SlideShare ist ein Scribd-Unternehmen logo
1 von 41
08/12/15 1
Performance of an Aircraft
with Parabolic Polar
SOLO HERMELIN
Updated: 14.03.2004
08/12/15 2
Performance of an Aircraft with Parabolic PolarSOLO
Table of Content
Flat Earth Three Degrees of Freedom Aircraft Equations
Performance of an Aircraft with Parabolic Polar
Aircraft Drag
Energy per unit mass E
Load Factor n
Aircraft Trajectories
Summary
Constraints
Horizontal Plan Trajectory ( )0,0 == γγ 
Horizontal Turn Rate as Function of ps, n
Horizontal Turn Rate as Function of nV,
References
08/12/15 3
SOLO
Assumptions:
•Point mass model.
•Flat earth with g = constant.
•Three-dimensional aircraft trajectory.
•Air density that varies with altitude ρ=ρ(h)
•Drag that varies with altitude, Mach
number and control effort D = D(h,M,n)
•Thrust magnitude is controllable by the
throttle.
•No sideslip angle.
•No wind.
α
T
V
L
D
Bx
Wx
Bz
Wz
Wy
By
Aircraft Coordinate System
Flat Earth Three Degrees of Freedom Aircraft Equations
4
SOLO
• Rotation Matrix from Earth to Wind Coordinates
[ ] [ ] [ ]321 χγσ=W
EC
where
σ – Roll Angle
γ – Elevation Angle of the Trajectory
χ – Azimuth Angle of the Trajectory
Force Equation:
amgmTFA

=++
where:
• Aerodynamic Forces (Lift L and Drag D)
( )










−
−
=
L
D
F
W
A 0

• Thrust T ( )










=
α
α
sin
0
cos
T
T
T W

• Gravitation acceleration
( ) ( )




















−









 −










−
==
g
cs
sc
cs
sc
cs
scgCg EW
E
W
0
0
100
0
0
0
010
0
0
0
001
χχ
χχ
γγ
γγ
σσ
σσ
( )
g
cc
cs
s
g W









−
=
γσ
γσ
γ

α
T
V
L
D
Bx
Wx
Bz
Wz
Wy
By
Flat Earth Three Degrees of Freedom Aircraft Equations
5
SOLO
α
T
V
L
D
Bx
Wx
Bz
Wz
Wy
By
• Aircraft Acceleration
( )
( )
( ) ( )WW
W
W
VVa

×+=
→
ω
where:
( )










=
0
0
V
V W

and
( )










=
→
0
0
V
V
W


( )








































−+



















 −
+




















−
=










=
χ
χχ
χχ
γ
γγ
γγσ
σσ
σσω




0
0
100
0
0
0
0
0
010
0
0
0
0
0
001
cs
sc
cs
sc
cs
sc
r
q
p
W
W
W
W
or ( )










+−
+
−
=










=
γσχσγ
γσχσγ
γχσ
ω
ccs
csc
s
r
q
p
W
W
W
W




therefore
( )
( )
( ) ( )
( )
( ) 









+−
+−=










−
=×+=
→
γσχσγ
γσχσγω
cscV
ccsV
V
qV
rV
V
VVa
W
W
WW
W
W




Flat Earth Three Degrees of Freedom Aircraft Equations
6
SOLO
α
T
V
L
D
Bx
Wx
Bz
Wz
Wy
By
• Aircraft Acceleration
Flat Earth Three Degrees of Freedom Aircraft Equations
From the Force equation we obtain:
( )
( )
( ) ( ) ( ) ( )
( ) ( )WWW
A
WW
W
W
gTF
m
VVa

++=×+=
→
1
ω
or
( )
( ) ( ) σ
σ
σ
σ
γσαγσχσγ
γσγσχσγ
γα
s
c
c
s
ccgmLTcscVqV
csgccsVrV
sgmDTV
W
W
−−
−





++−=+−=−
=+−=
−−=
/sin
/)cos(



from which we obtain:
( )
( )




+=
−+=
−−=
msLTcV
cgmcLTV
sgmDTV
/sin
/sin
/)cos(
σαγχ
γσαγ
γα



Define the Load Factor
gm
LT
n
+
=
αsin
:
7
SOLO
α
T
V
L
D
Bx
Wx
Bz
Wz
Wy
By
• Velocity Equation
Flat Earth Three Degrees of Freedom Aircraft Equations
( ) ( )










==










=
0
0
V
CVC
h
y
x
V E
W
WE
W
E

























−










−








 −
=










0
0
0
0
001
0
010
0
100
0
0 V
cs
sc
cs
sc
cs
sc
h
y
x
σσ
σσ
γγ
γγ
χχ
χχ








=
=
=
γ
χγ
χγ
sVh
scVy
ccVx



or
• Energy per unit mass E
g
V
hE
2
:
2
+=
Let differentiate this equation:
( )
W
VDT
W
DT
g
g
V
V
g
VV
hEps
−
=











−
−
+=+==
α
γ
α
γ
cos
sin
cos
sin:


Return to Table of Content
8
SOLO Flat Earth Three Degrees of Freedom Aircraft Equations
Summary
γ
χγ
χγ
sin
sincos
coscos
Vh
Vy
Vx
=
=
=



( )
( )
σ
γ
σ
γ
α
χ
γσγσ
α
γ
α
γ
α
sin
cos
sin
cos
sin
coscoscoscos
sin
cos
sin
cos
n
V
g
W
LT
V
g
n
V
g
W
LT
V
g
W
VDT
Eor
W
DT
gV
=
+
=
−=





−
+
=
−
=−




 −
=



where
mgW =
Aircraft Thrust( ) 10, ≤≤= ηη VhTT MAX
( ) ( )MSCVhL L ,
2
1 2
αρ=
( ) ( )LD CMSCVhD ,
2
1 2
ρ=
( ) ( ) ( ) 2
0, LDLD CMKMCCMC +=
( ) 0/
0
hh
eh −
= ρρ
( ) ( ) soundofspeedhaNumberMachMhaVM === &/
Aircraft Weight
Aircraft Lift
Aircraft Drag
Parabolic Drag Polar
Return to Table of Content
9
SOLO Flat Earth Three Degrees of Freedom Aircraft Equations
Constraints:
State Constraints
• Minimum Altitude Limit minhh ≥
• Maximum dynamic pressure limit ( ) ( )hVVorqVhq MAXMAX ≤≤= 2
2
1
ρ
• Maximum Mach Number limit
( ) MAXM
ha
V
≤
Aerodynamic or heat limitation
Control Constraints
• Maximum Lift Coefficient or Maximum Angle of Attack
( ) ( ) ( )VhorMCMC STALLMAXLL ,, _ ααα ≤≤
• Minimum Load Factor
( )
MAXn
W
VhL
n ≤=
,
• Maximum Thrust
( )VhTT MAX ,≤
10
SOLO Flat Earth Three Degrees of Freedom Aircraft Equations
MAXα MAXα
αα
LCDC
MAXLC
0DC
( ) ( )αα
2
0 LDD kCCC +=
Drag and Lift Coefficients as functions of Angle of Attack
11
SOLO Flat Earth Three Degrees of Freedom Aircraft Equations
( ) ( )
( )
Limit
Vhor
MCMC
STALL
MAXLL
,
, _
αα
α
=
=
( )
( )
Limit
hVVor
qVhq
MAX
MAX
=
== 2
2
1
ρ
minhh =
MAXMM =
Mach
Altitude
Flight Envelope of the Aircraft
Return to Table of Content
12
Performance of an Aircraft with Parabolic PolarSOLO
W
LT
n
+
=
αsin
:'
W
L
n =:
2
0
:
LD
L
D
L
CkC
C
CSq
CSq
D
L
e
+
===
We assumed a Parabolic Drag Polar:
2
0 LDD CkCC +=
Let find the maximum of e as a function of CL
( ) ( )
0
2
22
0
2
0
22
0
22
0
=
+
−
=
+
−+
=
∂
∂
LD
LD
LD
LLD
L CkC
CkC
CkC
CkCkC
C
e
e
LC*LC
*2
1
LCk
CL/CD as a function of CL
The maximum of e is obtained for
k
C
C D
L
0
* =
( ) 0
0
0
2
0 2** D
D
DLDD C
k
C
kCCkCC =+=+=
Start with
Load Factor
Total Load Number
Lift to Drag Ratio
Climbing Aircraft Performance
13
Performance of an Aircraft with Parabolic PolarSOLO
e
LC*LC
*2
1
LCk
CL/CD as a function of CL
The maximum of e is obtained for
k
C
C D
L
0
* =
( ) 0
0
0
2
0 2** D
D
DLDD C
k
C
kCCkCC =+=+=
*2
1
*2
1
2
1
2*
*
*
22
00
0
LLDD
D
D
L
CkCkCkC
k
C
C
C
e =====
We have WnCSVCSqL LL === 2
2
1
ρ
Let define for n = 1












