:Um:g;Bt;eFobGkS½exSay (weak axis bending moment). = 0.6 − 0.4(0) = 0.6 M1 C my = 0.6 − 0.4 M2 K yL 15(12) = = 59.60 ry 3.02 π 2 EAg π 2 (29000)(19.1) Pe1 y = = = 1539kips (K y L / ry )2 (59.60)2 C mx 0.6 B1 y = = = 0.745 < 1.0 ( ) 1 − Pu / Pe1 y 1 − (300 / 1539 ) dUcenH eRbI B1y = 1.0 M uy = B1 y M nty + B2 y M lty = 1.0(30 ) + 0 = 30 ft − kips 205 Fñwm -ssr
  • 19. T.chhay edaysarsøabrbs;rUbragenH noncompact enaHersIusþg;m:Um:g;Bt;eFobGkS½exSayRtUv)ankMNt;eday FLB. bf λ= = 9.9 2t f 65 65 λp = = = 9.192 Fy 50 141 141 λr = = = 22.29 F y − 10 50 − 10 edaysar λ p < λ < λr ⎛ λ − λp ⎞ ( Mn = M p − M p − Mr ⎜ ⎟ ⎜ λr − λ p ⎟ ) (AISC Equation A-F1-3) ⎝ ⎠ 50(44.1) M p = M py = Fy Z y = = 183.8 ft − kips 12 ( ) M r = M ry = F y − Fr S y = (50 − 10 )(29.1) = 1164in. − kips = 97.0 ft − kips edayCMnYscUleTAkñúgsmIkar AISC Equation A-F1-3 eyIgTTYl)an ⎛ 9.9 − 9.192 ⎞ M n = M ny = 183.8 − (183.8 − 97.0)⎜ ⎟ = 179.1 ft − kips ⎝ 22.29 − 9.192 ⎠ φb M ny = 0.90(179.1) = 161.2 ft − kips rUbmnþGnþrkmμeGay Pu 300 = = 0.4792 > 0.2 φc Pn 626 dUcenHeRbI AISC Equation H1-1a³ Pu 8 ⎛ M ux M uy ⎞ ⎟ = 0.4792 + 8 ⎛ 135 + 30 ⎞ = 0.980 < 1.0 (OK) + ⎜ + ⎜ ⎟ φc Pn 9 ⎜ φb M nx φb M ny ⎝ ⎟ ⎠ 9 ⎝ 357.8 161.2 ⎠ cMeLIy³ W12 × 65 RKb;RKan; 6>7> Ggát;enAkñúgeRKagEdlminBRgwg Members in Unbraced Frames Fñwm-ssrEdlcugrbs;vaGacrMkil)an m:Um:g;dMbUgGtibrmaEdl)anBI sidesway CaTUeTAeRcIn sßitenAelIEtcugmçag. dUcEdl)anbgðajenAkñúgrUbTI 6>5 m:Um:g;TIBIrGtibrmaEdl)anBI sidesway Etg EtsßitenAelIcugmçag. dUcenHsMrab;krNIenH m:Um:g;TImYy nigm:Um:g;TIBIrGtibrmaCaTUeTARtUv)anbUkbBa©Úl Kña ehIyminRtUvkaremKuN Cm eT ¬karBit Cm = 1.0 ¦. eTaHbICaenAeBlEdlmankarkat;bnßy k¾va 206 Fñwm -ssr
  • 20. T.chhay mantMéltictYc nigGacecal)an. cUrBicarNaFñwm-ssrEdlbgðajenAkñúgrUbTI 6>13. m:Um:g;esμIKñaenA xagcug)anmkBI sidesway ¬BIbnÞúkedk¦. bnÞúktamGkS½ ¬EdlCaEpñkmYyénbnÞúkEdlmanGMeBIelIFñwm- ssrminbNþaleGayman sidesway¦RtUv)anKitbBa©ÚleTAkñúgm:Um:g;cugEdr. emKuNm:Um:g;bEnßmsMrab; sidesway moments B2 RtUv)aneGaysmIkarBIr. eKGaceRbIsmIkar NamYyk¾)anEdr GaRs½ynwgPaBgayRsYlsMrab;GñkKNna³ 1 B2 = (AISC Equation C1-4) 1 − ∑ Pu (Δ oh / ∑ HL ) b¤ B2 = 1 1 − (∑ Pu / ∑ Pe 2 ) (AISC Equation C1-5) Edl ∑ Pu = plbUkbnÞúkemKuNenAelIRKb;ssrenAelICan;EdlBicarNa Δ oh = drift (sidesway displacement) rbs;Can;EdlBIcarNa ∑ H = plbUkénbnÞúkedkTaMgGs;EdlbegáIt Δ oh L = kMBs;Can; ∑ Pe 2 = plbUkén Euler loads rbs;ssrTaMgGs;enAelICan;EdlBicarNa ¬enAeBlEdl KNna Pe2 eKRtUveRbI KL / r sMrab;GkS½énkarBt; ehIy K CatMélEdlRtUvKñanwg unbraced condition. 207 Fñwm -ssr
  • 21. T.chhay plbUkén Pu nigplbUkén Pe2 GnuvtþeTARKb;ssrEdlsßitenAkñúgCan;EdlBicarNaCamYyKña. eKeRbIplEckrvagplbUkbnÞúkTaMgBIrsMrab;smIkarxagelIedaysar B2 GnuvtþsMrab; unbraced frames ehIyRbsinebI sidesway nwgekItman enaHssrTaMggs;enAkñúgCan;EdlBicarNanwg sway kñúgeBlCa mYyKña. enAkñúgkrNICaeRcIn eRKOgbgÁúMRtUv)anKNnaenAkñúgbøg; dUcenH ∑ Pu nig ∑ Pe2 KWsMrab;ssr enACan;rbs;eRKag ehIybnÞúkxag H CabnÞúkxagEdleFVIGMeBIenAelIeRKag nigBIelICan;EdlBicarNa. CamYynwg Δ oh EdlekIteLIgeday ∑ H pleFob Δ oh / ∑ H GacQrelIbnÞúkemKuN b¤bnÞúkKμanem KuN. TMrg;epSgeTotrbs; B2 RtUv)aneGayeday AISC Equation C1-5 manlkçN³RsedognwgsmI karsMrab; B1 elIkElgsMrab;plbUk. AISC Equations C1-4 nig C1-5 RtUv)anbMEbkedayviFIBIrepSgKña b:uEnþenAkñúgkrNICaeRcInva nwgpþl;nUvlT§pldUcKña (Yura, 1988). enAkñúgkrNICaeRcInEdltMél B2 TaMgBIrxusKñaxøaMg tYénbnÞúk cMGkS½rbs;rUbmnþGnþrkmμnwglub ehIylT§plcugeRkaynwgminxusKñaeRcIneT. dUcEdl)anerobrab;BI xagedIm kareRCIserIsKWsßitenAelIPaBgayRsYl vaGaRs½ynwgtYenAkñúgsmIkar. kñúgkrNIEdl M nt nig M lt eFVIGMeBIenAcMnucBIrepSgKñaenAelIGgát; dUcbgðajenAkñúgrUbTI 6>14/ AISC Equation C1-1 nwgpþl;nUvlT§plEdlsnSMsMéc. 208 Fñwm -ssr
