SlideShare ist ein Scribd-Unternehmen logo
1 von 31
WORK AND ENERGY
James Prescott Joule
(1818-1889)
James Watt
(1736-
1819)
1. Work
2. Work done by an oblique force
3. Positive, zero and negative work done
4. Energy
5. Potential energy
6. Kinetic energy
7. Power
8. Transformation of energy
9. Law of conservation of energy
10.Simple pendulum
Created by C. Mani, Education Officer, KVS Silchar Region
A horse pulling a cart does work.
WORK
A man climbing the stairs does work.
A body dropped from a height falls
towards the earth. It indicates that the
earth exerts a force of attraction (called
gravity) on the body. The gravitational
force does work in pulling the body
towards it.
An engine of a moving vehicle does work.
Work done in moving a body is equal to the product of force exerted on
the body and the distance moved by the body in the direction of force.
Work done in moving a body is equal to the product of force exerted
on the body and the displacement of the body.
or
Work done = Force x Displacement
W = F x s
F
s
Work is said to be done scientifically when a force applied on a body
produces motion in it.
1. Work is a scalar quantity.
2. Work can be positive or zero or negative.
3. Negative work does not mean it a vector quantity. Work done by friction
is negative as the displacement is opposite to the friction.
4. SI unit of work is ‘joule’ or ‘J’.
1 joule = 1 newton x 1 metre or 1 J = 1 Nm
1 joule is the amount of work done when 1 newton of force acting on a
body displaces it through 1 metre.
5. CGS unit of work is ‘erg’.
1 joule = 107
erg or 1 erg = 10-7
joule
Examples:
1. A man holding a book in his hands in a stationary position does not do
any work since the weight of the book acting on him does not produce
any displacement.
2. A man trying to push a rigid and stationary wall does not do work since
the force applied by him does not move the wall.
For work to be done, both
force and displacement
must be present in a body.
If a force applied on a body
does not produce
displacement in the body,
scientifically work is not
done.
W
F
Work done by an oblique force
F
θ
s
Work done = Force x Displacement
W = F cosθ x s = Fs cosθ
F cosθ
F sinθ
Force ‘F’ is resolved into two
rectangular components.
Fsinθ acting in the vertical
direction does not displace
the body in that direction.
Therefore, work done by the
component Fsinθ is zero.
Fcosθ acting in the horizontal direction displaces the body in that direction.
Therefore,
Positive, Zero and Negative Work done
1. The work done is positive if the force acts on a body in the direction of its
motion.
W = Fs cosθ
W = Fs cos0º
W = Fs (cos0º = 1)
2. The work done is zero if the force acts on a body in the direction
perpendicular to its motion.
W = Fs cosθ
W = Fs cos90º
W = 0 (cos90º = 0)
3. The work done is negative if the force acts on a body in the direction
opposite to its motion.
W = Fs cosθ
W = Fs cos180º
W = - Fs (cos180º = -1)
F s
F
s
90º
f
s
180º
Earth
Satellite’s Orbit
1. Work done by gravitational force on a satellite is zero because the force
acts perpendicular to the direction of motion of the satellite.
Examples:
F1
F2
Sun
Elliptical Orbit
2. Similarly, work done by the sun on the earth is zero.
3. When we throw a ball vertically
upwards, the work done by our force
is positive whereas the work done by
the gravitational force is negative
since it acts in the direction
opposite to the motion of the ball.
4. When the ball falls back, the work
done by the gravitational force is
positive since it acts along the
direction of motion of the ball.
