SlideShare ist ein Scribd-Unternehmen logo
1 von 31
Workshop Fibrenamics na Proteção Pessoal
Universidade do Minho, Campus de Azurém, 24 outubro, 2012



     Materiais Nanoestruturados e Revestimentos
  Funcionais para aplicações em Conforto e Segurança
       Vasco Teixeira , Joaquim Carneiro, Sofia Azevedo, Jorge Neves*
       GRF-Functional Coatings Group & * Textile Eng. Dept
       Universidade do Minho
       Guimarães - Portugal                         email: vasco@fisica.uminho.pt

                                          Sumário
     Nanotecnologia, aplicações e impacto sócio-económico
     Materiais Nanoestruturados e Revestimentos Funcionais
     Algumas aplicações no conforto e proteção pessoal
     “Smart” nanocoatings (Revestimentos inteligentes)
     Anti-sujidade, auto-limpantes (self-cleaning)
     Termo- e Electrocromáticos
     Potenciais aplicações: desafios futuros
     Conclusões
                                                                            Vasco Teixeira
GRF- Functional Coatings Group
    Innovative nanoscale coating architectures for functional decorative and
    smart surfaces




                                                50

                                                                                      10ºC
                                                40
                            Transmittance (%)




a              b                                30



)              )                                20



                                                10                                    70ºC


                                                 0
                                                     500   1000      1500      2000      2500
                                                             Wavelength (nm)




                                                                                                Vasco Teixeira
Thin film deposition systems
   Magnetron Sputtering – DC and pulsed DC mode




                                         Single Magnetron Sputtering   Ion Beam Assisted
Multi Magnetron Sputtering                                             Sputtering Deposition
                                         DC and Pulsed DC
RF- insulator materials

DC-Conductive materials Pulsed DC- All
type of materials

                                                                                     Vasco Teixeira
Nanotecnologia

A nanotecnologia é uma área de investigação e desenvolvimento
muito ampla e multidisciplinar que se baseia nos mais
diversificados tipos de materiais (polímeros, cerâmicos,
metais,   semicondutores     compósitos     e   biomateriais),
estruturados à escala nanométrica (nanoestruturados) de modo
a formar blocos de construção (building blocks) como clusters,
nanopartículas, nanotubos, nanofibras e nanofilmes, que por
sua vez são formados a partir de átomos ou moléculas.



                                                         Vasco Teixeira
Nanotecnologia e impacto
      sócio-económico
A nanotecnologia está a emergir como o campo
  mais promissor e de maior expansão de I&D
As expetativas para que a nanotecnologia melhore a
segurança e a qualidade de vida dos cidadãos são
bastante elevadas e por outro lado apresenta um potencial
enorme para novas soluções para problemas industriais
através de técnicas de nanofabricação emergentes.

A Nanotecnologia já começou a ter um considerável impacto
sócio-económico na Europa, EUA e Japão. Segundo alguns
estudos de mercado poderá vir a ser responsável por mais
de 100 milhões de postos de trabalho diretos ou
indiretamente à escala mundial nos próximos 15 anos.
                                                    Vasco Teixeira
Classes de Materiais Nanoestruturados




Uma grande classe de materiais, com microestruturas moduladas desde
  zero a 3 dimensões na escala de comprimento menor que 100 nm


       R.W. Siegel, Nanophase Materials, Encyclopedia of Applied Physics, VCH Publishers 1994
                                                                                                Vasco Teixeira
% de átomos nas fronteiras de grão em materiais
               nanocristalinos
                                           HRTEM image of a region of nanocrystalline palladium




-As variações mais importantes são provocadas não pela ordem de grandeza
da redução no tamanho, mas pelos novos fenómenos observados, que são
intrínsecos ou tornam-se dominantes à nanoescala.

-Estes fenómenos incluem confinamento devido ao tamanho, predominância
de fenómenos de interface (à nanoescala, a relação superfície/volume é
particularmente dominante) e fenómenos quânticos.
                                                                                  Vasco Teixeira
Aplicações da Nanotecnologia

• Materiais
   – materiais nanoporosos
   – materiais nanoestruturados
   – nanocompósitos
   – catálise
   – multifuncionais, moduláveis, materiais inteligentes (smart materials)
• Biotecnologia
   – nanosensores, nanoprovas de actividade/função biológica
   – máquinas biomoleculares, libertação controlada de farmacos
   – bioeletrónica, nanomedicina (nanorobots), tecidos/orgâos artificiais
   – materiais auto-organizados (self-assembling)
• Electrónica, ótica e fotónica
   – confinamento quântico (pontos quânticos-quantum dots)
   – Lasers (comunicações de fibra óptica)
   – eletrónica à escala molecular
   – eletrónica transparente e flexível
   – filmes finos para eletrónica e fotónica
                                                                         Vasco Teixeira
Nanotechnology Applications on textiles

                                  Nanofibres production (ex. electrofiation)
                                  Putting nanoparticles on the fibres

                           Surface treatment/modification with plasma treatments

    Production of nanocoatings on the textile surfaces (ex. by PVD)
      The nanocoatings on textiles should have enough elasticity,
   resistance to wash and to be functional.
     The techniques used to produce this treatments should operate to
   compatible temperatures with textiles resistance
   Some nanocoatings applications / functionality on textiles:
• TiO2 – UV Protection, photocatalysis effect, self-clean effect, anti-static
• Ag – Antimicrobial activity
• SiO2 – ceramic wear resistant nanocoatings
Nano titanium dioxide and nano-silica are used to improve the wrinkle resistance
of cotton and silk.                                                            Vasco Teixeira
Nanotechnology Applications on textiles
       Incorporation of nanoparticles, such as silver nanoparticles and
       carbon nanotubes, can be used to create fibers that are
       antimicrobial or have increased strength of electrical conductivity


                                                                       Other news functions have
                                                                       been addressed, such as
                                                                       speciality textiles for medical
                                                                       therapy.       Silver-containing
                                                                       fabrics have been successfully
                                                                       investigated       for   treating
                                                                       neurodermatitis.
     http://www.biomedcentral.com/1472-6750/9/34/figure/F8?highres=y
                                                                       Silver containing socks have
                                                                       been reported for preventing
Comparison between
                                                                       foot odour.
an untreated synthetic                                                 The well known UV protective
filament (top) with a                                                  property of titanium dioxide has
treated        filament
(bottom). The filament                                                 also been added to textile
is approximately 10µm                                                  fibres.
in width.
                                                                                                 Vasco Teixeira
IMPACT RESISTANCE

“Liquid Armor” (shear
 thickening fluid) – its
 nanoparticle       based
 coating material allows
 fabric to remain flexible,
                          ,
 but upon impact becomes
 hard.
 Applications for body
 armor vests, helmets,
 and gloves.




