SlideShare ist ein Scribd-Unternehmen logo
1 von 37
Downloaden Sie, um offline zu lesen
13IDP14– Digital Electronics
Basic Logic Operations,
Boolean Expressions,
&
Boolean Algebra
2
Basic Logic Operations
3
Basic Logic Operations
 AND
 OR
 NOT (Complement)
 Order of Precedence
1. NOT
2. AND
3. OR
 can be modified using parenthesis
4
Basic Logic Operations
5
Basic Logic Operations
6
Additional Logic Operations
 NAND
 F = (A . B)'
 NOR
 F = (A + B)'
 XOR
 Output is 1 iff either input is 1, but not both.
 XNOR (aka. Equivalence)
 Output is 1 iff both inputs are 1 or both inputs
are 0.
7
Additional Logic Operations
NAND
NOR
XOR
XNORdenotes inversion
8
Exercise:
Derive the Truth table for each of the
following logic operations:
1. 2-input NAND
2. 2-input NOR
Additional Logic Operations
9
Exercise:
Derive the Truth table for each of the
following logic operations:
1. 2-input XOR
2. 2-input XNOR
Additional Logic Operations
10
Truth Tables
11
Truth Tables
 Used to describe the functional behavior of a Boolean
expression and/or Logic circuit.
 Each row in the truth table represents a unique
combination of the input variables.
 For n input variables, there are 2n rows.
 The output of the logic function is defined for each
row.
 Each row is assigned a numerical value, with the rows
listed in ascending order.
 The order of the input variables defined in the logic
function is important.
12
3-input Truth Table
F(A,B,C) = Boolean expression
13
4-input Truth Table
F(A,B,C,D) = Boolean expression
14
Boolean Expressions
13IDP14- Digital Electronics 15
Boolean Expressions
 Boolean expressions are composed of
 Literals – variables and their complements
 Logical operations
 Examples
 F = A.B'.C + A'.B.C' + A.B.C + A'.B'.C'
 F = (A+B+C').(A'+B'+C).(A+B+C)
 F = A.B'.C' + A.(B.C' + B'.C)
literals logic operations
13IDP14- Digital Electronics 16
Boolean Expressions
 Boolean expressions are realized using a
network (or combination) of logic gates.
 Each logic gate implements one of the logic
operations in the Boolean expression
 Each input to a logic gate represents one of
the literals in the Boolean expression
f
A
B
logic operationsliterals
13IDP14- Digital Electronics 17
Boolean Expressions
 Boolean expressions are evaluated by
 Substituting a 0 or 1 for each literal
 Calculating the logical value of the expression
 A Truth Table specifies the value of the Boolean
expression for every combination of the
variables in the Boolean expression.
 For an n-variable Boolean expression, the truth
table has 2n rows (one for each combination).
13IDP14- Digital Electronics 18
Boolean Expressions
Example:
Evaluate the following Boolean expression,
for all combination of inputs, using a Truth
table.
F(A,B,C) = A'.B'.C + A.B'.C' + A.C
13IDP14- Digital Electronics 19
Boolean Expressions
 Two Boolean expressions are equivalent if they
have the same value for each combination of
the variables in the Boolean expression.
 F1 = (A + B)'
 F2 = A'.B'
 How do you prove that two Boolean
expressions are equivalent?
 Truth table
 Boolean Algebra
13IDP14- Digital Electronics 20
Boolean Expressions
Example:
Using a Truth table, prove that the following
two Boolean expressions are equivalent.
F1 = (A + B)'
F2 = A'.B'
13IDP14- Digital Electronics 21
Boolean Algebra
13IDP14- Digital Electronics 22
Boolean Algebra
 George Boole developed an algebraic description for
processes involving logical thought and reasoning.
 Became known as Boolean Algebra
 Claude Shannon later demonstrated that Boolean
Algebra could be used to describe switching circuits.
 Switching circuits are circuits built from devices that
switch between two states (e.g. 0 and 1).
 Switching Algebra is a special case of Boolean
Algebra in which all variables take on just two distinct
values
 Boolean Algebra is a powerful tool for analyzing and
designing logic circuits.
13IDP14- Digital Electronics 23
Basic Laws and Theorems
Commutative Law A + B = B + A A.B = B.A
Associative Law A + (B + C) = (A + B) + C A . (B . C) = (A . B) . C
Distributive Law A.(B + C) = AB + AC A + (B . C) = (A + B) . (A + C)
