SlideShare ist ein Scribd-Unternehmen logo
1 von 44
Interpolation produces a
function that matches the given
data exactly. The function then
can be utilized to approximate
the data values at intermediate
points.
Interpolation may also be used
to produce a smooth graph of a
function for which values are
known only at discrete points,
either from measurements or
calculations.
Given data points
Obtain a function, P(x)
P(x) goes through the data points
Use P(x)
To estimate values at intermediate
points
Given data points:
At x0 = 2, y0 = 3 and at x1 = 5, y1 = 8
Find the following:
At x = 4, y = ?
P(x) should satisfy the following conditions:
P(x = 2) = 3 and P(x = 5) = 8

P( x ) = 3 L0 ( x ) + 8 L1 ( x )
P(x) can satisfy the above conditions if
at x = x0 = 2, L0(x) = 1 and L1(x) = 0 and
at x = x1= 5, L0(x) = 0 and L1(x) = 1
At x = x0 = 2, L0(x) = 1 and L1(x) = 0 and
at x = x1= 5, L0(x) = 0 and L1(x) = 1
The conditions can be satisfied if L0(x) and
L1(x) are defined in the following way.

x−5
L0 ( x ) =
and
2−5

x − x1
L0 ( x ) =
x0 − x1

x−2
L1 ( x ) =
5−2

x − x0
and L1 ( x ) =
x1 − x0
P( x ) = 3 L0 ( x ) + 8 L1 ( x )

P( x ) = L0 ( x ) y0 + L1 ( x ) y1
Lagrange Interpolating Polynomial

P( x ) = L0 ( x ) f ( x0 ) + L1 ( x ) f ( x1 )
P( x ) = L0 ( x ) f ( x0 ) + L1 ( x ) f ( x1 )
 x−5
 x−2
P( x ) = 
( 3 ) + 
( 8 )
 2−5
5−2
5x − 1
P( x ) =
3
5× 4 −1
P( 4) =
= 6.333
3
The Lagrange interpolating polynomial
passing through three given points; (x0, y0),
(x1, y1) and (x2, y2) is:

P( x ) = L0 ( x ) y0 + L1 ( x ) y1 + L2 ( x ) y2
P( x ) = L0 ( x ) f ( x0 ) + L1 ( x ) f ( x1 )
+ L2 ( x ) f ( x2 )
( x − x1 )( x − x2 )
L0 ( x ) =
( x0 − x1 )( x0 − x2 )
At x0, L0(x) becomes 1. At all
other given data points L0(x) is 0.
( x − x0 )( x − x2 )
L1 ( x ) =
( x1 − x0 )( x1 − x2 )
At x1, L1(x) becomes 1. At all
other given data points L1(x) is 0.
( x − x0 )( x − x1 )
L2 ( x ) =
( x2 − x0 )( x2 − x1 )
At x2, L2(x) becomes 1. At all
other given data points L2(x) is 0.
General form of the Lagrange Interpolating
Polynomial

P( x ) = L0 ( x ) y0 + L1 ( x ) y1 + L2 ( x ) y2
+ ........... + Ln ( x ) yn

P( x ) = L0 ( x ) f ( x0 ) + L1 ( x ) f ( x1 )

+ L2 ( x ) f ( x2 ) + ........... + Ln ( x ) f ( xn )
( x − x0 )( x − x1 )...( x − xk −1 )( x − xk +1 )...( x − xn )
Lk ( x ) =
( xk − x0 )( xk − x1 )...( xk − xk −1 )( x k − x k +1 )...( xk − xn )

( x − xi )
Lk ( x ) = ∏
i =0 ( x k − xi )
n

i ≠k
Numerator of

Lk ( x )

( x − x0 ) ( x − x1 ) ( x − x2 ) ×LL
× ( x − xk −1 ) ( x − xk +1 ) × LL
× ( x − xn −1 ) ( x − xn )
Denominator of

Lk ( x )

( xk − x0 ) ( xk − x1 ) ( xk − x2 ) ×LL
× ( xk − xk −1 ) ( xk − xk +1 ) × LL
× ( xk − xn −1 ) ( xk − xn )
Find the Lagrange Interpolating
Polynomial using the three given points.

( x0 , y0 ) = ( 2, 0.5)
( x1 , y1 ) = ( 2.5, 0.4)
( x2 , y2 ) = ( 4, 0.25)
( x − x1 )( x − x2 )
L0 ( x ) =
( x0 − x1 )( x0 − x2 )
( x − 2.5)( x − 4)
L0 ( x ) =
( 2 − 2.5)( 2 − 4)
= x − 6.5 x + 10
2
( x − x0 )( x − x2 )
L1 ( x ) =
( x1 − x0 )( x1 − x2 )
( x − 2)( x − 4)
L1 ( x ) =
( 2.5 − 2)( 2.5 − 4)
− x + 6x − 8
=
0.75
2
( x − x0 )( x − x1 )
L2 ( x ) =
( x2 − x0 )( x2 − x1 )
( x − 2)( x − 2.5)
L2 ( x ) =
( 4 − 2)( 4 − 2.5)
x − 4. 5 x + 5
=
3
2
P( x ) = L0 ( x ) f ( x0 ) + L1 ( x ) f ( x1 )
+ L2 ( x ) f ( x2 )
(