                              Vasco Teixeira
Anti-sujidade
Superfície super-hidrofóbica




                               Vasco Teixeira
Commercial Applications
• Nano-Care™ Plain-Front Chinos are amazing
  trousers that do not wrinkle and, when a glass of
  red wine is spilt onto the cream coloured fabric, it
  just rolls off! Bonded to the fabric is a durable
  stain- and wrinkle-resistant Nano-Care by Nano-
  Tex treatment that ensures creases stay in, but
  stains and wrinkles stay out.

A     well   known    hydrophobic    material    is
Polytetrafluorethylen (PTFE) or Teflon. This
material has been used to produce waterproof
clothing such as Gore-Tex, which consists of
several laminated layers surrounding a thin Teflon
membrane.
More recent approaches are based on the use of
nanoparticles and dendrimers.
Nanoparticles such as SiO2 increase the washing
permanence of the textile finish.
                                                         Vasco Teixeira
Smart nanocoatings – Self-cleaning and anti-dirt surfaces
                          Water droplets at surfaces: contact angle
                            θ << 90° hydrophilic surface


                              θ= 120° hydrophobic surface (e.g. Teflon)
                                      sliding drops, no roll off


                              θ     180° super-hydrophobic surface
                                         roll off angle 0°

              Super-hydrophobic surfaces: “Self-cleaning effect”




                                                                            -Rolling water drops
                                                                            act as “mini-wipers“
(flat) hydrophobic surface              hydrophobic surface combined        -no adhering water drops =>
90°<= intrinsic contact angle θi <=120° with specific surface nano-roughness evaporation residues,
                                                                            no
                                               contact angle θ 180°         “spots”
                                                                            -self-cleaning
                                                                                            Vasco Teixeira
Photocatalytic Activity of TiO2 Sputtered Coatings for
              Self-Cleaning Applications
               TiO2 - MICROSTRUCTURE AND MORPHOLOGY (SEM) and (AFM)

      (a)                                           (b)                                           SEM micrographs showing
                                                                                                  the surface morphology of
                                                                                                  TiO2 films deposited under
                                                                                                  two different sputtering
                                                                                                  pressures:
                                     800 nm                                         800 nm        a) pressure of 0.4 Pa;
                                                                                                   b) pressure of 0.5 Pa.


                                                                                                  AFM 3D images of TiO2 films
                                                                                                  deposited under the same
                                                                                                  total pressure of 0.5 Pa and
                                                                                                  with different iron
                                                                                                  concentration:
                                       (a)
                                                                                   (b)            a) low iron concentration
                   Ra. = 1.985 nm                               Ra = 4.518 nm
                   Rms = 2.585 nm                               Rms = 5.697 nm
                                                                                                  b) high iron concentration
“Study of the deposition parameters and Fe-dopant effect in the photocatalytic activity of TiO2
films prepared by dc reactive magnetron sputtering”, J.O. Carneiro, V. Teixeira, A. Portinha,
L. Dupák, A. Magalhães and P. Coutinho, Vacuum, Vol 78, 2005, p.37-46
                                                                                                                            Vasco Teixeira
TiO2 -EVALUATION OF PHOTOCATALYTIC
                      ACTIVITY
                                                             90

                                                                     Transmittance spectra: %T
                                                             85
            TiO2 coated substrate        Rhodamine-B
                                         aqueous solution    80



Mercury                                                      75
tube lamp                                                                                                                 rhodamine B
                                                                                                                          15 min
                                                             70
                                                                                                                          30 min
                                                                                                                          45 min
                                                                                                       %T≅65.8
                                                             65                                                           60 min
                                                                                                                          75 min
                                                                                                       %T≅63.4            90 min
                                                             60
                                                               450     470   490   510   530    550   570   590   610     630       650

                              UV-Vis
                          irradiating light
                                                                                               λ≅554 nm

    c   ln (%T 100 )                              C 
      =                                  ln %         = 4.6 − kt         C0 is the initial aqueous RhB
   c 0 ln (%T0 100 )                          
                                              
                                                  Co 
                                                                           concentration, and C is the aqueous
                                                                             RhB concentration after 15 up to 90
     Kinetic first-order reaction: k is the                                  min irradiation time.
     apparent photodegradation rate constant

                                                                                                                        Vasco Teixeira
Active nanocoatings
Smart multilayered nanocoatings – smart windows and smart labels




 Electrochromic materials change their optical properties
 persistently and reversibly under the action of voltage pulses. By
 sandwiching the electrochromic material and an ion rich transparent
                                                                           Carl M. Lampert, Materials Today, March 2004 p.28-35
 solid between a layer of a transparent conductor, a very small
 potential can induce an electric field that causes ions to cross to the
 electrochromic layer and change its colour state.

                     colour
                       →
  xM + + xe − + WO 3        M x O3
                       ←
                     bleach                          DaimlerChrysler           Courtesy: C. Granqvist, ChromoGenics




                                        Ferrari
                                                                                                                Vasco Teixeira
Nanocoatings Ativos
                    Revestimentos Termocromáticos

    Materiais Termocromáticos como
    o óxido de vanádio entre outros,
    são usados em dispositivos onde a
    mudança        de       propriedades
    óticas/cor (reversível) é ativada por
    mudanças de temperatura.


