SlideShare ist ein Scribd-Unternehmen logo
1 von 45
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
PRACTICAL NO: 1 
Aim:Build the data mining model structure and built the decision tree with proper decision 
nodes and infer at least five different types of reports. Implement Using RTool. 
Solution: 
Dataset Used :Iris 
Step 1:Display the Structure of iris data. 
Fig 1.1: Structure of iris data 
Step 2:The random seed is set to a fixed value below to make the results reproducible. 
Fig 1.2:Random Seed Set
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Step 3:Install the party package if it is not installed. Load the party package, build adecision 
tree, and check the prediction result. 
Sonali. Parab. 
Fig 1.3: Load Party library 
Fig 1.4: iris table 
Step 4:printing the rules and plot the tree 
Fig 1.5: Rules of data
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
A. Report 1 
Fig 1.6: Decision Tree
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
Step 5:Plot Decision tree in simple style 
Fig 1.7: Command to plot decision tree in simple style 
B. Report 2 
Fig 1.8: Decision tree (Simple Style)
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
Step 6:Plot iris species in bar plot 
Fig 1.9: bar plot command 
C. Report 3 
Fig 1.10:Barplot of Species
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
Step 7:Plot iris Species in pie chart 
Fig 1.11: Command for pie chart 
D. Report 4 
Fig 1.12: Pie Chart
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
Step 8:Plot histogram of iris Petal Length 
Fig 1.13: Command to plot histogram 
E. Report 5 
Fig 1.14: Histogram of iris Petal Length
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
PRACTICAL NO: 2 
Aim:Build the data mining model structure and Implement Naïve Bayes Algorithm. 
Implement Using WEKA. 
Solution: 
Dataset Used :Diabetes.arff 
Step 1:Pre-processing 
Go to WekaOpen file go to weka folder select diabetes.arff dataset open 
Fig 2.1 Choosing diabetes.arff dataset
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
Step 2:Filter the data 
FilterssuperviseddiscretizeApply 
Fig 2.2 Selecting the Filter 
Fig 2.3 Structure of Filtered Diabetes.arff Dataset
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
Step 3:Classify the data using Naïve Bayes Algorithm 
Fig 2.4 Select Classification Algorithm 
Fig 2.5 Running and Displaying Result
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
=== Run information === 
Scheme:weka.classifiers.bayes.NaiveBayes 
Relation: pima_diabetes-weka.filters.supervised.attribute.Discretize-Rfirst-last 
Instances: 768 
Attributes: 9 
preg 
plas 
pres 
skin 
insu 
mass 
pedi 
age 
class 
Test mode:10-fold cross-validation 
=== Classifier model (full training set) === 
Naive Bayes Classifier 
Class 
Attribute tested_negative tested_positive 
(0.65) (0.35) 
==================================================== 
preg
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
'(-inf-6.5]' 427.0 174.0 
'(6.5-inf)' 75.0 96.0 
[total] 502.0 270.0 
plas 
'(-inf-99.5]' 182.0 17.0 
'(99.5-127.5]' 211.0 79.0 
'(127.5-154.5]' 86.0 77.0 
'(154.5-inf)' 25.0 99.0 
[total] 504.0 272.0 
pres 
'All' 501.0 269.0 
[total] 501.0 269.0 
skin 
'All' 501.0 269.0 
[total] 501.0 269.0 
insu 
'(-inf-14.5]' 237.0 140.0 
'(14.5-121]' 165.0 28.0 
'(121-inf)' 101.0 103.0 
[total] 503.0 271.0 
mass 
'(-inf-27.85]' 196.0 28.0
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
'(27.85-inf)' 306.0 242.0 
[total] 502.0 270.0 
pedi 
'(-inf-0.5275]' 362.0 149.0 
'(0.5275-inf)' 140.0 121.0 
[total] 502.0 270.0 
age 
'(-inf-28.5]' 297.0 72.0 
'(28.5-inf)' 205.0 198.0 
[total] 502.0 270.0 
Time taken to build model: 0 seconds
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
Step 4: Visualize classifiers errors 
Fig 2.6 Visualization of Classification Errors
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
PRACTICAL NO: 3 
Aim:Implement the clustering Algorithm By Using Weka Tool. 
Solution: 
Dataset Used :Iris.arff 
Step 1:Preprocess 
Open file go to weka folder select iris dataset Choose  
Filterssuperviseddiscretize 
Fig 3.1: Structure of iris data
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
Fig 3.2: Filtering the Data 
Fig 3.3: Filtered Dataset
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
Step 2:Cluster 
Select cluster tabchoose button clusterers  select simplekmeans click 
radio button use training setright click “Poperties” numClusters= 3click 
start button. 
Fig 3.4 Configuring Clustering Algorithm 
Fig 3.5 Generating Result
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
=== Run information === 
Scheme:weka.clusterers.SimpleKMeans -N 3 -A "weka.core.EuclideanDistance -R first-last" 
-I 500 -S 10 
Relation: iris-weka.filters.supervised.attribute.Discretize-Rfirst-last 
Instances: 150 
Attributes: 5 
sepallength 
sepalwidth 
petallength 
petalwidth 
class 
Test mode:evaluate on training data 
=== Model and evaluation on training set === 
kMeans 
====== 
Number of iterations: 5 
Within cluster sum of squared errors: 109.0 
Missing values globally replaced with mean/mode 
Cluster centroids: 
Cluster#
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
Attribute Full Data 0 1 2 
(150) (50) (50) (50) 
===================================================== 
sepallength '(-inf-5.55]' '(-inf-5.55]' '(5.55-6.15]' '(6.15-inf)' 
sepalwidth '(-inf-2.95]' '(3.35-inf)' '(-inf-2.95]' '(2.95-3.35]' 
petallength '(4.75-inf)' '(-inf-2.45]' '(2.45-4.75]' '(4.75-inf)' 
petalwidth '(0.8-1.75]' '(-inf-0.8]' '(0.8-1.75]' '(1.75-inf)' 
class Iris-setosa Iris-setosa Iris-versicolor Iris-virginica 
Time taken to build model (full training data) : 0 seconds 
=== Model and evaluation on training set === 
Clustered Instances 
0 50 ( 33%) 
1 50 ( 33%) 
2 50 ( 33%)
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
Step 4:Visualizing the Result 
Right click on resultvisualize cluster assignments 
Fig 3.6 Selecting Visualization 
Fig 3.7 Displaying Visualization Result
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
PRACTICAL NO: 4 
Aim :Build the basic Time series model structure and create the predictions 
BodyFatDataset.By Using RTool. 
Solution: 
Dataset Used :BodyFat 
Step 1 :load Package mboost. 
Fig 4.1 : Show the load Of Package mboost.
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
Step2 :To Show Data stored in BodyFat Dataset. 
Fig 4.2 : Show The Data stored in BodyFat Dataset. 
Step 3 :Select the Summary Of BodyFat Dataset. 
Fig 4.3 :Show The Summary Of BodyFat Dataset.
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
Step4 :Using Predication Method And Plot Graph On BodyFat Dataset. 
Fig 4.4 : Show Predication Method And Plot Graph Formula ApplyOn BodyFat Dataset. 
Step5 :Predication Graph For BodyFat Dataset. 
Fig 4.5 :Show The Predication Graph For BodyFat Dataset.
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
PRACTICAL NO: 5 
Aim:Build the data mining model and implement k-nearest neighbor By Using Weka Tool. 
Solution: 
Dataset Used:ContactLenses.arff 
Step 1:Preprocess 
Open file go to weka folder select contact lens dataset Choose  
Filterssuperviseddiscretize 
Fig 5.1: Structure of contact lens dataset
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
Fig 5.2: Filtering the Data 
Fig 5.3:Filtered Dataset