)

P( x ) = x − 6.5 x + 10 ( 0.5 )
2

 − x + 6x − 8 
( 0.4 )
+


0.75


2

 x − 4 .5 x + 5 
( 0.25 )
+


3


2
P( x ) = 0.05 x − 0.425 x + 1.15
2

The three given points were taken from
the function

1
f ( x) =
x
1
f ( 3) = = 0.333
3
An approximation can be obtained
from the Lagrange Interpolating
Polynomial as:

P( 3) = 0.05( 3) − 0.425( 3) + 1.15
= 0.325
2
Newton’s Interpolating Polynomials
Newton’s equation of a function that
passes through two points

( x0 , y 0 )

and

( x1 , y1 )

is

P( x ) = a 0 + a1 ( x − x0 )
P( x ) = a 0 + a1 ( x − x0 )
Set x = x
0
P ( x0 ) = y0 = a0
Set

x = x1

P ( x1 ) = y1 = a0 + a1 ( x1 − x0 )
y1 − y 0
a1 =
x1 − x0
Newton’s equation of a function that passes
through three points

( x0 , y 0 ) ( x1 , y1 )
is

and

( x2 , y2 )
P ( x ) = a0 + a1 ( x − x0 )

+ a2 ( x − x0 ) ( x − x1 )

a 2 , set x = x 2
P ( x2 ) = a0 + a1 ( x2 − x0 )
+ a2 ( x2 − x0 ) ( x2 − x1 )
To find
y2 − y1 y1 − y0
−
x2 − x1 x1 − x0
a2 =
x2 − x0
Newton’s equation of a function that passes
through four points can be written by adding
a fourth term .

P ( x ) = a0 + a1 ( x − x0 )

+ a2 ( x − x0 ) ( x − x1 )
+ a3 ( x − x0 ) ( x − x1 ) ( x − x2 )
P ( x ) = a0 + a1 ( x − x0 )

+ a2 ( x − x0 ) ( x − x1 )

+ a3 ( x − x0 ) ( x − x1 ) ( x − x2 )
The fourth term will vanish at all three
previous points and, therefore, leaving all
three previous coefficients intact.
Divided differences and the coefficients
The divided difference of a function, f
with respect to

xi

is denoted as

f [ xi ]

It is called as zeroth divided difference and is
simply the value of the function, f
at xi

f [ xi ] = f ( xi )
The divided difference of a function, f
with respect to xi and
i +1
called as the first divided difference, is denoted

x

f [ xi , xi +1 ]
f [ xi , xi +1 ]

f [ xi +1 ] − f [ xi ]
=
xi +1 − xi
The divided difference of a function, f
with respect to xi , i +1 and
i +2
called as the second divided difference, is
denoted as

x

x

f [ xi , xi +1 , xi + 2 ]
f [ xi , xi +1 , xi +2 ]

f [ xi +1 , xi +2 ] − f [ xi , xi +1 ]
=
xi + 2 − xi
The third divided difference with respect to
,
,
xi + 2 and i + 3
i
i +1

x

x

f [ xi , xi +1 , xi +2 , xi +3 ]

x

f [ xi +1 , xi + 2 , xi +3 ] − f [ xi , xi +1 , xi + 2 ]
=
xi +3 − xi
The coefficients of Newton’s interpolating
polynomial are:
a0 = f [ x0 ]

a1 = f [ x0 , x1 ]

a 2 = f [ x0 , x1 , x 2 ]
a3 = f [ x0 , x1 , x 2 , x3 ]
a 4 = f [ x0 , x1 , x 2 , x3 , x 4 ]

and so on.
First
divided differences

Second
divided differences

Third
divided differences
Example
Find Newton’s interpolating polynomial to
approximate a function whose 5 data points are
given below.

x

f ( x)

2.0

0.85467

2.3

0.75682

2.6

0.43126

2.9

0.22364

3.2

0.08567
i
0

xi

f [ xi ]

2.0

f [ xi −1 , xi ] f [ xi − 2 , xi −1 , xi ]

f [ xi −3 , , xi ]

f [ xi −4 , , xi ]

0.85467
-0.32617

1

2.3

0.75682

-1.26505
-1.08520

2

2.6

0.43126

2.13363
0.65522

-0.69207
3

2.9

0.22364

4

3.2

0.08567

-0.29808
0.38695

-0.45990

-2.02642
The 5 coefficients of the Newton’s interpolating
polynomial are:

a0 = f [ x0 ] = 0.85467

a1 = f [ x0 , x1 ] = −0.32617

a2 = f [ x0 , x1 , x2 ] = −1.26505
a3 = f [ x0 , x1 , x2 , x3 ] = 2.13363
a4 = f [ x0 , x1 , x2 , x3 , x4 ] = −2.02642
P ( x ) = a0 + a1 ( x − x0 )