  • 22. T.chhay rUbTI 6>14 bgðajbEnßmeTotBI superposition concept. rUbTI 6>14 a bgðajBI braced frame rgnUvTaMgbnÞúkTMnaj (gravity load) nigbnÞúkxag (lateral load). m:Um:g;enA M nt enAkñúgGgát; AB RtUv)anKNnaedayeRbIEt gravity load. edayPaBsIuemRTI eKminRtUvkar bracing edIm,IkarBar sidesway BIbnÞúkenH. m:Um:g;enHRtUv)anbEnßmCamYyCamYynwgemKuN B1 edIm,IkarBarT§iBl Pδ . M lt m:Um:g;EdlRtUvKñanwg sway ¬EdlbegáIteLIgedaybnÞúkedk H ¦ nwgRtUv)anbEnßmeday B2 edIm,I karBarnwgT§iBl PΔ . enAkñúg rUbTI 6>14 b unbraced frame RTEtbnÞúkbBaÄr. edaysarkardak;bnÞúkenHminsIuemRTI vanwgman sidesway bnþic. m:Um:g; M nt RtUv)anKNnaedayBicarNafaeRKagRtUv)anBRgwg ¬kñúgkrNI enH edaysarTMredkkkit nigkMlaMgRbtikmμRtUvKμaEdleKehAfa tMNTb;nimitþ (artificial joint restraint AJR). edIm,IKNnam:Um:g; sidesway eKRtUvykTMrkkitecj ehIyCMnYsedaykMlaMgEdlmantMélesμInwg artificial joint restraint b:uEnþmanTisedApÞúyKña. kñúgkrNIenH m:Um:g;TIBIr PΔ nwgmantMéltUcNas; ehIyeKGacecal M lt )an. RbsinebITaMgbnÞúkxag nigbnÞúkTMnaj minsIuemRTI eKGacbEnßmkMlaMg AJR eTAelIbnÞúkxagBit R)akd enAeBlEdl M lt RtUv)ankMNt;. ]TahrN_ 6>7³ Edk W 12 × 65 RbePT A572 grade 50 RbEvg 15 ft sMrab;eRbICassrenAkñúg unbraced frame. bnÞúkcMGkS½ nigm:Um:g;cugTTYl)anBI first-order analysis énbnÞúkTMnaj ¬bnÞúkefr nigbnÞúkGefr¦ RtUv)anbgðajenAkñúg rUbTI 6>15 a . eRKagmanlkçN³sIuemRTI ehIybnÞúkTMnajk¾ RtUv)andak;sIuemRTIEdr. rUbTI 6>15 b bgðajBIm:Um:g;énbnÞúkxül;Edl)anBI first-order analysis. m:U m:g;Bt;TaMgGs;KWeFobnwgGkS½xøaMg. emKuNRbEvgRbsiT§PaB K x = 1.2 sMrab;krNI sway nig K x = 1.0 sMrab;krNI nonsway ehIy K y = 1.0 . kMNt;faetIGgát;enHeKarBtam AISC Specification b¤eT? dMeNaHRsay³ karbnSMbnÞúkTaMgGs;EdleGayenAkñúg AISC A4.1 suT§EtmanbnÞúkGefr ehIyelIk ElgEtkarbnSMbnÞúkTImYyecj EdlkarbnSMbnÞúkTaMgGs;manbnÞúkxül; b¤bnÞúkGefr b¤TaMgBIr. Rbsin ebIRbePTbnÞúk ¬ E, Lr , S , nig R ¦ enAkñúg]TahrN_enHminRtUv)anbgðaj lkçxNÐénkarbnSMbnÞúk RtUv)ansegçbdUcxageRkam³ 1 .4 D (A4-1) 1 .2 D + 1 .6 L (A4-2) 209 Fñwm -ssr
  • 23. T.chhay 1.2 D + (0.5 L or 0.8W ) (A4-3) 1.2 D + 1.3W + 0.5 L (A4-4) 1 .2 D + 0 .5 L (A4-5) 0.9 D ± 1.3W (A4-5) enAeBlEdlbnÞúkefrtUcCagbnÞúkGefrR)aMbIdg enaHbnSMbnÞúk (A4-1) GacminRtUvKit. bnSM bnÞúk (A4-4) nwgmantMélFMCag (A4-3) dUcenH (A4-3) Gacdkecj)an. bnSMbnÞúk (A4-5) k¾Gac ecal)anedaysarvanwgpþl;eRKaHfñak;tUcCag (A4-2). cugeRkay karbnSMbnÞúk (A4-6) nwgmineRKaH fñak;dUc (A4-4) ehIyk¾Gacdkecj)anBIkarBicarNa EdlenAsl;EtbnSMbnÞúkBIrEdlRtUveFVIkarGegátKW (A4-2)nig (A4-4) ³ 1.2 D + 1.6 L nig 1.2 D + 1.3W + 0.5 L rUbTI 6>16 bgðajBIbnÞúktamGkS½ nigm:Um:g;Bt;EdlKNnaecjBIbnSMbnÞúkTaMgBIrenH kMNt;GkS½eRKaHfñak;sMrab;ersIusþg;kMlaMgsgát;tamGkS½ K y L = 15 ft K x L 1.2(15) = = 10.29 ft < 15 ft rx / ry 1.75 dUcenHeRbI KL = 15 ft BI column load tables CamYynwg KL = 15 ft / φc Pn = 626kips sMrab;lkçxNÐbnÞúk (A4-2)/ Pu = 454kips / M nt = 104.8 ft − kips nig M lt = 0 ¬eday sarEtsIuemRTI vaminmanm:Um:g; sidesway¦. emKuNm:Um:g;Bt;KW 210 Fñwm -ssr
  • 24. T.chhay ⎛M ⎞ ⎛ 90 ⎞ C m = 0.6 − 0.4⎜ 1 ⎟ = 0.6 − 0.4⎜ ⎜M ⎟ ⎟ = 0.2565 ⎝ 2⎠ ⎝ 104.8 ⎠ sMrab;GkS½énkarBt; KL K x L 1.0(15)(12 ) = = = 34.09 r rx 5.28 ¬krNIenHKμan sidesway dUcenHeKeRbI K x sMrab; braced condition¦. enaH π 2 EAg π 2 (29000)(19.1) Pe1 = = = 4704kips (KL / r )2 (34.09)2 emKuNm:Um:g;bEnßmsMrab;m:Um:g; nonsway KW Cm 0.2565 B1 = = = 0.284 < 1.0 1 − (Pu / Pe1 ) 1 − (454 / 4704 ) 211 Fñwm -ssr