ENERGY
Energy is the ability to do work.
or
The amount of energy possessed by a body is equal to the amount of
work it can do when its energy is released.
1. Energy is a scalar quantity.
2. SI unit of energy is ‘joule’ or ‘J’.
3. CGS unit of energy is ‘erg’.
1 joule = 107
erg or 1 erg = 10-7
joule
Different Forms of Energy
1. Mechanical energy ---> Potential energy and Kinetic energy
2. Heat energy 3. Light energy
4. Sound energy 5. Chemical energy
6. Electrical energy 7. Magnetic energy
8. Nuclear energy
POTENTIAL ENERGY
Potential energy is defined as the energy of a body due to its position or
change in shape.
Examples:
Work (driving the nail into the wooden block) is done by the hammer when
its energy is released.
The raised hammer
possesses potential
energy.
The water stored in overhead tank
possesses potential energy.
Water, when released, is made to flow
(work is done) by this potential energy.
F
When the spring is released the potential energy
stored in the spring does work on the ball and the
ball starts moving.
Potential energy is stored in a compressed spring.
When released, it does the work of firing the stone.
Potential energy is stored in a stretched catapult.
Suppose a body of mass ‘m’ is raised to a height ‘h’
above the surface of the earth against the
acceleration due to gravity ‘g’.
The work done in lifting the body against the force of
gravity is given by
m
h
g
Work done = Force x Displacement
W = mg x h
= mgh
This work done is stored in the body in the form of
potential energy.
Therefore, Potential energy PE = mgh
Potential energy is a scalar quantity.
But, it is to be taken with proper + or – sign
depending on whether work is done against the
force or by the force.
Formula for Potential Energy
Note:
1. Potential energy is path independent.
i.e. it depends on the net vertical displacement (height) of the body but
not on the path through which it is raised.
2. Potential energy in a round trip (i.e. over a closed path) is zero.
PE gained by the body = + mgh
PE lost by the body = - mgh
Total PE in round trip = + mgh – mgh = 0
Therefore, gravitational force is a conservative force.
m
h
g
m
h
g
m m
m
PE = mghPE = mgh PE = mgh – mgh = 0
KINETIC ENERGY
Kinetic energy is defined as the energy of a body due to its motion.
i.e. Every moving body possesses kinetic energy.
Examples:
1. A moving cricket ball possesses kinetic energy.
2. Every moving part in this engine possesses kinetic energy.
Suppose a body of mass ‘m’ moving with a velocity ‘u’ is acted upon by a
force ‘F’ for time ‘t’. Let ‘v’ be the final velocity and ‘s’ be the displacement
of the body at the end of the time.
The work done by the force in displacing the body is given by
Work done = Force x Displacement
W = F x s
= ma x s
= m (as) ……………..(1)
We know that v2
= u2
+ 2as
or as = ½(v2
–u2
)
Substituting for as in (1)
W = m x ½(v2
–u2
)
W = ½m(v2
–u2
)
This work done is possessed by the body in the form of kinetic energy.
Therefore, KE = ½m(v2
–u2
)
If the body is initially at rest and its final velocity is ‘v’, then KE = ½mv2
Formula for Kinetic Energy
Note:
1. Kinetic energy is
i) directly proportional to the mass of the body, and
ii) directly proportional to the square of velocity of the body.
If mass is doubled, KE is doubled and if the mass is halved, KE is also
halved.
If velocity is doubled, KE increases four times and if the mass is halved,
KE reduces to ¼ of its original value.
2. Kinetic energy is always positive.
Why?
Mass is always positive. Even if the velocity is negative, square of
