SlideShare ist ein Scribd-Unternehmen logo
1 von 93
Downloaden Sie, um offline zu lesen
Structural Analysis - II
Indeterminate structures;Indeterminate structures;
Force method of analysis
Dr. Rajesh K. N.
Assistant Professor in Civil EngineeringAssistant Professor in Civil Engineering
Govt. College of Engineering, Kannur
Dept. of CE, GCE Kannur Dr.RajeshKN
1
Module IModule I
Statically and kinematically indeterminate structures
• Degree of static indeterminacy, Degree of kinematic
indeterminacy, Force and displacement method of analysis
Force method of analysis
• Method of consistent deformation-Analysis of fixed and
i b
Force method of analysis
continuous beams
• Clapeyron’s theorem of three moments-Analysis of fixed and
continuous beams
• Principle of minimum strain energy-Castigliano’s second theorem-
Dept. of CE, GCE Kannur Dr.RajeshKN
2
p gy g
Analysis of beams, plane trusses and plane frames.
Types of Framed Structures
• a. Beams: may support bending moment, shear force and axial
force
yp
• b. Plane trusses: hinge joints; In addition to axial forces, a
member CAN have bending moments and shear forces if it has
Dept. of CE, GCE Kannur Dr.RajeshKN
3
loads directly acting on them, in addition to joint loads
• c. Space trusses: hinge joints; any couple acting on a member
should have moment vector perpendicular to the axis of the
member, since a truss member is incapable of supporting a
twisting momentg
• d. Plane frames: Joints are rigid; all forces in the plane of the
frame, all couples normal to the plane of the frame
Dept. of CE, GCE Kannur Dr.RajeshKN
4
• e Grids: all forces normal to the plane of the grid all couples• e. Grids: all forces normal to the plane of the grid, all couples
in the plane of the grid (includes bending and torsion)
• f. Space frames: most general framed structure; may support
bending moment, shear force, axial force and torsion
Dept. of CE, GCE Kannur Dr.RajeshKN
5
g , ,
Deformations in Framed Structures
, ,x y zT M MThree couples:, ,x y zN V VThree forces:
•Significant deformations in framed structures:•Significant deformations in framed structures:
Structure Significant deformationsStructure Significant deformations
Beams flexural
Plane trusses axial
Space trusses axial
Plane frames flexural and axial
Grids flexural and torsional
Space frames axial, flexural and torsional
Dept. of CE, GCE Kannur Dr.RajeshKN
6
Types of deformations in framed structures
b) axial c) shearing d) flexural e) torsional
Dept. of CE, GCE Kannur Dr.RajeshKN
7
b) axial c) shearing d) flexural e) torsional
Equilibrium
•Resultant of all actions (a force, a couple or both) must vanish for static
equilibrium
q
0F∑ 0F∑ ∑
•Resultant force vector must be zero; resultant moment vector must be
zero
0xF =∑ 0yF =∑ 0zF =∑
0xM =∑ 0yM =∑ 0zM =∑∑ y∑ ∑
•For 2 dimensional problems (forces are in one plane and
0F =∑ 0F =∑ 0M =∑
•For 2-dimensional problems (forces are in one plane and
couples have vectors normal to the plane),
0xF =∑ 0yF =∑ 0zM =∑
Dept. of CE, GCE Kannur Dr.RajeshKN
8
Compatibility
•Compatibility conditions: Conditions of continuity ofp y y
displacements throughout the structure
•Eg: at a rigid connection between two members, theg g ,
displacements (translations and rotations) of both members must
be the same
Dept. of CE, GCE Kannur Dr.RajeshKN
9
Indeterminate Structures
Force method and Displacement method
• Force method (Flexibility method)
• Actions are the primary unknowns
St ti i d t i f k ti th• Static indeterminacy: excess of unknown actions than
the available number of equations of static equilibrium
• Displacement method (Stiffness method)
• Displacements of the joints are the primary unknowns
• Kinematic indeterminacy: number of independent
Dept. of CE, GCE Kannur Dr.RajeshKN
Kinematic indeterminacy: number of independent
translations and rotations
Static indeterminacy
• Beam:
• Static indeterminacy = Reaction components number of eqns• Static indeterminacy = Reaction components - number of eqns
available 3E R= −
• Examples:• Examples:
• Single span beam with both ends hinged with inclined
l dloads
• Continuous beam
• Propped cantilever
• Fixed beam
Dept. of CE, GCE Kannur Dr.RajeshKN
Degree of StaticStructure Degree of Static
Indeterminacy
Structure
0
1
3
Dept. of CE, GCE Kannur Dr.RajeshKN
12
Degree of Static
I d t i
Structure
0
Indeterminacy
0
1
55
2
Dept. of CE, GCE Kannur Dr.RajeshKN
• Rigid frame (Plane):g ( )
• External indeterminacy = Reaction components - number of eqns
available 3E R= −available
• Internal indeterminacy = 3 × closed frames
3E R
3I a=• Internal indeterminacy = 3 × closed frames 3I a=
• Total indeterminacy = External indeterminacy + Internal indeterminacy
( )3 3T E I R a= + = − +
• Note: An internal hinge will provide an additional eqn
Dept. of CE, GCE Kannur Dr.RajeshKN
14
Example 1 Example 2p p
( )3 3T E I R a= + = − +( )3 3T E I R a= + = − + ( )
( )3 3 3 3 2 12= × − + × =( )2 2 3 3 0 1= × − + × =
Example 3
Example 4
( )
( )
3 3T E I R a= + = − + ( )
( )
3 3T E I R a= + = − +
Dept. of CE, GCE Kannur Dr.RajeshKN
( )3 2 3 3 3 12= × − + × = ( )4 3 3 3 4 21= × − + × =
Degree of Static
I d t i
Structure
Indeterminacy
3
63
Dept. of CE, GCE Kannur Dr.RajeshKN
16
Degree of Static
I d t i
Structure
Indeterminacy
2
1
Dept. of CE, GCE Kannur Dr.RajeshKN
• Rigid frame (Space):g ( p )
• External indeterminacy = Reaction components - number of eqns
available 6E R= −available
• Internal indeterminacy = 6 × closed frames
6E R
Example 1
( )
( )
6 6T E I R a= + = − +
( )4 6 6 6 1 24= × − + × =
If i l d f ti l t d t ti i d t i i tIf axial deformations are neglected, static indeterminacy is not
affected since the same number of actions still exist in the
structure
Dept. of CE, GCE Kannur Dr.RajeshKN
Plane truss (general):
External indeterminacy = Reaction components - number of eqns available
3E R= −
Minimum 3 members and 3 joints.
A dditi l j i t i 2 dditi l b
( )3 2 3 2 3m j j= + − = −Hence, number of members for stability,
Any additional joint requires 2 additional members.
( )2 3I m j= − −Hence, internal indeterminacy,
Total (Internal and external) indeterminacyTotal (Internal and external) indeterminacy
( )3 2 3
2
T E I R m j
m R j
= + = − + − −
= + − 2m R j+
• m: number of members
• R: number of reaction components
Dept. of CE, GCE Kannur Dr.RajeshKN
• j : number of joints
• Note: Internal hinge will provide additional eqn
E l 1Example 1
2 9 3 2 6 0T m R j= + − = + − × =
3 3 3 0E R= − = − =
0I T E= − =
Example 2
2 15 4 2 8 3T R
p
2 15 4 2 8 3T m R j= + − = + − × =
3 4 3 1E R= − = − =
2I T E= − =
Example 3 2 6 4 2 5 0T m R j= + − = + − × =
( )3 1 4 4 Hinge at0 AE R= − + = − =
Dept. of CE, GCE Kannur Dr.RajeshKN
( )
0I T E= − =
Example 4 2 7 3 2 5 0T m R j= + − = + − × =Example 4 2 7 3 2 5 0T m R j+ +
3 3 3 0E R= − = − =
0I T E 0I T E= − =
2 6 4 2 4 2T m R j= + − = + − × =
3 4 3 1E R= = =
Example 5
3 4 3 1E R= − = − =
1I T E= − =
2 11 3 2 6 2T m R j= + − = + − × =Example 6
3 3 3 0E R= − = − =
2I T E= − =
Dept. of CE, GCE Kannur Dr.RajeshKN
2I T E= =
• Wall or roof attached pin jointed plane truss (Exception to the• Wall or roof attached pin jointed plane truss (Exception to the
above general case):
• Internal indeterminacy 2I m j= −
• External indeterminacy = 0 (Since, once the member forces
are determined, reactions are determinable)
Example 1 Example 3Example 2Example 1 Example 3p
2
6 2 3 0
T I m j= = −
= − × =
2
5 2 1 3
T I m j= = −
= − × =
2
7 2 3 1
T I m j= = −
= × =
Dept. of CE, GCE Kannur Dr.RajeshKN
22
7 2 3 1= − × =
• Space Truss:
External indeterminacy = Reaction components - number
of eqns available
Minimum 6 members and 4 joints
6E R= −
( )6 3 4 3 6m j j= + − = −Hence, number of members for stability,
Minimum 6 members and 4 joints.
Any additional joint requires 3 additional members.
( )6 3 4 3 6m j j+Hence, number of members for stability,
( )3 6I m j= − −Hence, internal indeterminacy,
Total (Internal and external) indeterminacy
( )6 3 6T E I R m j= + = − + − −
3m R j= + −
Dept. of CE, GCE Kannur Dr.RajeshKN
Example
3T m R j= +Total (Internal and external) indeterminacy 3T m R j= + −Total (Internal and external) indeterminacy
12 9 3 6 3T∴ = + − × =
6 9 6 3E R= − = − =
Dept. of CE, GCE Kannur Dr.RajeshKN