=
=
==
2
0
*
2
1
:*
*
:
2
*
2
1
:*
Vq
V
V
u
CS
kW
CS
W
V
D
L
ρ
ρρ
2
0
:
LD
L
D
L
CkC
C
CSq
CSq
D
L
e
+
===
Climbing Aircraft Performance
14
Performance of an Aircraft with Parabolic PolarSOLO
Using those definitions we obtain
L
L
L
L
C
C
nqq
WCSq
WnCSqL *
*
**
=→



=
==
2
2
2
1
2
1
*
2
1
*
uV
V
n
q
q
==
ρ
ρ
2
*
*
*
u
C
nC
q
q
nC L
LL ==
( )






+=





+=






+=+=
=
2
2
2
04
02
0
2
*
4
2
2
0
22
0
**
*
*
0
2
u
n
uCSq
u
C
nCuSq
u
C
nkCuSqCkCSqD
D
D
D
CCk
L
DLD
DL
*2
1
*
*** 0
0
e
W
C
C
CSqCSq
L
D
LD ==






+= 2
2
2
*2 u
n
u
e
W
D
Therefore
Return to Table of Content
Climbing Aircraft Performance










=
=
=
2
0
*
2
1
:*
*
:
2
:*
Vq
V
V
u
CS
kW
V
D
ρ
ρ
15
Performance of an Aircraft with Parabolic PolarSOLO
We obtained
Let find the minimum of D as function of u.
nu
u
nu
e
W
u
n
u
e
W
u
D
=→
=
−
=





−=
∂
∂
2
3
24
3
2
0
*
22
*2
*
2min
e
Wn
DD nu
== =
Aircraft Drag
Climbing Aircraft Performance
u 0
- - - - 0 + + + + +
D ↓ min ↑
n
u
D
∂
∂






+= 2
2
2
*2 u
n
u
e
W
D
16
Performance of an Aircraft with Parabolic PolarSOLO
Aircraft Drag
( )
MAXn
W
VhL
n ≤=
,








+== 2
2
2
*2 u
n
u
e
W
D MAX
nn MAX
Maximum Lift Coefficient or Maximum Angle of Attack
( ) ( ) ( )VhorMCMC STALLMAXLL ,, _ ααα ≤≤
We have
u
C
C
u
n
u
C
nC
q
q
nC
L
MAXL
CC
L
LL
MAXLL
*
*
*
* _
2
_
=→==
=
2
2
_
2
2
_2
*
1
*2
**2_
u
C
C
e
W
u
C
C
u
e
W
D
L
MAXL
L
MAXL
CC MAXLL














+=














+==
Maximum dynamic pressure limit
( ) ( ) MAX
MAX
MAXMAX u
V
V
uhVVorqVhq =<→≤≤= :
*2
1 2
ρ
*e
W
D
MAXLC _
2
2
_
1
2
1
u
C
C
L
MAXL














+








+= 2
2
2
2
1
*
u
n
ue
W
D MAX
LIMIT
nn MAX=
2min
* ue
W
D
=






+= 2
2
2
2
1
*
u
n
ue
W
D
MAXuu =MAX
MAXL
L
CORNER n
C
C
u
_
*
=
n
LIMIT
u
MAXnu =
as a function of u*e
W
D
Return to Table of Content
Climbing Aircraft Performance
Maximum Load Factor










=
=
=
2
0
*
2
1
:*
*
:
2
:*
Vq
V
V
u
CS
kW
V
D
ρ
ρ
17
Performance of an Aircraft with Parabolic PolarSOLO
Energy per unit mass E
Let define Energy per unit mass E: g
V
hE
2
:
2
+=
Let differentiate this equation:
( ) ( )
W
VDT
W
VDT
W
DT
g
g
V
V
g
VV
hEps
−
≈
−
=











−
−
+=+==
α
γ
α
γ
cos
sin
cos
sin:


*&
*2 2
2
2
VuV
u
n
u
e
W
D =





+=
Define *: e
W
T
z 





=
We obtain
( )












+−=












+−





=
−
= 2
2
2
2
2
2
2
1
*
*
*
2
1
*
*
u
n
uzu
e
V
W
Vu
u
n
ue
W
T
e
W
W
VDT
ps
or ( )
u
nuzu
e
V
ps
224
2
*2
* −+−
=
nz
nzzu
nzzu
nuzup constns >




−+=
−−=
→=+−→==
22
2
22
1224
020
( ) ( )
2
224
2
2243
23
*
*244
*
*
u
nuzu
e
V
u
nuzuuuzu
e
V
u
p
constn
s ++−
=
−+−−+−
=
∂
∂
=
3
3
0
22
nzz
u
u
p
MAX
constn
s
++
=→=
∂
∂
=
2
21
2
uu
uu
MAX <<
+
nz >
Climbing Aircraft Performance
Performance of an Aircraft with Parabolic PolarSOLO
Energy per unit mass E
g
V
hE
2
:
2
+=
Climbing Aircraft Performance
Energy Height versus Mach NumberEnergy Height versus True Airspeed
( )hV
V
M
sound
=:( )
00
:
T
T
V
T
T
MhVTAS sound ==
19
Performance of an Aircraft with Parabolic PolarSOLO
Energy per unit mass E
sp
2u1u
MAXu
2
21 uu + u
MAXn
n
1=n
( )
u
nuzu
e
V
ps
224
2
*
* −+−
=
ps as a function of u
( )
u
nuzu
e
V
ps
224
2
*
* −+−
=
u
V
pe
uzunnuzuu
V
pe ss
*
*2
22
*
*2 242224
−+−=→−+−=
From which u
V
pe
uzun s
*
*2
2 24
−+−=
( )
*
*2
44 3
2
V
pe
uzu
u
n s
constps
−+−=
∂
∂
=
( )
3
0412 2
2
22
z
uzu
u
n
constps
=→=+−=
∂
∂
=
Return to Table of Content
Climbing Aircraft Performance










=
=
=
2
0
*
2
1
:*
*
:
2
:*
Vq
V
V
u
CS
kW
V
D
ρ
ρ
20
Performance of an Aircraft with Parabolic PolarSOLO
Load Factor n
u
3
z z
z2z
3
z
u
2
n
0=sp
0>sp
0<sp
0<sp
0=sp
0>sp
( )
u
n
∂
∂ 2
( )
2
22
u
n
∂
∂
3
z
u
( ) ( ) 2
2
2
22
,, n
u
n
u
n
∂
∂
∂
∂ as a function of u
u
V
pe
uzun s
*
*2
2 24
−+−=
( )
3
0412 2
2
22
z
uzu
u
n
constps
=→=+−=
∂
∂
=
( )
*
*2
44 3
2
V
pe
uzu
u
n s
constps
−+−=
∂
∂
=
Climbing Aircraft Performance










=
=
=
2
0
*
2
1
:*
*
:
2
:*
Vq
V
V
u
CS
kW
V
D
ρ
ρ
21
Performance of an Aircraft with Parabolic PolarSOLO
Load Factor n
For ps = 0 we have
zuuzun 202 24
≤≤+−=
Let find the maximum of n as function of u.
0
22
44
24
3
=
+−
+−
=
∂
∂
uzu
uzu
u
n
Therefore the maximum value for n is
achieved for zu =
( ) zn
MAXps
==0
u 0 √z √2z
∂ n/∂u | + + + 0 - - - - | - -
n ↑ Max ↓
z2z
u
n
0=sp
0>sp
0<sp
MAXn
z
MAX
MAXL
L
n
C
C
_
*
n as a function of u
Return to Table of Content
Climbing Aircraft Performance










=
=
=
2
0
*
2
1
:*
*
:
2
:*
Vq
V
V
u
CS
kW
V
D
ρ
ρ
22
Performance of an Aircraft with Parabolic PolarSOLO






−
+
=
=
γσ
α
γσ
coscos
sin
cossin
V
g
Vm
LT
q
V
g
r
W
W
n
W
L
W
LT
n =≈
+
=
αsin
:'
Therefore
( )





−=
=
γσ
γσ
coscos'
cossin
n
V
g
q
V
g
r
W
W
γσγσγσω 2222222
coscoscoscos'2'cossin +−+=+= nn
V
g
qr WW
or
γγσω 22
coscoscos'2' +−= nn
V
g
γγσω 22
2
coscoscos'2'
1
+−
==
nng
VV
R
Aircraft Trajectories
We found
Aircraft Turn Performance
23
Performance of an Aircraft with Parabolic PolarSOLO
( ) ( )
( )
γ
σ
φ
γ
α
χ
γσγσ
α
γ
cos
sin
sin
cos
sin
coscos'coscos
sin
V
gLT
n
V
g
V
g
Vm
LT
=
+
=
−=−
+
=


2. Horizontal Plan Trajectory ( )0,0 == γγ 
( )
1'
1
1'
'
1
1'sin'
cos
1
'01cos'
2
2
2
2
−
=
−=





−==
=→=−=
ng
V
R
n
V
g
n
n
V
g
n
V
g
nn
V
g
σχ
σ
σγ


Aircraft Turn Performance
1. Vertical Plan Trajectory (σ = 0)
( )
γ
γγ
χ
cos'
1
cos'
0
2
−
=
−=
=
ng
V
R
n
V
g