velocity will be positive. Therefore, kinetic energy is always positive.
3. Kinetic energy is a scalar quantity.
4. The term ‘speed’ can be used in place of ‘velocity’ in the formula for
kinetic energy.
POWER
Power is defined as the rate of doing work or consuming energy.
or
Power is defined as the rate of conversion of one form of energy into
another form of energy.
P =
W
t
Power =
Time taken
Work done
or Power =
Time taken
Energy consumed
P =
E
t
Note:
1. Power is a scalar quantity.
2. SI unit of power is ‘watt’.
3. 1 watt = 1 joule per second
4. 1 watt is the power when 1 joule of work is done in 1 second or 1 watt is
the power when 1 joule of energy is consumed in 1 second.
5. 1 kilowatt = 1000 watt or 1 kW = 1000 W
6. 1 megawatt = 1,000,000 watt or 1 MW = 106
W
7. Another unit of power is called ‘horse power’ or ‘hp’
8. 1 hp = 746 W
9. The power of engines of cars and other vehicles is measured by unit
called ‘brake horse power’ which is equal to 1 horse power.
COMMERCIAL UNIT OF ENERGY
The commercial unit or trade unit of energy is kilowatt-hour (kWh).
1 kWh is the amount of electrical energy consumed when an electrical appliance
having a power rating of 1 kilowatt is used for 1 hour.
1 kilowatt-hour = 1000 watt x 3600 seconds = 3,600,000 Ws = 3.6 x 106
Joule
TRANSFORMATION OF ENERGY
Examples:
Device Energy in 1st
Form
Energy in 2nd
Form
Energy in 3rd
& 4th
Form
A body is thrown
upwards
Kinetic energy Potential
energy
A body is dropped
from a height above
the surface of the
earth
Potential energy Kinetic
energy
Sound, Light &
Heat (spark) if the
body is stone or
heavy metal falling
on the hard
surface
Filament bulb Electrical energy Heat and
Light energy
Electric iron Electrical energy Heat energy (Also Light energy
if an indicator is
fixed)
The change of one form of energy into another form of energy is known as
transformation of energy.
Device Energy in 1st
Form
Energy in 2nd
Form
Energy in 3rd
& 4th
Form
Thermoelectric power
station
Chemical energy
of coal
Heat energy Kinetic energy and
then Electric
energy
Hydroelectric power
station
Potential energy
of water stored
in high dam
Kinetic
energy
Electric energy
Nuclear power station Nuclear energy Heat energy Kinetic energy and
then Electric
energy
Windmill for electricity Kinetic energy of
wind
Electrical
energy
Microphone Sound energy Electrical
energy
Loudspeaker Electrical energy Sound
energy
Gas stove Chemical energy
of LPG
Heat & Light
LAW OF CONSERVATION OF ENERGY
Law of conservation of energy states that energy can neither be created nor
destroyed.
Whenever energy changes from one form into another, the total amount of
energy remains constant.
When a body is thrown upwards or dropped
from height, the total mechanical energy (i.e.
sum of potential and kinetic energy) at each
and every point on its path remains
constant.
Note that at the highest point of its motion,
the energy is fully in the form of potential
energy and at the lowest point, the energy is
fully in the form of kinetic energy. At all
other points, the energy is partially potential
and partially kinetic.
Potential energy is maximum and kinetic energy is zero at extreme positions.
Kinetic energy is maximum and potential energy is minimum at the mean
position.
Acknowledgemen
t
The objects copied from various sites:
1. Pictures of James Prescott Joule and James Watt
2. Earth
3. Sun
4. Satellite
5. Animated steam engine
6. Open Book
Reference Material
1. IX – Science & Technology by NCERT
2. Science for Ninth Class (Part-1: Physics) by S. Chand