Kinematic indeterminacyKinematic indeterminacy
• joints: where members meet, supports, free ends
• joints undergo translations or rotations
•in some cases joint displacements will be known, from the restraint
conditions
•the unknown joint displacements are the kinematically•the unknown joint displacements are the kinematically
indeterminate quantities
odegree of kinematic indeterminacy: number of degrees of
f dfreedom
Two types of DOF
• Nodal type DOF
J i DOF
Two types of DOF
Dept. of CE, GCE Kannur Dr.RajeshKN
25
• Joint type DOF
• degree of kinematic indeterminacy (degrees of freedom) is
d fi ddefined as:
• the number of independent translations and rotations in a
structure.
DOF = 1
DOF = 2
Dept. of CE, GCE Kannur Dr.RajeshKN
DOF 2
• in a truss the joint rotation is not regarded as a degree of• in a truss, the joint rotation is not regarded as a degree of
freedom. joint rotations do not have any physical significance as
they have no effects in the members of the truss
• in a frame, degrees of freedom due to axial deformations can be
neglected
Dept. of CE, GCE Kannur Dr.RajeshKN
Kinematic Degree
f F d
Structure
of Freedom
2
11
22
Dept. of CE, GCE Kannur Dr.RajeshKN
Kinematic Degree
f F d
Structure
of Freedom
4
If the effect of the cantilever portion is considered as a joint load atIf the effect of the cantilever portion is considered as a joint load at
the roller support on the far right, kinematic indeterminacy can be
taken as 2.
Dept. of CE, GCE Kannur Dr.RajeshKN
Kinematic Degree
f F d
Structure
of Freedom
2
3
Dept. of CE, GCE Kannur Dr.RajeshKN
Kinematic Degree
f F d
Structure
of Freedom
6
2
5
Dept. of CE, GCE Kannur Dr.RajeshKN
Method of Consistent Deformation
Illustration of the method
Problem
Released structure
Dept. of CE, GCE Kannur Dr.RajeshKN
32
Released structure
D fl ti f l d
4
5wL
Δ
Deflection of released
structure due to actual
loads
384
B
EI
Δ =
C Deflection of released
structure due to
redundant applied as app
load
Dept. of CE, GCE Kannur Dr.RajeshKN
33
3
BR L
Deflection due o
48
t B
B
R L
I
R
E
=
3
BR L
Δ
48
B
B
EI
Δ =
4 3
5 BwL R L
Compatibility condition (or equation of
superposition or equation of geometry)
5
384 48
BwL R L
EI EI
=
5
B
wL
R∴ =
8
B
Dept. of CE, GCE Kannur Dr.RajeshKN
34
•A general approach (applying consistent sign convention
for loads and displacements):
RA l it l d di t BR•Apply unit load corresponding to
3
48
B
L
EI
δ =Let the displacement due to unit load be
BR B BR δDisplacement due to is
Dept. of CE, GCE Kannur Dr.RajeshKN
35
44
5
384
B
wL
EI
Δ = − (Negative, since deflection is downward)
0B B BR δΔ + = (Compatibility condition)
B
B
B
R
δ
Δ
= −
5
8
B
wL
R∴ =
Bδ 8
Dept. of CE, GCE Kannur Dr.RajeshKN
36
Example 1: Propped cantilever
AM
PP
A
2l 2l2l 2l
A B
AV BV
Choose VB as the redundant
P
AM
2l 2l
AV
Dept. of CE, GCE Kannur Dr.RajeshKN
37
Released structure
Find deflection at B of the released structure
3
1 2 5PL l l l Pl− −⎛ ⎞
Δ = + =⎜ ⎟Pl− . . .
2 2 2 2 3 2 48
B
EI EI
Δ = + =⎜ ⎟
⎝ ⎠2
Pl
EI
M
diagram
EIEI
Apply unit load on released structure corresponding to VApply unit load on released structure corresponding to VB
and find deflection at B
3
3
B
l
EI
δ =
1
l
3EI
Dept. of CE, GCE Kannur Dr.RajeshKN
38
0R δΔ
3
5 3 5B Pl EI P
R
−Δ
= = =0B B BR δΔ + = 3
.
48 16
B
B
R
EI lδ
= = =
+ve sign indicates that VB is in the same direction of the unit load.
i.e., in the upward direction.
P
2l 2l
5 3
2 16 16
A
Pl Pl Pl
M = − =Other reactions
2l 2l
5
16
P11
16
P
16
5
32
Pl
Bending moment diagram
3Pl
Dept. of CE, GCE Kannur Dr.RajeshKN
39
16
−
Example 2: Continuous beam
10kN
A
2m 2m
A B 4m
C
10kN
A B C
V VVAV CVBV
Choose VB as the redundant
Dept. of CE, GCE Kannur Dr.RajeshKN
40
10kN
2 6
A
BΔ C
2m 6m
B
Released structure
2.5 kN7.5 kN
15
EI
10
EI
1 251 358 6+⎛ ⎞
A B C
EI
EI
4m
Conjugate beam of the released structure (to find ∆ )
( )
1 25
0.5 15 8 35
EI EI
=× × −
1 358 6
80.5 15 8
3EI EI
+⎛ ⎞ ÷ =× × ×⎜ ⎟
⎝ ⎠
Conjugate beam of the released structure (to find ∆B)
1 73.3334
25 4 0 5 10 4
⎛ ⎞∴Δ ⎜ ⎟ (numerically)
Dept. of CE, GCE Kannur Dr.RajeshKN
41
25 4 0.5 10 4
3
B
EI EI
⎛ ⎞∴Δ = =× − × × ×⎜ ⎟
⎝ ⎠
(numerically)
1kN1kN
4m
A B 4m
C
4m 4m
Released structure with unit load corresponding to V (to find δ )Released structure with unit load corresponding to VB (to find δB)
3 3
8 10.667
B
l
δ = = =
(numerically)
(di i i ∆ i d d )48 48
B
EI EI EI
δ
0R δΔ +
73.333
6 875B EI
R kN
−Δ −
(direction is same as ∆B i.e., downwards)
0B B BR δΔ + = . 6.875
10.667
B
B
B
R kNm
EIδ
= = = −
i i di t th t V i i th it di ti f th it l d-ve sign indicates that VB is in the opposite direction of the unit load.
i.e., in the upward direction.
Dept. of CE, GCE Kannur Dr.RajeshKN
42
10kN
Other reactions
10kN
A B CB C
4.063AV kN= 0.938CV kN=6.875 kNA
Bending moment diagramg g
A
B
C
8.122 kNm
A C
3.752 kNm−
Dept. of CE, GCE Kannur Dr.RajeshKN
Example 3A:
2m
3m
CD
30kN
B
EI is constant
2m
D
MD
A
2m
6m
C
D
HD
30kN
B
VD
2m
B
HA
Choose H as the redundant
Dept. of CE, GCE Kannur Dr.RajeshKN
44
A
Choose HA as the redundant
D CD
To find ∆HA and δHA (using unit load method)
10kN
2m3m
CD
2m6m
B
C
2m
A
B
2m
A
B
1kNE=2x105N/mm2
I= 2x108mm4
Portion Origin Limits M m Mm m2
AB A 0-2 0 x 0 x2AB A 0 2 0 x 0 x
BC A 2-4 -10(x-2) x -10x2+20x x2
CD A 0 3 20 4 80 16
( ) ( )
4 3
21 1
10 20 80
Mmdx
x x dx dxΔ = = + +∫ ∫ ∫
CD A 0-3 -20 4 -80 16
( ) ( )
2 0
10 20 80HA x x dx dx
EI EI EI
Δ = = − + + −∫ ∫ ∫
[ ]
43
321 1x⎡ ⎤ 306 67−
Dept. of CE, GCE Kannur Dr.RajeshKN
[ ]
32
0
2
1 1
10 10 80
3
HA
x
x x
EI EI
⎡ ⎤
Δ = − + + −⎢ ⎥
⎣ ⎦
306.67
EI
−
=
4 32 2 4 33
69 3316⎡ ⎤ ⎡ ⎤
4 32 2
0 0
16
HA
m dx x
dx dx
EI EI EI
δ = = +∫ ∫ ∫
33
00
69.3316
3
xx
EIEIEI
⎡ ⎤ ⎡ ⎤= + =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
0HA A HAH δΔ + =
306.67
4.4.
69 3
3
3
2B
A
EI
H
EI
kN
δ
−Δ
= = =
HA A HA 69.33B EIδ
Dept. of CE, GCE Kannur Dr.RajeshKN
46
Example 3B: 2I
CD
2m
6m
CD
30kN
2m
I
B
M
2m
A
2
6m
2I
C
D
HD
MD
A
30kN
2m
6m
IVD
Choose H as the redundant
2m
B
H
Dept. of CE, GCE Kannur Dr.RajeshKN
Choose HA as the redundant
A
HA
2I
D
2I
CD
To find ∆HA and δHA (using unit load method)
30kN
2m6m
I
CD
2m6m
I
B
C
2m
A
B
2m
A
B
1kNE=2x105N/mm2
I= 2x108mm4
Portion Origin Limits M m Mm m2
AB A 0-2 0 x 0 x2
BC A 2-4 -30(x-2) x -30x2+60x x2
CD A 0-6 -60 4 -240 16
( ) ( )
4 6
21 1
30 60 240
Mmdx
x x dx dxΔ = = + +∫ ∫ ∫
CD A 0 6 60 4 240 16
( ) ( )
2 0
30 60 240
2
HA x x dx dx
EI EI EI
Δ = = − + + −∫ ∫ ∫
[ ]
4 63 21 1
10 30 240⎡ ⎤Δ 920−
Dept. of CE, GCE Kannur Dr.RajeshKN
[ ]
63 2
02
1 1
10 30 240
2
HA x x x
EI EI
⎡ ⎤Δ = − + + −⎣ ⎦
920
EI
−
=
4 62 2
16d
4 63
69 3338x⎡ ⎤ ⎡ ⎤2 2
0 0
16
2
HA
m dx x
dx dx
EI EI EI
δ = = +∫ ∫ ∫
3
00
69.3338
3
xx
EIEIEI
⎡ ⎤ ⎡ ⎤= + =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
0H δΔ + =
920
. 13.269
69 333
HA
A
EI
H kN
EIδ
−Δ
= = =0HA A HAH δΔ + = 69.333
A
HA EIδ
Dept. of CE, GCE Kannur Dr.RajeshKN
Example 4: Two or more redundants
60kN
A B C
80kN 50kN
D
3m 3m
A B C
3m 3m 3m 3m
60kN 80kN 50kN
3m 3m
A B C D
3m 3m 3m 3m
Choose VB and Vc as the redundant
Dept. of CE, GCE Kannur Dr.RajeshKN
50
60kN 80kN 50kN
A B C D
BΔ CΔB C
1kN
A B D
δ
C
BBδ CBδ
1kN
A B D
δ
C
BCδ
CCδ
Dept. of CE, GCE Kannur Dr.RajeshKN
0B B BB C BCV Vδ δΔ + + = 0C B CB C CCV Vδ δΔ + + =
60kN
A B C
80kN 50kN
DA B
3m 3m 3m 3m 3m 3m
A B C D
150kNm
15
120kNm
60kNm
3m 15m
525kN825kN
240kNm 240kNm
A B C D
360kNm
9 9
240kNm 240kNm
9m 9m
1620kN1620kN
A B C D
125kNm
100kNm
50kNm
Dept. of CE, GCE Kannur Dr.RajeshKN
15m 3m
687.5kN437.5kN
3420 8280 2325 14025BEIΔ = + + = 2790 8280 2850 13920CEIΔ = + + =
D2kNm
4kNm
A
B C
D
12m
6m
16kN20kN
2kNm
16kN20kN
96BBEIδ = 84CBEIδ =
A D2kNm
4kNm
A
B C
D
12m
6m
20kN16kN
2kNm
Dept. of CE, GCE Kannur Dr.RajeshKN
84BCEIδ =
96CCEIδ =
0V Vδ δΔ + + = 14025 96 84 0B CV V⇒ + + =0B B BB C BCV Vδ δΔ + + =
0C B CB C CCV Vδ δΔ + + =
14025 96 84 0B CV V⇒ + +
13920 84 96 0B CV V⇒ + + =C B CB C CC B C
82BV kN= − 73.25CV kN= −
( )82BV kN= ↑ ( )73.25CV kN= ↑
( )19.25AV kN= ↑ ( )15.5DV kN= ↑
( )B ( )C
Dept. of CE, GCE Kannur Dr.RajeshKN
Clapeyron’s theorem of three moments
1. Uniform loading
w kN m w kN m1w kN m
1 1l I
A B C
2w kN m
2 2l I
M
1 1,l I 2 2,l I
1
AM
EI
B C
1
BM
EI
2
BM
EI
2
CM
EI
A B C
M/EI diagram for joint moments
+
B C
2
1 1
18
w l
EI
2
2 2
28
w l
EI
Dept. of CE, GCE Kannur Dr.RajeshKN
A B C