Null Elements A + 1 = 1 A . 0 = 0
Identity A + 0 = A A . 1 = A
A + A = A A . A = A
Complement A + A' = 1 A . A' = 0
Involution A'' = A
Absorption (Covering) A + AB = A A . (A + B) = A
Simplification A + A'B = A + B A . (A' + B) = A . B
DeMorgan's Rule (A + B)' = A'.B' (A . B)' = A' + B'
Logic Adjacency (Combining) AB + AB' = A (A + B) . (A + B') = A
Consensus AB + BC + A'C = AB + A'C (A + B) . (B + C) . (A' + C) = (A + B) . (A' + C)
Idempotence
13IDP14- Digital Electronics 24
Idempotence
A + A = A
F = ABC + ABC' + ABC
F = ABC + ABC'
Note: terms can also be added using this theorem
A . A = A
G = (A' + B + C').(A + B' + C).(A + B' + C)
G = (A' + B + C') + (A + B' + C)
Note: terms can also be added using this theorem
13IDP14- Digital Electronics 25
Complement
A + A' = 1
F = ABC'D + ABCD
F = ABD.(C' + C)
F = ABD
A . A' = 0
G = (A + B + C + D).(A + B' + C + D)
G = (A + C + D) + (B . B')
G = A + C + D
13IDP14- Digital Electronics 26
Distributive Law
A.(B + C) = AB + AC
F = WX.(Y + Z)
F = WXY + WXZ
G = B'.(AC + AD)
G = AB'C + AB'D
H = A.(W'X + WX' + YZ)
H = AW'X + AWX' + AYZ
A + (B.C) = (A + B).(A + C)
F = WX + (Y.Z)
F = (WX + Y).(WX + Z)
G = B' + (A.C.D)
G = (B' + A).(B' + C).(B' + D)
H = A + ( (W'X).(WX') )
H = (A + W'X).(A + WX')
13IDP14- Digital Electronics 27
Absorption (Covering)
A + AB = A
F = A'BC + A'
F = A'
G = XYZ + XY'Z + X'Y'Z' + XZ
G = XYZ + XZ + X'Y'Z'
G = XZ + X'Y'Z'
H = D + DE + DEF
H = D
A.(A + B) = A
F = A'.(A' + BC)
F = A'
G = XZ.(XZ + Y + Y')
G = XZ.(XZ + Y)
G = XZ
H = D.(D + E + EF)
H = D
13IDP14- Digital Electronics 28
Simplification
A + A'B = A + B
F = (XY + Z).(Y'W + Z'V') + (XY + Z)'
F = Y'W + Z'V' + (XY + Z)'
A.(A' + B) = A . B
G = (X + Y).( (X + Y)' + (WZ) )
G = (X + Y) . WZ
13IDP14- Digital Electronics 29
Logic Adjacency (Combining)
A.B + A.B' = A
F = (X + Y).(W'X'Z) + (X + Y).(W'X'Z)'
F = (X + Y)
(A + B).(A + B') = A
G = (XY + X'Z').(XY + (X'Z')' )
G = XY
13IDP14- Digital Electronics 30
Boolean Algebra
Example:
Using Boolean Algebra, simplify the following
Boolean expression.
F(A,B,C) = A'.B.C + A.B'.C + A.B.C
13IDP14- Digital Electronics 31
Boolean Algebra
Example:
Using Boolean Algebra, simplify the following
Boolean expression.
F(A,B,C) = (A'+B'+C').(A'+B+C').(A+B'+C')
13IDP14- Digital Electronics 32
DeMorgan's Laws
 Can be stated as follows:
 The complement of the product (AND) is the
sum (OR) of the complements.
 (X.Y)' = X' + Y'
 The complement of the sum (OR) is the
product (AND) of the complements.
 (X + Y)' = X' . Y'
 Easily generalized to n variables.
 Can be proven using a Truth table
13IDP14- Digital Electronics 33
Proving DeMorgan's Law
(X . Y)' = X' + Y'
13IDP14- Digital Electronics 34
x1
x2
x1
x2
x1
x2
x1
x2
x1
x2
x1
x2
x1 x2 x1 x2+=(a)
x1 x2+ x1 x2=(b)
DeMorgan's Theorems
13IDP14- Digital Electronics 35
Importance of Boolean Algebra
 Boolean Algebra is used to simplify Boolean
expressions.
– Through application of the Laws and Theorems
discussed
 Simpler expressions lead to simpler circuit realization,
which, generally, reduces cost, area requirements, and
power consumption.
 The objective of the digital circuit designer is to design
and realize optimal digital circuits.
13IDP14- Digital Electronics 36
Algebraic Simplification
 Justification for simplifying Boolean expressions:
– Reduces the cost associated with realizing the
expression using logic gates.
– Reduces the area (i.e. silicon) required to fabricate the
switching function.
– Reduces the power consumption of the circuit.
 In general, there is no easy way to determine when a
Boolean expression has been simplified to a minimum
number of terms or minimum number of literals.
– No unique solution
13IDP14- Digital Electronics 37
Algebraic Simplification
 Boolean (or Switching) expressions can be
simplified using the following methods:
1. Multiplying out the expression
2. Factoring the expression
3. Combining terms of the expression
4. Eliminating terms in the expression
5. Eliminating literals in the expression
6. Adding redundant terms to the expression