Weitere ähnliche Inhalte

Was ist angesagt?

SYSTEM OF PARTICLES AND ROTATIONAL MOTION.pptx
SYSTEM OF PARTICLES AND ROTATIONAL MOTION.pptxSYSTEM OF PARTICLES AND ROTATIONAL MOTION.pptx
SYSTEM OF PARTICLES AND ROTATIONAL MOTION.pptxGiridhar D
 
Linear Momentum
Linear MomentumLinear Momentum
Linear MomentumChris Bush
 
Physics - Oscillations
Physics - OscillationsPhysics - Oscillations
Physics - OscillationsCatherine He
 
IGCSE PHYSICS: Equilibrium and Centre of Mass
IGCSE PHYSICS: Equilibrium and Centre of MassIGCSE PHYSICS: Equilibrium and Centre of Mass
IGCSE PHYSICS: Equilibrium and Centre of MassRozzie Jhana CamQue
 
Ppt on work energy and power class xi science
Ppt on work energy and power class xi sciencePpt on work energy and power class xi science
Ppt on work energy and power class xi scienceacceleration gravity
 
Class 11 Physics ch-2 Kinematics
Class 11 Physics ch-2 Kinematics Class 11 Physics ch-2 Kinematics
Class 11 Physics ch-2 Kinematics Lehar Sharma
 
WORK ENERGY AND POWER.ppt class 10th
WORK ENERGY AND POWER.ppt class 10th WORK ENERGY AND POWER.ppt class 10th
WORK ENERGY AND POWER.ppt class 10th sahithyamanmadi
 
Turning Effect of Forces
Turning Effect of ForcesTurning Effect of Forces
Turning Effect of Forcesmeenng
 
work and energy class 9 physics
 work and energy class 9 physics work and energy class 9 physics
work and energy class 9 physicsshashankgarg57
 
Simple harmonic motion and elasticity
Simple harmonic motion and elasticitySimple harmonic motion and elasticity
Simple harmonic motion and elasticityMenelisi Mthethwa
 
Balanced and unbalanced forces
Balanced and unbalanced forcesBalanced and unbalanced forces
Balanced and unbalanced forcesBro4u.com
 
Newton’s universal law of gravitation
Newton’s universal  law of gravitationNewton’s universal  law of gravitation
Newton’s universal law of gravitationVineetha Vijayan
 
force and laws of motion class 9
force and laws of motion class 9force and laws of motion class 9
force and laws of motion class 9shashankgarg57
 
Reflection of light (Physics)
Reflection of light (Physics)Reflection of light (Physics)
Reflection of light (Physics)Sheikh Amman
 
Chapter 2 Motion in a straight line
Chapter 2 Motion in a straight lineChapter 2 Motion in a straight line
Chapter 2 Motion in a straight lineAshwin Rathore
 

Was ist angesagt? (20)

SYSTEM OF PARTICLES AND ROTATIONAL MOTION.pptx
SYSTEM OF PARTICLES AND ROTATIONAL MOTION.pptxSYSTEM OF PARTICLES AND ROTATIONAL MOTION.pptx
SYSTEM OF PARTICLES AND ROTATIONAL MOTION.pptx
 
Moments
MomentsMoments
Moments
 
Linear Momentum
Linear MomentumLinear Momentum
Linear Momentum
 
Physics - Oscillations
Physics - OscillationsPhysics - Oscillations
Physics - Oscillations
 
Gravitation
GravitationGravitation
Gravitation
 
IGCSE PHYSICS: Equilibrium and Centre of Mass
IGCSE PHYSICS: Equilibrium and Centre of MassIGCSE PHYSICS: Equilibrium and Centre of Mass
IGCSE PHYSICS: Equilibrium and Centre of Mass
 
Chapter 6 Work And Energy
Chapter 6 Work And EnergyChapter 6 Work And Energy
Chapter 6 Work And Energy
 
Ppt on work energy and power class xi science
Ppt on work energy and power class xi sciencePpt on work energy and power class xi science
Ppt on work energy and power class xi science
 
Class 11 Physics ch-2 Kinematics
Class 11 Physics ch-2 Kinematics Class 11 Physics ch-2 Kinematics
Class 11 Physics ch-2 Kinematics
 
WORK ENERGY AND POWER.ppt class 10th
WORK ENERGY AND POWER.ppt class 10th WORK ENERGY AND POWER.ppt class 10th
WORK ENERGY AND POWER.ppt class 10th
 
Turning Effect of Forces
Turning Effect of ForcesTurning Effect of Forces
Turning Effect of Forces
 
work and energy class 9 physics
 work and energy class 9 physics work and energy class 9 physics
work and energy class 9 physics
 
Simple harmonic motion and elasticity
Simple harmonic motion and elasticitySimple harmonic motion and elasticity
Simple harmonic motion and elasticity
 