M/EI diagram for simple beam moments
To find slopes at B using Conjugate Beam Method:
2
1 1 2 2M l l M l l w l l⎡ ⎤⎡ ⎤
From span AB:
1 1 1 1 1 1 1
11 1
1 1 1
1 1 2 2
. . . . . . .
2 3 2 3 3 8 2
A B
B
M l l M l l w l l
lV l
EI EI EI
⎡ ⎤⎡ ⎤
+= + ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦
3
1 1 1 1
1
1 1 16 3 24
A B
B BA
M l M l w l
V
EI EI EI
θ⇒ = + + =
From span BC:
2
2 2 2 2 2 2 2
22 2
2 2 2
1 1 2 2
. . . . . . .
2 3 2 3 3 8 2
B C
B
M l l M l l w l l
lV l
EI EI EI
⎡ ⎤⎡ ⎤
+= + ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦
3
2 2 2 2
2
3 6 24
B C
B BC
M l M l w l
V
EI EI EI
θ⇒ = + + =
Dept. of CE, GCE Kannur Dr.RajeshKN
2 2 23 6 24EI EI EI
BAθ
A B C
BA
BCθ
Deflected shape
0BA BC BA BCθ θ θ θ+ = ⇒ = −
33
2 2 2 21 1 1 1
3 6 246 3 24
B CA B M l M l w lM l M l w l
EI EI EIEI EI EI
⎛ ⎞
+ +⇒ + + = −⎜ ⎟
⎝ ⎠2 2 21 1 1 3 6 246 3 24 EI EI EIEI EI EI ⎝ ⎠
3 3
1 2l lM l M l w l w l⎛ ⎞1 21 2 1 1 2 2
1 21 2 1 2
2
4 4
A C
B
l lM l M l w l w l
M
EI EIEI EI EI EI
⎛ ⎞
+⇒ + + = − −⎜ ⎟
⎝ ⎠
Dept. of CE, GCE Kannur Dr.RajeshKN
2. General loadingg
1a
2a
A
B
C
x x1x 2x
1 1 1 1
1 1 1 16 3
A B
BA
M l M l a x
EI EI EI l
θ = + +
2 2 2 2
2 2 2 23 6
B C
BC
M l M l a x
EI EI EI l
θ = + +
2 2 2 2
1 21 2 1 1 2 26 6
2A C
l lM l M l a x a x
M
⎛ ⎞
+⇒ + + = − −⎜ ⎟BA BCθ θ= −
Dept. of CE, GCE Kannur Dr.RajeshKN
1 21 2 1 1 2 2
2 BM
EI EIEI EI EI l EI l
+⇒ + + = − −⎜ ⎟
⎝ ⎠
BA BCθ θ
2. General loading with support settlement
1a
2a ;A B
B C
δ δ
δ δ
>
<
A
B
C
x x1x 2x
M l M l δ δ1 1 1 1
1 1 1 1 16 3
A B A B
BA
M l M l a x
EI EI EI l l
δ δ
θ
−
= + + +
2 2 2 2
2 2 2 2 23 6
B C C B
BC
M l M l a x
EI EI EI l l
δ δ
θ
−
= + + +
BA BCθ θ= −
( ) ( )1 21 2 1 1 2 2
1 21 2 1 1 2 2 1 2
6 66 6
2 A B C BA C
B
l lM l M l a x a x
M
EI EIEI EI EI l EI l l l
δ δ δ δ− −⎛ ⎞
+⇒ + + = − − − −⎜ ⎟
⎝ ⎠
Dept. of CE, GCE Kannur Dr.RajeshKN
1 21 2 1 1 2 2 1 2l l l l⎝ ⎠
Example 1:
20kN m 20kN m
4m
A B C
4m
EI is constant
3 3
l lM l M l l l⎛ ⎞
1 2l l=
3 3
1 21 2 1 1 2 2
1 21 2 1 2
2
4 4
A C
B
l lM l M l w l w l
M
EI EIEI EI EI EI
⎛ ⎞
++ + = − −⎜ ⎟
⎝ ⎠
1 2w w=2
2
4
4
B
wl
M = −
0A CM M= = 0A CM M
2
8
B
wl
M∴ = −
2
20 4
40
8
kNm
×
= − = −
Dept. of CE, GCE Kannur Dr.RajeshKN
8 8
Example 2:
W
l
A
B Cl l D
EI is constant
EI EI
Span ABC
0M =
EI is constant
3 3
l lM l M l l l⎛ ⎞
1 2l l= 1 2EI EI= 0AM =
3 3
1 21 2 1 1 2 2
1 21 2 1 2
2
4 4
A C
B
l lM l M l w l w l
M
EI EIEI EI EI EI
⎛ ⎞
++ + = − −⎜ ⎟
⎝ ⎠
4 0A B CM M M⇒ + + =
4 0M M⇒ + = ( )1
Dept. of CE, GCE Kannur Dr.RajeshKN
4 0B CM M⇒ + = ( )1
Wl
1 Wl
a l=
l
A
B Cl l D
Span BCD
4
Wl
EI
2
2
. .
2 4
2
a l
l
x
=
=
0M
( ) 1 1 2 26 6
4
a x a x
l M M M+ +
2
20DM =
( )2 1
4 6
lWl
l M M l
⎛ ⎞
⎜ ⎟
( ) 1 1 2 2
4B C Dl M M M
l l
+ + = − −
( )2
4 6 . .
22 4
B Cl M M l
⎛ ⎞+ = − ⎜ ⎟
⎝ ⎠
3
4
Wl
M M ( )24
8
B CM M+ = − ( )2
Wl− Wl
M
Dept. of CE, GCE Kannur Dr.RajeshKN
10
C
Wl
M =
40
BM =( ) ( )&1 2
40
Wl
5
Wl
A
B C
40
10
Wl−
D
5
10
Bending moment diagram
Dept. of CE, GCE Kannur Dr.RajeshKN
63
Example 3: 20kN m 20kN mp
6mA B C
8mEI is constant
20kN m 20kN m
6mA B C
8mImaginary
span A’Aspan A A
Span A’AB
1
2
0
20
w
w kN m
=
= ' 0AM = 1 2EI EI=
Span A AB
3 3
1 2' 1 2 1 1 2 2
2A B
A
l lM l M l w l w l
M
EI EI
⎛ ⎞
++ + = − −⎜ ⎟
⎝ ⎠
Dept. of CE, GCE Kannur Dr.RajeshKN
1 21 2 1 24 4
A
EI EIEI EI EI EI⎜ ⎟
⎝ ⎠
3
20 6×20 6
2 6 6
4
A BM M
×
× + × = −
2 180M M+ ( )12 180A BM M+ = −
Span ABC
( )1
1 2 20w w kN m= =
3 3
1 21 2 1 1 2 2
1 21 2 1 2
2
4 4
A C
B
l lM l M l w l w l
M
EI EIEI EI EI EI
⎛ ⎞
++ + = − −⎜ ⎟
⎝ ⎠
0CM =
1 21 2 1 2⎝ ⎠
3 3
20 6 20 8
6 2 14
4 4
A BM M
× ×
+ × = − −
4 4
3 14 1820A BM M+ = − ( )2
( ) ( )&1 2 28AM kNm= − 124BM kNm= −
Dept. of CE, GCE Kannur Dr.RajeshKN
Example 4 (Support settlement):
2
26320EI kN 87δ δEI is constant
20kN m 20kN m20kN m
2
26320EI kNm= 87B C mmδ δ= =EI is constant
6mA
D
C 3m
B3m
EI EI EI= =0M
Span ABC
1 2EI EI EI= =0AM =
( ) ( )3 3
1 21 2 1 1 2 2
66 C BA BA C
l lM l M l w l w l δ δδ δ −−⎛ ⎞ ( ) ( )1 21 2 1 1 2 2
1 21 2 1 2 1 2
66
2
4 4
C BA BA C
B
l lM l M l w l w l
M
EI EIEI EI EI EI l l
δ δδ δ⎛ ⎞
++ + = − − − −⎜ ⎟
⎝ ⎠
( )
( )3 3
1 20 3 20 6 6 6 00.087
18 6
26320 4 26320 4 26320 3 6
B CM M
× × ×−
+ = − − − −
× ×
Dept. of CE, GCE Kannur Dr.RajeshKN
3 560.78B CM M+ = ( )1
Span BCD
0DM =
( ) ( )3 3
1 21 2 1 1 2 2
6 6
2
4 4
B C D CB D
C
l lM l M l w l w l
M
EI EIEI EI EI EI l l
δ δ δ δ− −⎛ ⎞
++ + = − − − −⎜ ⎟
⎝ ⎠
D
1 21 2 1 2 1 24 4EI EIEI EI EI EI l l⎜ ⎟
⎝ ⎠
( )
( )3 3
1 20 6 20 3 6 0 6 0.087
6 18M M
× × × −
+( )6 18
26320 4 26320 4 26320 6 3
B CM M+ = − − − −
× ×
3 560.78B CM M+ = ( )2
140.195BM kNm= 140.195CM kNm=
Alternatively, from symmetry, B CM M=
Dept. of CE, GCE Kannur Dr.RajeshKN
67
3 560.78B CM M+ = 4 560.78 140.195B BM M kNm⇒ = ⇒ =
Examples 5 (Fixed Beam)xa p es 5 ( xed ea )
P
A
B
C
l
A
P
A
B
C
A′ B′
l
A
A′ B
Imaginary
span A’A
Imaginary
span BB’span A A span BB
1 21 2 1 1 2 26 6
2A C
l lM l M l a x a x
M
⎛ ⎞
++ +⎜ ⎟
Dept. of CE, GCE Kannur Dr.RajeshKN
68
1 21 2 1 1 2 2
1 21 2 1 1 2 2
2A C
BM
EI EIEI EI EI l EI l
++ + = − −⎜ ⎟
⎝ ⎠
Span A’AB
1 l
' 0AM =
4
Pl
EI
2
1
. .
2 4
Pl
a l
l
=
1 2EI EI=
4EI
2
2
l
x =A B
6Pl6
2
16
A B
Pl
M M⇒ + = −
S ABB’
( )1
' 0BM = 1 2EI EI=
Span ABB’
2
1 1,
8 2
Pl l
a x= =
8 2
6
2
16
A B
Pl
M M⇒ + = − ( )2
16
( ) ( )&1 2 A B
Pl
M M= = −
Dept. of CE, GCE Kannur Dr.RajeshKN
69
( ) ( )&1 2
8
A BM M
Examples 6 (Fixed Beam)
w
xa p es 6 ( xed ea )
lA
B
CC
Dept. of CE, GCE Kannur Dr.RajeshKN
70
ENERGY PRINCIPLES BASED ON DISPLACEMENT FIELDENERGY PRINCIPLES BASED ON DISPLACEMENT FIELD
Principle of Minimum
Total Potential
Castigliano’s
Theorem (Part I)Total Potential
Energy (PMTPE)
Theorem (Part I)
alternative forms ofalternative forms of
Principle of Stationary TotalPrinciple of Stationary Total
Potential Energy (PSTPE)
Dept. of CE, GCE Kannur Dr.RajeshKN
71
Principle of Stationary Total Potential Energy (PSTPE)p y gy ( )
When the displacement field in a loaded elastic structure is given a
ll d bit t b ti i t i i tibilit dsmall and arbitrary perturbation, maintaining compatibility and
without disturbing the associated force field, then the first variation
of the total potential energy is equal to zero, if the forces are in a
state of static equilibrium.
Dept. of CE, GCE Kannur Dr.RajeshKN
72
Alternative form of Principle of Stationary Total Potential EnergyAlternative form of Principle of Stationary Total Potential Energy
(PSTPE)
The total potential energy π in a loaded elastic structure expressed as a
function of n independent displacements D1, D2, … Dn in a
compatible displacement field must be rendered stationary with thecompatible displacement field must be rendered stationary, with the
partial derivative of π with respect to every Dj being equal to zero, if
the associated force field is to be in a state of static equilibrium.
Dept. of CE, GCE Kannur Dr.RajeshKN
Principle of Minimum Total Potential Energy (PMTPE)Principle of Minimum Total Potential Energy (PMTPE)
When the displacement field in a loaded linear elastic structure is given
a small and arbitrary perturbation, maintaining compatibility and
without disturbing the associated force field, then the first variation
of the total potential energy is equal to zero, if the forces are in ap gy q ,
state of static equilibrium.
Castigliano’s Theorem (Part I)
If the strain energy, U, in an elastic structure, subject to a system of
external forces in static equilibrium, can be expressed as a functionq , p
of n independent displacements D1, D2, … Dn satisfying
compatibility, then the partial derivative of U with respect to every
Dj will be equal to the value of the conjugate force, Fj.
Dept. of CE, GCE Kannur Dr.RajeshKN
74
Dj will be equal to the value of the conjugate force, Fj.
ENERGY PRINCIPLES BASED ON FORCE FIELDENERGY PRINCIPLES BASED ON FORCE FIELD
Principle of Minimum Total
Complementary Potential
Castigliano’s
Theorem (Part II)
Complementary Potential
Energy (PMTCPE)
Theorem of Least
Work
alternative forms of
Principle of StationaryPrinciple of Stationary
Complementary Total Potential
Energy (PSCTPE)
Dept. of CE, GCE Kannur Dr.RajeshKN
Principle of Stationary Total Complementary Potential EnergyPrinciple of Stationary Total Complementary Potential Energy
(PSTCPE)
When the force field in a loaded elastic structure is given a small and
arbitrary perturbation, maintaining equilibrium compatibility and