Weitere ähnliche Inhalte

Was ist angesagt?

Logic synthesis,flootplan&placement
Logic synthesis,flootplan&placementLogic synthesis,flootplan&placement
Logic synthesis,flootplan&placementshaik sharief
 
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierRF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierSimen Li
 
9 semiconductor memory
9 semiconductor memory9 semiconductor memory
9 semiconductor memoryUsha Mehta
 
Degital 1
Degital 1Degital 1
Degital 1hnaita
 
slide_logic_family_pune_SE_comp
slide_logic_family_pune_SE_compslide_logic_family_pune_SE_comp
slide_logic_family_pune_SE_comphello_priti
 
EC6601 VLSI Design Memory Circuits
EC6601 VLSI Design   Memory CircuitsEC6601 VLSI Design   Memory Circuits
EC6601 VLSI Design Memory Circuitschitrarengasamy
 
digital logic_families
digital logic_familiesdigital logic_families
digital logic_familiesPatel Jay
 
decoder and encoder
 decoder and encoder decoder and encoder
decoder and encoderUnsa Shakir
 
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsCircuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsSimen Li
 
KNN Algorithm using C++
KNN Algorithm using C++KNN Algorithm using C++
KNN Algorithm using C++Afraz Khan
 
Cmos design
Cmos designCmos design
Cmos designMahi
 

Was ist angesagt? (20)

D Flip Flop
D Flip Flop D Flip Flop
D Flip Flop
 
Behavioral modelling in VHDL
Behavioral modelling in VHDLBehavioral modelling in VHDL
Behavioral modelling in VHDL
 
Dld
DldDld
Dld
 
Logic families
Logic familiesLogic families
Logic families
 
Logic synthesis,flootplan&placement
Logic synthesis,flootplan&placementLogic synthesis,flootplan&placement
Logic synthesis,flootplan&placement
 
Sense ampliers
Sense ampliersSense ampliers
Sense ampliers
 
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierRF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
 
VHDL - Part 2
VHDL - Part 2VHDL - Part 2
VHDL - Part 2
 
9 semiconductor memory
9 semiconductor memory9 semiconductor memory
9 semiconductor memory
 