+ a2 ( x − x0 ) ( x − x1 )

+ a3 ( x − x0 ) ( x − x1 ) ( x − x2 )

+ a4 ( x − x0 ) ( x − x1 ) ( x − x2 ) ( x − x3 )
P ( x ) = 0.85467 − 0.32617 ( x − 2.0 )
-1.26505 ( x − 2.0 ) ( x − 2.3 )

+ 2.13363 ( x − 2.0 ) ( x − 2.3) ( x − 2.6 )

−2.02642 ( x − 2.0 ) ( x − 2.3) ( x − 2.6 ) ( x − 2.9 )
P(x) can now be used to estimate the value of the
function f(x) say at x = 2.8.
P ( 2.8 ) = 0.85467 − 0.32617 ( 2.8 − 2.0 )
-1.26505 ( 2.8 − 2.0 ) ( 2.8 − 2.3 )

+ 2.13363 ( 2.8 − 2.0 ) ( 2.8 − 2.3 ) ( 2.8 − 2.6 )

−2.02642 ( 2.8 − 2.0 ) ( 2.8 − 2.3) ( 2.8 − 2.6 ) ( 2.8 − 2.9 )

f ( 2.8 ) ≈ P ( 2.8 ) = 0.275

Weitere ähnliche Inhalte

Was ist angesagt?

GATE Engineering Maths : Limit, Continuity and Differentiability
GATE Engineering Maths : Limit, Continuity and DifferentiabilityGATE Engineering Maths : Limit, Continuity and Differentiability
GATE Engineering Maths : Limit, Continuity and DifferentiabilityParthDave57
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - NotesDr. Nirav Vyas
 
Gauss Forward And Backward Central Difference Interpolation Formula
 Gauss Forward And Backward Central Difference Interpolation Formula  Gauss Forward And Backward Central Difference Interpolation Formula
Gauss Forward And Backward Central Difference Interpolation Formula Deep Dalsania
 
Fourier series Introduction
Fourier series IntroductionFourier series Introduction
Fourier series IntroductionRizwan Kazi
 
Newton's Forward/Backward Difference Interpolation
Newton's Forward/Backward  Difference InterpolationNewton's Forward/Backward  Difference Interpolation
Newton's Forward/Backward Difference InterpolationVARUN KUMAR
 
Applied numerical methods lec9
Applied numerical methods lec9Applied numerical methods lec9
Applied numerical methods lec9Yasser Ahmed
 
Newton’s Forward & backward interpolation
Newton’s Forward &  backward interpolation Newton’s Forward &  backward interpolation
Newton’s Forward & backward interpolation Meet Patel
 
First order linear differential equation
First order linear differential equationFirst order linear differential equation
First order linear differential equationNofal Umair
 
Partial Differential Equations, 3 simple examples
Partial Differential Equations, 3 simple examplesPartial Differential Equations, 3 simple examples
Partial Differential Equations, 3 simple examplesEnrique Valderrama
 
Differential equations of first order
Differential equations of first orderDifferential equations of first order
Differential equations of first ordervishalgohel12195
 
introduction to differential equations
introduction to differential equationsintroduction to differential equations
introduction to differential equationsEmdadul Haque Milon
 
fourier transforms
fourier transformsfourier transforms
fourier transformsUmang Gupta
 
Fixed point iteration
Fixed point iterationFixed point iteration
Fixed point iterationIsaac Yowetu
 

Was ist angesagt? (20)

GATE Engineering Maths : Limit, Continuity and Differentiability
GATE Engineering Maths : Limit, Continuity and DifferentiabilityGATE Engineering Maths : Limit, Continuity and Differentiability
GATE Engineering Maths : Limit, Continuity and Differentiability
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
 
Gauss Forward And Backward Central Difference Interpolation Formula
 Gauss Forward And Backward Central Difference Interpolation Formula  Gauss Forward And Backward Central Difference Interpolation Formula
Gauss Forward And Backward Central Difference Interpolation Formula
 
Fourier series
Fourier series Fourier series
Fourier series
 
Fourier series Introduction
Fourier series IntroductionFourier series Introduction
Fourier series Introduction
 
Bisection method
Bisection methodBisection method
Bisection method
 
Newton's Forward/Backward Difference Interpolation
Newton's Forward/Backward  Difference InterpolationNewton's Forward/Backward  Difference Interpolation
Newton's Forward/Backward Difference Interpolation
 
Applied numerical methods lec9
Applied numerical methods lec9Applied numerical methods lec9
Applied numerical methods lec9
 
Newton’s Forward & backward interpolation
Newton’s Forward &  backward interpolation Newton’s Forward &  backward interpolation
Newton’s Forward & backward interpolation
 
Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equation
 
First order linear differential equation
First order linear differential equationFirst order linear differential equation
First order linear differential equation
 
Partial Differential Equations, 3 simple examples
Partial Differential Equations, 3 simple examplesPartial Differential Equations, 3 simple examples
Partial Differential Equations, 3 simple examples
 
Differential equations of first order
Differential equations of first orderDifferential equations of first order
Differential equations of first order
 
Euler and runge kutta method
Euler and runge kutta methodEuler and runge kutta method
Euler and runge kutta method
 
Numerical method (curve fitting)
Numerical method (curve fitting)Numerical method (curve fitting)
Numerical method (curve fitting)
 
Fourier transform
Fourier transformFourier transform
Fourier transform
 
introduction to differential equations
introduction to differential equationsintroduction to differential equations
introduction to differential equations
 
convolution
convolutionconvolution
convolution
 
fourier transforms
fourier transformsfourier transforms
fourier transforms
 
Fixed point iteration
Fixed point iterationFixed point iteration
Fixed point iteration
 

Andere mochten auch

Computing transformations
Computing transformationsComputing transformations
Computing transformationsTarun Gehlot
 
Dependent v. independent variables
Dependent v. independent variablesDependent v. independent variables
Dependent v. independent variablesTarun Gehlot
 
Graphing inverse functions
Graphing inverse functionsGraphing inverse functions
Graphing inverse functionsTarun Gehlot
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problemsTarun Gehlot
 
Numerical integration
Numerical integrationNumerical integration
Numerical integrationSunny Chauhan
 
interpolation
interpolationinterpolation
interpolation8laddu8
 
Interpolation with unequal interval
Interpolation with unequal intervalInterpolation with unequal interval
Interpolation with unequal intervalDr. Nirav Vyas
 
Mapping the sphere
Mapping the sphereMapping the sphere
Mapping the sphereTarun Gehlot
 
Scientific computing
Scientific computingScientific computing
Scientific computingBrijesh Kumar
 
08 interpolation lagrange
08 interpolation   lagrange08 interpolation   lagrange
08 interpolation lagrangeMohammad Tawfik
 
Cognitive Views of Learning
Cognitive Views of LearningCognitive Views of Learning
Cognitive Views of Learninggregori729
 
Hmt lab manual (heat and mass transfer lab manual)
Hmt lab manual (heat and mass transfer lab manual)Hmt lab manual (heat and mass transfer lab manual)
Hmt lab manual (heat and mass transfer lab manual)Awais Ali
 
Numerical conformal mapping of an irregular area
Numerical conformal mapping of an irregular areaNumerical conformal mapping of an irregular area
Numerical conformal mapping of an irregular areaTarun Gehlot
 
Theories of change and logic models
Theories of change and logic modelsTheories of change and logic models
Theories of change and logic modelsTarun Gehlot
 

Andere mochten auch (20)

Computing transformations
Computing transformationsComputing transformations
Computing transformations
 
Dependent v. independent variables
Dependent v. independent variablesDependent v. independent variables
Dependent v. independent variables
 
Graphing inverse functions
Graphing inverse functionsGraphing inverse functions
Graphing inverse functions
 
Lagrange’s interpolation formula
Lagrange’s interpolation formulaLagrange’s interpolation formula
Lagrange’s interpolation formula
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problems
 
Numerical Integration
Numerical IntegrationNumerical Integration
Numerical Integration
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
interpolation
interpolationinterpolation
interpolation
 
Interpolation with unequal interval
Interpolation with unequal intervalInterpolation with unequal interval
Interpolation with unequal interval
 
Mapping the sphere
Mapping the sphereMapping the sphere
Mapping the sphere
 
Innovation management
Innovation managementInnovation management
Innovation management
 
Scientific computing
Scientific computingScientific computing
Scientific computing
 
Finite difference & interpolation
Finite difference & interpolationFinite difference & interpolation
Finite difference & interpolation
 
Presentation2
Presentation2Presentation2
Presentation2
 
08 interpolation lagrange
08 interpolation   lagrange08 interpolation   lagrange
08 interpolation lagrange
 
Cognitive Views of Learning
Cognitive Views of LearningCognitive Views of Learning
Cognitive Views of Learning
 
Hmt lab manual (heat and mass transfer lab manual)
Hmt lab manual (heat and mass transfer lab manual)Hmt lab manual (heat and mass transfer lab manual)
Hmt lab manual (heat and mass transfer lab manual)
 
Cognativeism vs behaviorism
Cognativeism vs behaviorismCognativeism vs behaviorism
Cognativeism vs behaviorism
 
Numerical conformal mapping of an irregular area
Numerical conformal mapping of an irregular areaNumerical conformal mapping of an irregular area
Numerical conformal mapping of an irregular area
 
Theories of change and logic models
Theories of change and logic modelsTheories of change and logic models
Theories of change and logic models
 