without disturbing the associated displacement field, then the firstg p ,
variation of the total complementary potential energy is equal to
zero, if the displacements satisfy compatibility.
Dept. of CE, GCE Kannur Dr.RajeshKN
76
Alternative form of Principle of Stationary Total Complementary
Potential Energy (PSTCPE)Potential Energy (PSTCPE)
The total complementary potential energy π* in a loaded elasticp y p gy
structure expressed as a function of n independent forces F1, F2, …
Fn in a statically admissible force field must be rendered stationary,
with the partial derivative of π* with respect to every Fj being equalw t t e pa t a de vat ve o w t espect to eve y j be g equa
to zero, if the associated displacement field is to satisfy
compatibility.
Dept. of CE, GCE Kannur Dr.RajeshKN
Principle of Minimum Total Complementary Potential EnergyPrinciple of Minimum Total Complementary Potential Energy
(PMTCPE)
When the force field in a loaded linear elastic structure is given a small
and arbitrary perturbation, maintaining equilibrium compatibility
and without disturbing the associated displacement field, then theg p ,
first variation of the total complementary potential energy is equal
to zero, if the displacement satisfy compatibility.
Dept. of CE, GCE Kannur Dr.RajeshKN
78
Castigliano’s Theorem (Part II)Castigliano s Theorem (Part II)
If the complementary strain energy, U*, in an elastic structure, with a
kinematically admissible displacement field, is expressed as a
function of n independent external forces F1, F2, … Fn satisfying
equilibrium, then the partial derivative of U* with respect to every Fjq , p p y j
will be equal to the value of the conjugate displacement, Dj.
If the behaviour is linear elastic, U* can be replaced by U.
Thus, Castigliano’s Theorem (Part II) can otherwise be stated as:
“If U is the total strain energy in a linear elastic structure due to
application of external forces F1 F2 F3 F at points A1 A2 A3 Aapplication of external forces F1, F2, F3, … Fn at points A1, A2, A3,…, An
respectively in the directions AX1, AX2, AX3,…, AXn then the
displacements at points A1, A2, A3,…, An respectively in the directions
AX AX AX AX ∂U/∂F ∂U/∂F ∂U/∂F ∂U/∂F
Dept. of CE, GCE Kannur Dr.RajeshKN
79
AX1, AX2, AX3,…, AXn are ∂U/∂F1, ∂U/∂F2, ∂U/∂F3,…, ∂U/∂Fn
respectively.”
Proof for Castigliano’s theorem (Part II)Proof for Castigliano s theorem (Part II)
Let x1, x2, x3,… xn be deflections at points A1, A2, A3,… An
due to F F F Fdue to F1, F2, F3,… Fn
Total strain energy, 1 1 2 2 3 3
1 1 1 1
2 2 2 2
n nU F x F x F x F x= + + + +… (1)
Let the load F1 alone be increased by 1Fδ
Let 1 2 3, , , nx x x xδ δ δ δ… be the additional deflections at points A1, A2, A3,… An
I i t iIncrease in strain energy,
1 1 1 2 2 3 3
1
2
n nU F F x F x F x F xδ δ δ δ δ δ⎛ ⎞
= + + + + +⎜ ⎟
⎝ ⎠
…
2⎝ ⎠
1 1 2 2 3 3 n nU F x F x F x F xδ δ δ δ δ= + + + +… , neglecting small quantities.
Dept. of CE, GCE Kannur Dr.RajeshKN
80
(2)
( )1 1 2 3, , , nF F F F Fδ+ …Let are acting on the original structure
( )( ) ( ) ( ) ( )
1 1 1 1
U U F F F F Fδ δ δ δ δ δ
Total strain energy,
( )( ) ( ) ( ) ( )1 1 1 1 2 2 2 3 3 3
1 1 1 1
2 2 2 2
n n nU+ U F F x x F x x F x x F x xδ δ δ δ δ δ= + + + + + + + + +…
(3)
1 1 1 1
U F F F F+ + + +(1) 1 1 2 2 3 3
2 2 2 2
n nU F x F x F x F x= + + + +…(1)
1 1 1 1
U F F F Fδ δ δ δ δ⎛ ⎞
⎜ ⎟(3) (1) 1 1 1 1 2 2
2 2 2 2
n nU x F F x F x F xδ δ δ δ δ⎛ ⎞
= + + + +⎜ ⎟
⎝ ⎠
…(3)-(1)
( )2 U x F F x F x F xδ δ δ δ δ= + + + + (4)
1 1 2 2 3 3 n nU F x F x F x F xδ δ δ δ δ= + + + +…(2)
( )1 1 1 1 2 22 n nU x F F x F x F xδ δ δ δ δ= + + + +… (4)
Dept. of CE, GCE Kannur Dr.RajeshKN
81
1 1U x Fδ δ=(4)-(2)
Uδ U∂
1
1
U
x
F
δ
δ
= 1 1
1
0,
U
When F x
F
δ
∂
→ =
∂
2 2
2 3
, , n
n
U U U
Similarly, x x x
F F F
∂ ∂ ∂
= = =
∂ ∂ ∂
…
For example, in the case of bending,
2
2
M
U dx
EI
⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∫⎝ ⎠
U M M
dx
F EI F
δ
∂ ∂⎛ ⎞
∴ = = ⎜ ⎟
∂ ∂⎝ ⎠
∫F EI F∂ ∂⎝ ⎠
Dept. of CE, GCE Kannur Dr.RajeshKN
82
Example 1: Using Castigliano’s Theorem, analyse the continuous
w kN/m
p g g , y
beam shown in figure.
A
B
C
/
LLL
w kN/m
A
B
C
/
LL
RB
L
2
BR
wL −
2
BR
wL −
Let RB be the redundant.
Dept. of CE, GCE Kannur Dr.RajeshKN
83
B
2
wxR⎛ ⎞
22
B
x
wxR
M xwL
⎛ ⎞= −−⎜ ⎟
⎝ ⎠
From A to B,
0Bδ = 0
B B
U M M
dx
R EI R
∂ ∂⎛ ⎞
⇒ = =⎜ ⎟
∂ ∂⎝ ⎠
∫
2
M x
R
∂ −
=
∂ F th ti AC2BR∂
2
2M M∂ ⎛ ⎞⎛ ⎞
For the entire span AC
2
2
0 0
22 2
B
B
M M xR x wx
dx dxwLx
EI R EI
∂ −⎛ ⎞⎛ ⎞
∴ = ⇒ =− −⎜ ⎟ ⎜ ⎟
∂⎝ ⎠ ⎝ ⎠
∫ ∫
5
B
wL
R⇒ =
Dept. of CE, GCE Kannur Dr.RajeshKN
4
BR⇒
Example 2: Using Castigliano’s Theorem analyse the frame shownExample 2: Using Castigliano s Theorem, analyse the frame shown
in figure.
3 kN/3 kN/m
2mB
C
3 kN/m
2mB
C
2m
1m
D
2m
1m
D
A
D
A
VD
HD
VD
V
HA
VA
Let HA be the redundant.
Dept. of CE, GCE Kannur Dr.RajeshKN
Let HA be the redundant.
3 kN/m
2m
1
B
C
From A to B,
x AM H x= −
2m
1m
D
AH A
M
x
H
∂
= −
∂
A
3 AH
V = −
AH
From B to C,
2
3⎛ ⎞HA
3
2
DV
3 AH
V +
2
3
23
22
A
x A
xH
M x H⎛ ⎞= − −+⎜ ⎟
⎝ ⎠
3
2
A
AV = +
2
2A
M x
H
∂
= −
∂
F D t C M H x=
M
x
∂
Dept. of CE, GCE Kannur Dr.RajeshKN
From D to C, x AM H x= −
A
x
H
= −
∂
0
M M
dx
∂⎛ ⎞
∴ ⎜ ⎟∫ 0
A
dx
EI H
∴ =⎜ ⎟
∂⎝ ⎠
∫
2 2 1
⎧ ⎫⎛ ⎞⎛ ⎞
( )( ) ( )( )
2 2 12
0 0 0
1 3
023 2
22 2
A
A AA
xH x x
dx dx dxH x H xx Hx x
EI
⎧ ⎫⎛ ⎞⎛ ⎞⇒ + + =− −−+ − −− −⎨ ⎬⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎩ ⎭
∫ ∫ ∫
2 2 13 3 3 2 4 2 3
2 33
03 4A A A A A
A
H x x H x H x x H x H x
x H x x
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ + =+ − − − − + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦0 0 03 2 12 2 16 2 3
A⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
8 8 8 4A AA A
H HH H⎡ ⎤8 8 8 4
03 12 2 8 8
3 32 12 2
A AA A
A A
H HH H
H H
⎡ ⎤+ + =+ − − − − + +⎢ ⎥⎣ ⎦
3 3.19
2
A
A
H
V kN= + =0.39AH kN=
H
Dept. of CE, GCE Kannur Dr.RajeshKN
3 2.8
2
A
D
H
V kN= − =
Example 4: Using Castigliano’s Theorem, analyse the truss shownp g g , y
in figure. AE is constant.
CD CD
10kN
CD
T10kN
CD
3m 3m
T
4m
A B
4m
A B
T
m
. . 0
P L
P
T AE
∂
=
∂
∑ 6.25T kN=
Dept. of CE, GCE Kannur Dr.RajeshKN
Example 4: Do the above problem using the method of consistentExample 4: Do the above problem using the method of consistent
deformation.
P kL′
10kN 2
P kL
AET
k L
′
= −
∑
∑
CD
3m
k L
AE
∑
A B
4m
B
P P kT′= +
Dept. of CE, GCE Kannur Dr.RajeshKN
Note 1: If there are two internal redundants in a truss in method ofNote 1: If there are two internal redundants in a truss, in method of
consistent deformation,
2
P k L k L k k L′ 2
1 1 1 2
1 2 0
P k L k L k k L
T T
AE AE AE
′
+ + =∑ ∑ ∑
2
2 1 2 2
1 2 0
P k L k k L k L
T T
AE AE AE
′
+ + =∑ ∑ ∑AE AE AE
Note 2: If there are both internal redundants external redundants in
a truss, in method of consistent deformation,
2
1 1 1
0BP k L k L k k L
T V
′
+ + =∑ ∑ ∑1 0BT V
AE AE AE
+ + =∑ ∑ ∑
2
P k L k k L k L′
Dept. of CE, GCE Kannur Dr.RajeshKN
2
1
1 0B B B
B
P k L k k L k L
T V
AE AE AE
′
+ + =∑ ∑ ∑
Example 3: Using Castigliano’s Theorem, analyse the pin-jointed
h i fi
3m 4m
truss shown in figure.
A B C
3m 4m
400A =
A
3m 500A = 400A =
D
80kN
Internally indeterminate to degree 1.
Take force in BD as redundant.
y g
0
P L
P
∂
∑
Dept. of CE, GCE Kannur Dr.RajeshKN
91
Assume force in BD is T . . 0P
T AE
=
∂
∑
cos45 sin 53.13AD CDF F=cos45 sin 53.13AD CDF F
cos45 cos53.13 80AD CDF F T+ + =
T
57.14 0.714T−
64.64 0.808T−
sin 53.13 cos53.13 80CD CDF F T+ + =
80kN
57.14 0.714CDF T= −
i 53 13
( )
sin 53.13
57.14 0.714 64.64 0.808
cos45
ADF T T= − = −
. . 0
P L
P
T AE
∂
=
∂
∑
( )
( )
( )
( )
4.243 57.14 0.714 5 64.64 0.8083
0.714 3 0.808 0
500 400 400
T TT
E E E
− −⎛ ⎞ ⎛ ⎞⎛ ⎞
× − + × + × − =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠
Dept. of CE, GCE Kannur Dr.RajeshKN
9249.09T kN∴ =
SummarySummary
Statically and kinematically indeterminate structures
• Degree of static indeterminacy, Degree of kinematic
indeterminacy, Force and displacement method of analysis
Force method of analysis
• Method of consistent deformation-Analysis of fixed and
continuous beams
• Clapeyron’s theorem of three moments-Analysis of fixed and
continuous beams
• Principle of minimum strain energy-Castigliano’s second theorem-
Analysis of beams, plane trusses and plane frames.
Dept. of CE, GCE Kannur Dr.RajeshKN
93