  • 25. T.chhay dUcenHeRbI B1 = 1.0 M u = B1M nt + B2 M lt = 1.0(104.8) + 0 = 104.8 ft − kips BI beam design charts CamYynwg Lb = 15 ft φb M n = 343 ft − kips ¬sMrab; Cb = 1.0 ¦ φb M p = 358 ft − kips rUbTI 6>17 bgðajBIdüaRkamm:Um:g;Bt;sMrab;m:Um:g;énbnÞúkTMnaj. ¬karKNna Cb KWQrelItMél dac;xat dUcsBaØaenAkñúgdüaRkamenHminmansar³sMxan;eT¦. dUcenH 12.5M max Cb = 2.5M max + 3M A + 4M B + 3M C 12.5 × (104.8) = = 2.24 2.5(104.8) + 3(41.3) + 4(74) + 3(56.1) sMrab; Cb = 2.24 φb M n = 2.24(343) > φb M p = 358 ft − kips dUcenHeRbI φb M n = 358 ft − kips kMNt;smIkarGnþrkmμEdlsmRsb Pu 454 = = 0.7252 > 0.2 φc Pn 626 eRbIsmIkar AISC Equation H1-1a. Pu 8 ⎛ M ux M uy ⎞ ⎟ = 0.7252 + 8 ⎛ 104.8 + 0 ⎞ = 0.985 < 1.0 + ⎜ + ⎜ ⎟ (OK) φc Pn 9 ⎜ φb M nx φb M ny ⎝ ⎟ ⎠ 9 ⎝ 358 ⎠ sMrab;lkçxNÐbnÞúk (A4-4), Pu = 212kips / M nt = 47.6 ft − kips ehIy M lt = 171.6 ft − kips . sMrab; unbraced condition/ 212 Fñwm -ssr
  • 26. T.chhay ⎛M ⎞ ⎛ 40.5 ⎞ C m = 0.6 − 0.4⎜ 1 ⎟ = 0.6 − 0.4⎜ ⎜M ⎟ ⎟ = 0.2597 ⎝ 2⎠ ⎝ 47.6 ⎠ Pe1 = 4704kips ¬ Pe1 minGaRs½ynwglkçxNÐbnÞúk¦ Cm 0.2597 B1 = = = 0.272 < 1.0 1 − (Pu / Pe1 ) 1 − (212 / 4704 ) dUcenH B1 = 1.0 eyIgminmanTinñy½nRKb;RKan;edIm,IKNnaemKuNm:Um:g;bEnßmeGay)ansuRkitsMrab; sway moment B2 BI AISC Equation C1-4 b¤ C1-5. RbsinebIeyIgsnμt;fapleFobrvagbnÞúktamGkS½ EdlGnuvtþmkelIGgát; nig Euler load capacity mantMéldUcKñasMrab;RKb;ssrenAkñúgCan; nigsMrab; ssrEdleyIgBicarNa enaHeyIgGacsresr Equation C1-5³ 1 1 B2 = ≈ 1 − (∑ Pu / ∑ Pe 2 ) 1 − (Pu / Pe 2 ) sMrab; Pe2 eRbI K x EdlRtUvnwg unbraced condition³ KL K x L 1.2(15)(12 ) = = = 40.91 r rx 5.28 π 2 EAg π 2 (29000)(19.1) Pe 2 = = = 3266kips (KL / r )2 (40.91)2 BI AISC Equation C1-5/ 1 1 B2 ≈ = = 1.069 1 − (Pu / Pe 2 ) 1 − (212 / 3266) m:Um:g;bEnßmsrubKW M u = B1M nt + B2 M lt = 1.0(47.6 ) + 1.069(171.6) = 231.0 ft − kips eTaHbICam:Um:g; M nt nig M lt mantMélxusKñak¾eday k¾BYkvaRtUv)anEbgEckdUcKña ehIy Cb nwgenAdEdl . enARKb;GRtaTaMgGs; BYkvamantMélFRKb;RKan;Edl φb M p = 358 ft − kips Ca design strength edayminKitBIm:Um:g;NamYyeLIy. Pu 212 = = 0.3387 > 0.2 φc Pn 626 dUcenHeRbI AISC Epuation H1-1a³ Pu 8 ⎛ M ux M uy ⎞ ⎟ = 0.3387 + 8 ⎛ 231.0 + 0 ⎞ = 0.912 < 1.0 + ⎜ + ⎜ ⎟ (OK) φc Pn 9 ⎜ φb M nx φb M ny ⎝ ⎟ ⎠ 9 ⎝ 358 ⎠ cMeLIy³ Ggát;enHbMeBjtMrUvkarrbs; AISC Specification. 213 Fñwm -ssr
  • 27. T.chhay 6>8 KNnamuxkat;Fñwm-ssr Design of Beam-Column edaysarenAkñúgrUbmnþGnþrkmμmanGBaØtiCaeRcIn enaHkarKNnamuxkat;Fñwm-ssrCadMeNIrkar KNnaEdlRtUvkarCacaM)ac;nUv trial-and-error process. sMrab;kareRCIserIscugeRkay KWeKeRCIserIs rUbragNakan;EtEk,r kan;Etl¥. muxkat;sakl,gRtUv)aneRCIserIs nigRtUv)anepÞógpÞat;eLIgvijeday eRbIrUbmnþGnþrkmμ. dMeNIrkard¾manRbsiT§PaBbMputkñúgkareRCIserIsmuxkat;sakl,gRtUv)anbegáIteLIg CadMbUgsMrab; allowable stress design (Burgett, 1973), ehIyRtUv)anTTYl ykmkeRbIsMrab; LRFD Edlmanerobrab;enAkñúg part 3 of the Manual, “Column Design”. lkçN³sMxan;sMrab;viFIenHKWCa karbMElgBIm:Um:g;Bt;eTACabnÞúktamGkS½smmUl. bnÞúkEdl)anBIkarbMElgRtUv)anyk eTAbEnßmelI bnÞúkCak;Esþg ehIyrUbragEdlRtUvRTbnÞúksrubRtUv)aneRCIserIsBI column load tables. bnÞab;mk eK RtUvBinitürUbragsakl,genHCamYy Equation H1-1a b¤ H1-1b. bnÞúktamGkS½RbsiT§PaBsrubRtUv)an eGayeday Pu eq = Pu + M ux m + M uy mu Edl Pu = bnÞújktamGkS½emKuNCak;Esþg M ux = m:Um:g;emKuNeFobGkS½ x M uy = m:Um:g;emKuNeFobGkS½ y m = tMélefrEdlmanenAkúñgtarag n = tMélefrEdlmanenAkúñgtarag eKalkarN_énkarviFIenHGacRtUv)anRtYtBinitüedaysresrsmIkar ^># eLIgvijdUcxageRkam. dMbUgKuNGgÁTaMgBIreday φc Pn ³ φ PM φc Pn M uy Pu + c n ux + ≤ φc Pn φb M nx φb M ny b¤ Pu + (M ux × a constant ) + (M uy × a constant ) ≤ φc Pn GgÁxagsþaMénvismIkarCa design strength rbs;Ggát;EdlBicarNa ehIyGgÁxageqVgGacCa bnÞúkemKuNxageRkAEdlRtUvTb;Tl;. tYnImYy²énGgÁxageqVgmanxñatkMlaMg dUcenHtMélefrCaGñkbM Elgm:Um:g;Bt; M ux nig M uy eTACakMub:Usg;bnÞúktamGkS½. tMélefrmFüm m RtUv)anKNnasMrab;RkumepSgKñarbs; W-shape ehIyRtUv)aneGayenAkñúg Table 3-2 in Part 3 of the Manual. tMél u RtUv)aneGayenAkñúg column load table sMrab;rUbrag 214 Fñwm -ssr