Balanced and unbalanced forces
Balanced and unbalanced forcesBalanced and unbalanced forces
Balanced and unbalanced forces
 
Newton’s universal law of gravitation
Newton’s universal  law of gravitationNewton’s universal  law of gravitation
Newton’s universal law of gravitation
 
Oscillation 2017
Oscillation 2017Oscillation 2017
Oscillation 2017
 
Work in physics
Work in physicsWork in physics
Work in physics
 
force and laws of motion class 9
force and laws of motion class 9force and laws of motion class 9
force and laws of motion class 9
 
Reflection of light (Physics)
Reflection of light (Physics)Reflection of light (Physics)
Reflection of light (Physics)
 
Chapter 2 Motion in a straight line
Chapter 2 Motion in a straight lineChapter 2 Motion in a straight line
Chapter 2 Motion in a straight line
 

Ähnlich wie Work and Energy Explained

workenergypowerbyakshat-151106163627-lva1-app6892.pdf
workenergypowerbyakshat-151106163627-lva1-app6892.pdfworkenergypowerbyakshat-151106163627-lva1-app6892.pdf
workenergypowerbyakshat-151106163627-lva1-app6892.pdfSABAKHAN478855
 
Work and energy physics 9 class
Work and energy physics 9 classWork and energy physics 9 class
Work and energy physics 9 classFC Barcelona
 
6-a-work-energy-power.ppt
6-a-work-energy-power.ppt6-a-work-energy-power.ppt
6-a-work-energy-power.pptRajbharti12
 
11workandenergy-150809064825-lva1-app6891.pdf
11workandenergy-150809064825-lva1-app6891.pdf11workandenergy-150809064825-lva1-app6891.pdf
11workandenergy-150809064825-lva1-app6891.pdfSABAKHAN478855
 
class 9 chapter 11 work and energy very helpful presentation
class 9 chapter 11 work and energy very helpful presentationclass 9 chapter 11 work and energy very helpful presentation
class 9 chapter 11 work and energy very helpful presentationStainich Shivansh
 
Work, Power & Energy for Class X CBSE and ICSE
Work, Power & Energy for Class X CBSE and ICSEWork, Power & Energy for Class X CBSE and ICSE
Work, Power & Energy for Class X CBSE and ICSEKeyurMaradiya
 
Work and Energy in Physics
Work and Energy in PhysicsWork and Energy in Physics
Work and Energy in PhysicsLarry Sultiz
 
Sc(phys) chapter 7 work, energy and power
Sc(phys) chapter 7  work, energy and powerSc(phys) chapter 7  work, energy and power
Sc(phys) chapter 7 work, energy and powerhmsoh
 

Ähnlich wie Work and Energy Explained (20)

workenergypowerbyakshat-151106163627-lva1-app6892.pdf
workenergypowerbyakshat-151106163627-lva1-app6892.pdfworkenergypowerbyakshat-151106163627-lva1-app6892.pdf
workenergypowerbyakshat-151106163627-lva1-app6892.pdf
 
Work, Energy and Power
Work, Energy and PowerWork, Energy and Power
Work, Energy and Power
 
Energy read
Energy   readEnergy   read
Energy read
 
Work and energy physics 9 class
Work and energy physics 9 classWork and energy physics 9 class
Work and energy physics 9 class
 
Work and energy
Work and energyWork and energy
Work and energy
 
Work & energy
Work & energyWork & energy
Work & energy
 
Work and energy
Work and energyWork and energy
Work and energy
 
6-a-work-energy-power.ppt
6-a-work-energy-power.ppt6-a-work-energy-power.ppt
6-a-work-energy-power.ppt
 
Third ppt
Third pptThird ppt
Third ppt
 
Work and Energy
Work and EnergyWork and Energy
Work and Energy
 
11workandenergy-150809064825-lva1-app6891.pdf
11workandenergy-150809064825-lva1-app6891.pdf11workandenergy-150809064825-lva1-app6891.pdf
11workandenergy-150809064825-lva1-app6891.pdf
 
work and energy
work and energywork and energy
work and energy
 
class 9 chapter 11 work and energy very helpful presentation
class 9 chapter 11 work and energy very helpful presentationclass 9 chapter 11 work and energy very helpful presentation
class 9 chapter 11 work and energy very helpful presentation
 