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
Step 2:Classify 
Select classify tabchoose buttonexpand Lazy folderselect IBKclick radio button use 
training setclick start button. 
Fig 5.4 Choosing K-nearest neighbour algorithm 
Fig 5.5 Generating Result
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
=== Run information === 
Scheme:weka.classifiers.lazy.IBk -K 1 -W 0 -A 
"weka.core.neighboursearch.LinearNNSearch -A "weka.core.EuclideanDistance -R first-last"" 
Relation: contact-lenses-weka.filters.supervised.attribute.Discretize-Rfirst-last 
Instances: 24 
Attributes: 5 
age 
spectacle-prescrip 
astigmatism 
tear-prod-rate 
contact-lenses 
Test mode:evaluate on training data 
=== Classifier model (full training set) === 
IB1 instance-based classifier 
using 1 nearest neighbour(s) for classification 
Time taken to build model: 0 seconds 
=== Evaluation on training set === 
=== Summary === 
Correctly Classified Instances 24 100 %
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
Incorrectly Classified Instances 0 0 % 
Kappa statistic 1 
Mean absolute error 0.0494 
Root mean squared error 0.0524 
Relative absolute error 13.4078 % 
Root relative squared error 12.3482 % 
Total Number of Instances 24 
=== Detailed Accuracy By Class === 
TP Rate FP Rate Precision Recall F-Measure ROC Area Class 
1 0 1 1 1 1 soft 
1 0 1 1 1 1 hard 
1 0 1 1 1 1 none 
Weighted Avg. 1 0 1 1 1 1 
=== Confusion Matrix === 
a b c <-- classified as 
5 0 0 | a = soft 
0 4 0 | b = hard 
0 0 15 | c = none
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
PRACTICAL NO: 6 
Aim:Build the data mining model and implement k-nearest neighbor By Using Weka Tool. 
Solution: 
Dataset Used:Supermarket.arff 
Step 1:Preprocess 
Open file go to Weka folder select Supermarket dataset Choose  FiltersAll Filter 
Fig 6.1: Structure of Supermarket dataset
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
Fig 6.2: Filtering the Data 
Fig 6.3: Filtered Dataset
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
Step 2:Associate 
Select Associate tabchoose apriori algorithmpropertiesconfigure 
algorithm according to requirementsclick ‘start’ 
Fig 6.4 Choosing Apriori Algorithm 
Fig 6.5 Configuring Algorithm
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
Fig 6.6 Displaying Association Results 
=== Run information === 
Scheme: weka.associations.Apriori -N 12 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.1 -S -1.0 -c -1 
Relation: supermarket-weka.filters.AllFilter-weka.filters.AllFilter-weka.filters.AllFilter-weka. 
filters.AllFilter-weka.filters.MultiFilter-Fweka.filters.AllFilter-weka.filters.AllFilter-weka. 
filters.AllFilter 
Instances: 4627 
Attributes: 217 
[list of attributes omitted] 
=== Associator model (full training set) ===
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
Apriori 
======= 
Minimum support: 0.15 (694 instances) 
Minimum metric <confidence>: 0.9 
Number of cycles performed: 17 
Generated sets of large itemsets: 
Size of set of large itemsets L(1): 44 
Size of set of large itemsets L(2): 380 
Size of set of large itemsets L(3): 910 
Size of set of large itemsets L(4): 633 
Size of set of large itemsets L(5): 105 
Size of set of large itemsets L(6): 1 
Best rules found: 
1. biscuits=t frozen foods=t fruit=t total=high 788 ==> bread and cake=t 723 conf:(0.92) 
2. baking needs=t biscuits=t fruit=t total=high 760 ==> bread and cake=t 696 conf:(0.92) 
3. baking needs=t frozen foods=t fruit=t total=high 770 ==> bread and cake=t 705 
conf:(0.92)
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
4. biscuits=t fruit=t vegetables=t total=high 815 ==> bread and cake=t 746 conf:(0.92) 
5. party snack foods=t fruit=t total=high 854 ==> bread and cake=t 779 conf:(0.91) 
6. biscuits=t frozen foods=t vegetables=t total=high 797 ==> bread and cake=t 725 
conf:(0.91) 
7. baking needs=t biscuits=t vegetables=t total=high 772 ==> bread and cake=t 701 
conf:(0.91) 
Sonali. Parab. 
8. biscuits=t fruit=t total=high 954 ==> bread and cake=t 866 conf:(0.91) 
9. frozen foods=t fruit=t vegetables=t total=high 834 ==> bread and cake=t 757 
conf:(0.91) 
10. frozen foods=t fruit=t total=high 969 ==> bread and cake=t 877 conf:(0.91) 
11. baking needs=t fruit=t vegetables=t total=high 831 ==> bread and cake=t 752 conf:(0.9) 
12. biscuits=t milk-cream=t total=high 907 ==> bread and cake=t 820 conf:(0.9)
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
PRACTICAL NO: 7 
Aim:Build the data mining model and implement k-nearest neighbor By Using Weka Tool. 
Solution: 
Dataset Used:Titanic 
Step 1:Preprocess 
Loading the Data in Data Frame 
Transforming the Data into Suitable Format 
Fig 7.1: Structure of Titanic dataset
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
Fig 7.2 Summary of Titanic Dataset 
Step 2:Associate 
Loading library ‘arules’ that contains functions for Association mining 
Function used to apply Apriori Algorithm with Default Configuration 
Fig 7.3 Choosing Apriori Algorithm
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
Fig 7.4 Inspecting the Results of Apriori Algorithm 
Fig 7.5 Applying Settings to Display Rules with RHS containing survived only
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
Step 3:Finding and Removing Redundant Rules 
Code to Find Redundant Rules 
Code to Remove Redundant Rules 
Fig 7.6 Finding & Removing Redundant Rules
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
Step 4:Visualizing: 
Loading library aulesViz which contains functions for Visualizing Assoication Results 
Function to plot Results Using Scatter Plot 
X axis: Support 
Y axis:Confidence 
Fig 7.7 Scatter Plot
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
Function to plot Association Results as Graph Plot 
Fig 7.8 Graph Plot Showing How Data Items are Assoicated
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
PRACTICAL NO: 8 
Aim:Consider the suitable data for text mining and Implement the Text Mining technique 
using R-Tool. 
Solution: 
Dataset Used:Plain Text File (www.txt) 
Step 1:Loading the Text File 
Loading Essential Libraries for Text Mining tm, SnowballC and twitteR 
Loading The Data From Text File Into RTool Using readLines() 
Fig 8.1: Using tail() and head() functions to display start and of paragraphs
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
Step 2:Transforming 
Loading tm library and transforming document to Corpusdoc 
Fig 8.2 Inspecting Corpusdoc 
Function to Remove Punctuations 
Fig 8.3 Removing Punctuations
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
Function to Strip White Spaces 
Fig 8.4 Stripping White Spaces 
Function to Remove Stop Words from Document 
Fig 8.5 Removing Stop Words From Document
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
Function to Stem the Document 
Fig 8.6 Stemming the Document 
Function to Convert corpusdoc to TermDocumentMatrix 
Fig 8.7 Inspecting TermDocumentMatrix
MSc IT Part – I, Semester-1 Page No:- ________ 
DATA MINING Date:- ____________ 
Sonali. Parab. 
Step 3:Finding Frequent Terms in Document 
Fig 8.7 Find Frequent Terms From Document 
Step 4:Finding Association among terms 
Function to find Association among Different terms in Document 
Fig 8.8 Result of How Strongly Terms Are Associated with Term “information”