Ähnlich wie Interpolation functions

Modul 3 quadratic function
Modul 3 quadratic functionModul 3 quadratic function
Modul 3 quadratic functionHafidz Mukhtar
 
Module 2 polynomial functions
Module 2   polynomial functionsModule 2   polynomial functions
Module 2 polynomial functionsdionesioable
 
138191 rvsp lecture notes
138191 rvsp lecture notes138191 rvsp lecture notes
138191 rvsp lecture notesAhmed Tayeh
 
Numerical differentiation integration
Numerical differentiation integrationNumerical differentiation integration
Numerical differentiation integrationTarun Gehlot
 
Quantitative Techniques random variables
Quantitative Techniques random variablesQuantitative Techniques random variables
Quantitative Techniques random variablesRohan Bhatkar
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuityPume Ananda
 
Zero Theorem and Rational Roots Presentation
Zero Theorem and Rational Roots PresentationZero Theorem and Rational Roots Presentation
Zero Theorem and Rational Roots PresentationDanellaFernandez
 
Function evaluation, termination, vertical line test etc
Function evaluation, termination, vertical line test etcFunction evaluation, termination, vertical line test etc
Function evaluation, termination, vertical line test etcsurprisesibusiso07
 
17 integrals of rational functions x
17 integrals of rational functions x17 integrals of rational functions x
17 integrals of rational functions xmath266
 
chap 2 Ex#1.1
chap 2 Ex#1.1chap 2 Ex#1.1
chap 2 Ex#1.1Ans Ali
 
Bahan ajar kalkulus integral
Bahan ajar kalkulus integralBahan ajar kalkulus integral
Bahan ajar kalkulus integralgrand_livina_good
 
Exponential functions
Exponential functionsExponential functions
Exponential functionskvillave
 
Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...
Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...
Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...polanesgumiran
 

Ähnlich wie Interpolation functions (20)

Modul 3 quadratic function
Modul 3 quadratic functionModul 3 quadratic function
Modul 3 quadratic function
 
Quadratic
QuadraticQuadratic
Quadratic
 
Module 2 polynomial functions
Module 2   polynomial functionsModule 2   polynomial functions
Module 2 polynomial functions
 
Grph quad fncts
Grph quad fnctsGrph quad fncts
Grph quad fncts
 
Exponential functions (1)
Exponential functions (1)Exponential functions (1)
Exponential functions (1)
 
138191 rvsp lecture notes
138191 rvsp lecture notes138191 rvsp lecture notes
138191 rvsp lecture notes
 
Numerical differentiation integration
Numerical differentiation integrationNumerical differentiation integration
Numerical differentiation integration
 
Quantitative Techniques random variables
Quantitative Techniques random variablesQuantitative Techniques random variables
Quantitative Techniques random variables
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
 
Functions limits and continuity
Functions limits and continuityFunctions limits and continuity
Functions limits and continuity
 
Quadratic function
Quadratic functionQuadratic function
Quadratic function
 
Zero Theorem and Rational Roots Presentation
Zero Theorem and Rational Roots PresentationZero Theorem and Rational Roots Presentation
Zero Theorem and Rational Roots Presentation
 
Function
FunctionFunction
Function
 
Function evaluation, termination, vertical line test etc
Function evaluation, termination, vertical line test etcFunction evaluation, termination, vertical line test etc
Function evaluation, termination, vertical line test etc
 
17 integrals of rational functions x
17 integrals of rational functions x17 integrals of rational functions x
17 integrals of rational functions x
 
chap 2 Ex#1.1
chap 2 Ex#1.1chap 2 Ex#1.1
chap 2 Ex#1.1
 
Bahan ajar kalkulus integral
Bahan ajar kalkulus integralBahan ajar kalkulus integral
Bahan ajar kalkulus integral
 
Interpolation
InterpolationInterpolation
Interpolation
 
Exponential functions
Exponential functionsExponential functions
Exponential functions
 
Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...
Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...
Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...
 

Mehr von Tarun Gehlot

Materials 11-01228
Materials 11-01228Materials 11-01228
Materials 11-01228Tarun Gehlot
 
Continuity and end_behavior
Continuity and  end_behaviorContinuity and  end_behavior
Continuity and end_behaviorTarun Gehlot
 
Continuity of functions by graph (exercises with detailed solutions)
Continuity of functions by graph   (exercises with detailed solutions)Continuity of functions by graph   (exercises with detailed solutions)
Continuity of functions by graph (exercises with detailed solutions)Tarun Gehlot
 
Factoring by the trial and-error method
Factoring by the trial and-error methodFactoring by the trial and-error method
Factoring by the trial and-error methodTarun Gehlot
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysisTarun Gehlot
 
Finite elements : basis functions
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functionsTarun Gehlot
 
Error analysis statistics
Error analysis   statisticsError analysis   statistics
Error analysis statisticsTarun Gehlot
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlabTarun Gehlot
 
Linear approximations and_differentials
Linear approximations and_differentialsLinear approximations and_differentials
Linear approximations and_differentialsTarun Gehlot
 