                    50

                                                          10ºC
                    40
Transmittance (%)




                    30



                    20



                    10                                    70ºC


                    0
                         500   1000      1500      2000      2500
                                 Wavelength (nm)


                                                                    Vasco Teixeira
THERMOCHROMIC COATINGS


                                                        VO2(M)
                                         T   Low                        T    High
  Vanadium oxides are a class
  of materials with outstanding
  physical     and     chemical
                                                      T ~ 68ºC
  properties
                                                       Reversible

  They undergo an abrupt           Semiconductor                         Metallic
  transition   from   a   non-     Monoclinic phase                 Tetragonal phase
  metallic to a metallic state
  with increasing temperature             Low ---- IR reflectance --- High
                                        High --- Electrical resistance --- Low



They find technological applications such as:
                                                - optical and electrical switching devices
                                                - light detectors
                                                - temperature sensors
                                                - microbatteries
                                                                                    Vasco Teixeira
THERMOCHROMIC COATINGS
   Solar control coatings are a technology with growing interest due to the
   necessity of improving the energy efficiency of buildings avoiding excessive energy
   consumption with cooling systems on summer.


    VO2(M) is being considered as
    a potential candidate for
    application in smart windows
    with active solar control for
    energy savings



    However,                           I.P. Parkin and T.D. Manning, Journal of Chemical Education 83 (2006) 393-400

 - improved transmittances (VIS) and higher thermochromic switch (IR) are required

 - doping is necessary in order to decrease the intrinsic phase transition temperature
(~68ºC) to acceptable values (25-30ºC)

 - color (yellow-brown) neutralization is also an issue to be addressed

                                                                                                             Vasco Teixeira
Thermochromic coatings: Pure VO2

                                                  λ=2.5 µm
                     50                                                                                   50

                     45                                                 Heating
                                                                                                                                                10ºC
                                                                        Cooling
                     40                                                                                   40




                                                                                      Transmittance (%)
                     35
 Transmittance (%)




                     30                                                                                   30
                     25

                     20
                               Ts=63ºC                                                                    20
                     15

                     10                                                                                                                         70ºC
                                                                                                          10
                     5

                     0
                          0   10   20   30   40    50   60   70   80   90   100 110                        0
                                                                                                               500   1000      1500      2000      2500
                                             Temperature (ºC)
                                                                                                                       Wavelength (nm)



 Ts heating/cooling determined                                                        by
 differentiating the respective curves
 Ts = (Ts heating+Ts cooling)/2

                                                                                                                                                       Vasco Teixeira
Thermochromic coatings: V0.97W0.03O2

                                         λ=2.5 µm
                     50                                                                          50
                     45                                       Heating
                                                              Cooling                                                                  10ºC
                     40
                                                                                                 40
                     35




                                                                             Transmittance (%)
 Transmittance (%)




                     30
                                                                                                 30
                     25

                     20
                                                                                                 20
                     15
                              Ts = 40ºC                                                                                                70ºC
                     10
                                                                                                 10
                     5

                     0
                          0   10   20   30    40    50   60    70       80                        0
                                                                                                      500   1000      1500      2000      2500
                                        Temperature ºC
                                                                                                              Wavelength (nm)



                      W doped films with different switching temperatures (e.g. 20 to 60ºC)
                      and max. transmittance over 40%, in the visible, can be easily
                      obtained by reactive magnetron sputtering.



                                                                                                                                              Vasco Teixeira
Biomimetic Textiles using Nanocomposites

     Chameleon Effect                Thermocromic Pigments can be used to change
                                     the colour state of textile materials.
                                        Changes from colour to colourless states as
      Heating
                                        temperature rises.
      Cooling                           With decreasing temperature, the colour returns.
                                     The pigment is encapsulated in aqueous conditions
                                     and the resultant pigment is in slurry form.




                     SHELL
                (Polymer material)                                                  Vasco Teixeira
Self-Cleaning textiles using biodegradable fibers: Poly(lactic acid)
                               - PLA
            Poly(lactic acid) (PLA) is a biodegradable
            polymer which consists of linear aliphatic
            thermoplastic polyester derived from 100% of
            renewable sources such as corn.

 PLA is used broadly in textile applications due to
the fact that PLA is biodegradable and its life
                                                             SEM micrographs of TiO2 coated surface of PLA textile fibres:
cycle potentially reduces the Earth’s carbon
                                                            (a)—without washing treatments; (b)—with washing treatments.
dioxide level.
                                                      Ra = 6.76nm
                                                      Rms = 9.16nm                               AFM image of TiO2
        Photocatalytic Ability                                                                   nanocoating
                                                                                                 produced via
                                                                                                 Pulsed Magnetron
                                                                                                 Sputtering (PMS).




                                                                   Development of
                                                                     Super-hydrophobic
                                                                         Textile Surfaces


                                                                                                             Vasco Teixeira
Scanning Electronic Microscopy (SEM)
   and Atomic Force Microscopy (AFM

    PLA fiber without plasma treatment




                                                                               PLA fiber with plasma treatment



V. Teixeira, Invited talk at NATO Advanced Research Workshop on “Textile Composites”,
May 18-21, Kiev, Ukraine
                                                                                                       Vasco Teixeira
Hidrophobicity of PLA fabrics




Contact angle for the    Contact angle for the PLA
non treated PLA fabric   fabric treated with PVD
                         plasma




                                                     Vasco Teixeira
Scanning Electronic Microscopy (SEM/EDX)
 and Atomic Force Microscopy (AFM)




             TiO2 Nanocoating on PLA fibers
             without plasma treatment                             TiO2 Nanocoating on PLA fibers
V. Teixeira, Invited talk at NATO advanced research workshop on
                                                                  with plasma treatment
“Textile Composites”, May 18-21, Kiev, Ukraine
                                                                                         Vasco Teixeira
PLA Fabrics - Antibacterial Properties




PLA fabric without nanocoating      PLA fabric with TiO2 nanocoating
did not show bactericide activity   shows 100% bactericide activity



                                                                       Vasco Teixeira
Wearable Electronic Textiles
Transport and
automotive industries is
one of the largest that
benefits from interactive
electronic and technical
                                                                  The ”life jacket” is a medical devise worn
Textiles (heating, anti-                                          by the patient that consequently reads their
odour). They have uses                                            blood pressure or monitors the heart rate;
in space shuttles,                                                the information is transferred to a computer
aircraft and racing cars.                             Medical     and read by medical staff.




                                     Automotive &
                                      Transport                   Entertainment




                                                    Interactive
                                                      Textiles                     Club wear that reacts to
                                                                                   movement, heat and light.