Weitere ähnliche Inhalte

Andere mochten auch

[Women in Data Science Meetup ATX] Decision Trees
[Women in Data Science Meetup ATX] Decision Trees [Women in Data Science Meetup ATX] Decision Trees
[Women in Data Science Meetup ATX] Decision Trees Nikolaos Vergos
 
Ensemble modeling overview, Big Data meetup
Ensemble modeling overview, Big Data meetupEnsemble modeling overview, Big Data meetup
Ensemble modeling overview, Big Data meetupOptimalBI Limited
 
From decision trees to random forests
From decision trees to random forestsFrom decision trees to random forests
From decision trees to random forestsViet-Trung TRAN
 
Decision trees and random forests
Decision trees and random forestsDecision trees and random forests
Decision trees and random forestsDebdoot Sheet
 
Machine Learning and Data Mining: 16 Classifiers Ensembles
Machine Learning and Data Mining: 16 Classifiers EnsemblesMachine Learning and Data Mining: 16 Classifiers Ensembles
Machine Learning and Data Mining: 16 Classifiers EnsemblesPier Luca Lanzi
 
Lecture 6: Ensemble Methods
Lecture 6: Ensemble Methods Lecture 6: Ensemble Methods
Lecture 6: Ensemble Methods Marina Santini
 
Decision Tree Ensembles - Bagging, Random Forest & Gradient Boosting Machines
Decision Tree Ensembles - Bagging, Random Forest & Gradient Boosting MachinesDecision Tree Ensembles - Bagging, Random Forest & Gradient Boosting Machines
Decision Tree Ensembles - Bagging, Random Forest & Gradient Boosting MachinesDeepak George
 
2.8 accuracy and ensemble methods
2.8 accuracy and ensemble methods2.8 accuracy and ensemble methods
2.8 accuracy and ensemble methodsKrish_ver2
 
Machine learning basics using trees algorithm (Random forest, Gradient Boosting)
Machine learning basics using trees algorithm (Random forest, Gradient Boosting)Machine learning basics using trees algorithm (Random forest, Gradient Boosting)
Machine learning basics using trees algorithm (Random forest, Gradient Boosting)Parth Khare
 
Machine learning overview (with SAS software)
Machine learning overview (with SAS software)Machine learning overview (with SAS software)
Machine learning overview (with SAS software)Longhow Lam
 
Election algorithms
Election algorithmsElection algorithms
Election algorithmsAnkush Kumar
 
Understanding Random Forests: From Theory to Practice
Understanding Random Forests: From Theory to PracticeUnderstanding Random Forests: From Theory to Practice
Understanding Random Forests: From Theory to PracticeGilles Louppe
 
2013-1 Machine Learning Lecture 06 - Lucila Ohno-Machado - Ensemble Methods
2013-1 Machine Learning Lecture 06 - Lucila Ohno-Machado - Ensemble Methods2013-1 Machine Learning Lecture 06 - Lucila Ohno-Machado - Ensemble Methods
2013-1 Machine Learning Lecture 06 - Lucila Ohno-Machado - Ensemble MethodsDongseo University
 
5.4 Arbres et forêts aléatoires
5.4 Arbres et forêts aléatoires5.4 Arbres et forêts aléatoires
5.4 Arbres et forêts aléatoiresBoris Guarisma
 
Data Science - Part V - Decision Trees & Random Forests
Data Science - Part V - Decision Trees & Random Forests Data Science - Part V - Decision Trees & Random Forests
Data Science - Part V - Decision Trees & Random Forests Derek Kane
 

Andere mochten auch (16)

L4. Ensembles of Decision Trees
L4. Ensembles of Decision TreesL4. Ensembles of Decision Trees
L4. Ensembles of Decision Trees
 
[Women in Data Science Meetup ATX] Decision Trees
[Women in Data Science Meetup ATX] Decision Trees [Women in Data Science Meetup ATX] Decision Trees
[Women in Data Science Meetup ATX] Decision Trees
 
Ensemble modeling overview, Big Data meetup
Ensemble modeling overview, Big Data meetupEnsemble modeling overview, Big Data meetup
Ensemble modeling overview, Big Data meetup
 