Degital 1
Degital 1Degital 1
Degital 1
 
Digital logic
Digital logicDigital logic
Digital logic
 
Pass Transistor Logic
Pass Transistor LogicPass Transistor Logic
Pass Transistor Logic
 
Latches and flip flops
Latches and flip flopsLatches and flip flops
Latches and flip flops
 
slide_logic_family_pune_SE_comp
slide_logic_family_pune_SE_compslide_logic_family_pune_SE_comp
slide_logic_family_pune_SE_comp
 
EC6601 VLSI Design Memory Circuits
EC6601 VLSI Design   Memory CircuitsEC6601 VLSI Design   Memory Circuits
EC6601 VLSI Design Memory Circuits
 
digital logic_families
digital logic_familiesdigital logic_families
digital logic_families
 
decoder and encoder
 decoder and encoder decoder and encoder
decoder and encoder
 
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsCircuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
 
KNN Algorithm using C++
KNN Algorithm using C++KNN Algorithm using C++
KNN Algorithm using C++
 
Cmos design
Cmos designCmos design
Cmos design
 

Andere mochten auch

Fundamentals of digital electronics
 Fundamentals of digital electronics Fundamentals of digital electronics
Fundamentals of digital electronicssandeep patil
 
Ppt Digital Electronics
Ppt Digital ElectronicsPpt Digital Electronics
Ppt Digital ElectronicsNaval Kush
 
Logic gates - AND, OR, NOT, NOR, NAND, XOR, XNOR Gates.
Logic gates - AND, OR, NOT, NOR, NAND, XOR, XNOR Gates.Logic gates - AND, OR, NOT, NOR, NAND, XOR, XNOR Gates.
Logic gates - AND, OR, NOT, NOR, NAND, XOR, XNOR Gates.Satya P. Joshi
 
Mkk1013 chapter 2.1
Mkk1013 chapter 2.1Mkk1013 chapter 2.1
Mkk1013 chapter 2.1ramlahmailok
 
Chapter 2 Boolean Algebra (part 2)
Chapter 2 Boolean Algebra (part 2)Chapter 2 Boolean Algebra (part 2)
Chapter 2 Boolean Algebra (part 2)Frankie Jones
 
Boolean algebra akash
Boolean algebra akashBoolean algebra akash
Boolean algebra akashaaryan505
 
Introduction to Boolean Algebra
Introduction to Boolean AlgebraIntroduction to Boolean Algebra
Introduction to Boolean Algebrablaircomp2003
 
digital logic design Chapter 2 boolean_algebra_&_logic_gates
digital logic design Chapter 2 boolean_algebra_&_logic_gatesdigital logic design Chapter 2 boolean_algebra_&_logic_gates
digital logic design Chapter 2 boolean_algebra_&_logic_gatesImran Waris
 
Digital electronics and logic design
Digital electronics and logic designDigital electronics and logic design
Digital electronics and logic designToufiq Akbar
 
Analog and Digital Electronics by U A Bakshi
Analog and Digital Electronics by U A BakshiAnalog and Digital Electronics by U A Bakshi
Analog and Digital Electronics by U A BakshiDheeraj Upadhyay
 

Andere mochten auch (20)

Digital design chap 2
Digital design    chap 2Digital design    chap 2
Digital design chap 2
 
Digital Basics
Digital BasicsDigital Basics
Digital Basics
 
Fundamentals of digital electronics
 Fundamentals of digital electronics Fundamentals of digital electronics
Fundamentals of digital electronics
 
Basics of digital electronics
Basics of digital electronicsBasics of digital electronics
Basics of digital electronics
 
Number system
Number systemNumber system
Number system
 
Digital electronics
Digital electronicsDigital electronics
Digital electronics
 
Ppt Digital Electronics
Ppt Digital ElectronicsPpt Digital Electronics
Ppt Digital Electronics
 
Number System
Number SystemNumber System
Number System
 
Logic gates - AND, OR, NOT, NOR, NAND, XOR, XNOR Gates.
Logic gates - AND, OR, NOT, NOR, NAND, XOR, XNOR Gates.Logic gates - AND, OR, NOT, NOR, NAND, XOR, XNOR Gates.
Logic gates - AND, OR, NOT, NOR, NAND, XOR, XNOR Gates.
 