  • 28. T.chhay nImYy²EdlmanenAkñúgtarag. edIm,IeRCIserIsrUbragsakl,gsMrab;Ggát;CamYynwgbnÞúktamGkS½ nigm:U m:g;Bt;eFobGkS½TaMgBIr eKRtUvGnuvtþdUcxageRkam. !> eRCIserIstMélsakl,g m edayQrelIRbEvgRbsiT§PaB KL . yk u = 2.0 @> KNnabnÞúksgát;tamGkS½RbsiT§PaB³ Pu eq = Pu + M ux m + M uy mu eRbIbnÞúkenHedIm,IeRCIserIsrUbragBI column load tables. #> eRbItMél u EdleGayenAkñúg column load tables nigtMélfμIrbs; m BI Table 3-2 edIm,I KNnatMélfμIrbs; Pu eq . eRCIserIsrUbragepSgeTot. $> eFVIeLIgvijrhUtdl;tMél Pu eq ElgERbRbYl. ]TahrN_ 6>8³ Ggát;eRKOgbgÁúMxøHenAkñúg braced frame RtUvRTbnÞúksgát;tamGkS½emKuN 150kips nig m:Um:g;cugemKuN 75 ft − kips eFobnwgGkS½xøaMg ehIy 30 ft − kips eFobnwgGkS½exSay. m:Um:g;TaMgBIr enHeFVIGMeBIenAelIcugmçag ÉcugmçageTotCaTMr pinned. RbEvgRbsiT§PaBeFobnwgGkS½nImYy²KW 15 ft . minmanbnÞúkxageFVIGMeBIelIGgát;enHeT, eRbIEdk A36 nigeRCIserIs W-shape EdlRsalCageK. dMeNaHRsay³ emKuNm:Um:g;bEnßm B1 Gacsnμt;esμInwg 1.0 edIm,IeFVIkareRCIserIsmuxkat;sakl,g. sMrab;GkS½nImYy² M ux = B1M ntx ≈ 1.0(75) = 75 ft − kips M uy = B1M nty ≈ 1.0(30 ) = 30 ft − kips BI Table 3-2, part 3 of the Manual, m = 1.75 edayeFVI interpolation eRbItMéledIm u = 2.0 Pu eq = Pu + M ux m + M uy mu = 150 + 75(1.75) + 30(1.75)(2.0 ) = 386kips cab;epþImCamYynwgrUbragtUcCageKenAkñúg column load tables, sakl,g W 8 × 67 ¬ φc Pn = 412kips / u = 2.03 ¦³ m = 2 .1 Pu eq = 150 + 75(2.1) + 30(2.1)(2.03) = 435kips tMélenHFMCag design strength= 412 ft − kips dUcenHeKRtUvsakl,gmuxkat;epSgeTot. sakl,g W 10 × 60 ¬ φc Pn = 416kips / u = 2.0 ¦³ 215 Fñwm -ssr
  • 29. T.chhay m = 1.85 Pu eq = 150 + 75(1.85) + 30(1.85)(2.00 ) = 400kips < 416kips (OK) dUcenH W 10 × 60 CarUbragsakl,gEdlGaceRbIkar)an. RtYtBinitü W 12s nig W 14s . sakl,g W 12 × 58 ¬ φc Pn = 397kips / u = 2.41 ¦³ m = 1.55 Pu eq = 150 + 75(1.55) + 30(1.55)(2.41) = 378kips < 397 kips (OK) dUcenH W 12 × 58 CarUbragsakl,gEdlGaceRbIkar)an. W 14 EdlRsalCageKsMrab;eFVIkarCamYy nwgbnÞúkxageRkAKW W 14 × 61 EtvaF¶n;Cag W 12 × 58 . dUcenHeRbI W 12 × 58 CarUbragsakl,g³ Pu 150 = 0.3778 > 0.2 φc Pn 397 dUcenHeRbI AISC Equatiom H-1-1a KNnam:Um:g;Bt;eFobGkS½ x K x L 15(12 ) = = 34.09 rx 5.28 π 2 EAg π 2 (29000)(17.0) Pe1 = = = 4187kips (KL / r )2 (34.09)2 C m = 0.6 − 0.4(M 1 / M 2 ) = 0.6 − 0.4(0 / M 2 ) = 0.6 ¬sMrab;GkS½TaMgBIr¦ Cm 0 .6 B1 = = = 0.622 < 1.0 1 − (Pu / Pe1 ) 1 − (150 / 4187 ) dUcenHeRbI B1 = 1.0 M ux = B1M ntx = 1.0(75) = 75 ft − kips bnÞab;mk kMNt; design strength. BI beam designth curves, sMrab; Cb = 1 nig Lb = 15 ft / φb M n = 220 ft − kips . BIrUbTI 5>15g, Cb = 1.67 . sMrab; Cb = 1.67 design strength KW Cb × 220 = 1.67(220) = 367 ft − kips m:Um:g;enHFMCag φb M p = 233 ft − kips dUcenHeRbI φb M n = 233 ft − kips KNnam:Um:g;Bt;eFobGkS½ y K yL 15(12) = = 71.71 ry 2.51 216 Fñwm -ssr
  • 30. T.chhay π 2 EAg π 2 (29000)(17.0) Pe1 = = = 946.2kips (KL / r )2 (71.71)2 Cm 0 .6 B1 = = = 0.713 < 1.0 1 − (Pu / Pe1 ) 1 − (150 / 946.2 ) dUcenHeRbI B1 = 1.0 M uy = B1M nty = 1.0(30 ) = 30 ft − kips W 12 × 58CarUbrag compact sMrab;RKb;tMélrbs; Pu dUcenH nomical strength KW M py ≤ 1.5M yy . Design strength KW φb M ny = φb M py = φb Z y F y = 0.90(32.5)(36) = 1053in. − kips = 87.75 ft − kips b:uEnþ Z y / S y = 32.5 / 21.4 = 1.52 > 1.5 Edlmann½yfa φb M ny KYrEtykesμInwg φb (1.5M yy ) = φb (1.5F y S y ) = 0.90(1.5)(36 )(21.4) = 1040in. − kips = 86.67 ft − kips BI AISC Equation H1-1a, Pu 8 ⎛ M ux M uy ⎞ ⎟ = 0.3778 + 8 ⎛ 75 + 30 ⎞ + ⎜ + ⎜ ⎟ φc Pn 9 ⎜ φb M nx φb M ny ⎝ ⎟ ⎠ 9 ⎝ 233 86.67 ⎠ = 0.972 < 1.0 (OK) cMeLIy³ eRbI W 12 × 58 . ebIeTaHbICaviFIEdleTIbnwgbgðajsMrab;eRCIserIsrUbragsakl,gqab;rkeXIjk¾eday k¾viFIEdl manlkçN³smBaØCagenHRtUv)anesñIeLIgeday Yura (1988). bnÞúktamGkS½EdlsmmUlEdlRtUv)an eRbIKW 2M x 7.5M y Pequiv = P + d + b ¬^>%¦ Edl P = bnÞúktamGkS½emKuN M x = m:Um:g;emKuNeFobGkS½ x M y = m:Um:g;emKuNeFobGkS½ y d = kMBs;Fñwm b = TTwgFñwm tYTaMgGs;enAkñúgsmIkar ^>@ RtUvEtmanxñatRtUvKña. 217 Fñwm -ssr