From decision trees to random forests
From decision trees to random forestsFrom decision trees to random forests
From decision trees to random forests
 
Decision trees and random forests
Decision trees and random forestsDecision trees and random forests
Decision trees and random forests
 
Machine Learning and Data Mining: 16 Classifiers Ensembles
Machine Learning and Data Mining: 16 Classifiers EnsemblesMachine Learning and Data Mining: 16 Classifiers Ensembles
Machine Learning and Data Mining: 16 Classifiers Ensembles
 
Lecture 6: Ensemble Methods
Lecture 6: Ensemble Methods Lecture 6: Ensemble Methods
Lecture 6: Ensemble Methods
 
Decision Tree Ensembles - Bagging, Random Forest & Gradient Boosting Machines
Decision Tree Ensembles - Bagging, Random Forest & Gradient Boosting MachinesDecision Tree Ensembles - Bagging, Random Forest & Gradient Boosting Machines
Decision Tree Ensembles - Bagging, Random Forest & Gradient Boosting Machines
 
2.8 accuracy and ensemble methods
2.8 accuracy and ensemble methods2.8 accuracy and ensemble methods
2.8 accuracy and ensemble methods
 
Machine learning basics using trees algorithm (Random forest, Gradient Boosting)
Machine learning basics using trees algorithm (Random forest, Gradient Boosting)Machine learning basics using trees algorithm (Random forest, Gradient Boosting)
Machine learning basics using trees algorithm (Random forest, Gradient Boosting)
 
Machine learning overview (with SAS software)
Machine learning overview (with SAS software)Machine learning overview (with SAS software)
Machine learning overview (with SAS software)
 
Election algorithms
Election algorithmsElection algorithms
Election algorithms
 
Understanding Random Forests: From Theory to Practice
Understanding Random Forests: From Theory to PracticeUnderstanding Random Forests: From Theory to Practice
Understanding Random Forests: From Theory to Practice
 
2013-1 Machine Learning Lecture 06 - Lucila Ohno-Machado - Ensemble Methods
2013-1 Machine Learning Lecture 06 - Lucila Ohno-Machado - Ensemble Methods2013-1 Machine Learning Lecture 06 - Lucila Ohno-Machado - Ensemble Methods
2013-1 Machine Learning Lecture 06 - Lucila Ohno-Machado - Ensemble Methods
 
5.4 Arbres et forêts aléatoires
5.4 Arbres et forêts aléatoires5.4 Arbres et forêts aléatoires
5.4 Arbres et forêts aléatoires
 
Data Science - Part V - Decision Trees & Random Forests
Data Science - Part V - Decision Trees & Random Forests Data Science - Part V - Decision Trees & Random Forests
Data Science - Part V - Decision Trees & Random Forests
 

Ähnlich wie Data Mining

Machine Learning, K-means Algorithm Implementation with R
Machine Learning, K-means Algorithm Implementation with RMachine Learning, K-means Algorithm Implementation with R
Machine Learning, K-means Algorithm Implementation with RIRJET Journal
 
STOCK PRICE PREDICTION USING MACHINE LEARNING [RANDOM FOREST REGRESSION MODEL]
STOCK PRICE PREDICTION USING MACHINE LEARNING [RANDOM FOREST REGRESSION MODEL]STOCK PRICE PREDICTION USING MACHINE LEARNING [RANDOM FOREST REGRESSION MODEL]
STOCK PRICE PREDICTION USING MACHINE LEARNING [RANDOM FOREST REGRESSION MODEL]IRJET Journal
 
IRJET- Efficient Face Detection from Video Sequences using KNN and PCA
IRJET-  	  Efficient Face Detection from Video Sequences using KNN and PCAIRJET-  	  Efficient Face Detection from Video Sequences using KNN and PCA
IRJET- Efficient Face Detection from Video Sequences using KNN and PCAIRJET Journal
 
EKON22 Introduction to Machinelearning
EKON22 Introduction to MachinelearningEKON22 Introduction to Machinelearning
EKON22 Introduction to MachinelearningMax Kleiner
 
Machine_Learning_Trushita
Machine_Learning_TrushitaMachine_Learning_Trushita
Machine_Learning_TrushitaTrushita Redij
 
Classification and Prediction Based Data Mining Algorithm in Weka Tool
Classification and Prediction Based Data Mining Algorithm in Weka ToolClassification and Prediction Based Data Mining Algorithm in Weka Tool
Classification and Prediction Based Data Mining Algorithm in Weka ToolIRJET Journal
 
Human_Activity_Recognition_Predictive_Model
Human_Activity_Recognition_Predictive_ModelHuman_Activity_Recognition_Predictive_Model
Human_Activity_Recognition_Predictive_ModelDavid Ritchie
 
Cis247 a ilab 3 overloaded methods and static methods variables
Cis247 a ilab 3 overloaded methods and static methods variablesCis247 a ilab 3 overloaded methods and static methods variables
Cis247 a ilab 3 overloaded methods and static methods variablescis247
 
Cis247 i lab 3 overloaded methods and static methods variables
Cis247 i lab 3 overloaded methods and static methods variablesCis247 i lab 3 overloaded methods and static methods variables
Cis247 i lab 3 overloaded methods and static methods variablessdjdskjd9097
 
Cis247 a ilab 3 overloaded methods and static methods variables
Cis247 a ilab 3 overloaded methods and static methods variablesCis247 a ilab 3 overloaded methods and static methods variables
Cis247 a ilab 3 overloaded methods and static methods variablesccis224477
 
AIML4 CNN lab256 1hr (111-1).pdf
AIML4 CNN lab256 1hr (111-1).pdfAIML4 CNN lab256 1hr (111-1).pdf
AIML4 CNN lab256 1hr (111-1).pdfssuserb4d806
 
IRJET - Comparative Study of Flight Delay Prediction using Back Propagati...
IRJET -  	  Comparative Study of Flight Delay Prediction using Back Propagati...IRJET -  	  Comparative Study of Flight Delay Prediction using Back Propagati...
IRJET - Comparative Study of Flight Delay Prediction using Back Propagati...IRJET Journal
 
Image Classification using Deep Learning
Image Classification using Deep LearningImage Classification using Deep Learning
Image Classification using Deep LearningIRJET Journal
 