Weitere ähnliche Inhalte

Was ist angesagt?

Module3 direct stiffness- rajesh sir
Module3 direct stiffness- rajesh sirModule3 direct stiffness- rajesh sir
Module3 direct stiffness- rajesh sirSHAMJITH KM
 
Module3 rajesh sir
Module3 rajesh sirModule3 rajesh sir
Module3 rajesh sirSHAMJITH KM
 
Lecture 5 castigliono's theorem
Lecture 5 castigliono's theoremLecture 5 castigliono's theorem
Lecture 5 castigliono's theoremDeepak Agarwal
 
Pin joint frames
Pin joint framesPin joint frames
Pin joint framesManjulaR16
 
Stiffness method of structural analysis
Stiffness method of structural analysisStiffness method of structural analysis
Stiffness method of structural analysisKaran Patel
 
Lecture 2 principal stress and strain
Lecture 2 principal stress and strainLecture 2 principal stress and strain
Lecture 2 principal stress and strainDeepak Agarwal
 
Three.hinged.arch
Three.hinged.archThree.hinged.arch
Three.hinged.archengr jafar
 
Shear Force and Bending Moment Diagram
Shear Force and Bending Moment DiagramShear Force and Bending Moment Diagram
Shear Force and Bending Moment Diagramsumitt6_25730773
 
Structural Analysis
Structural AnalysisStructural Analysis
Structural Analysisatizaz512
 
SFD & BMD Shear Force & Bending Moment Diagram
SFD & BMD Shear Force & Bending Moment DiagramSFD & BMD Shear Force & Bending Moment Diagram
SFD & BMD Shear Force & Bending Moment DiagramSanjay Kumawat
 
Module1 1 introduction-tomatrixms - rajesh sir
Module1 1 introduction-tomatrixms - rajesh sirModule1 1 introduction-tomatrixms - rajesh sir
Module1 1 introduction-tomatrixms - rajesh sirSHAMJITH KM
 
Module1 flexibility-2-problems- rajesh sir
Module1 flexibility-2-problems- rajesh sirModule1 flexibility-2-problems- rajesh sir
Module1 flexibility-2-problems- rajesh sirSHAMJITH KM
 
what is static and kinematic indeterminacy of structure
what is static and kinematic indeterminacy of structure what is static and kinematic indeterminacy of structure
what is static and kinematic indeterminacy of structure NIROB KR DAS
 
Introduction to finite element method(fem)
Introduction to finite element method(fem)Introduction to finite element method(fem)
Introduction to finite element method(fem)Sreekanth G
 

Was ist angesagt? (20)

Module3 direct stiffness- rajesh sir
Module3 direct stiffness- rajesh sirModule3 direct stiffness- rajesh sir
Module3 direct stiffness- rajesh sir
 
Deep beams
Deep beams Deep beams
Deep beams
 
Structural engineering i
Structural engineering iStructural engineering i
Structural engineering i
 
Matrix methods
Matrix methodsMatrix methods
Matrix methods
 
Module3 rajesh sir
Module3 rajesh sirModule3 rajesh sir
Module3 rajesh sir
 
Lecture 5 castigliono's theorem
Lecture 5 castigliono's theoremLecture 5 castigliono's theorem
Lecture 5 castigliono's theorem
 
Pin joint frames
Pin joint framesPin joint frames
Pin joint frames
 
Stiffness method of structural analysis
Stiffness method of structural analysisStiffness method of structural analysis
Stiffness method of structural analysis
 
Lecture 2 principal stress and strain
Lecture 2 principal stress and strainLecture 2 principal stress and strain
Lecture 2 principal stress and strain
 
Three.hinged.arch
Three.hinged.archThree.hinged.arch
Three.hinged.arch
 
Shear Force and Bending Moment Diagram
Shear Force and Bending Moment DiagramShear Force and Bending Moment Diagram
Shear Force and Bending Moment Diagram
 
Structural Analysis
Structural AnalysisStructural Analysis
Structural Analysis
 
Structural analysis 2
Structural analysis 2Structural analysis 2
Structural analysis 2
 
SFD & BMD Shear Force & Bending Moment Diagram
SFD & BMD Shear Force & Bending Moment DiagramSFD & BMD Shear Force & Bending Moment Diagram
SFD & BMD Shear Force & Bending Moment Diagram
 
Module1 1 introduction-tomatrixms - rajesh sir
Module1 1 introduction-tomatrixms - rajesh sirModule1 1 introduction-tomatrixms - rajesh sir
Module1 1 introduction-tomatrixms - rajesh sir
 
Bridge loading
Bridge loadingBridge loading
Bridge loading
 
Flexibility ppt 1
Flexibility ppt 1Flexibility ppt 1
Flexibility ppt 1
 
Module1 flexibility-2-problems- rajesh sir
Module1 flexibility-2-problems- rajesh sirModule1 flexibility-2-problems- rajesh sir
Module1 flexibility-2-problems- rajesh sir
 
what is static and kinematic indeterminacy of structure
what is static and kinematic indeterminacy of structure what is static and kinematic indeterminacy of structure
what is static and kinematic indeterminacy of structure
 
Introduction to finite element method(fem)
Introduction to finite element method(fem)Introduction to finite element method(fem)
Introduction to finite element method(fem)
 

Andere mochten auch

Structural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by WajahatStructural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by WajahatWajahat Ullah
 
Module2 rajesh sir
Module2 rajesh sirModule2 rajesh sir
Module2 rajesh sirSHAMJITH KM
 
Module1 flexibility-2-problems- rajesh sir
Module1 flexibility-2-problems- rajesh sirModule1 flexibility-2-problems- rajesh sir
Module1 flexibility-2-problems- rajesh sirSHAMJITH KM
 
solving statically indeterminate structure by slope deflection method
solving statically indeterminate structure by slope deflection methodsolving statically indeterminate structure by slope deflection method
solving statically indeterminate structure by slope deflection methodTannisarker
 
Slope deflection method
Slope deflection methodSlope deflection method
Slope deflection methodAnik Mamun
 
Castigliano’s Method
Castigliano’s MethodCastigliano’s Method
Castigliano’s Methodaapx
 
Quick design check of multi storey building
Quick design check of multi storey building Quick design check of multi storey building
Quick design check of multi storey building KAMARAN SHEKHA
 
TUGAS BESAR ANALISIS STRUKTUR 3 TEKNIK SIPIL UNILA
TUGAS BESAR ANALISIS STRUKTUR 3 TEKNIK SIPIL UNILATUGAS BESAR ANALISIS STRUKTUR 3 TEKNIK SIPIL UNILA
TUGAS BESAR ANALISIS STRUKTUR 3 TEKNIK SIPIL UNILAStephanus Turnip
 
Module1 flexibility-homework rajesh sir
Module1 flexibility-homework rajesh sirModule1 flexibility-homework rajesh sir
Module1 flexibility-homework rajesh sirSHAMJITH KM
 
Computational electromagnetics
Computational electromagneticsComputational electromagnetics
Computational electromagneticsAwaab Fakih
 
Tarea 1 suelos y rocas 2 capacidad de carga del suelo
Tarea 1 suelos y rocas 2 capacidad de carga del sueloTarea 1 suelos y rocas 2 capacidad de carga del suelo
Tarea 1 suelos y rocas 2 capacidad de carga del sueloRonny Duque
 
Finite element analysis
Finite element analysisFinite element analysis
Finite element analysisSonal Upadhyay
 
Module4 rajesh sir
Module4 rajesh sirModule4 rajesh sir
Module4 rajesh sirSHAMJITH KM
 
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirModule4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirSHAMJITH KM
 
Solving indeterminate structures by using stiffness method. 10.01.03.130
Solving indeterminate structures by using stiffness method. 10.01.03.130Solving indeterminate structures by using stiffness method. 10.01.03.130
Solving indeterminate structures by using stiffness method. 10.01.03.130Juwairiyah Jahan
 

Andere mochten auch (20)

Structural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by WajahatStructural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by Wajahat
 
Module2 rajesh sir
Module2 rajesh sirModule2 rajesh sir
Module2 rajesh sir
 
Module1 flexibility-2-problems- rajesh sir
Module1 flexibility-2-problems- rajesh sirModule1 flexibility-2-problems- rajesh sir
Module1 flexibility-2-problems- rajesh sir
 
solving statically indeterminate structure by slope deflection method
solving statically indeterminate structure by slope deflection methodsolving statically indeterminate structure by slope deflection method
solving statically indeterminate structure by slope deflection method
 
Slope deflection method
Slope deflection methodSlope deflection method
Slope deflection method
 
Beam Deflection Formulae
Beam Deflection FormulaeBeam Deflection Formulae
Beam Deflection Formulae
 
Chapter 19(statically indeterminate beams continuous beams)
Chapter 19(statically indeterminate beams continuous beams)Chapter 19(statically indeterminate beams continuous beams)
Chapter 19(statically indeterminate beams continuous beams)
 
M1l6
M1l6M1l6
M1l6
 
Castigliano’s Method
Castigliano’s MethodCastigliano’s Method
Castigliano’s Method
 
1
11
1
 
Quick design check of multi storey building
Quick design check of multi storey building Quick design check of multi storey building
Quick design check of multi storey building
 
analisa-struktur
analisa-strukturanalisa-struktur
analisa-struktur
 
TUGAS BESAR ANALISIS STRUKTUR 3 TEKNIK SIPIL UNILA
TUGAS BESAR ANALISIS STRUKTUR 3 TEKNIK SIPIL UNILATUGAS BESAR ANALISIS STRUKTUR 3 TEKNIK SIPIL UNILA
TUGAS BESAR ANALISIS STRUKTUR 3 TEKNIK SIPIL UNILA
 
Module1 flexibility-homework rajesh sir
Module1 flexibility-homework rajesh sirModule1 flexibility-homework rajesh sir
Module1 flexibility-homework rajesh sir
 
Computational electromagnetics
Computational electromagneticsComputational electromagnetics
Computational electromagnetics
 
Tarea 1 suelos y rocas 2 capacidad de carga del suelo
Tarea 1 suelos y rocas 2 capacidad de carga del sueloTarea 1 suelos y rocas 2 capacidad de carga del suelo
Tarea 1 suelos y rocas 2 capacidad de carga del suelo
 
Finite element analysis
Finite element analysisFinite element analysis
Finite element analysis
 
Module4 rajesh sir
Module4 rajesh sirModule4 rajesh sir
Module4 rajesh sir
 
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirModule4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sir
 
Solving indeterminate structures by using stiffness method. 10.01.03.130
Solving indeterminate structures by using stiffness method. 10.01.03.130Solving indeterminate structures by using stiffness method. 10.01.03.130
Solving indeterminate structures by using stiffness method. 10.01.03.130
 

Ähnlich wie Structural Analysis - II Force Method Analysis

Module2 stiffness- rajesh sir
Module2 stiffness- rajesh sirModule2 stiffness- rajesh sir
Module2 stiffness- rajesh sirSHAMJITH KM
 
Mechanics of structures - module1
Mechanics of structures - module1Mechanics of structures - module1
Mechanics of structures - module1SHAMJITH KM
 
Mechanics of structures module2
Mechanics of structures  module2Mechanics of structures  module2
Mechanics of structures module2SHAMJITH KM
 
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirModule4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirSHAMJITH KM
 
Static and Kinematic Indeterminacy of Structure.
Static and Kinematic Indeterminacy of Structure.Static and Kinematic Indeterminacy of Structure.
Static and Kinematic Indeterminacy of Structure.Pritesh Parmar
 
Advanced Structural Analysis.ppt
Advanced Structural Analysis.pptAdvanced Structural Analysis.ppt
Advanced Structural Analysis.pptSudiptaKolay2
 
Mechanics of structures - module3
Mechanics of structures - module3Mechanics of structures - module3
Mechanics of structures - module3SHAMJITH KM
 
intro to plastic analysis. pptxplastic analysis
intro to plastic analysis. pptxplastic analysisintro to plastic analysis. pptxplastic analysis
intro to plastic analysis. pptxplastic analysis18CV086Rajanekanth
 
L04 5.pdf (trusses)
L04 5.pdf (trusses)L04 5.pdf (trusses)
L04 5.pdf (trusses)nur izzaati
 
Chapter6 stiffness method
Chapter6 stiffness methodChapter6 stiffness method
Chapter6 stiffness methodashish2002319
 