Local linear approximation
Local linear approximationLocal linear approximation
Local linear approximationTarun Gehlot
 
Propeties of-triangles
Propeties of-trianglesPropeties of-triangles
Propeties of-trianglesTarun Gehlot
 
Gaussian quadratures
Gaussian quadraturesGaussian quadratures
Gaussian quadraturesTarun Gehlot
 
Basics of set theory
Basics of set theoryBasics of set theory
Basics of set theoryTarun Gehlot
 
Numerical integration
Numerical integrationNumerical integration
Numerical integrationTarun Gehlot
 
Applications of set theory
Applications of  set theoryApplications of  set theory
Applications of set theoryTarun Gehlot
 
Miscellneous functions
Miscellneous  functionsMiscellneous  functions
Miscellneous functionsTarun Gehlot
 
Intervals of validity
Intervals of validityIntervals of validity
Intervals of validityTarun Gehlot
 
Modelling with first order differential equations
Modelling with first order differential equationsModelling with first order differential equations
Modelling with first order differential equationsTarun Gehlot
 

Mehr von Tarun Gehlot (20)

Materials 11-01228
Materials 11-01228Materials 11-01228
Materials 11-01228
 
Binary relations
Binary relationsBinary relations
Binary relations
 
Continuity and end_behavior
Continuity and  end_behaviorContinuity and  end_behavior
Continuity and end_behavior
 
Continuity of functions by graph (exercises with detailed solutions)
Continuity of functions by graph   (exercises with detailed solutions)Continuity of functions by graph   (exercises with detailed solutions)
Continuity of functions by graph (exercises with detailed solutions)
 
Factoring by the trial and-error method
Factoring by the trial and-error methodFactoring by the trial and-error method
Factoring by the trial and-error method
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysis
 
Finite elements : basis functions
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functions
 
Error analysis statistics
Error analysis   statisticsError analysis   statistics
Error analysis statistics
 
Matlab commands
Matlab commandsMatlab commands
Matlab commands
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlab
 
Linear approximations and_differentials
Linear approximations and_differentialsLinear approximations and_differentials
Linear approximations and_differentials
 
Local linear approximation
Local linear approximationLocal linear approximation
Local linear approximation
 
Propeties of-triangles
Propeties of-trianglesPropeties of-triangles
Propeties of-triangles
 
Gaussian quadratures
Gaussian quadraturesGaussian quadratures
Gaussian quadratures
 
Basics of set theory
Basics of set theoryBasics of set theory
Basics of set theory
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
Applications of set theory
Applications of  set theoryApplications of  set theory
Applications of set theory
 
Miscellneous functions
Miscellneous  functionsMiscellneous  functions
Miscellneous functions
 
Intervals of validity
Intervals of validityIntervals of validity
Intervals of validity
 
Modelling with first order differential equations
Modelling with first order differential equationsModelling with first order differential equations
Modelling with first order differential equations
 

Kürzlich hochgeladen

Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfVanessa Camilleri
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4JOYLYNSAMANIEGO
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
Activity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationActivity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationRosabel UA
 
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...JojoEDelaCruz
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Food processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsFood processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsManeerUddin
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)cama23
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Seán Kennedy
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 

Kürzlich hochgeladen (20)

Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdf
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
Activity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationActivity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translation
 
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Food processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsFood processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture hons
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 