Work, Power & Energy for Class X CBSE and ICSE
Work, Power & Energy for Class X CBSE and ICSEWork, Power & Energy for Class X CBSE and ICSE
Work, Power & Energy for Class X CBSE and ICSE
 
work and energy
work and energywork and energy
work and energy
 
Work and Energy in Physics
Work and Energy in PhysicsWork and Energy in Physics
Work and Energy in Physics
 
Slide share tst inno
Slide share tst innoSlide share tst inno
Slide share tst inno
 
Sc(phys) chapter 7 work, energy and power
Sc(phys) chapter 7  work, energy and powerSc(phys) chapter 7  work, energy and power
Sc(phys) chapter 7 work, energy and power
 
Work , power and energy
Work , power and energyWork , power and energy
Work , power and energy
 
Energy
EnergyEnergy
Energy
 

Kürzlich hochgeladen

Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxnelietumpap1
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 

Kürzlich hochgeladen (20)

Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptx
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 

Work and Energy Explained

  • 1. WORK AND ENERGY James Prescott Joule (1818-1889) James Watt (1736- 1819)
  • 2. 1. Work 2. Work done by an oblique force 3. Positive, zero and negative work done 4. Energy 5. Potential energy 6. Kinetic energy 7. Power 8. Transformation of energy 9. Law of conservation of energy 10.Simple pendulum Created by C. Mani, Education Officer, KVS Silchar Region
  • 3. A horse pulling a cart does work. WORK
  • 4. A man climbing the stairs does work.
  • 5. A body dropped from a height falls towards the earth. It indicates that the earth exerts a force of attraction (called gravity) on the body. The gravitational force does work in pulling the body towards it. An engine of a moving vehicle does work.
  • 6. Work done in moving a body is equal to the product of force exerted on the body and the distance moved by the body in the direction of force. Work done in moving a body is equal to the product of force exerted on the body and the displacement of the body. or Work done = Force x Displacement W = F x s F s Work is said to be done scientifically when a force applied on a body produces motion in it.
  • 7. 1. Work is a scalar quantity. 2. Work can be positive or zero or negative. 3. Negative work does not mean it a vector quantity. Work done by friction is negative as the displacement is opposite to the friction. 4. SI unit of work is ‘joule’ or ‘J’. 1 joule = 1 newton x 1 metre or 1 J = 1 Nm 1 joule is the amount of work done when 1 newton of force acting on a body displaces it through 1 metre. 5. CGS unit of work is ‘erg’. 1 joule = 107 erg or 1 erg = 10-7 joule
  • 8. Examples: 1. A man holding a book in his hands in a stationary position does not do any work since the weight of the book acting on him does not produce any displacement. 2. A man trying to push a rigid and stationary wall does not do work since the force applied by him does not move the wall. For work to be done, both force and displacement must be present in a body. If a force applied on a body does not produce displacement in the body, scientifically work is not done. W F
  • 9. Work done by an oblique force F θ s Work done = Force x Displacement W = F cosθ x s = Fs cosθ F cosθ F sinθ Force ‘F’ is resolved into two rectangular components. Fsinθ acting in the vertical direction does not displace the body in that direction. Therefore, work done by the component Fsinθ is zero. Fcosθ acting in the horizontal direction displaces the body in that direction. Therefore,
  • 10. Positive, Zero and Negative Work done 1. The work done is positive if the force acts on a body in the direction of its motion. W = Fs cosθ W = Fs cos0º W = Fs (cos0º = 1) 2. The work done is zero if the force acts on a body in the direction perpendicular to its motion. W = Fs cosθ W = Fs cos90º W = 0 (cos90º = 0) 3. The work done is negative if the force acts on a body in the direction opposite to its motion. W = Fs cosθ W = Fs cos180º W = - Fs (cos180º = -1) F s F s 90º f s 180º