  • 31. T.chhay ]TahrN_ 6>9³ eRbI Yura’s method edIm,IeRCIserIsrUbragsakl,g W 12 sMrab;Fñwm-ssrén]TahrN_ 6>8. dMeNaHRsay³ BIsmIkar 6>5 bnÞúktamGkS½smmUlKW 2M x 7.5M y 2(75 × 12) 7.5(30 × 12) Pequiv = P + + = 150 + + = 525kips d b 12 12 EdlTTwg b RtUv)ansnμt;esμInwg 12inches . BI column load tables, sakl,g W 12 × 72 ¬ φc Pn = 537kips ¦. CamYynwg Yura’s method eKTTYl)anrUbragsakl,gFMCag Manual method Etvaminy:agdUcenH rhUteT. enAeBlEdltYm:Um:g;Bt;lub ¬]TahrN_ Ggát;manlkçN³CaFñwmCagssr¦ Yura ENnaMfa bnÞúk tamGkS½RtUvbMElgeTACam:Um:g;Bt;smmUleFobGkS½GkS½ x . bnÞab;mkrUbragsakl,gRtUv)aneRCIserIs BI beam design charts in part 3 of the Manual. m:Um:g;smmUlKW³ d M equiv = M x + P 2 karKNnamuxkat;Fñwm-ssrEdlminBRgwg Design of Unbraced Beam-Column karKNnamuxkat;dMbUgrbs;Fñwm-ssrenAkñúg braced frame RtUv)anbgðajrYcehIy. emKuNm:U m:g;bEnßm B1 RtUv)ansnμt;esμI 1.0 edIm,IeRCIserIsmuxkat;sakl,g bnÞab;mk B1 RtUv)ankMNt;sMrab; rUbragenaH. sMrab;Fñwm-ssrRbQmnwg sidesway emKuNm:Um:g;bEnßm B2 EdlQrelIGBaØtiCaeRcIn EdlminsÁal;rhUtdl;ssrTaMgGs;enAkñúgeRKagRtUv)aneRCIserIs. RbsinebI AISC Equation C1-4 RtUv)aneRbIsMrab; B2 enaHeKminman sidesway deflection Δ oh sMrab;karKNnamuxkat;dMbUgeT. Rb sinebIeKeRbI AISC Equation C1-5 enaHeKGacminsÁal; ∑ Pe2 . viFIxageRkamRtUv)anesñIeLIgedIm,Irk B2 . viFITI1> snμt; B2 = 1.0 . bnÞab;BIeRCiserIsrUbragsakl,g KNna B2 BI AISC Equation C1-5 eday snμt;fa ∑ Pu / ∑ Pe2 KWdUcKñanwg Pu / Pe2 sMrab;Ggát;EdlBicarNa ¬dUcenAkñúg]TahrN_6>7¦. viFITI2> eRbIkarkMNt;dMbUg (predetermined limit) sMrab; drift index Δ oh / L EdlCapleeFob story drift elIkMBs;Can;. kareRbInUv drift index GnuBaØatGtibrmasMrab; serviceability 218 Fñwm -ssr
  • 32. T.chhay requirement RsedogKñanwgkarkMNt;PaBdabrbs;Fñwm. eKENnaMeGayeRbI drift index cenøaHBI 1 / 500 eTA 1 / 200 . cMNaMfa Δ oh Ca drift EdlekItBI ∑ H dUcenHRbsinebI drift index QrenAelI service load enaHbnÞúkxag H RtUvEtCa service load Edr. ]TahrN_ 6>10³ rUbTI 6>18 bgðajBI single-story unbraced frame EdlrgnUvbÞúkefr bnÞúkGefrelI dMbUl nigxül;. rUbTI 6>18 a bgðajBI service gravity load nig rUbTI6>18 b bgðajBI service wind load ¬EdlrYmbBa©ÚlTaMg uplift b¤ suction enAelIdMbUl¦. eRbIEdk A572 grade 50 nigeRCIserIs rUbrag W 12 sMrab;ssr ¬Ggát;bBaÄr¦. KNnamuxkat;sMrab; drift index 1/ 400 edayQrelI service wind load. m:Um:g;Bt;eFobnwgGkS½xøaMg ehIyssrnImYy²BRgwgxagenAxagcug nigKl;. dMeNaHRsay³ eRKagenHCaeRKagsþaTicminkMNt;mYydWeRk. karviPaKrcnasm<n§½minkMNt;minRtUv)aneFVI enATIednHeT. lT§plénkarviPaKeRKagRtUv)anbgðajenAkñúgrUbTI 6>19edaysegçb. bnÞúktamGkS½ nig m:Um:g;cugRtUv)aneGaydac;edayELkBIKñasMrab;bnÞúkefr bnÞúkGefr bnÞúkxül;EdlmanGMeBIelIdMbUl nig bnÞúkxül;xag. bnÞúkbBaÄrTaMgGs;RtUv)andak;sIuemRTIKña ehIycUlrYmEtCamYynwgm:Um:g; M nt b:ueNÑaH. bnÞúkxagbegáItm:Um:g; M lt . bnSMbnÞúkEdlBak;Bn§½CamYynwgbnÞúkefr D / bnÞúkGefrelIdMbUl Lr nigbnÞúkxül; W KWdUcxageRkam³ A4-2: 1.2 D + 0.5 Lr Pu = 1.2(14) + 0.5(26) = 29.8kips M nt = 1.2(50) + 0.5(94) = 107 ft − kips M lt = 0 A4-3: 1.2 D + 1.6 Lr + 0.8W Pu = 1.2(14) + 1.6(26) + 08(− 9 + 1) = 52.0kips 219 Fñwm -ssr