INTRODUCTION TO MACHINE LEARNING FOR MATERIALS SCIENCE
INTRODUCTION TO MACHINE LEARNING FOR MATERIALS SCIENCEINTRODUCTION TO MACHINE LEARNING FOR MATERIALS SCIENCE
INTRODUCTION TO MACHINE LEARNING FOR MATERIALS SCIENCEIPutuAdiPratama
 
Artifical_intiligence_worksheet-exp-9.docx
Artifical_intiligence_worksheet-exp-9.docxArtifical_intiligence_worksheet-exp-9.docx
Artifical_intiligence_worksheet-exp-9.docxKrishnaKumar2309
 
Machine learning key to your formulation challenges
Machine learning key to your formulation challengesMachine learning key to your formulation challenges
Machine learning key to your formulation challengesMarc Borowczak
 
Artificial Intelligence based Pattern Recognition
Artificial Intelligence based Pattern RecognitionArtificial Intelligence based Pattern Recognition
Artificial Intelligence based Pattern RecognitionDr. Amarjeet Singh
 
Cis247 i lab 2 of 7 employee class
Cis247 i lab 2 of 7 employee classCis247 i lab 2 of 7 employee class
Cis247 i lab 2 of 7 employee classsdjdskjd9097
 
CIS 321 Case Study ‘Equipment Check-Out System’MILESTONE 3 – PRO.docx
CIS 321 Case Study ‘Equipment Check-Out System’MILESTONE 3 – PRO.docxCIS 321 Case Study ‘Equipment Check-Out System’MILESTONE 3 – PRO.docx
CIS 321 Case Study ‘Equipment Check-Out System’MILESTONE 3 – PRO.docxclarebernice
 

Ähnlich wie Data Mining (20)

Machine Learning, K-means Algorithm Implementation with R
Machine Learning, K-means Algorithm Implementation with RMachine Learning, K-means Algorithm Implementation with R
Machine Learning, K-means Algorithm Implementation with R
 
STOCK PRICE PREDICTION USING MACHINE LEARNING [RANDOM FOREST REGRESSION MODEL]
STOCK PRICE PREDICTION USING MACHINE LEARNING [RANDOM FOREST REGRESSION MODEL]STOCK PRICE PREDICTION USING MACHINE LEARNING [RANDOM FOREST REGRESSION MODEL]
STOCK PRICE PREDICTION USING MACHINE LEARNING [RANDOM FOREST REGRESSION MODEL]
 
IRJET- Efficient Face Detection from Video Sequences using KNN and PCA
IRJET-  	  Efficient Face Detection from Video Sequences using KNN and PCAIRJET-  	  Efficient Face Detection from Video Sequences using KNN and PCA
IRJET- Efficient Face Detection from Video Sequences using KNN and PCA
 
EKON22 Introduction to Machinelearning
EKON22 Introduction to MachinelearningEKON22 Introduction to Machinelearning
EKON22 Introduction to Machinelearning
 
Machine_Learning_Co__
Machine_Learning_Co__Machine_Learning_Co__
Machine_Learning_Co__
 
Machine_Learning_Trushita
Machine_Learning_TrushitaMachine_Learning_Trushita
Machine_Learning_Trushita
 
Classification and Prediction Based Data Mining Algorithm in Weka Tool
Classification and Prediction Based Data Mining Algorithm in Weka ToolClassification and Prediction Based Data Mining Algorithm in Weka Tool
Classification and Prediction Based Data Mining Algorithm in Weka Tool
 
Human_Activity_Recognition_Predictive_Model
Human_Activity_Recognition_Predictive_ModelHuman_Activity_Recognition_Predictive_Model
Human_Activity_Recognition_Predictive_Model
 
Cis247 a ilab 3 overloaded methods and static methods variables
Cis247 a ilab 3 overloaded methods and static methods variablesCis247 a ilab 3 overloaded methods and static methods variables
Cis247 a ilab 3 overloaded methods and static methods variables
 
Cis247 i lab 3 overloaded methods and static methods variables
Cis247 i lab 3 overloaded methods and static methods variablesCis247 i lab 3 overloaded methods and static methods variables
Cis247 i lab 3 overloaded methods and static methods variables
 
Cis247 a ilab 3 overloaded methods and static methods variables
Cis247 a ilab 3 overloaded methods and static methods variablesCis247 a ilab 3 overloaded methods and static methods variables
Cis247 a ilab 3 overloaded methods and static methods variables
 
AIML4 CNN lab256 1hr (111-1).pdf
AIML4 CNN lab256 1hr (111-1).pdfAIML4 CNN lab256 1hr (111-1).pdf
AIML4 CNN lab256 1hr (111-1).pdf
 
IRJET - Comparative Study of Flight Delay Prediction using Back Propagati...
IRJET -  	  Comparative Study of Flight Delay Prediction using Back Propagati...IRJET -  	  Comparative Study of Flight Delay Prediction using Back Propagati...
IRJET - Comparative Study of Flight Delay Prediction using Back Propagati...
 
Image Classification using Deep Learning
Image Classification using Deep LearningImage Classification using Deep Learning
Image Classification using Deep Learning
 
INTRODUCTION TO MACHINE LEARNING FOR MATERIALS SCIENCE
INTRODUCTION TO MACHINE LEARNING FOR MATERIALS SCIENCEINTRODUCTION TO MACHINE LEARNING FOR MATERIALS SCIENCE
INTRODUCTION TO MACHINE LEARNING FOR MATERIALS SCIENCE
 
Artifical_intiligence_worksheet-exp-9.docx
Artifical_intiligence_worksheet-exp-9.docxArtifical_intiligence_worksheet-exp-9.docx
Artifical_intiligence_worksheet-exp-9.docx
 
Machine learning key to your formulation challenges
Machine learning key to your formulation challengesMachine learning key to your formulation challenges
Machine learning key to your formulation challenges
 
Artificial Intelligence based Pattern Recognition
Artificial Intelligence based Pattern RecognitionArtificial Intelligence based Pattern Recognition
Artificial Intelligence based Pattern Recognition
 
Cis247 i lab 2 of 7 employee class
Cis247 i lab 2 of 7 employee classCis247 i lab 2 of 7 employee class
Cis247 i lab 2 of 7 employee class
 
CIS 321 Case Study ‘Equipment Check-Out System’MILESTONE 3 – PRO.docx
CIS 321 Case Study ‘Equipment Check-Out System’MILESTONE 3 – PRO.docxCIS 321 Case Study ‘Equipment Check-Out System’MILESTONE 3 – PRO.docx
CIS 321 Case Study ‘Equipment Check-Out System’MILESTONE 3 – PRO.docx
 