Interpolation functions

  • 1. Interpolation produces a function that matches the given data exactly. The function then can be utilized to approximate the data values at intermediate points.
  • 2. Interpolation may also be used to produce a smooth graph of a function for which values are known only at discrete points, either from measurements or calculations.
  • 3. Given data points Obtain a function, P(x) P(x) goes through the data points Use P(x) To estimate values at intermediate points
  • 4. Given data points: At x0 = 2, y0 = 3 and at x1 = 5, y1 = 8 Find the following: At x = 4, y = ?
  • 5.
  • 6. P(x) should satisfy the following conditions: P(x = 2) = 3 and P(x = 5) = 8 P( x ) = 3 L0 ( x ) + 8 L1 ( x ) P(x) can satisfy the above conditions if at x = x0 = 2, L0(x) = 1 and L1(x) = 0 and at x = x1= 5, L0(x) = 0 and L1(x) = 1
  • 7. At x = x0 = 2, L0(x) = 1 and L1(x) = 0 and at x = x1= 5, L0(x) = 0 and L1(x) = 1 The conditions can be satisfied if L0(x) and L1(x) are defined in the following way. x−5 L0 ( x ) = and 2−5 x − x1 L0 ( x ) = x0 − x1 x−2 L1 ( x ) = 5−2 x − x0 and L1 ( x ) = x1 − x0
  • 8. P( x ) = 3 L0 ( x ) + 8 L1 ( x ) P( x ) = L0 ( x ) y0 + L1 ( x ) y1 Lagrange Interpolating Polynomial P( x ) = L0 ( x ) f ( x0 ) + L1 ( x ) f ( x1 )
  • 9. P( x ) = L0 ( x ) f ( x0 ) + L1 ( x ) f ( x1 )  x−5  x−2 P( x ) =  ( 3 ) +  ( 8 )  2−5 5−2 5x − 1 P( x ) = 3 5× 4 −1 P( 4) = = 6.333 3
  • 10. The Lagrange interpolating polynomial passing through three given points; (x0, y0), (x1, y1) and (x2, y2) is: P( x ) = L0 ( x ) y0 + L1 ( x ) y1 + L2 ( x ) y2 P( x ) = L0 ( x ) f ( x0 ) + L1 ( x ) f ( x1 ) + L2 ( x ) f ( x2 )
  • 11. ( x − x1 )( x − x2 ) L0 ( x ) = ( x0 − x1 )( x0 − x2 ) At x0, L0(x) becomes 1. At all other given data points L0(x) is 0.
  • 12. ( x − x0 )( x − x2 ) L1 ( x ) = ( x1 − x0 )( x1 − x2 ) At x1, L1(x) becomes 1. At all other given data points L1(x) is 0.
  • 13. ( x − x0 )( x − x1 ) L2 ( x ) = ( x2 − x0 )( x2 − x1 ) At x2, L2(x) becomes 1. At all other given data points L2(x) is 0.
  • 14. General form of the Lagrange Interpolating Polynomial P( x ) = L0 ( x ) y0 + L1 ( x ) y1 + L2 ( x ) y2 + ........... + Ln ( x ) yn P( x ) = L0 ( x ) f ( x0 ) + L1 ( x ) f ( x1 ) + L2 ( x ) f ( x2 ) + ........... + Ln ( x ) f ( xn )
  • 15. ( x − x0 )( x − x1 )...( x − xk −1 )( x − xk +1 )...( x − xn ) Lk ( x ) = ( xk − x0 )( xk − x1 )...( xk − xk −1 )( x k − x k +1 )...( xk − xn ) ( x − xi ) Lk ( x ) = ∏ i =0 ( x k − xi ) n i ≠k
  • 16. Numerator of Lk ( x ) ( x − x0 ) ( x − x1 ) ( x − x2 ) ×LL × ( x − xk −1 ) ( x − xk +1 ) × LL × ( x − xn −1 ) ( x − xn )
  • 17. Denominator of Lk ( x ) ( xk − x0 ) ( xk − x1 ) ( xk − x2 ) ×LL × ( xk − xk −1 ) ( xk − xk +1 ) × LL × ( xk − xn −1 ) ( xk − xn )
  • 18. Find the Lagrange Interpolating Polynomial using the three given points. ( x0 , y0 ) = ( 2, 0.5) ( x1 , y1 ) = ( 2.5, 0.4) ( x2 , y2 ) = ( 4, 0.25)
  • 19. ( x − x1 )( x − x2 ) L0 ( x ) = ( x0 − x1 )( x0 − x2 ) ( x − 2.5)( x − 4) L0 ( x ) = ( 2 − 2.5)( 2 − 4) = x − 6.5 x + 10 2
  • 20. ( x − x0 )( x − x2 ) L1 ( x ) = ( x1 − x0 )( x1 − x2 ) ( x − 2)( x − 4) L1 ( x ) = ( 2.5 − 2)( 2.5 − 4) − x + 6x − 8 = 0.75 2
  • 21. ( x − x0 )( x − x1 ) L2 ( x ) = ( x2 − x0 )( x2 − x1 ) ( x − 2)( x − 2.5) L2 ( x ) = ( 4 − 2)( 4 − 2.5) x − 4. 5 x + 5 = 3 2
  • 22. P( x ) = L0 ( x ) f ( x0 ) + L1 ( x ) f ( x1 ) + L2 ( x ) f ( x2 )
  • 23. ( ) P( x ) = x − 6.5 x + 10 ( 0.5 ) 2  − x + 6x − 8  ( 0.4 ) +   0.75   2  x − 4 .5 x + 5  ( 0.25 ) +   3   2
  • 24. P( x ) = 0.05 x − 0.425 x + 1.15 2 The three given points were taken from the function 1 f ( x) = x