24
Vertical Plan Trajectory (σ = 0)
SOLO
Return to Table of Content
25
Performance of an Aircraft with Parabolic PolarSOLO
2. Horizontal Plan Trajectory ( )0,0 == γγ 
We can see that for n > 1
1
1
1'
1
11'
2
2
2
2
22
−
≈
−
=
−≈−=
ng
V
ng
V
R
n
V
g
n
V
g
χ
We found that
2
2
*
*
u
C
C
n
u
C
nC
L
LL
L =→=
n
1n
2n
MAXn
u u
LC
MAXLC _
1
_
n
C
C
MAXL
L
MAX
MAXL
L
corner n
C
C
u
_
*
=
*2 L
MAX
L C
u
n
C =
MAX
MAXL
L
corner n
C
C
u
_
*
= MAX
L
L
n
C
C
1
*
MAXLC _
2LC
1LC
2
*
1
u
C
C
n
L
L
=
MAXn
n, CL as a function of u
Aircraft Turn Performance










=
=
=
2
0
*
2
1
:*
*
:
2
:*
Vq
V
V
u
CS
kW
V
D
ρ
ρ
26
R
V
=:χ1'2
−= n
V
g
χ
Contours of Constant n and Contours of Constant Turn Radius
in Turn-Rate in Horizontal Plan versus Mach coordinates
Horizontal Plan TrajectorySOLO
27
Performance of an Aircraft with Parabolic PolarSOLO
MAX
MAX
L
MAXL
n
n
C
C
V
g 1
**
2
_ −
MAX
MAXL
L
corner n
C
C
V
g
u
_
*
*
=
MAXL
L
C
C
V
g
u
_
1
*
*
=
MAXn
2n
1n
MAXLC _
2LC
1LC
u
χ
MAXu
a function of u, with n and CL as parametersχ
We defined 2
*
&
*
: u
C
C
n
V
V
u
L
L
==
We found 2
2
2
22 1
**
1
*
1
u
u
C
C
V
g
n
Vu
g
n
V
g
L
L
−





=−=−=χ
This is defined for 1:
**
1
__
<=≥≥= u
C
C
un
C
C
u
MAXL
L
MAX
MAXL
L
corner
2. Horizontal Plan Trajectory ( )0,0 == γγ 
Aircraft Turn Performance










=
=
=
2
0
*
2
1
:*
*
:
2
:*
Vq
V
V
u
CS
kW
V
D
ρ
ρ
28
Performance of an Aircraft with Parabolic PolarSOLO
From
2
2
2
22 1
**
1
*
1
u
u
C
C
V
g
n
Vu
g
n
V
g
L
L
−





=−=−=χ
4
2
2
2
22
1
*
1*
1
*
:
uC
Cg
V
n
u
g
VV
R
L
L
−





=
−
==
χ
Therefore
cornerMAX
MAXL
L
MAXL
L
L
MAXL
C
un
C
C
u
C
C
u
uC
Cg
V
R
MAXL
=≤≤=
−





=
__
1
4
2
_
2
**
1
*
1*
_
cornerMAX
MAXL
L
MAX
n
un
C
C
u
n
u
g
V
R
MAX
=≥
−
=
_
2
22
*
1
*
MAX
L
L
L
L
L
L
C
n
C
C
u
C
C
u
uC
Cg
V
R
L
**
1
*
1*
1
4
2
2
≤≤=
−





=
n
C
C
u
n
u
g
V
R
MAXL
L
n
_
2
22
*
1
*
≥
−
=
2. Horizontal Plan Trajectory ( )0,0 == γγ 
Aircraft Turn Performance
29
Performance of an Aircraft with Parabolic PolarSOLO
R (Radius of Turn) a function of u, with n and CL as parameters
1
**
2
_
2
−MAX
MAX
MAXL
L
n
n
C
C
g
V
MAX
MAXL
L
corner n
C
C
V
g
u
_
*
*
=
MAXL
L
C
C
V
g
u
_
1
*
*
=
MAXn
2n
1nMAXLC _
2LC 1LC
u
R
4
2
2
2
22
1
*
1*
1
*
:
uC
Cg
V
n
u
g
VV
R
L
L
−





=
−
==
χ
2. Horizontal Plan Trajectory ( )0,0 == γγ 
Return to Table of Content
Aircraft Turn Performance










=
=
=
2
0
*
2
1
:*
*
:
2
:*
Vq
V
V
u
CS
kW
V
D
ρ
ρ
30
Performance of an Aircraft with Parabolic PolarSOLO
Horizontal Turn Rate as Function of ps, n
( )
u
nuzu
e
V
ps
224
2
*2
* −+−
=
up
V
e
uzun s
*
*2
2 242
−+−=
2
24
2
2 1
*
*2
2
*
1
* u
up
V
e
uzu
V
g
u
n
V
g s −−+−
=
−
=χ
2
24
4
2423
1
*
*2
2
2
1
*
*2
22
*
*2
44
*
u
up
V
e
uzu
u
up
V
e
uzuuup
V
e
uzu
V
g
u
s
ss
−−+−






−−+−−





−+−
=
∂
∂ χ
Therefore






−−+−
++−
=
∂
∂
1
*
*2
2
1
*
*
* 244
4
up
V
e
uzuu
up
V
e
u
V
g
u
s
s
χ
For ps = 0
2
22
12
24
0
11
12
*
uzzuzzu
u
uzu
V
g
sp
=−+<<−−=
−+−
==
χ
( ) 2
22
1
244
4
0
11
12
1
*
uzzuzzu
uzuu
u
V
g
u
sp
=−+<<−−=
−+−
+−
=
∂
∂
=
χ
Aircraft Turn Performance
31
Performance of an Aircraft with Parabolic PolarSOLO
Horizontal Turn Rate as Function of ps, n
For ps = 0
2
22
12
24
0
11
12
*
uzzuzzu
u
uzu
V
g
sp
=−+<<−−=
−+−
==
χ
( ) 2
22
1
244
4
0
11
12
1
*
uzzuzzu
uzuu
u
V
g
u
sp
=−+<<−−=
−+−
+−
=
∂
∂
=
χ
Let find the maximum of as a function of uχ
( )12
1
* 244
4
0 −+−
+−
=
∂
∂
= uzuu
u
V
g
u
sp
χ
( ) ( )12
*
1 00
−=== ==
z
V
g
u
ss ppMAX χχ 
u 0 u1 1 (u1+u2)/2 u2
∞ + + 0 - - - - - - -∞
↑ Max ↓
u∂
∂ χ
χ
From
2
24
1
*
*2
2
* u
up
V
e
uzu
V
g s −−+−
=χ






−−+−
++−
=
∂
∂
1
*
*2
2
1
*
*
* 244
4
up
V
e
uzuu
up
V
e
u
V
g
u
s
s
χ
Aircraft Turn Performance
32
Performance of an Aircraft with Parabolic PolarSOLO
Horizontal Turn Rate as Function of ps, n
u
u
0<sp
0<sp
0=sp
0=sp 0>sp
0>sp
χ
u∂
∂ χ
( )12
*
−z
V
g
1=u1u
2u
as a function of u with ps as
parameter
u∂
∂ χ
χ

,






−−+−
++−
=
∂
∂
1
*
*2
2
1
*
*
* 244
4
up
V
e
uzuu
up
V
e
u
V
g
u
s
sχ
2
24
1
*
*2
2
* u
up
V
e
uzu
V
g s −−+−
=χ
Because ,we have0
*
*
>u
V
e
000 >=<
>>
sss ppp
χχχ 
0
1
0
1
0
1
0
>
=
=
=
<
= ∂
∂
<=
∂
∂
<
∂
∂
sss p
u
p
u
p
u uuu
χχχ 
Aircraft Turn Performance
33
Performance of an Aircraft with Parabolic PolarSOLO
Horizontal Turn Rate as Function of ps, n
u
0<sp
0=sp
0>sp
χ
( )12
*
−z
V
g
1=u1u
2u
2
24
1
*
*2
2
* u
up
V
e
uzu
V
g s −−+−
=χ
1
*
2
−MAXn
uV
g
2
2
2
_ 1
** u
u
C
C
V
g
L
MAXL
−





MAXL
L
C
C
_
*
MAX
MAXL
L
n
C
C
_
*
LIMIT
nMAX
LIMIT
C MAXL_
MAX
MAX
L
MAXL
n
n
C
C
V
g 1
**
2
_ −
a function of u, with ps
as parameter
χ
2
24
1
*
*2
2
* u
up
V
e
uzu
V
g s −−+−
=χ
Aircraft Turn Performance










=
=
=
2
0
*
2
1
:*
*
:
2
:*
Vq
V
V
u
CS
kW
V
D
ρ
ρ
34
Performance of an Aircraft with Parabolic PolarSOLO
Horizontal Turn Rate as Function of ps, n
2
24
1
*
*2
2
* u
up
V
e
uzu
V
g s −−+−
=χ
( ) ( )ss
s
puupu
up
V
e
uzu
u
g
VV
R 21
24
42
1
*
*2
2
*
<<
−−+−
==
χ
3
242
23
2
24
4
2
24
34243
2
1
*
*2
22
2
*
*3
22
*
1
*
*2
2
2
1
*
*2
2
*
*2
441
*
*2
24
*