                                      Clothing
                                                                  Sportswear
                                      /Leisure



Gloves that contain
heaters, or built in                                  Military
LED’s emitting light
so that a cyclist can                                                               Some sports clothing
be seen in the dark.                                                                such as car and motorbike
                     Voice active wearable                                          racing also astronauts
          computers that enable the user                                            suits contain integrated
                to work hands free whilst                                           electronic components.
               operating machinery etc...                                                         Vasco Teixeira
Potential Applications: Future Challenges
 A nanocoating that could possibly have the ability to self
 heal (self-repairing function)
 Textile surfaces which can remove surface scratches
 and scuff marks; repel insects; and decolorize red wine
 stains are under development
 Nanotechnology is being used to develop “sensorized”
 garments with the ability to monitor body temperature
 and vital signs
 Bioreactive polymeric coatings are being developed to
 protect the wearer against biological and chemical
 attacks
 Military uniforms are being developed that will change
 colors on command to camouflage the user            Vasco Teixeira
CONCLUSÕES
Filmes finos eletro- / termo- cromáticos capazes de modular a
cor das superfícies têxteis, e controlar o fluxo de calor.

Revestimentos nanoestruturados e filmes finos para superfícies
inteligentes (implantes biomédicos, auto-limpante, anti-
microbianas, auto-regeneração, dispositivos sensoriais e de
nanodiagnóstico médico).

Superfícies     nanograduadas       e    nanocompósitos       com
incorporação de nanopartículas (p.ex. filmes de dióxido de
titânio com pigmentos orgânicos, fibras têxteis com nanopartículas
– libertação controlada de aromas e/ou fármacos).

Sistemas para eletrónica flexível: sistemas ultra-eficientes de
energia, células solares de última geração nano, integração de
sistemas fotovoltaicos e OLED’s em superfícies flexíveis,
nanofilmes e tratamentos plasma para polímeros e têxteis.
                                                            Vasco Teixeira

Weitere ähnliche Inhalte

Ähnlich wie Materiais Nanoestruturados e Revestimentos Funcionais para aplicações em Conforto e Segurança -Fibrenamics Vasco Teixeira 24_Oct_2012

Nato Sawhney, 18 Powerpoint Slides
Nato Sawhney, 18 Powerpoint SlidesNato Sawhney, 18 Powerpoint Slides
Nato Sawhney, 18 Powerpoint SlidesNazrul
 
Nanomaterials in Coating and Colorant Technologies
Nanomaterials in Coating and Colorant TechnologiesNanomaterials in Coating and Colorant Technologies
Nanomaterials in Coating and Colorant TechnologiesJelliarko Palgunadi
 
Nano Technology in Textile Presentation Prepared By MD. Nurul Islam.pptx
Nano Technology in Textile Presentation Prepared By MD. Nurul Islam.pptxNano Technology in Textile Presentation Prepared By MD. Nurul Islam.pptx
Nano Technology in Textile Presentation Prepared By MD. Nurul Islam.pptxMD. NURUL ISLAM
 
Nanoparticles seminar
Nanoparticles seminarNanoparticles seminar
Nanoparticles seminarjutt315
 
Nanoparticles seminar
Nanoparticles seminarNanoparticles seminar
Nanoparticles seminarjutt315
 
Nanotechnology : Nanotextile the fabric of the future
Nanotechnology : Nanotextile the fabric of the futureNanotechnology : Nanotextile the fabric of the future
Nanotechnology : Nanotextile the fabric of the futureJoytu Talukder
 
Presentation dipas final
Presentation dipas finalPresentation dipas final
Presentation dipas finalreinstenano
 
Nano technology in textiles. seminar. pptx
Nano technology in textiles. seminar. pptxNano technology in textiles. seminar. pptx
Nano technology in textiles. seminar. pptxBademaw Abate
 
Unit 3_2_Nano-textile (1).pptx
Unit 3_2_Nano-textile (1).pptxUnit 3_2_Nano-textile (1).pptx
Unit 3_2_Nano-textile (1).pptxNandika26
 
Opportunities and Challenges in Nanotechnology-based Food Packaging Industry,...
Opportunities and Challenges in Nanotechnology-based Food Packaging Industry,...Opportunities and Challenges in Nanotechnology-based Food Packaging Industry,...
Opportunities and Challenges in Nanotechnology-based Food Packaging Industry,...teixeiravasco
 
Nano finishing-of-textiles-091107130656-phpapp02
Nano finishing-of-textiles-091107130656-phpapp02Nano finishing-of-textiles-091107130656-phpapp02
Nano finishing-of-textiles-091107130656-phpapp02Anwaar Ahmed
 
Kapil's Nanotechnologys
Kapil's NanotechnologysKapil's Nanotechnologys
Kapil's Nanotechnologyskapil200
 
Nano technology related to textile
Nano technology related to textileNano technology related to textile
Nano technology related to textileMuzammel Ananda
 
Nano technology ppt
Nano technology pptNano technology ppt
Nano technology pptManikotesh
 
Nanotechnology in textile
Nanotechnology in textileNanotechnology in textile
Nanotechnology in textileSazed Salman
 

Ähnlich wie Materiais Nanoestruturados e Revestimentos Funcionais para aplicações em Conforto e Segurança -Fibrenamics Vasco Teixeira 24_Oct_2012 (20)

Nato Sawhney, 18 Powerpoint Slides
Nato Sawhney, 18 Powerpoint SlidesNato Sawhney, 18 Powerpoint Slides
Nato Sawhney, 18 Powerpoint Slides
 
Nano Finishes In Textiles
Nano Finishes In TextilesNano Finishes In Textiles
Nano Finishes In Textiles
 
Nanomaterials in Coating and Colorant Technologies
Nanomaterials in Coating and Colorant TechnologiesNanomaterials in Coating and Colorant Technologies
Nanomaterials in Coating and Colorant Technologies
 
Nano Technology in Textile Presentation Prepared By MD. Nurul Islam.pptx
Nano Technology in Textile Presentation Prepared By MD. Nurul Islam.pptxNano Technology in Textile Presentation Prepared By MD. Nurul Islam.pptx
Nano Technology in Textile Presentation Prepared By MD. Nurul Islam.pptx
 