Electronics ppt
Electronics ppt Electronics ppt
Electronics ppt
 
Mkk1013 chapter 2.1
Mkk1013 chapter 2.1Mkk1013 chapter 2.1
Mkk1013 chapter 2.1
 
Chapter 2 Boolean Algebra (part 2)
Chapter 2 Boolean Algebra (part 2)Chapter 2 Boolean Algebra (part 2)
Chapter 2 Boolean Algebra (part 2)
 
Boolean algebra akash
Boolean algebra akashBoolean algebra akash
Boolean algebra akash
 
Introduction to Boolean Algebra
Introduction to Boolean AlgebraIntroduction to Boolean Algebra
Introduction to Boolean Algebra
 
digital logic design Chapter 2 boolean_algebra_&_logic_gates
digital logic design Chapter 2 boolean_algebra_&_logic_gatesdigital logic design Chapter 2 boolean_algebra_&_logic_gates
digital logic design Chapter 2 boolean_algebra_&_logic_gates
 
Digital electronics and logic design
Digital electronics and logic designDigital electronics and logic design
Digital electronics and logic design
 
Electric fan
Electric fanElectric fan
Electric fan
 
Number system
Number systemNumber system
Number system
 
Analog and Digital Electronics by U A Bakshi
Analog and Digital Electronics by U A BakshiAnalog and Digital Electronics by U A Bakshi
Analog and Digital Electronics by U A Bakshi
 
Digital electronics - Basics
Digital electronics - BasicsDigital electronics - Basics
Digital electronics - Basics
 

Ähnlich wie Basic gates and boolean algebra

Digital logic circuits important question and answers for 5 units
Digital logic circuits important question and answers for 5 unitsDigital logic circuits important question and answers for 5 units
Digital logic circuits important question and answers for 5 unitsLekashri Subramanian
 
Number systems and Boolean Reduction
Number systems and Boolean ReductionNumber systems and Boolean Reduction
Number systems and Boolean ReductionDhaval Shukla
 
PDT DC015 Chapter 2 Computer System 2017/2018 (f)
PDT DC015 Chapter 2 Computer System 2017/2018 (f)PDT DC015 Chapter 2 Computer System 2017/2018 (f)
PDT DC015 Chapter 2 Computer System 2017/2018 (f)Fizaril Amzari Omar
 
chapter 3 Boolean algebra (2).pptx
chapter 3 Boolean algebra (2).pptxchapter 3 Boolean algebra (2).pptx
chapter 3 Boolean algebra (2).pptxRithinA1
 
Boolean algebra And Logic Gates
Boolean algebra And Logic GatesBoolean algebra And Logic Gates
Boolean algebra And Logic GatesKumar
 
Logic System Design KTU Chapter-4.ppt
Logic System Design KTU Chapter-4.pptLogic System Design KTU Chapter-4.ppt
Logic System Design KTU Chapter-4.pptAlbin562191
 
Combinational logic circuits design and implementation
Combinational logic circuits design and implementationCombinational logic circuits design and implementation
Combinational logic circuits design and implementationssuserca5764
 

Ähnlich wie Basic gates and boolean algebra (20)

Digital Logic
Digital LogicDigital Logic
Digital Logic
 
EE8351 DLC
EE8351 DLCEE8351 DLC
EE8351 DLC
 
2dig circ
2dig circ2dig circ
2dig circ
 
Digital logic circuits important question and answers for 5 units
Digital logic circuits important question and answers for 5 unitsDigital logic circuits important question and answers for 5 units
Digital logic circuits important question and answers for 5 units
 