−−+−






−−
=
−−+−






−−+−






−+−−





−−+−
=
∂
∂
up
V
e
uzuu
up
V
e
uzu
g
V
up
V
e
uzu
u
up
V
e
uzu
p
V
e
uzuuup
V
e
uzuu
g
V
u
R
s
s
s
s
ss
Aircraft Turn Performance
35
Performance of an Aircraft with Parabolic PolarSOLO
Horizontal Turn Rate as Function of ps, n
3
24
2
2
1
*
*2
2
2
*
*3
2
*






−−+−






−−
=
∂
∂
up
V
e
uzu
up
V
e
uzu
g
V
u
R
s
s
or
We have











>
+





+
=
<
+





−
=
→=
∂
∂
0
4
16
*
*
9
*
*3
0
4
16
*
*
9
*
*3
0
2
2
2
1
z
zp
V
e
up
V
e
u
z
zp
V
e
up
V
e
u
u
R
ss
R
ss
R
u 0 u1 uR2 u2
∞ - - - 0 + + ∞
↓ min ↑
u
R
∂
∂
R
2
22
124
42
0
11
12
*
uzzuzzu
uzu
u
g
V
R
sp
=−+<<−−=
−+−
==
( )
( )
2
22
1
324
22
0
11
12
1*2
uzzuzzu
uzu
uzu
g
V
u
R
sp
=−+<<−−=
−+−
−
=
∂
∂
=
Aircraft Turn Performance
36
Performance of an Aircraft with Parabolic PolarSOLO
Horizontal Turn Rate as Function of ps, n
u
R
0>sp
0=sp
0<sp
MAXL
L
C
C
_
*
1
**
2
_ −MAX
MAX
MAXL
L
n
n
C
C
g
V
1
1*
2
−zg
V
4
2
_
1*
1*
uC
C
g
V
MAXL
L
−








1
*
2
22
−MAXn
u
g
V
MAX
MAXL
L
n
C
C
_
*
LIMIT
C MAXL_
LIMIT
nMAX
z
1
12
−− zz 12
−+ zz
1
*
*2
2
*
24
42
−−+−
=
up
V
e
uzu
u
g
V
R
s
The minimum of R is obtained for zu /1=
1
1*
2
2
0
−
==
zg
V
R
sp
R (Radius of Turn) a function
of u, with ps as parameter
( ) ( )ss
s
puupu
up
V
e
uzu
u
g
VV
R
21
24
42
1
*
*2
2
*
<<
−−+−
==
χ
Return to Table of Content
Because ,we have0
*
*
>u
V
e
000 >=<
<<
sss ppp
RRR 000 minminmin >=<
<<
sss pRpRpR uuu
Aircraft Turn Performance










=
=
=
2
0
*
2
1
:*
*
:
2
:*
Vq
V
V
u
CS
kW
V
D
ρ
ρ
37
Performance of an Aircraft with Parabolic PolarSOLO
Horizontal Turn Rate as Function of nV,
( )
W
VDT
g
VV
hEps
−
≈+==

:
For an horizontal turn 0=h
V
g
Vu
g
VV
ps

 *
==
We found
2
24
1
*
*2
2
* u
up
V
e
uzu
V
g s −−+−
=χ
from which
2
24
1*2
* u
ue
g
V
zu
V
g
−





−+−
=

χ
defined for
2
22
1 :1**1**: ue
g
V
ze
g
V
zue
g
V
ze
g
V
zu =−





−+





−≤≤−





−−





−=

Aircraft Turn Performance
38
Performance of an Aircraft with Parabolic PolarSOLO
Horizontal Turn Rate as Function of nV,
Let compute
2
24
4
2423
1*2
2
1*22*44
*
u
ue
g
V
zu
u
ue
g
V
zuuuue
g
V
zu
V
g
u
−





−+−






−





−+−−











−+−
=
∂
∂


χ






−





−+−
+−
=
∂
∂
1*2
1
*
244
4
ue
g
V
zuu
u
V
g
u 
χ
or
u 0 u1 1 (u1+u2)/2 u2
∞ + + 0 - - - - - - -∞
↑ Max ↓
u∂
∂ χ
χ






−−= 1*2
*
e
g
V
z
V
g
MAX

χ
Aircraft Turn Performance
39
Performance of an Aircraft with Parabolic PolarSOLO
Horizontal Turn Rate as Function of nV,
u
0<V
0=V
0>V
χ
( )12
*
−z
V
g
1=u1u
2u
2
24
1*2
* u
ue
g
V
zu
V
g
−





−+−
=

χ
1
*
2
−MAXn
uV
g
2
2
2
_ 1
** u
u
C
C
V
g
L
MAXL
−





MAXL
L
C
C
_
*
MAX
MAXL
L
n
C
C
_
*
LIMIT
nMAXLIMIT
C MAXL_
MAX
MAX
L
MAXL
n
n
C
C
V
g 1
**
2
_ −
as function of u
and as parameter
χ
V
Return to Table of Content
Aircraft Turn Performance










=
=
=
2
0
*
2
1
:*
*
:
2
:*
Vq
V
V
u
CS
kW
V
D
ρ
ρ
08/12/15 40
Performance of an Aircraft with Parabolic PolarSOLO
References
Angelo Miele, “Flight Mechanics, Volume I, Theory of Flight Paths”,
Addison-Wesley, 1962
Return to Table of Content
S. Hermelin, “3 DOF Model of Aircraft in Earth Atmosphere”
41
SOLO
Technion
Israeli Institute of Technology
1964 – 1968 BSc EE
1968 – 1971 MSc EE
Israeli Air Force
1970 – 1974
RAFAEL
Israeli Armament Development Authority
1974 – 2013
Stanford University
1983 – 1986 PhD AA

Weitere ähnliche Inhalte

Was ist angesagt?

Construction engineering formula sheet
Construction engineering formula sheetConstruction engineering formula sheet
Construction engineering formula sheet
Prionath Roy
 
Paper_Flutter
Paper_FlutterPaper_Flutter
Paper_Flutter
Ram Mohan
 
French standard for deep foundations roger frank
French standard for deep foundations   roger frankFrench standard for deep foundations   roger frank
French standard for deep foundations roger frank
cfpbolivia
 
Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...
Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...
Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...
Stephane Meteodyn
 
Gas dynamics and_jet_propulsion- questions & answes
Gas dynamics and_jet_propulsion- questions & answesGas dynamics and_jet_propulsion- questions & answes
Gas dynamics and_jet_propulsion- questions & answes
Manoj Kumar
 
Fluid dynamics
Fluid dynamicsFluid dynamics
Fluid dynamics
Cik Minn
 

Was ist angesagt? (20)

Quadcopter Design for Payload Delivery
Quadcopter Design for Payload Delivery Quadcopter Design for Payload Delivery
Quadcopter Design for Payload Delivery
 
Quadcopter Design for Payload Delivery
Quadcopter Design for Payload Delivery Quadcopter Design for Payload Delivery
Quadcopter Design for Payload Delivery
 
Construction engineering formula sheet
Construction engineering formula sheetConstruction engineering formula sheet
Construction engineering formula sheet
 
Aircraft propulsion combustor diffusor
Aircraft propulsion   combustor diffusorAircraft propulsion   combustor diffusor
Aircraft propulsion combustor diffusor
 
Pda capwap - frank rausche
Pda capwap - frank rauschePda capwap - frank rausche
Pda capwap - frank rausche
 
2.5 pda-capwap - gray
2.5   pda-capwap - gray2.5   pda-capwap - gray
2.5 pda-capwap - gray
 
Aircraft propulsion turbomachine 3 d
Aircraft propulsion   turbomachine 3 dAircraft propulsion   turbomachine 3 d
Aircraft propulsion turbomachine 3 d
 
1.design of svc using mrac
1.design of svc using mrac1.design of svc using mrac
1.design of svc using mrac
 
Pipeline engineering gas
Pipeline engineering  gasPipeline engineering  gas
Pipeline engineering gas
 
Paper_Flutter
Paper_FlutterPaper_Flutter
Paper_Flutter
 
French standard for deep foundations roger frank
French standard for deep foundations   roger frankFrench standard for deep foundations   roger frank
French standard for deep foundations roger frank
 
Presentation 4 ce 904 on Hydrology by Rabindra Ranjan Saha,PEng, Associate Pr...
Presentation 4 ce 904 on Hydrology by Rabindra Ranjan Saha,PEng, Associate Pr...Presentation 4 ce 904 on Hydrology by Rabindra Ranjan Saha,PEng, Associate Pr...
Presentation 4 ce 904 on Hydrology by Rabindra Ranjan Saha,PEng, Associate Pr...
 
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 3
Class lectures on Hydrology by Rabindra Ranjan Saha  Lecture 3Class lectures on Hydrology by Rabindra Ranjan Saha  Lecture 3
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 3
 
Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigation
Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical InvestigationAerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigation
Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigation
 
Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...
Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...
Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...
 