Mehr von Sonali Parab

Forensic laboratory setup requirements
Forensic laboratory setup requirementsForensic laboratory setup requirements
Forensic laboratory setup requirementsSonali Parab
 
Forensic laboratory setup requirements
Forensic laboratory setup  requirements Forensic laboratory setup  requirements
Forensic laboratory setup requirements Sonali Parab
 
Advance Database Management Systems -Object Oriented Principles In Database
Advance Database Management Systems -Object Oriented Principles In DatabaseAdvance Database Management Systems -Object Oriented Principles In Database
Advance Database Management Systems -Object Oriented Principles In DatabaseSonali Parab
 
Cloud and Ubiquitous Computing manual
Cloud and Ubiquitous Computing manual Cloud and Ubiquitous Computing manual
Cloud and Ubiquitous Computing manual Sonali Parab
 
Advance Database Management Systems -Object Oriented Principles In Database
Advance Database Management Systems -Object Oriented Principles In DatabaseAdvance Database Management Systems -Object Oriented Principles In Database
Advance Database Management Systems -Object Oriented Principles In DatabaseSonali Parab
 
Default and On demand routing - Advance Computer Networks
Default and On demand routing - Advance Computer NetworksDefault and On demand routing - Advance Computer Networks
Default and On demand routing - Advance Computer NetworksSonali Parab
 
Cloud Computing And Virtualization
Cloud Computing And VirtualizationCloud Computing And Virtualization
Cloud Computing And VirtualizationSonali Parab
 
Protocols in Bluetooth
Protocols in BluetoothProtocols in Bluetooth
Protocols in BluetoothSonali Parab
 
Protols used in bluetooth
Protols used in bluetoothProtols used in bluetooth
Protols used in bluetoothSonali Parab
 
Public Cloud Provider
Public Cloud ProviderPublic Cloud Provider
Public Cloud ProviderSonali Parab
 
Public Cloud Provider
Public Cloud ProviderPublic Cloud Provider
Public Cloud ProviderSonali Parab
 
Remote Method Invocation
Remote Method InvocationRemote Method Invocation
Remote Method InvocationSonali Parab
 
Remote Method Invocation (Java RMI)
Remote Method Invocation (Java RMI)Remote Method Invocation (Java RMI)
Remote Method Invocation (Java RMI)Sonali Parab
 

Mehr von Sonali Parab (18)

Forensic laboratory setup requirements
Forensic laboratory setup requirementsForensic laboratory setup requirements
Forensic laboratory setup requirements
 
Forensic laboratory setup requirements
Forensic laboratory setup  requirements Forensic laboratory setup  requirements
Forensic laboratory setup requirements
 
Firewalls
FirewallsFirewalls
Firewalls
 
Embedded System
Embedded System Embedded System
Embedded System
 
Advance Database Management Systems -Object Oriented Principles In Database
Advance Database Management Systems -Object Oriented Principles In DatabaseAdvance Database Management Systems -Object Oriented Principles In Database
Advance Database Management Systems -Object Oriented Principles In Database
 
Cloud and Ubiquitous Computing manual
Cloud and Ubiquitous Computing manual Cloud and Ubiquitous Computing manual
Cloud and Ubiquitous Computing manual
 
Advance Database Management Systems -Object Oriented Principles In Database
Advance Database Management Systems -Object Oriented Principles In DatabaseAdvance Database Management Systems -Object Oriented Principles In Database
Advance Database Management Systems -Object Oriented Principles In Database
 
Default and On demand routing - Advance Computer Networks
Default and On demand routing - Advance Computer NetworksDefault and On demand routing - Advance Computer Networks
Default and On demand routing - Advance Computer Networks
 
Cloud Computing And Virtualization
Cloud Computing And VirtualizationCloud Computing And Virtualization
Cloud Computing And Virtualization
 
Protocols in Bluetooth
Protocols in BluetoothProtocols in Bluetooth
Protocols in Bluetooth
 
Protols used in bluetooth
Protols used in bluetoothProtols used in bluetooth
Protols used in bluetooth
 
Public Cloud Provider
Public Cloud ProviderPublic Cloud Provider
Public Cloud Provider
 
Public Cloud Provider
Public Cloud ProviderPublic Cloud Provider
Public Cloud Provider
 
Minning www
Minning wwwMinning www
Minning www
 
Remote Method Invocation
Remote Method InvocationRemote Method Invocation
Remote Method Invocation
 
Agile testing
Agile testingAgile testing
Agile testing
 
Minning WWW
Minning WWWMinning WWW
Minning WWW
 
Remote Method Invocation (Java RMI)
Remote Method Invocation (Java RMI)Remote Method Invocation (Java RMI)
Remote Method Invocation (Java RMI)
 

Kürzlich hochgeladen

Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxnelietumpap1
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxMaryGraceBautista27
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 

Kürzlich hochgeladen (20)

Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptx
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptx
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 