Nano textiles
Nano textilesNano textiles
Nano textiles
 
Nanoparticles seminar
Nanoparticles seminarNanoparticles seminar
Nanoparticles seminar
 
Nanoparticles seminar
Nanoparticles seminarNanoparticles seminar
Nanoparticles seminar
 
Nanotechnology : Nanotextile the fabric of the future
Nanotechnology : Nanotextile the fabric of the futureNanotechnology : Nanotextile the fabric of the future
Nanotechnology : Nanotextile the fabric of the future
 
Presentation dipas final
Presentation dipas finalPresentation dipas final
Presentation dipas final
 
Nano finish
Nano finishNano finish
Nano finish
 
Nano technology in textiles. seminar. pptx
Nano technology in textiles. seminar. pptxNano technology in textiles. seminar. pptx
Nano technology in textiles. seminar. pptx
 
Unit 3_2_Nano-textile (1).pptx
Unit 3_2_Nano-textile (1).pptxUnit 3_2_Nano-textile (1).pptx
Unit 3_2_Nano-textile (1).pptx
 
Opportunities and Challenges in Nanotechnology-based Food Packaging Industry,...
Opportunities and Challenges in Nanotechnology-based Food Packaging Industry,...Opportunities and Challenges in Nanotechnology-based Food Packaging Industry,...
Opportunities and Challenges in Nanotechnology-based Food Packaging Industry,...
 
Nano finishing-of-textiles-091107130656-phpapp02
Nano finishing-of-textiles-091107130656-phpapp02Nano finishing-of-textiles-091107130656-phpapp02
Nano finishing-of-textiles-091107130656-phpapp02
 
Nano Finishing Of Textiles
Nano Finishing Of TextilesNano Finishing Of Textiles
Nano Finishing Of Textiles
 
Kapil's Nanotechnologys
Kapil's NanotechnologysKapil's Nanotechnologys
Kapil's Nanotechnologys
 
Nano technology related to textile
Nano technology related to textileNano technology related to textile
Nano technology related to textile
 
Nano.pptx
Nano.pptxNano.pptx
Nano.pptx
 
Nano technology ppt
Nano technology pptNano technology ppt
Nano technology ppt
 
Nanotechnology in textile
Nanotechnology in textileNanotechnology in textile
Nanotechnology in textile
 

Mehr von teixeiravasco

Nanoscale-based Concepts for Innovative and Eco-Sustainable Constructive Mate...
Nanoscale-based Concepts for Innovative and Eco-Sustainable Constructive Mate...Nanoscale-based Concepts for Innovative and Eco-Sustainable Constructive Mate...
Nanoscale-based Concepts for Innovative and Eco-Sustainable Constructive Mate...teixeiravasco
 
Os novos programas europeus e regionais para financiamento da economia no per...
Os novos programas europeus e regionais para financiamento da economia no per...Os novos programas europeus e regionais para financiamento da economia no per...
Os novos programas europeus e regionais para financiamento da economia no per...teixeiravasco
 
Nanotecnologia revoluciona a indústria. Entrevista de Vasco Teixeira a revist...
Nanotecnologia revoluciona a indústria. Entrevista de Vasco Teixeira a revist...Nanotecnologia revoluciona a indústria. Entrevista de Vasco Teixeira a revist...
Nanotecnologia revoluciona a indústria. Entrevista de Vasco Teixeira a revist...teixeiravasco
 
Nanotechnology in Plastic Industry - Oportunidades e Desafios dos Nanomateria...
Nanotechnology in Plastic Industry - Oportunidades e Desafios dos Nanomateria...Nanotechnology in Plastic Industry - Oportunidades e Desafios dos Nanomateria...
Nanotechnology in Plastic Industry - Oportunidades e Desafios dos Nanomateria...teixeiravasco
 
O Modelo Social Europeu na nova realidade Europeia e os Desafios da Estratégi...
O Modelo Social Europeu na nova realidade Europeia e os Desafios da Estratégi...O Modelo Social Europeu na nova realidade Europeia e os Desafios da Estratégi...
O Modelo Social Europeu na nova realidade Europeia e os Desafios da Estratégi...teixeiravasco
 
A aposta estratégica numa Europa do conhecimento e inovação: os desafios no n...
A aposta estratégica numa Europa do conhecimento e inovação: os desafios no n...A aposta estratégica numa Europa do conhecimento e inovação: os desafios no n...
A aposta estratégica numa Europa do conhecimento e inovação: os desafios no n...teixeiravasco
 
Projeto Nanovalor - Pólo de Competitividade em Nanotecnologia para capitaliza...
Projeto Nanovalor - Pólo de Competitividade em Nanotecnologia para capitaliza...Projeto Nanovalor - Pólo de Competitividade em Nanotecnologia para capitaliza...
Projeto Nanovalor - Pólo de Competitividade em Nanotecnologia para capitaliza...teixeiravasco
 
Nanotech in Industry_overview_vasco_teixeira_julho2012
Nanotech in Industry_overview_vasco_teixeira_julho2012Nanotech in Industry_overview_vasco_teixeira_julho2012
Nanotech in Industry_overview_vasco_teixeira_julho2012teixeiravasco
 

Mehr von teixeiravasco (8)

Nanoscale-based Concepts for Innovative and Eco-Sustainable Constructive Mate...
Nanoscale-based Concepts for Innovative and Eco-Sustainable Constructive Mate...Nanoscale-based Concepts for Innovative and Eco-Sustainable Constructive Mate...
Nanoscale-based Concepts for Innovative and Eco-Sustainable Constructive Mate...
 
Os novos programas europeus e regionais para financiamento da economia no per...
Os novos programas europeus e regionais para financiamento da economia no per...Os novos programas europeus e regionais para financiamento da economia no per...
Os novos programas europeus e regionais para financiamento da economia no per...
 
Nanotecnologia revoluciona a indústria. Entrevista de Vasco Teixeira a revist...
Nanotecnologia revoluciona a indústria. Entrevista de Vasco Teixeira a revist...Nanotecnologia revoluciona a indústria. Entrevista de Vasco Teixeira a revist...
Nanotecnologia revoluciona a indústria. Entrevista de Vasco Teixeira a revist...
 