Gas dynamics and_jet_propulsion- questions & answes
Gas dynamics and_jet_propulsion- questions & answesGas dynamics and_jet_propulsion- questions & answes
Gas dynamics and_jet_propulsion- questions & answes
 
Presentation 3 ce801 by Rabindra Ranjan Saha, PEng, Assoc. Prof. WUB
Presentation 3 ce801 by Rabindra Ranjan Saha, PEng, Assoc. Prof. WUBPresentation 3 ce801 by Rabindra Ranjan Saha, PEng, Assoc. Prof. WUB
Presentation 3 ce801 by Rabindra Ranjan Saha, PEng, Assoc. Prof. WUB
 
Fluid dynamics
Fluid dynamicsFluid dynamics
Fluid dynamics
 
Presentation 6 ce 904 on Hydrology by Rabindra Ranjan Saha,PEng, Associate Pr...
Presentation 6 ce 904 on Hydrology by Rabindra Ranjan Saha,PEng, Associate Pr...Presentation 6 ce 904 on Hydrology by Rabindra Ranjan Saha,PEng, Associate Pr...
Presentation 6 ce 904 on Hydrology by Rabindra Ranjan Saha,PEng, Associate Pr...
 
Presentation 5 ce 801 By Rabindra Ranjan saha
Presentation 5 ce 801 By Rabindra Ranjan sahaPresentation 5 ce 801 By Rabindra Ranjan saha
Presentation 5 ce 801 By Rabindra Ranjan saha
 

Andere mochten auch

Andere mochten auch (20)

5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
 
11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systems
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hms
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutaway
 
3 earth atmosphere
3 earth atmosphere3 earth atmosphere
3 earth atmosphere
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observers
 
Analytic dynamics
Analytic dynamicsAnalytic dynamics
Analytic dynamics
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectories
 
Sliding Mode Observers
Sliding Mode ObserversSliding Mode Observers
Sliding Mode Observers
 
Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization Approach
 
7 air-to-air combat
7 air-to-air combat7 air-to-air combat
7 air-to-air combat
 
Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)
 
Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles ii
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles i
 
1 radar basic -part i 1
1 radar basic -part i 11 radar basic -part i 1
1 radar basic -part i 1
 
1 radar basic - part ii
1 radar basic - part ii1 radar basic - part ii
1 radar basic - part ii
 
Inner outer and spectral factorizations
Inner outer and spectral factorizationsInner outer and spectral factorizations
Inner outer and spectral factorizations
 
2 estimators
2 estimators2 estimators
2 estimators
 

Ähnlich wie 12 performance of an aircraft with parabolic polar

2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion
rro7560
 
Centre of mass, impulse momentum (obj. assignments)
Centre of mass, impulse momentum (obj. assignments)Centre of mass, impulse momentum (obj. assignments)
Centre of mass, impulse momentum (obj. assignments)
gopalhmh95
 
Aircraft Performance and Design Project Code
Aircraft Performance and Design Project CodeAircraft Performance and Design Project Code
Aircraft Performance and Design Project Code
Elliot Farquhar
 
12EE62R11_Final Presentation
12EE62R11_Final Presentation12EE62R11_Final Presentation
12EE62R11_Final Presentation
Amritesh Maitra
 

Ähnlich wie 12 performance of an aircraft with parabolic polar (20)

EAGES Proceedings - D. N. Sinitsyn
EAGES Proceedings - D. N. SinitsynEAGES Proceedings - D. N. Sinitsyn
EAGES Proceedings - D. N. Sinitsyn
 
Sloshing-aware MPC for upper stage attitude control
Sloshing-aware MPC for upper stage attitude controlSloshing-aware MPC for upper stage attitude control
Sloshing-aware MPC for upper stage attitude control
 
2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion
 
HMPC for Upper Stage Attitude Control
HMPC for Upper Stage Attitude ControlHMPC for Upper Stage Attitude Control
HMPC for Upper Stage Attitude Control
 
Centre of mass, impulse momentum (obj. assignments)
Centre of mass, impulse momentum (obj. assignments)Centre of mass, impulse momentum (obj. assignments)
Centre of mass, impulse momentum (obj. assignments)
 
Lelt 240 semestre i-2021
Lelt   240 semestre i-2021Lelt   240 semestre i-2021
Lelt 240 semestre i-2021
 
Total energy optimization in F3J glider towing
Total energy optimization in F3J glider towingTotal energy optimization in F3J glider towing
Total energy optimization in F3J glider towing
 
Aircraft Performance and Design Project Code
Aircraft Performance and Design Project CodeAircraft Performance and Design Project Code
Aircraft Performance and Design Project Code
 
Take Off And Landing Performance
Take Off And Landing PerformanceTake Off And Landing Performance
Take Off And Landing Performance
 
Gate ee 2005 with solutions
Gate ee 2005 with solutionsGate ee 2005 with solutions
Gate ee 2005 with solutions
 
Vehicle load transfer part II 2021
Vehicle load transfer part II 2021Vehicle load transfer part II 2021
Vehicle load transfer part II 2021
 
Gate ee 2012 with solutions
Gate ee 2012 with solutionsGate ee 2012 with solutions
Gate ee 2012 with solutions
 
Relative motion and relative speed
Relative motion and relative speedRelative motion and relative speed
Relative motion and relative speed
 
D0372027037
D0372027037D0372027037
D0372027037
 
Electric_Propeller_Aircraft_Sizing.pptx
Electric_Propeller_Aircraft_Sizing.pptxElectric_Propeller_Aircraft_Sizing.pptx
Electric_Propeller_Aircraft_Sizing.pptx
 
Theory of Advanced Relativity
Theory of Advanced RelativityTheory of Advanced Relativity
Theory of Advanced Relativity
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
 
12EE62R11_Final Presentation
12EE62R11_Final Presentation12EE62R11_Final Presentation
12EE62R11_Final Presentation
 
Platoon Control of Nonholonomic Robots using Quintic Bezier Splines
Platoon Control of Nonholonomic Robots using Quintic Bezier SplinesPlatoon Control of Nonholonomic Robots using Quintic Bezier Splines
Platoon Control of Nonholonomic Robots using Quintic Bezier Splines
 
Article 1
Article 1Article 1
Article 1
 

Mehr von Solo Hermelin

Mehr von Solo Hermelin (8)

2Anti-aircraft Warhead
2Anti-aircraft Warhead2Anti-aircraft Warhead
2Anti-aircraft Warhead
 
1 susceptibility vulnerability
1 susceptibility vulnerability1 susceptibility vulnerability
1 susceptibility vulnerability
 
15 sky cars
15 sky cars15 sky cars
15 sky cars
 
Calculus of variation problems
Calculus of variation   problemsCalculus of variation   problems
Calculus of variation problems
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
Aerodynamics part iii
Aerodynamics   part iiiAerodynamics   part iii
Aerodynamics part iii
 
Aerodynamics part ii
Aerodynamics   part iiAerodynamics   part ii
Aerodynamics part ii
 
Aerodynamics part i
Aerodynamics   part iAerodynamics   part i
Aerodynamics part i
 

Kürzlich hochgeladen

Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Sérgio Sacani
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
1301aanya
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
PirithiRaju
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
RizalinePalanog2
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
ssuser79fe74
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
PirithiRaju
 

Kürzlich hochgeladen (20)

IDENTIFICATION OF THE LIVING- forensic medicine
IDENTIFICATION OF THE LIVING- forensic medicineIDENTIFICATION OF THE LIVING- forensic medicine
IDENTIFICATION OF THE LIVING- forensic medicine
 
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
 
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATION
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATIONSTS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATION
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATION
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
 
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts ServiceJustdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
 