Data Mining

  • 1. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. PRACTICAL NO: 1 Aim:Build the data mining model structure and built the decision tree with proper decision nodes and infer at least five different types of reports. Implement Using RTool. Solution: Dataset Used :Iris Step 1:Display the Structure of iris data. Fig 1.1: Structure of iris data Step 2:The random seed is set to a fixed value below to make the results reproducible. Fig 1.2:Random Seed Set
  • 2. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Step 3:Install the party package if it is not installed. Load the party package, build adecision tree, and check the prediction result. Sonali. Parab. Fig 1.3: Load Party library Fig 1.4: iris table Step 4:printing the rules and plot the tree Fig 1.5: Rules of data
  • 3. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. A. Report 1 Fig 1.6: Decision Tree
  • 4. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. Step 5:Plot Decision tree in simple style Fig 1.7: Command to plot decision tree in simple style B. Report 2 Fig 1.8: Decision tree (Simple Style)
  • 5. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. Step 6:Plot iris species in bar plot Fig 1.9: bar plot command C. Report 3 Fig 1.10:Barplot of Species
  • 6. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. Step 7:Plot iris Species in pie chart Fig 1.11: Command for pie chart D. Report 4 Fig 1.12: Pie Chart
  • 7. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. Step 8:Plot histogram of iris Petal Length Fig 1.13: Command to plot histogram E. Report 5 Fig 1.14: Histogram of iris Petal Length
  • 8. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. PRACTICAL NO: 2 Aim:Build the data mining model structure and Implement Naïve Bayes Algorithm. Implement Using WEKA. Solution: Dataset Used :Diabetes.arff Step 1:Pre-processing Go to WekaOpen file go to weka folder select diabetes.arff dataset open Fig 2.1 Choosing diabetes.arff dataset
  • 9. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. Step 2:Filter the data FilterssuperviseddiscretizeApply Fig 2.2 Selecting the Filter Fig 2.3 Structure of Filtered Diabetes.arff Dataset
  • 10. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. Step 3:Classify the data using Naïve Bayes Algorithm Fig 2.4 Select Classification Algorithm Fig 2.5 Running and Displaying Result
  • 11. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. === Run information === Scheme:weka.classifiers.bayes.NaiveBayes Relation: pima_diabetes-weka.filters.supervised.attribute.Discretize-Rfirst-last Instances: 768 Attributes: 9 preg plas pres skin insu mass pedi age class Test mode:10-fold cross-validation === Classifier model (full training set) === Naive Bayes Classifier Class Attribute tested_negative tested_positive (0.65) (0.35) ==================================================== preg
  • 12. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. '(-inf-6.5]' 427.0 174.0 '(6.5-inf)' 75.0 96.0 [total] 502.0 270.0 plas '(-inf-99.5]' 182.0 17.0 '(99.5-127.5]' 211.0 79.0 '(127.5-154.5]' 86.0 77.0 '(154.5-inf)' 25.0 99.0 [total] 504.0 272.0 pres 'All' 501.0 269.0 [total] 501.0 269.0 skin 'All' 501.0 269.0 [total] 501.0 269.0 insu '(-inf-14.5]' 237.0 140.0 '(14.5-121]' 165.0 28.0 '(121-inf)' 101.0 103.0 [total] 503.0 271.0 mass '(-inf-27.85]' 196.0 28.0
  • 13. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. '(27.85-inf)' 306.0 242.0 [total] 502.0 270.0 pedi '(-inf-0.5275]' 362.0 149.0 '(0.5275-inf)' 140.0 121.0 [total] 502.0 270.0 age '(-inf-28.5]' 297.0 72.0 '(28.5-inf)' 205.0 198.0 [total] 502.0 270.0 Time taken to build model: 0 seconds
  • 14. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. Step 4: Visualize classifiers errors Fig 2.6 Visualization of Classification Errors
  • 15. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. PRACTICAL NO: 3 Aim:Implement the clustering Algorithm By Using Weka Tool. Solution: Dataset Used :Iris.arff Step 1:Preprocess Open file go to weka folder select iris dataset Choose  Filterssuperviseddiscretize Fig 3.1: Structure of iris data
  • 16. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. Fig 3.2: Filtering the Data Fig 3.3: Filtered Dataset
  • 17. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. Step 2:Cluster Select cluster tabchoose button clusterers  select simplekmeans click radio button use training setright click “Poperties” numClusters= 3click start button. Fig 3.4 Configuring Clustering Algorithm Fig 3.5 Generating Result
  • 18. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. === Run information === Scheme:weka.clusterers.SimpleKMeans -N 3 -A "weka.core.EuclideanDistance -R first-last" -I 500 -S 10 Relation: iris-weka.filters.supervised.attribute.Discretize-Rfirst-last Instances: 150 Attributes: 5 sepallength sepalwidth petallength petalwidth class Test mode:evaluate on training data === Model and evaluation on training set === kMeans ====== Number of iterations: 5 Within cluster sum of squared errors: 109.0 Missing values globally replaced with mean/mode Cluster centroids: Cluster#
  • 19. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. Attribute Full Data 0 1 2 (150) (50) (50) (50) ===================================================== sepallength '(-inf-5.55]' '(-inf-5.55]' '(5.55-6.15]' '(6.15-inf)' sepalwidth '(-inf-2.95]' '(3.35-inf)' '(-inf-2.95]' '(2.95-3.35]' petallength '(4.75-inf)' '(-inf-2.45]' '(2.45-4.75]' '(4.75-inf)' petalwidth '(0.8-1.75]' '(-inf-0.8]' '(0.8-1.75]' '(1.75-inf)' class Iris-setosa Iris-setosa Iris-versicolor Iris-virginica Time taken to build model (full training data) : 0 seconds === Model and evaluation on training set === Clustered Instances 0 50 ( 33%) 1 50 ( 33%) 2 50 ( 33%)
  • 20. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. Step 4:Visualizing the Result Right click on resultvisualize cluster assignments Fig 3.6 Selecting Visualization Fig 3.7 Displaying Visualization Result
  • 21. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. PRACTICAL NO: 4 Aim :Build the basic Time series model structure and create the predictions BodyFatDataset.By Using RTool. Solution: Dataset Used :BodyFat Step 1 :load Package mboost. Fig 4.1 : Show the load Of Package mboost.
  • 22. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. Step2 :To Show Data stored in BodyFat Dataset. Fig 4.2 : Show The Data stored in BodyFat Dataset. Step 3 :Select the Summary Of BodyFat Dataset. Fig 4.3 :Show The Summary Of BodyFat Dataset.
  • 23. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. Step4 :Using Predication Method And Plot Graph On BodyFat Dataset. Fig 4.4 : Show Predication Method And Plot Graph Formula ApplyOn BodyFat Dataset. Step5 :Predication Graph For BodyFat Dataset. Fig 4.5 :Show The Predication Graph For BodyFat Dataset.
  • 24. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. PRACTICAL NO: 5 Aim:Build the data mining model and implement k-nearest neighbor By Using Weka Tool. Solution: Dataset Used:ContactLenses.arff Step 1:Preprocess Open file go to weka folder select contact lens dataset Choose  Filterssuperviseddiscretize Fig 5.1: Structure of contact lens dataset
  • 25. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. Fig 5.2: Filtering the Data Fig 5.3:Filtered Dataset