Nanotechnology in Plastic Industry - Oportunidades e Desafios dos Nanomateria...
Nanotechnology in Plastic Industry - Oportunidades e Desafios dos Nanomateria...Nanotechnology in Plastic Industry - Oportunidades e Desafios dos Nanomateria...
Nanotechnology in Plastic Industry - Oportunidades e Desafios dos Nanomateria...
 
O Modelo Social Europeu na nova realidade Europeia e os Desafios da Estratégi...
O Modelo Social Europeu na nova realidade Europeia e os Desafios da Estratégi...O Modelo Social Europeu na nova realidade Europeia e os Desafios da Estratégi...
O Modelo Social Europeu na nova realidade Europeia e os Desafios da Estratégi...
 
A aposta estratégica numa Europa do conhecimento e inovação: os desafios no n...
A aposta estratégica numa Europa do conhecimento e inovação: os desafios no n...A aposta estratégica numa Europa do conhecimento e inovação: os desafios no n...
A aposta estratégica numa Europa do conhecimento e inovação: os desafios no n...
 
Projeto Nanovalor - Pólo de Competitividade em Nanotecnologia para capitaliza...
Projeto Nanovalor - Pólo de Competitividade em Nanotecnologia para capitaliza...Projeto Nanovalor - Pólo de Competitividade em Nanotecnologia para capitaliza...
Projeto Nanovalor - Pólo de Competitividade em Nanotecnologia para capitaliza...
 
Nanotech in Industry_overview_vasco_teixeira_julho2012
Nanotech in Industry_overview_vasco_teixeira_julho2012Nanotech in Industry_overview_vasco_teixeira_julho2012
Nanotech in Industry_overview_vasco_teixeira_julho2012
 

Materiais Nanoestruturados e Revestimentos Funcionais para aplicações em Conforto e Segurança -Fibrenamics Vasco Teixeira 24_Oct_2012