  • 11. Earth Satellite’s Orbit 1. Work done by gravitational force on a satellite is zero because the force acts perpendicular to the direction of motion of the satellite. Examples:
  • 12. F1 F2 Sun Elliptical Orbit 2. Similarly, work done by the sun on the earth is zero.
  • 13. 3. When we throw a ball vertically upwards, the work done by our force is positive whereas the work done by the gravitational force is negative since it acts in the direction opposite to the motion of the ball. 4. When the ball falls back, the work done by the gravitational force is positive since it acts along the direction of motion of the ball.
  • 14. ENERGY Energy is the ability to do work. or The amount of energy possessed by a body is equal to the amount of work it can do when its energy is released. 1. Energy is a scalar quantity. 2. SI unit of energy is ‘joule’ or ‘J’. 3. CGS unit of energy is ‘erg’. 1 joule = 107 erg or 1 erg = 10-7 joule Different Forms of Energy 1. Mechanical energy ---> Potential energy and Kinetic energy 2. Heat energy 3. Light energy 4. Sound energy 5. Chemical energy 6. Electrical energy 7. Magnetic energy 8. Nuclear energy
  • 15. POTENTIAL ENERGY Potential energy is defined as the energy of a body due to its position or change in shape. Examples: Work (driving the nail into the wooden block) is done by the hammer when its energy is released. The raised hammer possesses potential energy.
  • 16. The water stored in overhead tank possesses potential energy. Water, when released, is made to flow (work is done) by this potential energy.
  • 17. F When the spring is released the potential energy stored in the spring does work on the ball and the ball starts moving. Potential energy is stored in a compressed spring.
  • 18. When released, it does the work of firing the stone. Potential energy is stored in a stretched catapult.
  • 19. Suppose a body of mass ‘m’ is raised to a height ‘h’ above the surface of the earth against the acceleration due to gravity ‘g’. The work done in lifting the body against the force of gravity is given by m h g Work done = Force x Displacement W = mg x h = mgh This work done is stored in the body in the form of potential energy. Therefore, Potential energy PE = mgh Potential energy is a scalar quantity. But, it is to be taken with proper + or – sign depending on whether work is done against the force or by the force. Formula for Potential Energy
  • 20. Note: 1. Potential energy is path independent. i.e. it depends on the net vertical displacement (height) of the body but not on the path through which it is raised. 2. Potential energy in a round trip (i.e. over a closed path) is zero. PE gained by the body = + mgh PE lost by the body = - mgh Total PE in round trip = + mgh – mgh = 0 Therefore, gravitational force is a conservative force. m h g m h g m m m PE = mghPE = mgh PE = mgh – mgh = 0
  • 21. KINETIC ENERGY Kinetic energy is defined as the energy of a body due to its motion. i.e. Every moving body possesses kinetic energy. Examples: 1. A moving cricket ball possesses kinetic energy.
  • 22. 2. Every moving part in this engine possesses kinetic energy.
  • 23. Suppose a body of mass ‘m’ moving with a velocity ‘u’ is acted upon by a force ‘F’ for time ‘t’. Let ‘v’ be the final velocity and ‘s’ be the displacement of the body at the end of the time. The work done by the force in displacing the body is given by Work done = Force x Displacement W = F x s = ma x s = m (as) ……………..(1) We know that v2 = u2 + 2as or as = ½(v2 –u2 ) Substituting for as in (1) W = m x ½(v2 –u2 ) W = ½m(v2 –u2 ) This work done is possessed by the body in the form of kinetic energy. Therefore, KE = ½m(v2 –u2 ) If the body is initially at rest and its final velocity is ‘v’, then KE = ½mv2 Formula for Kinetic Energy