Chapter-3.ppt
Chapter-3.pptChapter-3.ppt
Chapter-3.ppt
 
Number systems and Boolean Reduction
Number systems and Boolean ReductionNumber systems and Boolean Reduction
Number systems and Boolean Reduction
 
9525.ppt
9525.ppt9525.ppt
9525.ppt
 
PDT DC015 Chapter 2 Computer System 2017/2018 (f)
PDT DC015 Chapter 2 Computer System 2017/2018 (f)PDT DC015 Chapter 2 Computer System 2017/2018 (f)
PDT DC015 Chapter 2 Computer System 2017/2018 (f)
 
sop_pos(DE).pptx
sop_pos(DE).pptxsop_pos(DE).pptx
sop_pos(DE).pptx
 
B sc ii sem unit 2(b) ba
B sc ii sem unit 2(b) baB sc ii sem unit 2(b) ba
B sc ii sem unit 2(b) ba
 
Unit 4 dica
Unit 4 dicaUnit 4 dica
Unit 4 dica
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
chapter 3 Boolean algebra (2).pptx
chapter 3 Boolean algebra (2).pptxchapter 3 Boolean algebra (2).pptx
chapter 3 Boolean algebra (2).pptx
 
14 Lec11 2003
14 Lec11 200314 Lec11 2003
14 Lec11 2003
 
Boolean algebra And Logic Gates
Boolean algebra And Logic GatesBoolean algebra And Logic Gates
Boolean algebra And Logic Gates
 
Unit 02
Unit 02Unit 02
Unit 02
 
9402730.ppt
9402730.ppt9402730.ppt
9402730.ppt
 
9. logic gates._rr
9. logic gates._rr9. logic gates._rr
9. logic gates._rr
 
Logic System Design KTU Chapter-4.ppt
Logic System Design KTU Chapter-4.pptLogic System Design KTU Chapter-4.ppt
Logic System Design KTU Chapter-4.ppt
 
Combinational logic circuits design and implementation
Combinational logic circuits design and implementationCombinational logic circuits design and implementation
Combinational logic circuits design and implementation
 

Kürzlich hochgeladen

Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Pooja Bhuva
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...Nguyen Thanh Tu Collection
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfSherif Taha
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Pooja Bhuva
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxJisc
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxannathomasp01
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17Celine George
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxDr. Ravikiran H M Gowda
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structuredhanjurrannsibayan2
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxCeline George
 

Kürzlich hochgeladen (20)

Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 

Basic gates and boolean algebra

  • 1. 13IDP14– Digital Electronics Basic Logic Operations, Boolean Expressions, & Boolean Algebra
  • 3. 3 Basic Logic Operations  AND  OR  NOT (Complement)  Order of Precedence 1. NOT 2. AND 3. OR  can be modified using parenthesis
  • 6. 6 Additional Logic Operations  NAND  F = (A . B)'  NOR  F = (A + B)'  XOR  Output is 1 iff either input is 1, but not both.  XNOR (aka. Equivalence)  Output is 1 iff both inputs are 1 or both inputs are 0.
  • 8. 8 Exercise: Derive the Truth table for each of the following logic operations: 1. 2-input NAND 2. 2-input NOR Additional Logic Operations
  • 9. 9 Exercise: Derive the Truth table for each of the following logic operations: 1. 2-input XOR 2. 2-input XNOR Additional Logic Operations
  • 11. 11 Truth Tables  Used to describe the functional behavior of a Boolean expression and/or Logic circuit.  Each row in the truth table represents a unique combination of the input variables.  For n input variables, there are 2n rows.  The output of the logic function is defined for each row.  Each row is assigned a numerical value, with the rows listed in ascending order.  The order of the input variables defined in the logic function is important.
  • 12. 12 3-input Truth Table F(A,B,C) = Boolean expression
  • 13. 13 4-input Truth Table F(A,B,C,D) = Boolean expression
  • 15. 13IDP14- Digital Electronics 15 Boolean Expressions  Boolean expressions are composed of  Literals – variables and their complements  Logical operations  Examples  F = A.B'.C + A'.B.C' + A.B.C + A'.B'.C'  F = (A+B+C').(A'+B'+C).(A+B+C)  F = A.B'.C' + A.(B.C' + B'.C) literals logic operations
  • 16. 13IDP14- Digital Electronics 16 Boolean Expressions  Boolean expressions are realized using a network (or combination) of logic gates.  Each logic gate implements one of the logic operations in the Boolean expression  Each input to a logic gate represents one of the literals in the Boolean expression f A B logic operationsliterals
  • 17. 13IDP14- Digital Electronics 17 Boolean Expressions  Boolean expressions are evaluated by  Substituting a 0 or 1 for each literal  Calculating the logical value of the expression  A Truth Table specifies the value of the Boolean expression for every combination of the variables in the Boolean expression.  For an n-variable Boolean expression, the truth table has 2n rows (one for each combination).
  • 18. 13IDP14- Digital Electronics 18 Boolean Expressions Example: Evaluate the following Boolean expression, for all combination of inputs, using a Truth table. F(A,B,C) = A'.B'.C + A.B'.C' + A.C
  • 19. 13IDP14- Digital Electronics 19 Boolean Expressions  Two Boolean expressions are equivalent if they have the same value for each combination of the variables in the Boolean expression.  F1 = (A + B)'  F2 = A'.B'  How do you prove that two Boolean expressions are equivalent?  Truth table  Boolean Algebra
  • 20. 13IDP14- Digital Electronics 20 Boolean Expressions Example: Using a Truth table, prove that the following two Boolean expressions are equivalent. F1 = (A + B)' F2 = A'.B'
  • 21. 13IDP14- Digital Electronics 21 Boolean Algebra
  • 22. 13IDP14- Digital Electronics 22 Boolean Algebra  George Boole developed an algebraic description for processes involving logical thought and reasoning.  Became known as Boolean Algebra  Claude Shannon later demonstrated that Boolean Algebra could be used to describe switching circuits.  Switching circuits are circuits built from devices that switch between two states (e.g. 0 and 1).  Switching Algebra is a special case of Boolean Algebra in which all variables take on just two distinct values  Boolean Algebra is a powerful tool for analyzing and designing logic circuits.