Simplified Analysis to Predict Collapse Resistance
Simplified Analysis to Predict Collapse ResistanceSimplified Analysis to Predict Collapse Resistance
Simplified Analysis to Predict Collapse ResistanceGilsanz Murray Steficek
 
Deep learning-for-pose-estimation-wyang-defense
Deep learning-for-pose-estimation-wyang-defenseDeep learning-for-pose-estimation-wyang-defense
Deep learning-for-pose-estimation-wyang-defenseWei Yang
 
Design-of-Structures-for-EQ-Loads.pdf
Design-of-Structures-for-EQ-Loads.pdfDesign-of-Structures-for-EQ-Loads.pdf
Design-of-Structures-for-EQ-Loads.pdfEngAmodhyaVikumshan
 
determinate and indeterminate structures
determinate and indeterminate structuresdeterminate and indeterminate structures
determinate and indeterminate structuresvempatishiva
 
Analysis of sway type portal frame using direct stiffness method
Analysis of sway type portal frame using direct stiffness methodAnalysis of sway type portal frame using direct stiffness method
Analysis of sway type portal frame using direct stiffness methodkasirekha
 

Ähnlich wie Structural Analysis - II Force Method Analysis (20)

Module2 stiffness- rajesh sir
Module2 stiffness- rajesh sirModule2 stiffness- rajesh sir
Module2 stiffness- rajesh sir
 
Mechanics of structures - module1
Mechanics of structures - module1Mechanics of structures - module1
Mechanics of structures - module1
 
Mechanics of structures module2
Mechanics of structures  module2Mechanics of structures  module2
Mechanics of structures module2
 
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirModule4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sir
 
Static and Kinematic Indeterminacy of Structure.
Static and Kinematic Indeterminacy of Structure.Static and Kinematic Indeterminacy of Structure.
Static and Kinematic Indeterminacy of Structure.
 
Advanced Structural Analysis.ppt
Advanced Structural Analysis.pptAdvanced Structural Analysis.ppt
Advanced Structural Analysis.ppt
 
Mechanics of structures - module3
Mechanics of structures - module3Mechanics of structures - module3
Mechanics of structures - module3
 
intro to plastic analysis. pptxplastic analysis
intro to plastic analysis. pptxplastic analysisintro to plastic analysis. pptxplastic analysis
intro to plastic analysis. pptxplastic analysis
 
L04 5.pdf (trusses)
L04 5.pdf (trusses)L04 5.pdf (trusses)
L04 5.pdf (trusses)
 
Chapter6 stiffness method
Chapter6 stiffness methodChapter6 stiffness method
Chapter6 stiffness method
 
Chapter 4: Torsion
Chapter 4: TorsionChapter 4: Torsion
Chapter 4: Torsion
 
Beams And Columns
Beams And ColumnsBeams And Columns
Beams And Columns
 
L1
L1L1
L1
 
Simplified Analysis to Predict Collapse Resistance
Simplified Analysis to Predict Collapse ResistanceSimplified Analysis to Predict Collapse Resistance
Simplified Analysis to Predict Collapse Resistance
 
Deep learning-for-pose-estimation-wyang-defense
Deep learning-for-pose-estimation-wyang-defenseDeep learning-for-pose-estimation-wyang-defense
Deep learning-for-pose-estimation-wyang-defense
 
Design-of-Structures-for-EQ-Loads.pdf
Design-of-Structures-for-EQ-Loads.pdfDesign-of-Structures-for-EQ-Loads.pdf
Design-of-Structures-for-EQ-Loads.pdf
 
NANO266 - Lecture 8 - Properties of Periodic Solids
NANO266 - Lecture 8 - Properties of Periodic SolidsNANO266 - Lecture 8 - Properties of Periodic Solids
NANO266 - Lecture 8 - Properties of Periodic Solids
 
i-uniti-topic-
i-uniti-topic-i-uniti-topic-
i-uniti-topic-
 
determinate and indeterminate structures
determinate and indeterminate structuresdeterminate and indeterminate structures
determinate and indeterminate structures
 
Analysis of sway type portal frame using direct stiffness method
Analysis of sway type portal frame using direct stiffness methodAnalysis of sway type portal frame using direct stiffness method
Analysis of sway type portal frame using direct stiffness method
 

Mehr von SHAMJITH KM

Salah of the Prophet (ﷺ).pdf
Salah of the Prophet (ﷺ).pdfSalah of the Prophet (ﷺ).pdf
Salah of the Prophet (ﷺ).pdfSHAMJITH KM
 
Construction Materials and Engineering - Module IV - Lecture Notes
Construction Materials and Engineering - Module IV - Lecture NotesConstruction Materials and Engineering - Module IV - Lecture Notes
Construction Materials and Engineering - Module IV - Lecture NotesSHAMJITH KM
 
Construction Materials and Engineering - Module III - Lecture Notes
Construction Materials and Engineering - Module III - Lecture NotesConstruction Materials and Engineering - Module III - Lecture Notes
Construction Materials and Engineering - Module III - Lecture NotesSHAMJITH KM
 
Construction Materials and Engineering - Module II - Lecture Notes
Construction Materials and Engineering - Module II - Lecture NotesConstruction Materials and Engineering - Module II - Lecture Notes
Construction Materials and Engineering - Module II - Lecture NotesSHAMJITH KM
 
Construction Materials and Engineering - Module I - Lecture Notes
Construction Materials and Engineering - Module I - Lecture NotesConstruction Materials and Engineering - Module I - Lecture Notes
Construction Materials and Engineering - Module I - Lecture NotesSHAMJITH KM
 
Computing fundamentals lab record - Polytechnics
Computing fundamentals lab record - PolytechnicsComputing fundamentals lab record - Polytechnics
Computing fundamentals lab record - PolytechnicsSHAMJITH KM
 
Concrete lab manual - Polytechnics
Concrete lab manual - PolytechnicsConcrete lab manual - Polytechnics
Concrete lab manual - PolytechnicsSHAMJITH KM
 
Concrete Technology Study Notes
Concrete Technology Study NotesConcrete Technology Study Notes
Concrete Technology Study NotesSHAMJITH KM
 
നബി(സ)യുടെ നമസ്കാരം - രൂപവും പ്രാര്ത്ഥനകളും
നബി(സ)യുടെ നമസ്കാരം -  രൂപവും പ്രാര്ത്ഥനകളുംനബി(സ)യുടെ നമസ്കാരം -  രൂപവും പ്രാര്ത്ഥനകളും
നബി(സ)യുടെ നമസ്കാരം - രൂപവും പ്രാര്ത്ഥനകളുംSHAMJITH KM
 
Design of simple beam using staad pro - doc file
Design of simple beam using staad pro - doc fileDesign of simple beam using staad pro - doc file
Design of simple beam using staad pro - doc fileSHAMJITH KM
 
Design of simple beam using staad pro
Design of simple beam using staad proDesign of simple beam using staad pro
Design of simple beam using staad proSHAMJITH KM
 
Python programs - PPT file (Polytechnics)
Python programs - PPT file (Polytechnics)Python programs - PPT file (Polytechnics)
Python programs - PPT file (Polytechnics)SHAMJITH KM
 
Python programs - first semester computer lab manual (polytechnics)
Python programs - first semester computer lab manual (polytechnics)Python programs - first semester computer lab manual (polytechnics)
Python programs - first semester computer lab manual (polytechnics)SHAMJITH KM
 
Python programming Workshop SITTTR - Kalamassery
Python programming Workshop SITTTR - KalamasseryPython programming Workshop SITTTR - Kalamassery
Python programming Workshop SITTTR - KalamasserySHAMJITH KM
 
Analysis of simple beam using STAAD Pro (Exp No 1)
Analysis of simple beam using STAAD Pro (Exp No 1)Analysis of simple beam using STAAD Pro (Exp No 1)
Analysis of simple beam using STAAD Pro (Exp No 1)SHAMJITH KM
 
Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)
Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)
Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)SHAMJITH KM
 
Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)
Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)
Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)SHAMJITH KM
 
CAD Lab model viva questions
CAD Lab model viva questions CAD Lab model viva questions
CAD Lab model viva questions SHAMJITH KM
 
Brain Computer Interface (BCI) - seminar PPT
Brain Computer Interface (BCI) -  seminar PPTBrain Computer Interface (BCI) -  seminar PPT
Brain Computer Interface (BCI) - seminar PPTSHAMJITH KM
 
Surveying - Module iii-levelling only note
Surveying - Module  iii-levelling only noteSurveying - Module  iii-levelling only note
Surveying - Module iii-levelling only noteSHAMJITH KM
 

Mehr von SHAMJITH KM (20)

Salah of the Prophet (ﷺ).pdf
Salah of the Prophet (ﷺ).pdfSalah of the Prophet (ﷺ).pdf
Salah of the Prophet (ﷺ).pdf
 
Construction Materials and Engineering - Module IV - Lecture Notes
Construction Materials and Engineering - Module IV - Lecture NotesConstruction Materials and Engineering - Module IV - Lecture Notes
Construction Materials and Engineering - Module IV - Lecture Notes
 
Construction Materials and Engineering - Module III - Lecture Notes
Construction Materials and Engineering - Module III - Lecture NotesConstruction Materials and Engineering - Module III - Lecture Notes
Construction Materials and Engineering - Module III - Lecture Notes
 
Construction Materials and Engineering - Module II - Lecture Notes
Construction Materials and Engineering - Module II - Lecture NotesConstruction Materials and Engineering - Module II - Lecture Notes
Construction Materials and Engineering - Module II - Lecture Notes
 
Construction Materials and Engineering - Module I - Lecture Notes
Construction Materials and Engineering - Module I - Lecture NotesConstruction Materials and Engineering - Module I - Lecture Notes
Construction Materials and Engineering - Module I - Lecture Notes
 
Computing fundamentals lab record - Polytechnics
Computing fundamentals lab record - PolytechnicsComputing fundamentals lab record - Polytechnics
Computing fundamentals lab record - Polytechnics
 
Concrete lab manual - Polytechnics
Concrete lab manual - PolytechnicsConcrete lab manual - Polytechnics
Concrete lab manual - Polytechnics
 
Concrete Technology Study Notes
Concrete Technology Study NotesConcrete Technology Study Notes
Concrete Technology Study Notes
 
നബി(സ)യുടെ നമസ്കാരം - രൂപവും പ്രാര്ത്ഥനകളും
നബി(സ)യുടെ നമസ്കാരം -  രൂപവും പ്രാര്ത്ഥനകളുംനബി(സ)യുടെ നമസ്കാരം -  രൂപവും പ്രാര്ത്ഥനകളും
നബി(സ)യുടെ നമസ്കാരം - രൂപവും പ്രാര്ത്ഥനകളും
 
Design of simple beam using staad pro - doc file
Design of simple beam using staad pro - doc fileDesign of simple beam using staad pro - doc file
Design of simple beam using staad pro - doc file
 
Design of simple beam using staad pro
Design of simple beam using staad proDesign of simple beam using staad pro
Design of simple beam using staad pro
 
Python programs - PPT file (Polytechnics)
Python programs - PPT file (Polytechnics)Python programs - PPT file (Polytechnics)
Python programs - PPT file (Polytechnics)
 
Python programs - first semester computer lab manual (polytechnics)
Python programs - first semester computer lab manual (polytechnics)Python programs - first semester computer lab manual (polytechnics)
Python programs - first semester computer lab manual (polytechnics)
 
Python programming Workshop SITTTR - Kalamassery
Python programming Workshop SITTTR - KalamasseryPython programming Workshop SITTTR - Kalamassery
Python programming Workshop SITTTR - Kalamassery
 
Analysis of simple beam using STAAD Pro (Exp No 1)
Analysis of simple beam using STAAD Pro (Exp No 1)Analysis of simple beam using STAAD Pro (Exp No 1)
Analysis of simple beam using STAAD Pro (Exp No 1)
 
Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)
Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)
Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)
 
Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)
Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)
Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)
 
CAD Lab model viva questions
CAD Lab model viva questions CAD Lab model viva questions
CAD Lab model viva questions
 
Brain Computer Interface (BCI) - seminar PPT
Brain Computer Interface (BCI) -  seminar PPTBrain Computer Interface (BCI) -  seminar PPT
Brain Computer Interface (BCI) - seminar PPT
 
Surveying - Module iii-levelling only note
Surveying - Module  iii-levelling only noteSurveying - Module  iii-levelling only note
Surveying - Module iii-levelling only note
 

Kürzlich hochgeladen

Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsSachinPawar510423
 
Mine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxMine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxRomil Mishra
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfAsst.prof M.Gokilavani
 
Industrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.pptIndustrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.pptNarmatha D
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...121011101441
 
Energy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxEnergy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxsiddharthjain2303
 
Steel Structures - Building technology.pptx
Steel Structures - Building technology.pptxSteel Structures - Building technology.pptx
Steel Structures - Building technology.pptxNikhil Raut
 
Internet of things -Arshdeep Bahga .pptx
Internet of things -Arshdeep Bahga .pptxInternet of things -Arshdeep Bahga .pptx
Internet of things -Arshdeep Bahga .pptxVelmuruganTECE
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating SystemRashmi Bhat
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionMebane Rash
 
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONTHE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONjhunlian
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleAlluxio, Inc.
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catcherssdickerson1
 
The SRE Report 2024 - Great Findings for the teams
The SRE Report 2024 - Great Findings for the teamsThe SRE Report 2024 - Great Findings for the teams
The SRE Report 2024 - Great Findings for the teamsDILIPKUMARMONDAL6
 

Kürzlich hochgeladen (20)

Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documents
 
Mine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxMine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptx
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
 
Industrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.pptIndustrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.ppt
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...
 