  • 24. Note: 1. Kinetic energy is i) directly proportional to the mass of the body, and ii) directly proportional to the square of velocity of the body. If mass is doubled, KE is doubled and if the mass is halved, KE is also halved. If velocity is doubled, KE increases four times and if the mass is halved, KE reduces to ¼ of its original value. 2. Kinetic energy is always positive. Why? Mass is always positive. Even if the velocity is negative, square of velocity will be positive. Therefore, kinetic energy is always positive. 3. Kinetic energy is a scalar quantity. 4. The term ‘speed’ can be used in place of ‘velocity’ in the formula for kinetic energy.
  • 25. POWER Power is defined as the rate of doing work or consuming energy. or Power is defined as the rate of conversion of one form of energy into another form of energy. P = W t Power = Time taken Work done or Power = Time taken Energy consumed P = E t
  • 26. Note: 1. Power is a scalar quantity. 2. SI unit of power is ‘watt’. 3. 1 watt = 1 joule per second 4. 1 watt is the power when 1 joule of work is done in 1 second or 1 watt is the power when 1 joule of energy is consumed in 1 second. 5. 1 kilowatt = 1000 watt or 1 kW = 1000 W 6. 1 megawatt = 1,000,000 watt or 1 MW = 106 W 7. Another unit of power is called ‘horse power’ or ‘hp’ 8. 1 hp = 746 W 9. The power of engines of cars and other vehicles is measured by unit called ‘brake horse power’ which is equal to 1 horse power. COMMERCIAL UNIT OF ENERGY The commercial unit or trade unit of energy is kilowatt-hour (kWh). 1 kWh is the amount of electrical energy consumed when an electrical appliance having a power rating of 1 kilowatt is used for 1 hour. 1 kilowatt-hour = 1000 watt x 3600 seconds = 3,600,000 Ws = 3.6 x 106 Joule
  • 27. TRANSFORMATION OF ENERGY Examples: Device Energy in 1st Form Energy in 2nd Form Energy in 3rd & 4th Form A body is thrown upwards Kinetic energy Potential energy A body is dropped from a height above the surface of the earth Potential energy Kinetic energy Sound, Light & Heat (spark) if the body is stone or heavy metal falling on the hard surface Filament bulb Electrical energy Heat and Light energy Electric iron Electrical energy Heat energy (Also Light energy if an indicator is fixed) The change of one form of energy into another form of energy is known as transformation of energy.
  • 28. Device Energy in 1st Form Energy in 2nd Form Energy in 3rd & 4th Form Thermoelectric power station Chemical energy of coal Heat energy Kinetic energy and then Electric energy Hydroelectric power station Potential energy of water stored in high dam Kinetic energy Electric energy Nuclear power station Nuclear energy Heat energy Kinetic energy and then Electric energy Windmill for electricity Kinetic energy of wind Electrical energy Microphone Sound energy Electrical energy Loudspeaker Electrical energy Sound energy Gas stove Chemical energy of LPG Heat & Light
  • 29. LAW OF CONSERVATION OF ENERGY Law of conservation of energy states that energy can neither be created nor destroyed. Whenever energy changes from one form into another, the total amount of energy remains constant. When a body is thrown upwards or dropped from height, the total mechanical energy (i.e. sum of potential and kinetic energy) at each and every point on its path remains constant. Note that at the highest point of its motion, the energy is fully in the form of potential energy and at the lowest point, the energy is fully in the form of kinetic energy. At all other points, the energy is partially potential and partially kinetic.
  • 30. Potential energy is maximum and kinetic energy is zero at extreme positions. Kinetic energy is maximum and potential energy is minimum at the mean position.
  • 31. Acknowledgemen t The objects copied from various sites: 1. Pictures of James Prescott Joule and James Watt 2. Earth 3. Sun 4. Satellite 5. Animated steam engine 6. Open Book Reference Material 1. IX – Science & Technology by NCERT 2. Science for Ninth Class (Part-1: Physics) by S. Chand