12 performance of an aircraft with parabolic polar

  • 1. 08/12/15 1 Performance of an Aircraft with Parabolic Polar SOLO HERMELIN Updated: 14.03.2004
  • 2. 08/12/15 2 Performance of an Aircraft with Parabolic PolarSOLO Table of Content Flat Earth Three Degrees of Freedom Aircraft Equations Performance of an Aircraft with Parabolic Polar Aircraft Drag Energy per unit mass E Load Factor n Aircraft Trajectories Summary Constraints Horizontal Plan Trajectory ( )0,0 == γγ  Horizontal Turn Rate as Function of ps, n Horizontal Turn Rate as Function of nV, References
  • 3. 08/12/15 3 SOLO Assumptions: •Point mass model. •Flat earth with g = constant. •Three-dimensional aircraft trajectory. •Air density that varies with altitude ρ=ρ(h) •Drag that varies with altitude, Mach number and control effort D = D(h,M,n) •Thrust magnitude is controllable by the throttle. •No sideslip angle. •No wind. α T V L D Bx Wx Bz Wz Wy By Aircraft Coordinate System Flat Earth Three Degrees of Freedom Aircraft Equations
  • 4. 4 SOLO • Rotation Matrix from Earth to Wind Coordinates [ ] [ ] [ ]321 χγσ=W EC where σ – Roll Angle γ – Elevation Angle of the Trajectory χ – Azimuth Angle of the Trajectory Force Equation: amgmTFA  =++ where: • Aerodynamic Forces (Lift L and Drag D) ( )           − − = L D F W A 0  • Thrust T ( )           = α α sin 0 cos T T T W  • Gravitation acceleration ( ) ( )                     −           −           − == g cs sc cs sc cs scgCg EW E W 0 0 100 0 0 0 010 0 0 0 001 χχ χχ γγ γγ σσ σσ ( ) g cc cs s g W          − = γσ γσ γ  α T V L D Bx Wx Bz Wz Wy By Flat Earth Three Degrees of Freedom Aircraft Equations
  • 5. 5 SOLO α T V L D Bx Wx Bz Wz Wy By • Aircraft Acceleration ( ) ( ) ( ) ( )WW W W VVa  ×+= → ω where: ( )           = 0 0 V V W  and ( )           = → 0 0 V V W   ( )                                         −+                     − +                     − =           = χ χχ χχ γ γγ γγσ σσ σσω     0 0 100 0 0 0 0 0 010 0 0 0 0 0 001 cs sc cs sc cs sc r q p W W W W or ( )           +− + − =           = γσχσγ γσχσγ γχσ ω ccs csc s r q p W W W W     therefore ( ) ( ) ( ) ( ) ( ) ( )           +− +−=           − =×+= → γσχσγ γσχσγω cscV ccsV V qV rV V VVa W W WW W W     Flat Earth Three Degrees of Freedom Aircraft Equations
  • 6. 6 SOLO α T V L D Bx Wx Bz Wz Wy By • Aircraft Acceleration Flat Earth Three Degrees of Freedom Aircraft Equations From the Force equation we obtain: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )WWW A WW W W gTF m VVa  ++=×+= → 1 ω or ( ) ( ) ( ) σ σ σ σ γσαγσχσγ γσγσχσγ γα s c c s ccgmLTcscVqV csgccsVrV sgmDTV W W −− −      ++−=+−=− =+−= −−= /sin /)cos(    from which we obtain: ( ) ( )     += −+= −−= msLTcV cgmcLTV sgmDTV /sin /sin /)cos( σαγχ γσαγ γα    Define the Load Factor gm LT n + = αsin :
  • 7. 7 SOLO α T V L D Bx Wx Bz Wz Wy By • Velocity Equation Flat Earth Three Degrees of Freedom Aircraft Equations ( ) ( )           ==           = 0 0 V CVC h y x V E W WE W E                          −           −          − =           0 0 0 0 001 0 010 0 100 0 0 V cs sc cs sc cs sc h y x σσ σσ γγ γγ χχ χχ         = = = γ χγ χγ sVh scVy ccVx    or • Energy per unit mass E g V hE 2 : 2 += Let differentiate this equation: ( ) W VDT W DT g g V V g VV hEps − =            − − +=+== α γ α γ cos sin cos sin:   Return to Table of Content
  • 8. 8 SOLO Flat Earth Three Degrees of Freedom Aircraft Equations Summary γ χγ χγ sin sincos coscos Vh Vy Vx = = =    ( ) ( ) σ γ σ γ α χ γσγσ α γ α γ α sin cos sin cos sin coscoscoscos sin cos sin cos n V g W LT V g n V g W LT V g W VDT Eor W DT gV = + = −=      − + = − =−      − =    where mgW = Aircraft Thrust( ) 10, ≤≤= ηη VhTT MAX ( ) ( )MSCVhL L , 2 1 2 αρ= ( ) ( )LD CMSCVhD , 2 1 2 ρ= ( ) ( ) ( ) 2 0, LDLD CMKMCCMC += ( ) 0/ 0 hh eh − = ρρ ( ) ( ) soundofspeedhaNumberMachMhaVM === &/ Aircraft Weight Aircraft Lift Aircraft Drag Parabolic Drag Polar Return to Table of Content
  • 9. 9 SOLO Flat Earth Three Degrees of Freedom Aircraft Equations Constraints: State Constraints • Minimum Altitude Limit minhh ≥ • Maximum dynamic pressure limit ( ) ( )hVVorqVhq MAXMAX ≤≤= 2 2 1 ρ • Maximum Mach Number limit ( ) MAXM ha V ≤ Aerodynamic or heat limitation Control Constraints • Maximum Lift Coefficient or Maximum Angle of Attack ( ) ( ) ( )VhorMCMC STALLMAXLL ,, _ ααα ≤≤ • Minimum Load Factor ( ) MAXn W VhL n ≤= , • Maximum Thrust ( )VhTT MAX ,≤
  • 10. 10 SOLO Flat Earth Three Degrees of Freedom Aircraft Equations MAXα MAXα αα LCDC MAXLC 0DC ( ) ( )αα 2 0 LDD kCCC += Drag and Lift Coefficients as functions of Angle of Attack
  • 11. 11 SOLO Flat Earth Three Degrees of Freedom Aircraft Equations ( ) ( ) ( ) Limit Vhor MCMC STALL MAXLL , , _ αα α = = ( ) ( ) Limit hVVor qVhq MAX MAX = == 2 2 1 ρ minhh = MAXMM = Mach Altitude Flight Envelope of the Aircraft Return to Table of Content
  • 12. 12 Performance of an Aircraft with Parabolic PolarSOLO W LT n + = αsin :' W L n =: 2 0 : LD L D L CkC C CSq CSq D L e + === We assumed a Parabolic Drag Polar: 2 0 LDD CkCC += Let find the maximum of e as a function of CL ( ) ( ) 0 2 22 0 2 0 22 0 22 0 = + − = + −+ = ∂ ∂ LD LD LD LLD L CkC CkC CkC CkCkC C e e LC*LC *2 1 LCk CL/CD as a function of CL The maximum of e is obtained for k C C D L 0 * = ( ) 0 0 0 2 0 2** D D DLDD C k C kCCkCC =+=+= Start with Load Factor Total Load Number Lift to Drag Ratio Climbing Aircraft Performance
  • 13. 13 Performance of an Aircraft with Parabolic PolarSOLO e LC*LC *2 1 LCk CL/CD as a function of CL The maximum of e is obtained for k C C D L 0 * = ( ) 0 0 0 2 0 2** D D DLDD C k C kCCkCC =+=+= *2 1 *2 1 2 1 2* * * 22 00 0 LLDD D D L CkCkCkC k C C C e ===== We have WnCSVCSqL LL === 2 2 1 ρ Let define for n = 1             = = == 2 0 * 2 1 :* * : 2 * 2 1 :* Vq V V u CS kW CS W V D L ρ ρρ 2 0 : LD L D L CkC C CSq CSq D L e + === Climbing Aircraft Performance
  • 14. 14 Performance of an Aircraft with Parabolic PolarSOLO Using those definitions we obtain L L L L C C nqq WCSq WnCSqL * * ** =→    = == 2 2 2 1 2 1 * 2 1 * uV V n q q == ρ ρ 2 * * * u C nC q q nC L LL == ( )       +=      +=       +=+= = 2 2 2 04 02 0 2 * 4 2 2 0 22 0 ** * * 0 2 u n uCSq u C nCuSq u C nkCuSqCkCSqD D D D CCk L DLD DL *2 1 * *** 0 0 e W C C CSqCSq L D LD ==       += 2 2 2 *2 u n u e W D Therefore Return to Table of Content Climbing Aircraft Performance           = = = 2 0 * 2 1 :* * : 2 :* Vq V V u CS kW V D ρ ρ