  • 1. Workshop Fibrenamics na Proteção Pessoal Universidade do Minho, Campus de Azurém, 24 outubro, 2012 Materiais Nanoestruturados e Revestimentos Funcionais para aplicações em Conforto e Segurança Vasco Teixeira , Joaquim Carneiro, Sofia Azevedo, Jorge Neves* GRF-Functional Coatings Group & * Textile Eng. Dept Universidade do Minho Guimarães - Portugal email: vasco@fisica.uminho.pt Sumário Nanotecnologia, aplicações e impacto sócio-económico Materiais Nanoestruturados e Revestimentos Funcionais Algumas aplicações no conforto e proteção pessoal “Smart” nanocoatings (Revestimentos inteligentes) Anti-sujidade, auto-limpantes (self-cleaning) Termo- e Electrocromáticos Potenciais aplicações: desafios futuros Conclusões Vasco Teixeira
  • 2. GRF- Functional Coatings Group Innovative nanoscale coating architectures for functional decorative and smart surfaces 50 10ºC 40 Transmittance (%) a b 30 ) ) 20 10 70ºC 0 500 1000 1500 2000 2500 Wavelength (nm) Vasco Teixeira
  • 3. Thin film deposition systems Magnetron Sputtering – DC and pulsed DC mode Single Magnetron Sputtering Ion Beam Assisted Multi Magnetron Sputtering Sputtering Deposition DC and Pulsed DC RF- insulator materials DC-Conductive materials Pulsed DC- All type of materials Vasco Teixeira
  • 4. Nanotecnologia A nanotecnologia é uma área de investigação e desenvolvimento muito ampla e multidisciplinar que se baseia nos mais diversificados tipos de materiais (polímeros, cerâmicos, metais, semicondutores compósitos e biomateriais), estruturados à escala nanométrica (nanoestruturados) de modo a formar blocos de construção (building blocks) como clusters, nanopartículas, nanotubos, nanofibras e nanofilmes, que por sua vez são formados a partir de átomos ou moléculas. Vasco Teixeira
  • 5. Nanotecnologia e impacto sócio-económico A nanotecnologia está a emergir como o campo mais promissor e de maior expansão de I&D As expetativas para que a nanotecnologia melhore a segurança e a qualidade de vida dos cidadãos são bastante elevadas e por outro lado apresenta um potencial enorme para novas soluções para problemas industriais através de técnicas de nanofabricação emergentes. A Nanotecnologia já começou a ter um considerável impacto sócio-económico na Europa, EUA e Japão. Segundo alguns estudos de mercado poderá vir a ser responsável por mais de 100 milhões de postos de trabalho diretos ou indiretamente à escala mundial nos próximos 15 anos. Vasco Teixeira
  • 6. Classes de Materiais Nanoestruturados Uma grande classe de materiais, com microestruturas moduladas desde zero a 3 dimensões na escala de comprimento menor que 100 nm R.W. Siegel, Nanophase Materials, Encyclopedia of Applied Physics, VCH Publishers 1994 Vasco Teixeira
  • 7. % de átomos nas fronteiras de grão em materiais nanocristalinos HRTEM image of a region of nanocrystalline palladium -As variações mais importantes são provocadas não pela ordem de grandeza da redução no tamanho, mas pelos novos fenómenos observados, que são intrínsecos ou tornam-se dominantes à nanoescala. -Estes fenómenos incluem confinamento devido ao tamanho, predominância de fenómenos de interface (à nanoescala, a relação superfície/volume é particularmente dominante) e fenómenos quânticos. Vasco Teixeira
  • 8. Aplicações da Nanotecnologia • Materiais – materiais nanoporosos – materiais nanoestruturados – nanocompósitos – catálise – multifuncionais, moduláveis, materiais inteligentes (smart materials) • Biotecnologia – nanosensores, nanoprovas de actividade/função biológica – máquinas biomoleculares, libertação controlada de farmacos – bioeletrónica, nanomedicina (nanorobots), tecidos/orgâos artificiais – materiais auto-organizados (self-assembling) • Electrónica, ótica e fotónica – confinamento quântico (pontos quânticos-quantum dots) – Lasers (comunicações de fibra óptica) – eletrónica à escala molecular – eletrónica transparente e flexível – filmes finos para eletrónica e fotónica Vasco Teixeira
  • 9. Nanotechnology Applications on textiles Nanofibres production (ex. electrofiation) Putting nanoparticles on the fibres Surface treatment/modification with plasma treatments Production of nanocoatings on the textile surfaces (ex. by PVD) The nanocoatings on textiles should have enough elasticity, resistance to wash and to be functional. The techniques used to produce this treatments should operate to compatible temperatures with textiles resistance Some nanocoatings applications / functionality on textiles: • TiO2 – UV Protection, photocatalysis effect, self-clean effect, anti-static • Ag – Antimicrobial activity • SiO2 – ceramic wear resistant nanocoatings Nano titanium dioxide and nano-silica are used to improve the wrinkle resistance of cotton and silk. Vasco Teixeira
  • 10. Nanotechnology Applications on textiles Incorporation of nanoparticles, such as silver nanoparticles and carbon nanotubes, can be used to create fibers that are antimicrobial or have increased strength of electrical conductivity Other news functions have been addressed, such as speciality textiles for medical therapy. Silver-containing fabrics have been successfully investigated for treating neurodermatitis. http://www.biomedcentral.com/1472-6750/9/34/figure/F8?highres=y Silver containing socks have been reported for preventing Comparison between foot odour. an untreated synthetic The well known UV protective filament (top) with a property of titanium dioxide has treated filament (bottom). The filament also been added to textile is approximately 10µm fibres. in width. Vasco Teixeira
  • 11. IMPACT RESISTANCE “Liquid Armor” (shear thickening fluid) – its nanoparticle based coating material allows fabric to remain flexible, , but upon impact becomes hard. Applications for body armor vests, helmets, and gloves. Vasco Teixeira
  • 13. Commercial Applications • Nano-Care™ Plain-Front Chinos are amazing trousers that do not wrinkle and, when a glass of red wine is spilt onto the cream coloured fabric, it just rolls off! Bonded to the fabric is a durable stain- and wrinkle-resistant Nano-Care by Nano- Tex treatment that ensures creases stay in, but stains and wrinkles stay out. A well known hydrophobic material is Polytetrafluorethylen (PTFE) or Teflon. This material has been used to produce waterproof clothing such as Gore-Tex, which consists of several laminated layers surrounding a thin Teflon membrane. More recent approaches are based on the use of nanoparticles and dendrimers. Nanoparticles such as SiO2 increase the washing permanence of the textile finish. Vasco Teixeira
  • 14. Smart nanocoatings – Self-cleaning and anti-dirt surfaces Water droplets at surfaces: contact angle θ << 90° hydrophilic surface θ= 120° hydrophobic surface (e.g. Teflon) sliding drops, no roll off θ 180° super-hydrophobic surface roll off angle 0° Super-hydrophobic surfaces: “Self-cleaning effect” -Rolling water drops act as “mini-wipers“ (flat) hydrophobic surface hydrophobic surface combined -no adhering water drops => 90°<= intrinsic contact angle θi <=120° with specific surface nano-roughness evaporation residues, no contact angle θ 180° “spots” -self-cleaning Vasco Teixeira
  • 15. Photocatalytic Activity of TiO2 Sputtered Coatings for Self-Cleaning Applications TiO2 - MICROSTRUCTURE AND MORPHOLOGY (SEM) and (AFM) (a) (b) SEM micrographs showing the surface morphology of TiO2 films deposited under two different sputtering pressures: 800 nm 800 nm a) pressure of 0.4 Pa; b) pressure of 0.5 Pa. AFM 3D images of TiO2 films deposited under the same total pressure of 0.5 Pa and with different iron concentration: (a) (b) a) low iron concentration Ra. = 1.985 nm Ra = 4.518 nm Rms = 2.585 nm Rms = 5.697 nm b) high iron concentration “Study of the deposition parameters and Fe-dopant effect in the photocatalytic activity of TiO2 films prepared by dc reactive magnetron sputtering”, J.O. Carneiro, V. Teixeira, A. Portinha, L. Dupák, A. Magalhães and P. Coutinho, Vacuum, Vol 78, 2005, p.37-46 Vasco Teixeira