  • 33. T.chhay M nt = 1.2(50) + 1.6(94) + 0.8(− 32) = 184.8 ft − kips M lt = 0.8(20) = 16.0 ft − kips A4-4: 1.2 D + 0.5 Lr + 1.3W Pu = 1.2(14) + 0.5(26 ) + 1.3(26) = 19.4kips M nt = 1.2(50) + 0.5(94) + 1.3(− 32 ) = 65.4 ft − kips M lt = 1.3(20) = 26 ft − kips bnSMbnÞúk A4-3 pþl;nUvtMélFMCageK. sMrab;eKalbMNgénkareRCIserIsrUbragsakl,g snμt;fa B1 = 1.0 . tMélrbs; B2 Gac RtUv)anKNnaBI AISC Equation C1-4 nig design drift index³ 1 1 1 B2 = = = = 1.107 1 − ∑ Pu (Δ oh / ∑ HL ) 1 − (∑ Pu / ∑ H )(Δ oh / L ) 1 − [2(52.0 ) / 2.7](1 / 400) bnÞúkedkKμanemKuN ∑ H RtUv)aneRbIBIeRBaH drift index KWQrelI drift GtibrmaEdlbNþalmkBI service load. dUcenH M u = B1M nt + B2 M lt = 1.0(184.8) + 1.107(16) = 202.5 ft − kips edayminsÁal;TMhMrbs;Ggát; eKminGaceRbI alignment chart sMrab;emKuNRbEvgRbsiT§PaB)aneT. Table C-C2.1 enAkñúg Commentary to the Specification bgðajfakrNI (f) RtUvKñay:agxøaMgeTAnwg lkçxNÐcugsMrab;krNI sidesway én]TahrN_enH ehIyEdl K x = 2.0 . 220 Fñwm -ssr
  • 34. T.chhay sMrab; braced condition, eKeRbI K x = 1.0 . edaysarEtGgát;TaMgGs;RtUv)anBRgwgTisedA mYyeTotEdr enaHeKyk K y = 1.0 . bnÞab;mk eKGaceRCIserIsmuxkat;sakl,gEdlmaneGayenAkñúg Part 3 of the Manual. BI Table 3-2 emKuNm:Um:g;Bt; m = 1.5 sMrab; W 12 CamYynwg KL = 15 ft . Pu eq = Pu + M ux m + M uy mu = 52.0 + 202.5(1.5) + 0 = 356kips sMrab; KL = K y L = 15 ft / W 12 × 53 man design strength φc Pn = 451kips . sMrab;GkS½ x K x L 2.0(15) = = 14.2 ft < 15 ft rx / ry 2.11 dUcenH KL = 15 ft lub sakl,g W 12 × 53 . sMrab; braced condtition K x L 1.0(15)(15) = = 34.42 rx 5.23 π 2 EAg π 2 (29000 )(15.6) Pe1x = = = 3769 (K x L / rx )2 (34.42)2 ⎛M ⎞ ⎛ 0 ⎞ C m = 0.6 − 0.4⎜ 1 ⎟ = 0.6 − 0.4⎜ ⎜M ⎟ ⎜ M ⎟ = 0 .6 ⎟ ⎝ 2⎠ ⎝ 2⎠ BI AISC Equation C1-2 Cm 0 .6 B1 = = = 0.608 < 1.0 1 − (Pu / Pe1 ) 1 − (52.0 / 3769 ) dUcenHeRbI B1 = 1.0 cMNaMfa B1 = 1.0 CatMélsnμt;dMbUg ehIyedaysarEt B2 minRtUv)anpøas;bþÚr enaHtMél M u = 202.5 ft − kips Edl)anKNnaBIdMbUgk¾minRtUv)anpøas;bþÚrEdr. BI beam design chart in Part 4 of the manual CamYynwg Lb = 15 ft design moment sMrab; W 12 × 53 CamYynwg Cb = 1.0 KW φb M n = 262 ft − kips sMrab;m:Um:g;Bt;EdlERbRbYlsmamaRtBIsUnüenAcugmçag eTAGtibrmaenAcugmçageTot tMélrbs; Cb = 1.67 ¬emIlrUbTI 5>15 g¦. dUcenHtMélEdlEktMrUvén design moment KW φb M n = 1.67(262) = 438 ft − kips b:uEnþ m:Um:g;enHFMCag plastic moment capasity φb M p = 292 ft − kips / EdleKGacek)anenA kñúg charts. dUcenH design strength RtUv)ankMNt;Rtwm φb M n = φb M p = 292 ft − kips 221 Fñwm -ssr
  • 35. T.chhay kMNt;rUbmnþGnþrkmμEdlsmRsb Pu 52 = = 0.1153 < 0.2 φc Pn 451 dUcenHeRbI AISC Equation H1-1b: Pu ⎛ M ux M uy ⎞ 0.1153 ⎛ 202.5 ⎞ +⎜ + ⎟= +⎜ + 0 ⎟ = 0.751 < 1.0 (OK) 2φc Pn ⎜ φb M nx φb M ny ⎝ ⎟ ⎠ 2 ⎝ 292 ⎠ edaysarlT§plenHtUcCag 1.0 xøaMg dUcenHsakl,grUbragEdltUcCagenHBIrTMhM. sakl,g W 12 × 45 . sMrab; KL = K y L = 15 ft, φc Pn = 299kips . sMrab;GkS½ x K x L 2.0(15) = = 11.3 ft < 15 ft rx / ry 2.65 dUcenH KL = 15 ft lub sMrab; braced condtition K x L 1.0(15)(15) = = 34.95 rx 5.15 π 2 EAg π 2 (29000 )(13.2) Pe1x = = = 3093 (K x L / rx )2 (34.95)2 BI AISC Equation C1-2, Cm 0 .6 B1 = = = 0.610 < 1.0 1 − (Pu / Pe1 ) 1 − (52.0 / 3093) dUcenHeRbI B1 = 1.0 BI beam design charts CamYynwg Lb = 15 ft m:Um:g;KNnasMrab; W 12 × 45 CamYynwg Cb = 1.0 KW φb M n = 201 ft − kips sMrab; Cb = 1.67 φb M n = 1.67(201) = 336 ft − kips > φb M p = 242.5 ft − kips dUcenH design strength KW φb M n = φb M p = 242.5 ft − kips kMNt;rUbmnþGnþrkmμEdlsmRsb³ Pu 52.0 = = 0.1739 < 0.2 φc Pn 299 222 Fñwm -ssr