  • 15. 15 Performance of an Aircraft with Parabolic PolarSOLO We obtained Let find the minimum of D as function of u. nu u nu e W u n u e W u D =→ = − =      −= ∂ ∂ 2 3 24 3 2 0 * 22 *2 * 2min e Wn DD nu == = Aircraft Drag Climbing Aircraft Performance u 0 - - - - 0 + + + + + D ↓ min ↑ n u D ∂ ∂       += 2 2 2 *2 u n u e W D
  • 16. 16 Performance of an Aircraft with Parabolic PolarSOLO Aircraft Drag ( ) MAXn W VhL n ≤= ,         +== 2 2 2 *2 u n u e W D MAX nn MAX Maximum Lift Coefficient or Maximum Angle of Attack ( ) ( ) ( )VhorMCMC STALLMAXLL ,, _ ααα ≤≤ We have u C C u n u C nC q q nC L MAXL CC L LL MAXLL * * * * _ 2 _ =→== = 2 2 _ 2 2 _2 * 1 *2 **2_ u C C e W u C C u e W D L MAXL L MAXL CC MAXLL               +=               +== Maximum dynamic pressure limit ( ) ( ) MAX MAX MAXMAX u V V uhVVorqVhq =<→≤≤= : *2 1 2 ρ *e W D MAXLC _ 2 2 _ 1 2 1 u C C L MAXL               +         += 2 2 2 2 1 * u n ue W D MAX LIMIT nn MAX= 2min * ue W D =       += 2 2 2 2 1 * u n ue W D MAXuu =MAX MAXL L CORNER n C C u _ * = n LIMIT u MAXnu = as a function of u*e W D Return to Table of Content Climbing Aircraft Performance Maximum Load Factor           = = = 2 0 * 2 1 :* * : 2 :* Vq V V u CS kW V D ρ ρ
  • 17. 17 Performance of an Aircraft with Parabolic PolarSOLO Energy per unit mass E Let define Energy per unit mass E: g V hE 2 : 2 += Let differentiate this equation: ( ) ( ) W VDT W VDT W DT g g V V g VV hEps − ≈ − =            − − +=+== α γ α γ cos sin cos sin:   *& *2 2 2 2 VuV u n u e W D =      += Define *: e W T z       = We obtain ( )             +−=             +−      = − = 2 2 2 2 2 2 2 1 * * * 2 1 * * u n uzu e V W Vu u n ue W T e W W VDT ps or ( ) u nuzu e V ps 224 2 *2 * −+− = nz nzzu nzzu nuzup constns >     −+= −−= →=+−→== 22 2 22 1224 020 ( ) ( ) 2 224 2 2243 23 * *244 * * u nuzu e V u nuzuuuzu e V u p constn s ++− = −+−−+− = ∂ ∂ = 3 3 0 22 nzz u u p MAX constn s ++ =→= ∂ ∂ = 2 21 2 uu uu MAX << + nz > Climbing Aircraft Performance
  • 18. Performance of an Aircraft with Parabolic PolarSOLO Energy per unit mass E g V hE 2 : 2 += Climbing Aircraft Performance Energy Height versus Mach NumberEnergy Height versus True Airspeed ( )hV V M sound =:( ) 00 : T T V T T MhVTAS sound ==
  • 19. 19 Performance of an Aircraft with Parabolic PolarSOLO Energy per unit mass E sp 2u1u MAXu 2 21 uu + u MAXn n 1=n ( ) u nuzu e V ps 224 2 * * −+− = ps as a function of u ( ) u nuzu e V ps 224 2 * * −+− = u V pe uzunnuzuu V pe ss * *2 22 * *2 242224 −+−=→−+−= From which u V pe uzun s * *2 2 24 −+−= ( ) * *2 44 3 2 V pe uzu u n s constps −+−= ∂ ∂ = ( ) 3 0412 2 2 22 z uzu u n constps =→=+−= ∂ ∂ = Return to Table of Content Climbing Aircraft Performance           = = = 2 0 * 2 1 :* * : 2 :* Vq V V u CS kW V D ρ ρ
  • 20. 20 Performance of an Aircraft with Parabolic PolarSOLO Load Factor n u 3 z z z2z 3 z u 2 n 0=sp 0>sp 0<sp 0<sp 0=sp 0>sp ( ) u n ∂ ∂ 2 ( ) 2 22 u n ∂ ∂ 3 z u ( ) ( ) 2 2 2 22 ,, n u n u n ∂ ∂ ∂ ∂ as a function of u u V pe uzun s * *2 2 24 −+−= ( ) 3 0412 2 2 22 z uzu u n constps =→=+−= ∂ ∂ = ( ) * *2 44 3 2 V pe uzu u n s constps −+−= ∂ ∂ = Climbing Aircraft Performance           = = = 2 0 * 2 1 :* * : 2 :* Vq V V u CS kW V D ρ ρ
  • 21. 21 Performance of an Aircraft with Parabolic PolarSOLO Load Factor n For ps = 0 we have zuuzun 202 24 ≤≤+−= Let find the maximum of n as function of u. 0 22 44 24 3 = +− +− = ∂ ∂ uzu uzu u n Therefore the maximum value for n is achieved for zu = ( ) zn MAXps ==0 u 0 √z √2z ∂ n/∂u | + + + 0 - - - - | - - n ↑ Max ↓ z2z u n 0=sp 0>sp 0<sp MAXn z MAX MAXL L n C C _ * n as a function of u Return to Table of Content Climbing Aircraft Performance           = = = 2 0 * 2 1 :* * : 2 :* Vq V V u CS kW V D ρ ρ
  • 22. 22 Performance of an Aircraft with Parabolic PolarSOLO       − + = = γσ α γσ coscos sin cossin V g Vm LT q V g r W W n W L W LT n =≈ + = αsin :' Therefore ( )      −= = γσ γσ coscos' cossin n V g q V g r W W γσγσγσω 2222222 coscoscoscos'2'cossin +−+=+= nn V g qr WW or γγσω 22 coscoscos'2' +−= nn V g γγσω 22 2 coscoscos'2' 1 +− == nng VV R Aircraft Trajectories We found Aircraft Turn Performance
  • 23. 23 Performance of an Aircraft with Parabolic PolarSOLO ( ) ( ) ( ) γ σ φ γ α χ γσγσ α γ cos sin sin cos sin coscos'coscos sin V gLT n V g V g Vm LT = + = −=− + =   2. Horizontal Plan Trajectory ( )0,0 == γγ  ( ) 1' 1 1' ' 1 1'sin' cos 1 '01cos' 2 2 2 2 − = −=      −== =→=−= ng V R n V g n n V g n V g nn V g σχ σ σγ   Aircraft Turn Performance 1. Vertical Plan Trajectory (σ = 0) ( ) γ γγ χ cos' 1 cos' 0 2 − = −= = ng V R n V g  
  • 24. 24 Vertical Plan Trajectory (σ = 0) SOLO Return to Table of Content
  • 25. 25 Performance of an Aircraft with Parabolic PolarSOLO 2. Horizontal Plan Trajectory ( )0,0 == γγ  We can see that for n > 1 1 1 1' 1 11' 2 2 2 2 22 − ≈ − = −≈−= ng V ng V R n V g n V g χ We found that 2 2 * * u C C n u C nC L LL L =→= n 1n 2n MAXn u u LC MAXLC _ 1 _ n C C MAXL L MAX MAXL L corner n C C u _ * = *2 L MAX L C u n C = MAX MAXL L corner n C C u _ * = MAX L L n C C 1 * MAXLC _ 2LC 1LC 2 * 1 u C C n L L = MAXn n, CL as a function of u Aircraft Turn Performance           = = = 2 0 * 2 1 :* * : 2 :* Vq V V u CS kW V D ρ ρ
  • 26. 26 R V =:χ1'2 −= n V g χ Contours of Constant n and Contours of Constant Turn Radius in Turn-Rate in Horizontal Plan versus Mach coordinates Horizontal Plan TrajectorySOLO
  • 27. 27 Performance of an Aircraft with Parabolic PolarSOLO MAX MAX L MAXL n n C C V g 1 ** 2 _ − MAX MAXL L corner n C C V g u _ * * = MAXL L C C V g u _ 1 * * = MAXn 2n 1n MAXLC _ 2LC 1LC u χ MAXu a function of u, with n and CL as parametersχ We defined 2 * & * : u C C n V V u L L == We found 2 2 2 22 1 ** 1 * 1 u u C C V g n Vu g n V g L L −      =−=−=χ This is defined for 1: ** 1 __ <=≥≥= u C C un C C u MAXL L MAX MAXL L corner 2. Horizontal Plan Trajectory ( )0,0 == γγ  Aircraft Turn Performance           = = = 2 0 * 2 1 :* * : 2 :* Vq V V u CS kW V D ρ ρ
  • 28. 28 Performance of an Aircraft with Parabolic PolarSOLO From 2 2 2 22 1 ** 1 * 1 u u C C V g n Vu g n V g L L −      =−=−=χ 4 2 2 2 22 1 * 1* 1 * : uC Cg V n u g VV R L L −      = − == χ Therefore cornerMAX MAXL L MAXL L L MAXL C un C C u C C u uC Cg V R MAXL =≤≤= −      = __ 1 4 2 _ 2 ** 1 * 1* _ cornerMAX MAXL L MAX n un C C u n u g V R MAX =≥ − = _ 2 22 * 1 * MAX L L L L L L C n C C u C C u uC Cg V R L ** 1 * 1* 1 4 2 2 ≤≤= −      = n C C u n u g V R MAXL L n _ 2 22 * 1 * ≥ − = 2. Horizontal Plan Trajectory ( )0,0 == γγ  Aircraft Turn Performance