Energy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxEnergy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptx
 
Steel Structures - Building technology.pptx
Steel Structures - Building technology.pptxSteel Structures - Building technology.pptx
Steel Structures - Building technology.pptx
 
Internet of things -Arshdeep Bahga .pptx
Internet of things -Arshdeep Bahga .pptxInternet of things -Arshdeep Bahga .pptx
Internet of things -Arshdeep Bahga .pptx
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating System
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of Action
 
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONTHE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at Scale
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
 
The SRE Report 2024 - Great Findings for the teams
The SRE Report 2024 - Great Findings for the teamsThe SRE Report 2024 - Great Findings for the teams
The SRE Report 2024 - Great Findings for the teams
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 

Structural Analysis - II Force Method Analysis

  • 1. Structural Analysis - II Indeterminate structures;Indeterminate structures; Force method of analysis Dr. Rajesh K. N. Assistant Professor in Civil EngineeringAssistant Professor in Civil Engineering Govt. College of Engineering, Kannur Dept. of CE, GCE Kannur Dr.RajeshKN 1
  • 2. Module IModule I Statically and kinematically indeterminate structures • Degree of static indeterminacy, Degree of kinematic indeterminacy, Force and displacement method of analysis Force method of analysis • Method of consistent deformation-Analysis of fixed and i b Force method of analysis continuous beams • Clapeyron’s theorem of three moments-Analysis of fixed and continuous beams • Principle of minimum strain energy-Castigliano’s second theorem- Dept. of CE, GCE Kannur Dr.RajeshKN 2 p gy g Analysis of beams, plane trusses and plane frames.
  • 3. Types of Framed Structures • a. Beams: may support bending moment, shear force and axial force yp • b. Plane trusses: hinge joints; In addition to axial forces, a member CAN have bending moments and shear forces if it has Dept. of CE, GCE Kannur Dr.RajeshKN 3 loads directly acting on them, in addition to joint loads
  • 4. • c. Space trusses: hinge joints; any couple acting on a member should have moment vector perpendicular to the axis of the member, since a truss member is incapable of supporting a twisting momentg • d. Plane frames: Joints are rigid; all forces in the plane of the frame, all couples normal to the plane of the frame Dept. of CE, GCE Kannur Dr.RajeshKN 4
  • 5. • e Grids: all forces normal to the plane of the grid all couples• e. Grids: all forces normal to the plane of the grid, all couples in the plane of the grid (includes bending and torsion) • f. Space frames: most general framed structure; may support bending moment, shear force, axial force and torsion Dept. of CE, GCE Kannur Dr.RajeshKN 5 g , ,
  • 6. Deformations in Framed Structures , ,x y zT M MThree couples:, ,x y zN V VThree forces: •Significant deformations in framed structures:•Significant deformations in framed structures: Structure Significant deformationsStructure Significant deformations Beams flexural Plane trusses axial Space trusses axial Plane frames flexural and axial Grids flexural and torsional Space frames axial, flexural and torsional Dept. of CE, GCE Kannur Dr.RajeshKN 6
  • 7. Types of deformations in framed structures b) axial c) shearing d) flexural e) torsional Dept. of CE, GCE Kannur Dr.RajeshKN 7 b) axial c) shearing d) flexural e) torsional
  • 8. Equilibrium •Resultant of all actions (a force, a couple or both) must vanish for static equilibrium q 0F∑ 0F∑ ∑ •Resultant force vector must be zero; resultant moment vector must be zero 0xF =∑ 0yF =∑ 0zF =∑ 0xM =∑ 0yM =∑ 0zM =∑∑ y∑ ∑ •For 2 dimensional problems (forces are in one plane and 0F =∑ 0F =∑ 0M =∑ •For 2-dimensional problems (forces are in one plane and couples have vectors normal to the plane), 0xF =∑ 0yF =∑ 0zM =∑ Dept. of CE, GCE Kannur Dr.RajeshKN 8
  • 9. Compatibility •Compatibility conditions: Conditions of continuity ofp y y displacements throughout the structure •Eg: at a rigid connection between two members, theg g , displacements (translations and rotations) of both members must be the same Dept. of CE, GCE Kannur Dr.RajeshKN 9
  • 10. Indeterminate Structures Force method and Displacement method • Force method (Flexibility method) • Actions are the primary unknowns St ti i d t i f k ti th• Static indeterminacy: excess of unknown actions than the available number of equations of static equilibrium • Displacement method (Stiffness method) • Displacements of the joints are the primary unknowns • Kinematic indeterminacy: number of independent Dept. of CE, GCE Kannur Dr.RajeshKN Kinematic indeterminacy: number of independent translations and rotations
  • 11. Static indeterminacy • Beam: • Static indeterminacy = Reaction components number of eqns• Static indeterminacy = Reaction components - number of eqns available 3E R= − • Examples:• Examples: • Single span beam with both ends hinged with inclined l dloads • Continuous beam • Propped cantilever • Fixed beam Dept. of CE, GCE Kannur Dr.RajeshKN
  • 12. Degree of StaticStructure Degree of Static Indeterminacy Structure 0 1 3 Dept. of CE, GCE Kannur Dr.RajeshKN 12
  • 13. Degree of Static I d t i Structure 0 Indeterminacy 0 1 55 2 Dept. of CE, GCE Kannur Dr.RajeshKN
  • 14. • Rigid frame (Plane):g ( ) • External indeterminacy = Reaction components - number of eqns available 3E R= −available • Internal indeterminacy = 3 × closed frames 3E R 3I a=• Internal indeterminacy = 3 × closed frames 3I a= • Total indeterminacy = External indeterminacy + Internal indeterminacy ( )3 3T E I R a= + = − + • Note: An internal hinge will provide an additional eqn Dept. of CE, GCE Kannur Dr.RajeshKN 14
  • 15. Example 1 Example 2p p ( )3 3T E I R a= + = − +( )3 3T E I R a= + = − + ( ) ( )3 3 3 3 2 12= × − + × =( )2 2 3 3 0 1= × − + × = Example 3 Example 4 ( ) ( ) 3 3T E I R a= + = − + ( ) ( ) 3 3T E I R a= + = − + Dept. of CE, GCE Kannur Dr.RajeshKN ( )3 2 3 3 3 12= × − + × = ( )4 3 3 3 4 21= × − + × =
  • 16. Degree of Static I d t i Structure Indeterminacy 3 63 Dept. of CE, GCE Kannur Dr.RajeshKN 16
  • 17. Degree of Static I d t i Structure Indeterminacy 2 1 Dept. of CE, GCE Kannur Dr.RajeshKN
  • 18. • Rigid frame (Space):g ( p ) • External indeterminacy = Reaction components - number of eqns available 6E R= −available • Internal indeterminacy = 6 × closed frames 6E R Example 1 ( ) ( ) 6 6T E I R a= + = − + ( )4 6 6 6 1 24= × − + × = If i l d f ti l t d t ti i d t i i tIf axial deformations are neglected, static indeterminacy is not affected since the same number of actions still exist in the structure Dept. of CE, GCE Kannur Dr.RajeshKN
  • 19. Plane truss (general): External indeterminacy = Reaction components - number of eqns available 3E R= − Minimum 3 members and 3 joints. A dditi l j i t i 2 dditi l b ( )3 2 3 2 3m j j= + − = −Hence, number of members for stability, Any additional joint requires 2 additional members. ( )2 3I m j= − −Hence, internal indeterminacy, Total (Internal and external) indeterminacyTotal (Internal and external) indeterminacy ( )3 2 3 2 T E I R m j m R j = + = − + − − = + − 2m R j+ • m: number of members • R: number of reaction components Dept. of CE, GCE Kannur Dr.RajeshKN • j : number of joints • Note: Internal hinge will provide additional eqn
  • 20. E l 1Example 1 2 9 3 2 6 0T m R j= + − = + − × = 3 3 3 0E R= − = − = 0I T E= − = Example 2 2 15 4 2 8 3T R p 2 15 4 2 8 3T m R j= + − = + − × = 3 4 3 1E R= − = − = 2I T E= − = Example 3 2 6 4 2 5 0T m R j= + − = + − × = ( )3 1 4 4 Hinge at0 AE R= − + = − = Dept. of CE, GCE Kannur Dr.RajeshKN ( ) 0I T E= − =
  • 21. Example 4 2 7 3 2 5 0T m R j= + − = + − × =Example 4 2 7 3 2 5 0T m R j+ + 3 3 3 0E R= − = − = 0I T E 0I T E= − = 2 6 4 2 4 2T m R j= + − = + − × = 3 4 3 1E R= = = Example 5 3 4 3 1E R= − = − = 1I T E= − = 2 11 3 2 6 2T m R j= + − = + − × =Example 6 3 3 3 0E R= − = − = 2I T E= − = Dept. of CE, GCE Kannur Dr.RajeshKN 2I T E= =
  • 22. • Wall or roof attached pin jointed plane truss (Exception to the• Wall or roof attached pin jointed plane truss (Exception to the above general case): • Internal indeterminacy 2I m j= − • External indeterminacy = 0 (Since, once the member forces are determined, reactions are determinable) Example 1 Example 3Example 2Example 1 Example 3p 2 6 2 3 0 T I m j= = − = − × = 2 5 2 1 3 T I m j= = − = − × = 2 7 2 3 1 T I m j= = − = × = Dept. of CE, GCE Kannur Dr.RajeshKN 22 7 2 3 1= − × =