  • 36. T.chhay dUcenHeRbI AISC Equation H1-1b: Pu ⎛ M ux M uy ⎞ 0.1739 ⎛ 202.5 ⎞ +⎜ + ⎟= +⎜ + 0 ⎟ = 0.922 < 1.0 (OK) ⎜ 2φc Pn ⎝ φb M nx φb M ny ⎟ 2 ⎝ 242.5 ⎠ ⎠ cMeLIy³ eRbI W 12 × 45 . enA]TahrN_6>10 karkMNt; drift index CaviFIkñúgkarKNna ehIyeKminmanviFINaedIm,I KNnaemKuNm:Um:g;bEnßm B2 . RbsinebIeKminR)ab; drift index tMélrbs; B2 GacRtUv)ankMNt;ecj BI AISC Equation C1-5 dUcxageRkam ¬edayeRbIlkçN³rbs; W 12 × 45 ¦³ K x L 2.0(15)(12) = = 69.90 rx 5.15 π 2 EAg π 2 (29000)(13.2) Pe2 x = = = 773.2kips (K x L / rx )2 (69.90)2 1 1 B2 = = = 1.072 1 − (∑ Pu / ∑ Pe 2 ) 1 − [2(52.0) / 2(773.2)] 6>9> Trusses With Top Chord Loads Between Joints RbssinebIGgát;rgkarsgát;rbs; truss RtUvRTbnÞúkEdlmanGMeBIenAcenøaHcugsgçagrbs;va enaH vanwgRtUvrgnUvm:Um:g;Bt; k¾dUcCabnÞúksgát;tamGkS½ dUcenHGgát;enHCa beam-colum. krNIenHGacekIt manenAelI top chord of the roof truss edayédrEngsßitenAcenøaHtMN. eKk¾RtUvKNna top chord of an open-web steel joist Ca beam-column Edr BIeRBaH open-web steel joist RtUvRTbnÞúkTMnajEdl BRgayesμIenAelI top chord rbs;va. edIm,IkarBarbnÞúkenH eKRtUveFVIm:UEdl truss CakarpSMeLIgeday man continuous chord member nig pin-connected web members. bnÞab;mkeKGacedaHRsayrk bnÞúktamGkS½ nigm:Um:g;Bt;edayeRbIkarviPaKeRKOgbgÁúMdUcCag stiffness method. eK)anesñIeLIgnUvviFI saRsþdUcxageRkam³ !> KitGgát;nImYy²rbs; top chord CaFñwmbgáb;cug. eRbIm:Um:g;bgáb;cugCam:Um:g;GtibrmaenAkñúg Ggát;. Cak;Esþg top chord CaGgát;Cab; CagCaesrIénGgát;tMNsnøak; dUcenHkarcat;TukenH manlkçN³suRkitCagkarEdlcat;TukGgát;nImYy²CaFñwmsmBaØ. @> bEnßmkMlaMgRbtikmμBIFñwmbgáb;cugenHeTAbnÞúkenARtg;tMNedIm,ITTYl)anbnÞúkelItMNsrub. 223 Fñwm -ssr
  • 37. T.chhay #> viPaK truss CamYynwgbnÞúkRtg;tMNTaMgenH. bnÞúktamGkS½EdlCalT§plenAkñúg top chord member CabnÞúksgát;tamGkS½EdlRtUvykeTAeRbIkñúgkarKNna. viFIenHRtUv)anbgðajCalkçN³düaRkamenAkñúg rUbTI 6>20. müa:gvijeTot eKGacrkm:Um:g;Bt; nigRbtikmμrbs;Fñwmedaycat;Tuk top chord CaFñwmCab;EdlmanTMrenARtg;tMNnImYy². ]TahrN_ 6>11³ rUbTI 6>21 bgðajBI parallel-chord roof trussEdl top chord RTédrENgenA Rtg;tMN nigenARtg;cenøaHtMN. bnÞúkemKuNEdlbBa¢ÚnedayédrENgRtUv)anbgðaj. KNnamuxkat; top chord. eRbIEdk A36 nigeRCIserIs structural tee Edlkat;ecjBI W-shape. 224 Fñwm -ssr
  • 38. T.chhay dMeNaHRsay³ m:Um:g;Bt; nigkMlaMgelItMNEdlbNþalmkBIbnÞúkEdlmanGMeBIenAcenøaHtMNRtUv)anrk edaycat;Tuk top chord nImYy²CaFñwmbgáb;cug. BI Part 4 of the Manual, “Beam and girder Design,”m:Um:g;bgáb;cugsMrab;Ggát; top chord nImYy²KW PL 2.4(10) M = M nt = = = 3.0 ft − kips 8 8 m:Um:g;cug nigkMlaMgRbtikmμTaMgenHRtUv)anbgðajenAkñúg rUbTI 6>22 a. enAeBlEdleKbEnßmkMlaMg RbtikmμeTAelIbnÞúkelItMN enaHeKTTYl)ankardak;bnÞúkdUcbgðajenAkñúgrUbTI 6>22 b. kMlaMgsgát; GtibrmatamGkS½nwgekItmanenAkñúgGgát; DE ¬nwgenAkñúgGgát;EdlenAEk,r EdlenAxagsþaMGkS½rbs; ElVg¦ nigGacRtUv)anrkedayBicarNalMnwgrbs;GgÁesrIrbs;Epñkrbs; truss EdlenAxageqVgmuxkat; a-a³ ∑ M I = (19.2 − 2.4 )(30 ) − 4.8(10 + 20 ) + FDE (4 ) = 0 FDE = −90kips¬rgkarsgát;¦ KNnamuxkat;sMrab;bnÞúktamGkS½ 90kips nigm:Um:g;Bt; 3.0 ft − kips 225 Fñwm -ssr
  • 39. T.chhay Table 3-2 in Part 3 of the Manual min)anpþl;eGaysMrab; structural tee. eKGaceRbI Yura’s method (Yura, 1988) Edl)anbegáIteLIgsMrab;Ggát; I- nig H-shape. eKRtUvkarrUbragtUc BIeRBaH bnÞúktamGkS½tUc ehIym:Um:g;k¾tUcebIeFobnwgbnÞúktamGkS½. RbsinebIeKeRbI tee EdlmankMBs; 6in. 2M x 7.5M y 2(3)(12) Pequiv = P + + = 90 + + 0 = 102kips d b 6 BI column load table CamYynwg K x L = 10 ft nig K y L = 5 ft / sakl,g WT 6 ×17.5 ¬ φc Pn = 124kips ¦. m:Um:g;Bt;KWeFobnwgGkS½ x ehIyGgát;RtUv)anBRgwgRbqaMgnwg sidesway³ M nt = 3.0 ft − kips M lt = 0/ edaysarmankMlaMgxagmanGMeBIelIGgát; ehIycugRtUv)anTb;enaH Cm = 0.85 ¬Commentary approach minRtUv)aneRbIenATIenHeT¦. KNna B1 ³ KL K x L 10(12 ) = = = 