  • 26. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. Step 2:Classify Select classify tabchoose buttonexpand Lazy folderselect IBKclick radio button use training setclick start button. Fig 5.4 Choosing K-nearest neighbour algorithm Fig 5.5 Generating Result
  • 27. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. === Run information === Scheme:weka.classifiers.lazy.IBk -K 1 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A "weka.core.EuclideanDistance -R first-last"" Relation: contact-lenses-weka.filters.supervised.attribute.Discretize-Rfirst-last Instances: 24 Attributes: 5 age spectacle-prescrip astigmatism tear-prod-rate contact-lenses Test mode:evaluate on training data === Classifier model (full training set) === IB1 instance-based classifier using 1 nearest neighbour(s) for classification Time taken to build model: 0 seconds === Evaluation on training set === === Summary === Correctly Classified Instances 24 100 %
  • 28. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. Incorrectly Classified Instances 0 0 % Kappa statistic 1 Mean absolute error 0.0494 Root mean squared error 0.0524 Relative absolute error 13.4078 % Root relative squared error 12.3482 % Total Number of Instances 24 === Detailed Accuracy By Class === TP Rate FP Rate Precision Recall F-Measure ROC Area Class 1 0 1 1 1 1 soft 1 0 1 1 1 1 hard 1 0 1 1 1 1 none Weighted Avg. 1 0 1 1 1 1 === Confusion Matrix === a b c <-- classified as 5 0 0 | a = soft 0 4 0 | b = hard 0 0 15 | c = none
  • 29. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. PRACTICAL NO: 6 Aim:Build the data mining model and implement k-nearest neighbor By Using Weka Tool. Solution: Dataset Used:Supermarket.arff Step 1:Preprocess Open file go to Weka folder select Supermarket dataset Choose  FiltersAll Filter Fig 6.1: Structure of Supermarket dataset
  • 30. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. Fig 6.2: Filtering the Data Fig 6.3: Filtered Dataset
  • 31. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. Step 2:Associate Select Associate tabchoose apriori algorithmpropertiesconfigure algorithm according to requirementsclick ‘start’ Fig 6.4 Choosing Apriori Algorithm Fig 6.5 Configuring Algorithm
  • 32. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. Fig 6.6 Displaying Association Results === Run information === Scheme: weka.associations.Apriori -N 12 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.1 -S -1.0 -c -1 Relation: supermarket-weka.filters.AllFilter-weka.filters.AllFilter-weka.filters.AllFilter-weka. filters.AllFilter-weka.filters.MultiFilter-Fweka.filters.AllFilter-weka.filters.AllFilter-weka. filters.AllFilter Instances: 4627 Attributes: 217 [list of attributes omitted] === Associator model (full training set) ===
  • 33. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. Apriori ======= Minimum support: 0.15 (694 instances) Minimum metric <confidence>: 0.9 Number of cycles performed: 17 Generated sets of large itemsets: Size of set of large itemsets L(1): 44 Size of set of large itemsets L(2): 380 Size of set of large itemsets L(3): 910 Size of set of large itemsets L(4): 633 Size of set of large itemsets L(5): 105 Size of set of large itemsets L(6): 1 Best rules found: 1. biscuits=t frozen foods=t fruit=t total=high 788 ==> bread and cake=t 723 conf:(0.92) 2. baking needs=t biscuits=t fruit=t total=high 760 ==> bread and cake=t 696 conf:(0.92) 3. baking needs=t frozen foods=t fruit=t total=high 770 ==> bread and cake=t 705 conf:(0.92)
  • 34. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ 4. biscuits=t fruit=t vegetables=t total=high 815 ==> bread and cake=t 746 conf:(0.92) 5. party snack foods=t fruit=t total=high 854 ==> bread and cake=t 779 conf:(0.91) 6. biscuits=t frozen foods=t vegetables=t total=high 797 ==> bread and cake=t 725 conf:(0.91) 7. baking needs=t biscuits=t vegetables=t total=high 772 ==> bread and cake=t 701 conf:(0.91) Sonali. Parab. 8. biscuits=t fruit=t total=high 954 ==> bread and cake=t 866 conf:(0.91) 9. frozen foods=t fruit=t vegetables=t total=high 834 ==> bread and cake=t 757 conf:(0.91) 10. frozen foods=t fruit=t total=high 969 ==> bread and cake=t 877 conf:(0.91) 11. baking needs=t fruit=t vegetables=t total=high 831 ==> bread and cake=t 752 conf:(0.9) 12. biscuits=t milk-cream=t total=high 907 ==> bread and cake=t 820 conf:(0.9)
  • 35. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. PRACTICAL NO: 7 Aim:Build the data mining model and implement k-nearest neighbor By Using Weka Tool. Solution: Dataset Used:Titanic Step 1:Preprocess Loading the Data in Data Frame Transforming the Data into Suitable Format Fig 7.1: Structure of Titanic dataset
  • 36. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. Fig 7.2 Summary of Titanic Dataset Step 2:Associate Loading library ‘arules’ that contains functions for Association mining Function used to apply Apriori Algorithm with Default Configuration Fig 7.3 Choosing Apriori Algorithm
  • 37. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. Fig 7.4 Inspecting the Results of Apriori Algorithm Fig 7.5 Applying Settings to Display Rules with RHS containing survived only
  • 38. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. Step 3:Finding and Removing Redundant Rules Code to Find Redundant Rules Code to Remove Redundant Rules Fig 7.6 Finding & Removing Redundant Rules
  • 39. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. Step 4:Visualizing: Loading library aulesViz which contains functions for Visualizing Assoication Results Function to plot Results Using Scatter Plot X axis: Support Y axis:Confidence Fig 7.7 Scatter Plot
  • 40. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. Function to plot Association Results as Graph Plot Fig 7.8 Graph Plot Showing How Data Items are Assoicated
  • 41. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. PRACTICAL NO: 8 Aim:Consider the suitable data for text mining and Implement the Text Mining technique using R-Tool. Solution: Dataset Used:Plain Text File (www.txt) Step 1:Loading the Text File Loading Essential Libraries for Text Mining tm, SnowballC and twitteR Loading The Data From Text File Into RTool Using readLines() Fig 8.1: Using tail() and head() functions to display start and of paragraphs
  • 42. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. Step 2:Transforming Loading tm library and transforming document to Corpusdoc Fig 8.2 Inspecting Corpusdoc Function to Remove Punctuations Fig 8.3 Removing Punctuations
  • 43. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. Function to Strip White Spaces Fig 8.4 Stripping White Spaces Function to Remove Stop Words from Document Fig 8.5 Removing Stop Words From Document
  • 44. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. Function to Stem the Document Fig 8.6 Stemming the Document Function to Convert corpusdoc to TermDocumentMatrix Fig 8.7 Inspecting TermDocumentMatrix
  • 45. MSc IT Part – I, Semester-1 Page No:- ________ DATA MINING Date:- ____________ Sonali. Parab. Step 3:Finding Frequent Terms in Document Fig 8.7 Find Frequent Terms From Document Step 4:Finding Association among terms Function to find Association among Different terms in Document Fig 8.8 Result of How Strongly Terms Are Associated with Term “information”