  • 23. 13IDP14- Digital Electronics 23 Basic Laws and Theorems Commutative Law A + B = B + A A.B = B.A Associative Law A + (B + C) = (A + B) + C A . (B . C) = (A . B) . C Distributive Law A.(B + C) = AB + AC A + (B . C) = (A + B) . (A + C) Null Elements A + 1 = 1 A . 0 = 0 Identity A + 0 = A A . 1 = A A + A = A A . A = A Complement A + A' = 1 A . A' = 0 Involution A'' = A Absorption (Covering) A + AB = A A . (A + B) = A Simplification A + A'B = A + B A . (A' + B) = A . B DeMorgan's Rule (A + B)' = A'.B' (A . B)' = A' + B' Logic Adjacency (Combining) AB + AB' = A (A + B) . (A + B') = A Consensus AB + BC + A'C = AB + A'C (A + B) . (B + C) . (A' + C) = (A + B) . (A' + C) Idempotence
  • 24. 13IDP14- Digital Electronics 24 Idempotence A + A = A F = ABC + ABC' + ABC F = ABC + ABC' Note: terms can also be added using this theorem A . A = A G = (A' + B + C').(A + B' + C).(A + B' + C) G = (A' + B + C') + (A + B' + C) Note: terms can also be added using this theorem
  • 25. 13IDP14- Digital Electronics 25 Complement A + A' = 1 F = ABC'D + ABCD F = ABD.(C' + C) F = ABD A . A' = 0 G = (A + B + C + D).(A + B' + C + D) G = (A + C + D) + (B . B') G = A + C + D
  • 26. 13IDP14- Digital Electronics 26 Distributive Law A.(B + C) = AB + AC F = WX.(Y + Z) F = WXY + WXZ G = B'.(AC + AD) G = AB'C + AB'D H = A.(W'X + WX' + YZ) H = AW'X + AWX' + AYZ A + (B.C) = (A + B).(A + C) F = WX + (Y.Z) F = (WX + Y).(WX + Z) G = B' + (A.C.D) G = (B' + A).(B' + C).(B' + D) H = A + ( (W'X).(WX') ) H = (A + W'X).(A + WX')
  • 27. 13IDP14- Digital Electronics 27 Absorption (Covering) A + AB = A F = A'BC + A' F = A' G = XYZ + XY'Z + X'Y'Z' + XZ G = XYZ + XZ + X'Y'Z' G = XZ + X'Y'Z' H = D + DE + DEF H = D A.(A + B) = A F = A'.(A' + BC) F = A' G = XZ.(XZ + Y + Y') G = XZ.(XZ + Y) G = XZ H = D.(D + E + EF) H = D
  • 28. 13IDP14- Digital Electronics 28 Simplification A + A'B = A + B F = (XY + Z).(Y'W + Z'V') + (XY + Z)' F = Y'W + Z'V' + (XY + Z)' A.(A' + B) = A . B G = (X + Y).( (X + Y)' + (WZ) ) G = (X + Y) . WZ
  • 29. 13IDP14- Digital Electronics 29 Logic Adjacency (Combining) A.B + A.B' = A F = (X + Y).(W'X'Z) + (X + Y).(W'X'Z)' F = (X + Y) (A + B).(A + B') = A G = (XY + X'Z').(XY + (X'Z')' ) G = XY
  • 30. 13IDP14- Digital Electronics 30 Boolean Algebra Example: Using Boolean Algebra, simplify the following Boolean expression. F(A,B,C) = A'.B.C + A.B'.C + A.B.C
  • 31. 13IDP14- Digital Electronics 31 Boolean Algebra Example: Using Boolean Algebra, simplify the following Boolean expression. F(A,B,C) = (A'+B'+C').(A'+B+C').(A+B'+C')
  • 32. 13IDP14- Digital Electronics 32 DeMorgan's Laws  Can be stated as follows:  The complement of the product (AND) is the sum (OR) of the complements.  (X.Y)' = X' + Y'  The complement of the sum (OR) is the product (AND) of the complements.  (X + Y)' = X' . Y'  Easily generalized to n variables.  Can be proven using a Truth table
  • 33. 13IDP14- Digital Electronics 33 Proving DeMorgan's Law (X . Y)' = X' + Y'
  • 34. 13IDP14- Digital Electronics 34 x1 x2 x1 x2 x1 x2 x1 x2 x1 x2 x1 x2 x1 x2 x1 x2+=(a) x1 x2+ x1 x2=(b) DeMorgan's Theorems
  • 35. 13IDP14- Digital Electronics 35 Importance of Boolean Algebra  Boolean Algebra is used to simplify Boolean expressions. – Through application of the Laws and Theorems discussed  Simpler expressions lead to simpler circuit realization, which, generally, reduces cost, area requirements, and power consumption.  The objective of the digital circuit designer is to design and realize optimal digital circuits.
  • 36. 13IDP14- Digital Electronics 36 Algebraic Simplification  Justification for simplifying Boolean expressions: – Reduces the cost associated with realizing the expression using logic gates. – Reduces the area (i.e. silicon) required to fabricate the switching function. – Reduces the power consumption of the circuit.  In general, there is no easy way to determine when a Boolean expression has been simplified to a minimum number of terms or minimum number of literals. – No unique solution
  • 37. 13IDP14- Digital Electronics 37 Algebraic Simplification  Boolean (or Switching) expressions can be simplified using the following methods: 1. Multiplying out the expression 2. Factoring the expression 3. Combining terms of the expression 4. Eliminating terms in the expression 5. Eliminating literals in the expression 6. Adding redundant terms to the expression