  • 25. 1 f ( 3) = = 0.333 3 An approximation can be obtained from the Lagrange Interpolating Polynomial as: P( 3) = 0.05( 3) − 0.425( 3) + 1.15 = 0.325 2
  • 26. Newton’s Interpolating Polynomials Newton’s equation of a function that passes through two points ( x0 , y 0 ) and ( x1 , y1 ) is P( x ) = a 0 + a1 ( x − x0 )
  • 27. P( x ) = a 0 + a1 ( x − x0 ) Set x = x 0 P ( x0 ) = y0 = a0 Set x = x1 P ( x1 ) = y1 = a0 + a1 ( x1 − x0 )
  • 28. y1 − y 0 a1 = x1 − x0 Newton’s equation of a function that passes through three points ( x0 , y 0 ) ( x1 , y1 ) is and ( x2 , y2 )
  • 29. P ( x ) = a0 + a1 ( x − x0 ) + a2 ( x − x0 ) ( x − x1 ) a 2 , set x = x 2 P ( x2 ) = a0 + a1 ( x2 − x0 ) + a2 ( x2 − x0 ) ( x2 − x1 ) To find
  • 30. y2 − y1 y1 − y0 − x2 − x1 x1 − x0 a2 = x2 − x0
  • 31. Newton’s equation of a function that passes through four points can be written by adding a fourth term . P ( x ) = a0 + a1 ( x − x0 ) + a2 ( x − x0 ) ( x − x1 ) + a3 ( x − x0 ) ( x − x1 ) ( x − x2 )
  • 32. P ( x ) = a0 + a1 ( x − x0 ) + a2 ( x − x0 ) ( x − x1 ) + a3 ( x − x0 ) ( x − x1 ) ( x − x2 ) The fourth term will vanish at all three previous points and, therefore, leaving all three previous coefficients intact.
  • 33. Divided differences and the coefficients The divided difference of a function, f with respect to xi is denoted as f [ xi ] It is called as zeroth divided difference and is simply the value of the function, f at xi f [ xi ] = f ( xi )
  • 34. The divided difference of a function, f with respect to xi and i +1 called as the first divided difference, is denoted x f [ xi , xi +1 ] f [ xi , xi +1 ] f [ xi +1 ] − f [ xi ] = xi +1 − xi
  • 35. The divided difference of a function, f with respect to xi , i +1 and i +2 called as the second divided difference, is denoted as x x f [ xi , xi +1 , xi + 2 ] f [ xi , xi +1 , xi +2 ] f [ xi +1 , xi +2 ] − f [ xi , xi +1 ] = xi + 2 − xi
  • 36. The third divided difference with respect to , , xi + 2 and i + 3 i i +1 x x f [ xi , xi +1 , xi +2 , xi +3 ] x f [ xi +1 , xi + 2 , xi +3 ] − f [ xi , xi +1 , xi + 2 ] = xi +3 − xi
  • 37. The coefficients of Newton’s interpolating polynomial are: a0 = f [ x0 ] a1 = f [ x0 , x1 ] a 2 = f [ x0 , x1 , x 2 ] a3 = f [ x0 , x1 , x 2 , x3 ] a 4 = f [ x0 , x1 , x 2 , x3 , x 4 ] and so on.
  • 39. Example Find Newton’s interpolating polynomial to approximate a function whose 5 data points are given below. x f ( x) 2.0 0.85467 2.3 0.75682 2.6 0.43126 2.9 0.22364 3.2 0.08567
  • 40. i 0 xi f [ xi ] 2.0 f [ xi −1 , xi ] f [ xi − 2 , xi −1 , xi ] f [ xi −3 , , xi ] f [ xi −4 , , xi ] 0.85467 -0.32617 1 2.3 0.75682 -1.26505 -1.08520 2 2.6 0.43126 2.13363 0.65522 -0.69207 3 2.9 0.22364 4 3.2 0.08567 -0.29808 0.38695 -0.45990 -2.02642
  • 41. The 5 coefficients of the Newton’s interpolating polynomial are: a0 = f [ x0 ] = 0.85467 a1 = f [ x0 , x1 ] = −0.32617 a2 = f [ x0 , x1 , x2 ] = −1.26505 a3 = f [ x0 , x1 , x2 , x3 ] = 2.13363 a4 = f [ x0 , x1 , x2 , x3 , x4 ] = −2.02642
  • 42. P ( x ) = a0 + a1 ( x − x0 ) + a2 ( x − x0 ) ( x − x1 ) + a3 ( x − x0 ) ( x − x1 ) ( x − x2 ) + a4 ( x − x0 ) ( x − x1 ) ( x − x2 ) ( x − x3 )
  • 43. P ( x ) = 0.85467 − 0.32617 ( x − 2.0 ) -1.26505 ( x − 2.0 ) ( x − 2.3 ) + 2.13363 ( x − 2.0 ) ( x − 2.3) ( x − 2.6 ) −2.02642 ( x − 2.0 ) ( x − 2.3) ( x − 2.6 ) ( x − 2.9 ) P(x) can now be used to estimate the value of the function f(x) say at x = 2.8.
  • 44. P ( 2.8 ) = 0.85467 − 0.32617 ( 2.8 − 2.0 ) -1.26505 ( 2.8 − 2.0 ) ( 2.8 − 2.3 ) + 2.13363 ( 2.8 − 2.0 ) ( 2.8 − 2.3 ) ( 2.8 − 2.6 ) −2.02642 ( 2.8 − 2.0 ) ( 2.8 − 2.3) ( 2.8 − 2.6 ) ( 2.8 − 2.9 ) f ( 2.8 ) ≈ P ( 2.8 ) = 0.275