68.18 r rx 1.76 π 2 EAg π 2 (29000)(5.17 ) Pe1 = = = 318.3kips (KL / r )2 (68.18)2 Cm 0.85 B1 = = = 1.185 1 − (P / Pe1 ) 1 − (90 / 318.3) 1 m:Um:g;bEnßmKW M u = B1M nt + B2 M lt = 1.185(3.0) + 0 = 3.555 ft − kips RbsinebImuxkat;RtUv)ancat;fñak;Ca slender enaH nominal moment strength rbs; structural tee nwgQrelI local buckling EtRbsinebImindUecñaHeT vanwgQrelI lateral-torsional buckling ¬emIl AISC Equation F1.2c nig Epñk 5>14 kñúgesovePAenH¦. sMrab;søab bf 6.560 λ= = = 6.308 2t f 2(0.520) 95 95 λr = = = 15.83 > λ Fy 36 sMrab;RTnug d 6.25 λ= = = 20.83 t w 0.300 127 127 λr = = = 21.17 > λ Fy 26 226 Fñwm -ssr
  • 40. T.chhay edaysar λ < λr sMrab;TaMgsøab nigRTnug rUbragminEmnCa slender eT ehIy lateral-torsional buckling lub. BI AISC Equation F1-15/ π EI y GJ ⎛ 2⎞ M n = M cr = ⎜ B + 1+ B ⎟ (AISC Equation F1-15) Lb ⎝ ⎠ ≤ 1 .5 M ysMrab;eCIg b¤tYxøÜnrgkarTaj ≤ 1.0 M y sMrab;eCIg b¤tYxøÜnrgkarsgát; BI AISC Eqution F1-16, ⎡ 6.25 ⎤ 12.2 B = ±2.3(d / Lb ) I y / J = ±2.3⎢ ⎥ = ±1.378 ⎣ 5(12 ) ⎦ 0.369 ehIy nominal strength BI AISC Equation F1-15 KW` π 29000(12.2 )(11200)(0.369) ⎛ 2⎞ Mn = ⎜ ± 1.378 + 1 + (1.378) ⎟ 5(12) ⎝ ⎠ = 2002(± 1.378 + 1.703) = 6168in. − kips b¤ 650.5in. − kips tMélviC¢manrbs; B RtUvKñanwgkMlaMgTajenAkñúgtYxøÜnrbs; tee ehIysBaØaGviC¢manRtUv)aneRbIedIm,ITTYl ersIusþg;enAeBltYxøÜnrgkMlaMgsgát;. sMrab;kardak;bnÞúkenAkñúg]TahrN_enH m:Um:g;GtibrmaekItmanenA TaMgcugbgáb; nigkNþalElVg dUcenHersIusþg;RtUv)anRKb;RKgedaykMlaMgsgát;enAkñúgtYxøÜn ehIy M n = 650.5in. − kips = 54.12 ft − kips RbQmnwgtMélGtibrmaén 1.0(36)(3.23) 1.0 M y = 1.0 Fy S x = = 9.690 ft − kips < 54.21 ft − kips 12 dUcenHeRbI M n = 9.690 ft − kips φb M n = 0.90(9.690) = 8.721 ft − kips kMNt;rkrUbmnþGnþrkmμEdlRtUveRbI Pu 90 = = 0.7258 > 0.2 φc Pn 124 dUcenHeRbI AISC Equation H1-1a: Pu 8 ⎛ M ux M uy ⎞ ⎟ = 0.7258 + 8 ⎛ 3.555 + 0 ⎞ + ⎜ + ⎜ ⎟ φc Pn 9 ⎜ φb M nx φb M ny ⎝ ⎟ ⎠ 9 ⎝ 8.721 ⎠ = 1.09 > 1.0 (N>G) 227 Fñwm -ssr
  • 41. T.chhay enAkñúg]TahrN_enH m:Um:g;Bt;mantMéltUc ehIydUcKñasMrab; bending strength dUcenHehIyeFVIeGaytY m:Um:g;Bt;rbs;rUbmnþGnþrkmμmantMélFM. kñúgkareRCIserIsmuxkat;EdlsmRsb GñkKNnaRtUvdwgc,as; fa bending strength nig axial compressive strength mantMélFM. rUbragbnÞab;enAkñúg column load tables KW WT 6 × 20 CamYynwg axial compressive strength 133kips . tamkarGegátenAelI dimensions and peoperties tables bgðajfaeyIgkMBugbBa©ÚlRkumrUbragEdlmanGkS½ x CaGkS½ exSay. dUcenHkarBt;rbs;eyIgLÚvenHKWeFobnwgGkS½exSay ehIyvaKμansßanPaBkMNt; lateral- torsional buckling. elIsBIenH RbsinebIrUbrag slender enaH nominal strength nwgQrelI yielding ehIyesμInwg plastic moment capacity EdlRtUvnwgEdlx<s;bMputRtwm 1.5M y . dUcenHsakl,g WT 6 × 20 ¬ φc Pn = 133kips ¦. dMbUg KNna B1 ³ KL K x L 10(12 ) = = = 76.43 r rx 1.57 π 2 EAg π 2 (29000)(5.89 ) Pe1 = = = 288.6kips (KL / r )2 (76.43)2 Cm 0.85 B1 = = = 1.235 1 − (P / Pe1 ) 1 − (90 / 288.6 ) 1 m:Um:g;bEnßmKW M u = B1M nt = 1.235(3.0 ) = 3.705 ft − kips RtYtBinitü slenderness parameters. sMrab;søab bf 8.005 λ= = = 7.772 < λr = 15.83 2t f 2(0.515) sMrab;RTnug λ = td = 5..970 = 20.2 < λr = 21.17 0 295 w edaysarkarBt;eFobnwgGkS½exSay 5.30(36) M n = M p = Z x Fy = = 15.9 ft − kips 12 RbQmnwgtMélGtibrmaén 1.5(36)(2.95) 1.5M y = 1.5Fy S x = = 13.28 ft − kips 12 edaysarEt M p > 1.5M y φb M n = φb (1.5M y ) = 0.90(13.28) = 11.95 ft − kips kMNt;rkrUbmnþGnþrkmμEdlRtUveRbI 228 Fñwm -ssr
  • 42. T.chhay Pu 90 = = 0.6767 > 0.2 φc Pn 133 dUcenHeRbI AISC Equation H1-1a: Pu 8 ⎛ M ux M uy ⎞ ⎟ = 0.6767 + 8 ⎛ 3.705 + 0 ⎞ = 0.952 < 1.0 + ⎜ + ⎜ ⎟ (OK) φc Pn 9 ⎜ φb M nx φb M ny ⎝ ⎟ ⎠ 9 ⎝ 11.95 ⎠ cMeLIy³ eRbI WT 6 × 20 . 229 Fñwm -ssr