  • 29. 29 Performance of an Aircraft with Parabolic PolarSOLO R (Radius of Turn) a function of u, with n and CL as parameters 1 ** 2 _ 2 −MAX MAX MAXL L n n C C g V MAX MAXL L corner n C C V g u _ * * = MAXL L C C V g u _ 1 * * = MAXn 2n 1nMAXLC _ 2LC 1LC u R 4 2 2 2 22 1 * 1* 1 * : uC Cg V n u g VV R L L −      = − == χ 2. Horizontal Plan Trajectory ( )0,0 == γγ  Return to Table of Content Aircraft Turn Performance           = = = 2 0 * 2 1 :* * : 2 :* Vq V V u CS kW V D ρ ρ
  • 30. 30 Performance of an Aircraft with Parabolic PolarSOLO Horizontal Turn Rate as Function of ps, n ( ) u nuzu e V ps 224 2 *2 * −+− = up V e uzun s * *2 2 242 −+−= 2 24 2 2 1 * *2 2 * 1 * u up V e uzu V g u n V g s −−+− = − =χ 2 24 4 2423 1 * *2 2 2 1 * *2 22 * *2 44 * u up V e uzu u up V e uzuuup V e uzu V g u s ss −−+−       −−+−−      −+− = ∂ ∂ χ Therefore       −−+− ++− = ∂ ∂ 1 * *2 2 1 * * * 244 4 up V e uzuu up V e u V g u s s χ For ps = 0 2 22 12 24 0 11 12 * uzzuzzu u uzu V g sp =−+<<−−= −+− == χ ( ) 2 22 1 244 4 0 11 12 1 * uzzuzzu uzuu u V g u sp =−+<<−−= −+− +− = ∂ ∂ = χ Aircraft Turn Performance
  • 31. 31 Performance of an Aircraft with Parabolic PolarSOLO Horizontal Turn Rate as Function of ps, n For ps = 0 2 22 12 24 0 11 12 * uzzuzzu u uzu V g sp =−+<<−−= −+− == χ ( ) 2 22 1 244 4 0 11 12 1 * uzzuzzu uzuu u V g u sp =−+<<−−= −+− +− = ∂ ∂ = χ Let find the maximum of as a function of uχ ( )12 1 * 244 4 0 −+− +− = ∂ ∂ = uzuu u V g u sp χ ( ) ( )12 * 1 00 −=== == z V g u ss ppMAX χχ  u 0 u1 1 (u1+u2)/2 u2 ∞ + + 0 - - - - - - -∞ ↑ Max ↓ u∂ ∂ χ χ From 2 24 1 * *2 2 * u up V e uzu V g s −−+− =χ       −−+− ++− = ∂ ∂ 1 * *2 2 1 * * * 244 4 up V e uzuu up V e u V g u s s χ Aircraft Turn Performance
  • 32. 32 Performance of an Aircraft with Parabolic PolarSOLO Horizontal Turn Rate as Function of ps, n u u 0<sp 0<sp 0=sp 0=sp 0>sp 0>sp χ u∂ ∂ χ ( )12 * −z V g 1=u1u 2u as a function of u with ps as parameter u∂ ∂ χ χ  ,       −−+− ++− = ∂ ∂ 1 * *2 2 1 * * * 244 4 up V e uzuu up V e u V g u s sχ 2 24 1 * *2 2 * u up V e uzu V g s −−+− =χ Because ,we have0 * * >u V e 000 >=< >> sss ppp χχχ  0 1 0 1 0 1 0 > = = = < = ∂ ∂ <= ∂ ∂ < ∂ ∂ sss p u p u p u uuu χχχ  Aircraft Turn Performance
  • 33. 33 Performance of an Aircraft with Parabolic PolarSOLO Horizontal Turn Rate as Function of ps, n u 0<sp 0=sp 0>sp χ ( )12 * −z V g 1=u1u 2u 2 24 1 * *2 2 * u up V e uzu V g s −−+− =χ 1 * 2 −MAXn uV g 2 2 2 _ 1 ** u u C C V g L MAXL −      MAXL L C C _ * MAX MAXL L n C C _ * LIMIT nMAX LIMIT C MAXL_ MAX MAX L MAXL n n C C V g 1 ** 2 _ − a function of u, with ps as parameter χ 2 24 1 * *2 2 * u up V e uzu V g s −−+− =χ Aircraft Turn Performance           = = = 2 0 * 2 1 :* * : 2 :* Vq V V u CS kW V D ρ ρ
  • 34. 34 Performance of an Aircraft with Parabolic PolarSOLO Horizontal Turn Rate as Function of ps, n 2 24 1 * *2 2 * u up V e uzu V g s −−+− =χ ( ) ( )ss s puupu up V e uzu u g VV R 21 24 42 1 * *2 2 * << −−+− == χ 3 242 23 2 24 4 2 24 34243 2 1 * *2 22 2 * *3 22 * 1 * *2 2 2 1 * *2 2 * *2 441 * *2 24 *       −−+−       −− = −−+−       −−+−       −+−−      −−+− = ∂ ∂ up V e uzuu up V e uzu g V up V e uzu u up V e uzu p V e uzuuup V e uzuu g V u R s s s s ss Aircraft Turn Performance
  • 35. 35 Performance of an Aircraft with Parabolic PolarSOLO Horizontal Turn Rate as Function of ps, n 3 24 2 2 1 * *2 2 2 * *3 2 *       −−+−       −− = ∂ ∂ up V e uzu up V e uzu g V u R s s or We have            > +      + = < +      − = →= ∂ ∂ 0 4 16 * * 9 * *3 0 4 16 * * 9 * *3 0 2 2 2 1 z zp V e up V e u z zp V e up V e u u R ss R ss R u 0 u1 uR2 u2 ∞ - - - 0 + + ∞ ↓ min ↑ u R ∂ ∂ R 2 22 124 42 0 11 12 * uzzuzzu uzu u g V R sp =−+<<−−= −+− == ( ) ( ) 2 22 1 324 22 0 11 12 1*2 uzzuzzu uzu uzu g V u R sp =−+<<−−= −+− − = ∂ ∂ = Aircraft Turn Performance
  • 36. 36 Performance of an Aircraft with Parabolic PolarSOLO Horizontal Turn Rate as Function of ps, n u R 0>sp 0=sp 0<sp MAXL L C C _ * 1 ** 2 _ −MAX MAX MAXL L n n C C g V 1 1* 2 −zg V 4 2 _ 1* 1* uC C g V MAXL L −         1 * 2 22 −MAXn u g V MAX MAXL L n C C _ * LIMIT C MAXL_ LIMIT nMAX z 1 12 −− zz 12 −+ zz 1 * *2 2 * 24 42 −−+− = up V e uzu u g V R s The minimum of R is obtained for zu /1= 1 1* 2 2 0 − == zg V R sp R (Radius of Turn) a function of u, with ps as parameter ( ) ( )ss s puupu up V e uzu u g VV R 21 24 42 1 * *2 2 * << −−+− == χ Return to Table of Content Because ,we have0 * * >u V e 000 >=< << sss ppp RRR 000 minminmin >=< << sss pRpRpR uuu Aircraft Turn Performance           = = = 2 0 * 2 1 :* * : 2 :* Vq V V u CS kW V D ρ ρ
  • 37. 37 Performance of an Aircraft with Parabolic PolarSOLO Horizontal Turn Rate as Function of nV, ( ) W VDT g VV hEps − ≈+==  : For an horizontal turn 0=h V g Vu g VV ps   * == We found 2 24 1 * *2 2 * u up V e uzu V g s −−+− =χ from which 2 24 1*2 * u ue g V zu V g −      −+− =  χ defined for 2 22 1 :1**1**: ue g V ze g V zue g V ze g V zu =−      −+      −≤≤−      −−      −=  Aircraft Turn Performance
  • 38. 38 Performance of an Aircraft with Parabolic PolarSOLO Horizontal Turn Rate as Function of nV, Let compute 2 24 4 2423 1*2 2 1*22*44 * u ue g V zu u ue g V zuuuue g V zu V g u −      −+−       −      −+−−            −+− = ∂ ∂   χ       −      −+− +− = ∂ ∂ 1*2 1 * 244 4 ue g V zuu u V g u  χ or u 0 u1 1 (u1+u2)/2 u2 ∞ + + 0 - - - - - - -∞ ↑ Max ↓ u∂ ∂ χ χ       −−= 1*2 * e g V z V g MAX  χ Aircraft Turn Performance
  • 39. 39 Performance of an Aircraft with Parabolic PolarSOLO Horizontal Turn Rate as Function of nV, u 0<V 0=V 0>V χ ( )12 * −z V g 1=u1u 2u 2 24 1*2 * u ue g V zu V g −      −+− =  χ 1 * 2 −MAXn uV g 2 2 2 _ 1 ** u u C C V g L MAXL −      MAXL L C C _ * MAX MAXL L n C C _ * LIMIT nMAXLIMIT C MAXL_ MAX MAX L MAXL n n C C V g 1 ** 2 _ − as function of u and as parameter χ V Return to Table of Content Aircraft Turn Performance           = = = 2 0 * 2 1 :* * : 2 :* Vq V V u CS kW V D ρ ρ
  • 40. 08/12/15 40 Performance of an Aircraft with Parabolic PolarSOLO References Angelo Miele, “Flight Mechanics, Volume I, Theory of Flight Paths”, Addison-Wesley, 1962 Return to Table of Content S. Hermelin, “3 DOF Model of Aircraft in Earth Atmosphere”
  • 41. 41 SOLO Technion Israeli Institute of Technology 1964 – 1968 BSc EE 1968 – 1971 MSc EE Israeli Air Force 1970 – 1974 RAFAEL Israeli Armament Development Authority 1974 – 2013 Stanford University 1983 – 1986 PhD AA

Hinweis der Redaktion

  1. Prof. Earll Murman, “Introduction to Aircraft Performance and Static Stability”, September 18, 2003