  • 16. TiO2 -EVALUATION OF PHOTOCATALYTIC ACTIVITY 90 Transmittance spectra: %T 85 TiO2 coated substrate Rhodamine-B aqueous solution 80 Mercury 75 tube lamp rhodamine B 15 min 70 30 min 45 min %T≅65.8 65 60 min 75 min %T≅63.4 90 min 60 450 470 490 510 530 550 570 590 610 630 650 UV-Vis irradiating light λ≅554 nm c ln (%T 100 )   C  = ln %  = 4.6 − kt C0 is the initial aqueous RhB c 0 ln (%T0 100 )     Co   concentration, and C is the aqueous RhB concentration after 15 up to 90 Kinetic first-order reaction: k is the min irradiation time. apparent photodegradation rate constant Vasco Teixeira
  • 17. Active nanocoatings Smart multilayered nanocoatings – smart windows and smart labels Electrochromic materials change their optical properties persistently and reversibly under the action of voltage pulses. By sandwiching the electrochromic material and an ion rich transparent Carl M. Lampert, Materials Today, March 2004 p.28-35 solid between a layer of a transparent conductor, a very small potential can induce an electric field that causes ions to cross to the electrochromic layer and change its colour state. colour → xM + + xe − + WO 3 M x O3 ← bleach DaimlerChrysler Courtesy: C. Granqvist, ChromoGenics Ferrari Vasco Teixeira
  • 18. Nanocoatings Ativos Revestimentos Termocromáticos Materiais Termocromáticos como o óxido de vanádio entre outros, são usados em dispositivos onde a mudança de propriedades óticas/cor (reversível) é ativada por mudanças de temperatura. 50 10ºC 40 Transmittance (%) 30 20 10 70ºC 0 500 1000 1500 2000 2500 Wavelength (nm) Vasco Teixeira
  • 19. THERMOCHROMIC COATINGS VO2(M) T Low T High Vanadium oxides are a class of materials with outstanding physical and chemical T ~ 68ºC properties Reversible They undergo an abrupt Semiconductor Metallic transition from a non- Monoclinic phase Tetragonal phase metallic to a metallic state with increasing temperature Low ---- IR reflectance --- High High --- Electrical resistance --- Low They find technological applications such as: - optical and electrical switching devices - light detectors - temperature sensors - microbatteries Vasco Teixeira
  • 20. THERMOCHROMIC COATINGS Solar control coatings are a technology with growing interest due to the necessity of improving the energy efficiency of buildings avoiding excessive energy consumption with cooling systems on summer. VO2(M) is being considered as a potential candidate for application in smart windows with active solar control for energy savings However, I.P. Parkin and T.D. Manning, Journal of Chemical Education 83 (2006) 393-400 - improved transmittances (VIS) and higher thermochromic switch (IR) are required - doping is necessary in order to decrease the intrinsic phase transition temperature (~68ºC) to acceptable values (25-30ºC) - color (yellow-brown) neutralization is also an issue to be addressed Vasco Teixeira
  • 21. Thermochromic coatings: Pure VO2 λ=2.5 µm 50 50 45 Heating 10ºC Cooling 40 40 Transmittance (%) 35 Transmittance (%) 30 30 25 20 Ts=63ºC 20 15 10 70ºC 10 5 0 0 10 20 30 40 50 60 70 80 90 100 110 0 500 1000 1500 2000 2500 Temperature (ºC) Wavelength (nm) Ts heating/cooling determined by differentiating the respective curves Ts = (Ts heating+Ts cooling)/2 Vasco Teixeira
  • 22. Thermochromic coatings: V0.97W0.03O2 λ=2.5 µm 50 50 45 Heating Cooling 10ºC 40 40 35 Transmittance (%) Transmittance (%) 30 30 25 20 20 15 Ts = 40ºC 70ºC 10 10 5 0 0 10 20 30 40 50 60 70 80 0 500 1000 1500 2000 2500 Temperature ºC Wavelength (nm) W doped films with different switching temperatures (e.g. 20 to 60ºC) and max. transmittance over 40%, in the visible, can be easily obtained by reactive magnetron sputtering. Vasco Teixeira
  • 23. Biomimetic Textiles using Nanocomposites Chameleon Effect Thermocromic Pigments can be used to change the colour state of textile materials. Changes from colour to colourless states as Heating temperature rises. Cooling With decreasing temperature, the colour returns. The pigment is encapsulated in aqueous conditions and the resultant pigment is in slurry form. SHELL (Polymer material) Vasco Teixeira
  • 24. Self-Cleaning textiles using biodegradable fibers: Poly(lactic acid) - PLA Poly(lactic acid) (PLA) is a biodegradable polymer which consists of linear aliphatic thermoplastic polyester derived from 100% of renewable sources such as corn. PLA is used broadly in textile applications due to the fact that PLA is biodegradable and its life SEM micrographs of TiO2 coated surface of PLA textile fibres: cycle potentially reduces the Earth’s carbon (a)—without washing treatments; (b)—with washing treatments. dioxide level. Ra = 6.76nm Rms = 9.16nm AFM image of TiO2 Photocatalytic Ability nanocoating produced via Pulsed Magnetron Sputtering (PMS). Development of Super-hydrophobic Textile Surfaces Vasco Teixeira
  • 25. Scanning Electronic Microscopy (SEM) and Atomic Force Microscopy (AFM PLA fiber without plasma treatment PLA fiber with plasma treatment V. Teixeira, Invited talk at NATO Advanced Research Workshop on “Textile Composites”, May 18-21, Kiev, Ukraine Vasco Teixeira
  • 26. Hidrophobicity of PLA fabrics Contact angle for the Contact angle for the PLA non treated PLA fabric fabric treated with PVD plasma Vasco Teixeira
  • 27. Scanning Electronic Microscopy (SEM/EDX) and Atomic Force Microscopy (AFM) TiO2 Nanocoating on PLA fibers without plasma treatment TiO2 Nanocoating on PLA fibers V. Teixeira, Invited talk at NATO advanced research workshop on with plasma treatment “Textile Composites”, May 18-21, Kiev, Ukraine Vasco Teixeira
  • 28. PLA Fabrics - Antibacterial Properties PLA fabric without nanocoating PLA fabric with TiO2 nanocoating did not show bactericide activity shows 100% bactericide activity Vasco Teixeira
  • 29. Wearable Electronic Textiles Transport and automotive industries is one of the largest that benefits from interactive electronic and technical The ”life jacket” is a medical devise worn Textiles (heating, anti- by the patient that consequently reads their odour). They have uses blood pressure or monitors the heart rate; in space shuttles, the information is transferred to a computer aircraft and racing cars. Medical and read by medical staff. Automotive & Transport Entertainment Interactive Textiles Club wear that reacts to movement, heat and light. Clothing Sportswear /Leisure Gloves that contain heaters, or built in Military LED’s emitting light so that a cyclist can Some sports clothing be seen in the dark. such as car and motorbike Voice active wearable racing also astronauts computers that enable the user suits contain integrated to work hands free whilst electronic components. operating machinery etc... Vasco Teixeira
  • 30. Potential Applications: Future Challenges A nanocoating that could possibly have the ability to self heal (self-repairing function) Textile surfaces which can remove surface scratches and scuff marks; repel insects; and decolorize red wine stains are under development Nanotechnology is being used to develop “sensorized” garments with the ability to monitor body temperature and vital signs Bioreactive polymeric coatings are being developed to protect the wearer against biological and chemical attacks Military uniforms are being developed that will change colors on command to camouflage the user Vasco Teixeira
  • 31. CONCLUSÕES Filmes finos eletro- / termo- cromáticos capazes de modular a cor das superfícies têxteis, e controlar o fluxo de calor. Revestimentos nanoestruturados e filmes finos para superfícies inteligentes (implantes biomédicos, auto-limpante, anti- microbianas, auto-regeneração, dispositivos sensoriais e de nanodiagnóstico médico). Superfícies nanograduadas e nanocompósitos com incorporação de nanopartículas (p.ex. filmes de dióxido de titânio com pigmentos orgânicos, fibras têxteis com nanopartículas – libertação controlada de aromas e/ou fármacos). Sistemas para eletrónica flexível: sistemas ultra-eficientes de energia, células solares de última geração nano, integração de sistemas fotovoltaicos e OLED’s em superfícies flexíveis, nanofilmes e tratamentos plasma para polímeros e têxteis. Vasco Teixeira