  • 23. • Space Truss: External indeterminacy = Reaction components - number of eqns available Minimum 6 members and 4 joints 6E R= − ( )6 3 4 3 6m j j= + − = −Hence, number of members for stability, Minimum 6 members and 4 joints. Any additional joint requires 3 additional members. ( )6 3 4 3 6m j j+Hence, number of members for stability, ( )3 6I m j= − −Hence, internal indeterminacy, Total (Internal and external) indeterminacy ( )6 3 6T E I R m j= + = − + − − 3m R j= + − Dept. of CE, GCE Kannur Dr.RajeshKN
  • 24. Example 3T m R j= +Total (Internal and external) indeterminacy 3T m R j= + −Total (Internal and external) indeterminacy 12 9 3 6 3T∴ = + − × = 6 9 6 3E R= − = − = Dept. of CE, GCE Kannur Dr.RajeshKN
  • 25. Kinematic indeterminacyKinematic indeterminacy • joints: where members meet, supports, free ends • joints undergo translations or rotations •in some cases joint displacements will be known, from the restraint conditions •the unknown joint displacements are the kinematically•the unknown joint displacements are the kinematically indeterminate quantities odegree of kinematic indeterminacy: number of degrees of f dfreedom Two types of DOF • Nodal type DOF J i DOF Two types of DOF Dept. of CE, GCE Kannur Dr.RajeshKN 25 • Joint type DOF
  • 26. • degree of kinematic indeterminacy (degrees of freedom) is d fi ddefined as: • the number of independent translations and rotations in a structure. DOF = 1 DOF = 2 Dept. of CE, GCE Kannur Dr.RajeshKN DOF 2
  • 27. • in a truss the joint rotation is not regarded as a degree of• in a truss, the joint rotation is not regarded as a degree of freedom. joint rotations do not have any physical significance as they have no effects in the members of the truss • in a frame, degrees of freedom due to axial deformations can be neglected Dept. of CE, GCE Kannur Dr.RajeshKN
  • 28. Kinematic Degree f F d Structure of Freedom 2 11 22 Dept. of CE, GCE Kannur Dr.RajeshKN
  • 29. Kinematic Degree f F d Structure of Freedom 4 If the effect of the cantilever portion is considered as a joint load atIf the effect of the cantilever portion is considered as a joint load at the roller support on the far right, kinematic indeterminacy can be taken as 2. Dept. of CE, GCE Kannur Dr.RajeshKN
  • 30. Kinematic Degree f F d Structure of Freedom 2 3 Dept. of CE, GCE Kannur Dr.RajeshKN
  • 31. Kinematic Degree f F d Structure of Freedom 6 2 5 Dept. of CE, GCE Kannur Dr.RajeshKN
  • 32. Method of Consistent Deformation Illustration of the method Problem Released structure Dept. of CE, GCE Kannur Dr.RajeshKN 32 Released structure
  • 33. D fl ti f l d 4 5wL Δ Deflection of released structure due to actual loads 384 B EI Δ = C Deflection of released structure due to redundant applied as app load Dept. of CE, GCE Kannur Dr.RajeshKN 33
  • 34. 3 BR L Deflection due o 48 t B B R L I R E = 3 BR L Δ 48 B B EI Δ = 4 3 5 BwL R L Compatibility condition (or equation of superposition or equation of geometry) 5 384 48 BwL R L EI EI = 5 B wL R∴ = 8 B Dept. of CE, GCE Kannur Dr.RajeshKN 34
  • 35. •A general approach (applying consistent sign convention for loads and displacements): RA l it l d di t BR•Apply unit load corresponding to 3 48 B L EI δ =Let the displacement due to unit load be BR B BR δDisplacement due to is Dept. of CE, GCE Kannur Dr.RajeshKN 35
  • 36. 44 5 384 B wL EI Δ = − (Negative, since deflection is downward) 0B B BR δΔ + = (Compatibility condition) B B B R δ Δ = − 5 8 B wL R∴ = Bδ 8 Dept. of CE, GCE Kannur Dr.RajeshKN 36
  • 37. Example 1: Propped cantilever AM PP A 2l 2l2l 2l A B AV BV Choose VB as the redundant P AM 2l 2l AV Dept. of CE, GCE Kannur Dr.RajeshKN 37 Released structure
  • 38. Find deflection at B of the released structure 3 1 2 5PL l l l Pl− −⎛ ⎞ Δ = + =⎜ ⎟Pl− . . . 2 2 2 2 3 2 48 B EI EI Δ = + =⎜ ⎟ ⎝ ⎠2 Pl EI M diagram EIEI Apply unit load on released structure corresponding to VApply unit load on released structure corresponding to VB and find deflection at B 3 3 B l EI δ = 1 l 3EI Dept. of CE, GCE Kannur Dr.RajeshKN 38
  • 39. 0R δΔ 3 5 3 5B Pl EI P R −Δ = = =0B B BR δΔ + = 3 . 48 16 B B R EI lδ = = = +ve sign indicates that VB is in the same direction of the unit load. i.e., in the upward direction. P 2l 2l 5 3 2 16 16 A Pl Pl Pl M = − =Other reactions 2l 2l 5 16 P11 16 P 16 5 32 Pl Bending moment diagram 3Pl Dept. of CE, GCE Kannur Dr.RajeshKN 39 16 −
  • 40. Example 2: Continuous beam 10kN A 2m 2m A B 4m C 10kN A B C V VVAV CVBV Choose VB as the redundant Dept. of CE, GCE Kannur Dr.RajeshKN 40
  • 41. 10kN 2 6 A BΔ C 2m 6m B Released structure 2.5 kN7.5 kN 15 EI 10 EI 1 251 358 6+⎛ ⎞ A B C EI EI 4m Conjugate beam of the released structure (to find ∆ ) ( ) 1 25 0.5 15 8 35 EI EI =× × − 1 358 6 80.5 15 8 3EI EI +⎛ ⎞ ÷ =× × ×⎜ ⎟ ⎝ ⎠ Conjugate beam of the released structure (to find ∆B) 1 73.3334 25 4 0 5 10 4 ⎛ ⎞∴Δ ⎜ ⎟ (numerically) Dept. of CE, GCE Kannur Dr.RajeshKN 41 25 4 0.5 10 4 3 B EI EI ⎛ ⎞∴Δ = =× − × × ×⎜ ⎟ ⎝ ⎠ (numerically)
  • 42. 1kN1kN 4m A B 4m C 4m 4m Released structure with unit load corresponding to V (to find δ )Released structure with unit load corresponding to VB (to find δB) 3 3 8 10.667 B l δ = = = (numerically) (di i i ∆ i d d )48 48 B EI EI EI δ 0R δΔ + 73.333 6 875B EI R kN −Δ − (direction is same as ∆B i.e., downwards) 0B B BR δΔ + = . 6.875 10.667 B B B R kNm EIδ = = = − i i di t th t V i i th it di ti f th it l d-ve sign indicates that VB is in the opposite direction of the unit load. i.e., in the upward direction. Dept. of CE, GCE Kannur Dr.RajeshKN 42
  • 43. 10kN Other reactions 10kN A B CB C 4.063AV kN= 0.938CV kN=6.875 kNA Bending moment diagramg g A B C 8.122 kNm A C 3.752 kNm− Dept. of CE, GCE Kannur Dr.RajeshKN
  • 44. Example 3A: 2m 3m CD 30kN B EI is constant 2m D MD A 2m 6m C D HD 30kN B VD 2m B HA Choose H as the redundant Dept. of CE, GCE Kannur Dr.RajeshKN 44 A Choose HA as the redundant
  • 45. D CD To find ∆HA and δHA (using unit load method) 10kN 2m3m CD 2m6m B C 2m A B 2m A B 1kNE=2x105N/mm2 I= 2x108mm4 Portion Origin Limits M m Mm m2 AB A 0-2 0 x 0 x2AB A 0 2 0 x 0 x BC A 2-4 -10(x-2) x -10x2+20x x2 CD A 0 3 20 4 80 16 ( ) ( ) 4 3 21 1 10 20 80 Mmdx x x dx dxΔ = = + +∫ ∫ ∫ CD A 0-3 -20 4 -80 16 ( ) ( ) 2 0 10 20 80HA x x dx dx EI EI EI Δ = = − + + −∫ ∫ ∫ [ ] 43 321 1x⎡ ⎤ 306 67− Dept. of CE, GCE Kannur Dr.RajeshKN [ ] 32 0 2 1 1 10 10 80 3 HA x x x EI EI ⎡ ⎤ Δ = − + + −⎢ ⎥ ⎣ ⎦ 306.67 EI − =
  • 46. 4 32 2 4 33 69 3316⎡ ⎤ ⎡ ⎤ 4 32 2 0 0 16 HA m dx x dx dx EI EI EI δ = = +∫ ∫ ∫ 33 00 69.3316 3 xx EIEIEI ⎡ ⎤ ⎡ ⎤= + =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ 0HA A HAH δΔ + = 306.67 4.4. 69 3 3 3 2B A EI H EI kN δ −Δ = = = HA A HA 69.33B EIδ Dept. of CE, GCE Kannur Dr.RajeshKN 46
  • 47. Example 3B: 2I CD 2m 6m CD 30kN 2m I B M 2m A 2 6m 2I C D HD MD A 30kN 2m 6m IVD Choose H as the redundant 2m B H Dept. of CE, GCE Kannur Dr.RajeshKN Choose HA as the redundant A HA
  • 48. 2I D 2I CD To find ∆HA and δHA (using unit load method) 30kN 2m6m I CD 2m6m I B C 2m A B 2m A B 1kNE=2x105N/mm2 I= 2x108mm4 Portion Origin Limits M m Mm m2 AB A 0-2 0 x 0 x2 BC A 2-4 -30(x-2) x -30x2+60x x2 CD A 0-6 -60 4 -240 16 ( ) ( ) 4 6 21 1 30 60 240 Mmdx x x dx dxΔ = = + +∫ ∫ ∫ CD A 0 6 60 4 240 16 ( ) ( ) 2 0 30 60 240 2 HA x x dx dx EI EI EI Δ = = − + + −∫ ∫ ∫ [ ] 4 63 21 1 10 30 240⎡ ⎤Δ 920− Dept. of CE, GCE Kannur Dr.RajeshKN [ ] 63 2 02 1 1 10 30 240 2 HA x x x EI EI ⎡ ⎤Δ = − + + −⎣ ⎦ 920 EI − =
  • 49. 4 62 2 16d 4 63 69 3338x⎡ ⎤ ⎡ ⎤2 2 0 0 16 2 HA m dx x dx dx EI EI EI δ = = +∫ ∫ ∫ 3 00 69.3338 3 xx EIEIEI ⎡ ⎤ ⎡ ⎤= + =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ 0H δΔ + = 920 . 13.269 69 333 HA A EI H kN EIδ −Δ = = =0HA A HAH δΔ + = 69.333 A HA EIδ Dept. of CE, GCE Kannur Dr.RajeshKN
  • 50. Example 4: Two or more redundants 60kN A B C 80kN 50kN D 3m 3m A B C 3m 3m 3m 3m 60kN 80kN 50kN 3m 3m A B C D 3m 3m 3m 3m Choose VB and Vc as the redundant Dept. of CE, GCE Kannur Dr.RajeshKN 50
  • 51. 60kN 80kN 50kN A B C D BΔ CΔB C 1kN A B D δ C BBδ CBδ 1kN A B D δ C BCδ CCδ Dept. of CE, GCE Kannur Dr.RajeshKN 0B B BB C BCV Vδ δΔ + + = 0C B CB C CCV Vδ δΔ + + =
  • 52. 60kN A B C 80kN 50kN DA B 3m 3m 3m 3m 3m 3m A B C D 150kNm 15 120kNm 60kNm 3m 15m 525kN825kN 240kNm 240kNm A B C D 360kNm 9 9 240kNm 240kNm 9m 9m 1620kN1620kN A B C D 125kNm 100kNm 50kNm Dept. of CE, GCE Kannur Dr.RajeshKN 15m 3m 687.5kN437.5kN
  • 53. 3420 8280 2325 14025BEIΔ = + + = 2790 8280 2850 13920CEIΔ = + + = D2kNm 4kNm A B C D 12m 6m 16kN20kN 2kNm 16kN20kN 96BBEIδ = 84CBEIδ = A D2kNm 4kNm A B C D 12m 6m 20kN16kN 2kNm Dept. of CE, GCE Kannur Dr.RajeshKN 84BCEIδ = 96CCEIδ =
  • 54. 0V Vδ δΔ + + = 14025 96 84 0B CV V⇒ + + =0B B BB C BCV Vδ δΔ + + = 0C B CB C CCV Vδ δΔ + + = 14025 96 84 0B CV V⇒ + + 13920 84 96 0B CV V⇒ + + =C B CB C CC B C 82BV kN= − 73.25CV kN= − ( )82BV kN= ↑ ( )73.25CV kN= ↑ ( )19.25AV kN= ↑ ( )15.5DV kN= ↑ ( )B ( )C Dept. of CE, GCE Kannur Dr.RajeshKN
  • 55. Clapeyron’s theorem of three moments 1. Uniform loading w kN m w kN m1w kN m 1 1l I A B C 2w kN m 2 2l I M 1 1,l I 2 2,l I 1 AM EI B C 1 BM EI 2 BM EI 2 CM EI A B C M/EI diagram for joint moments + B C 2 1 1 18 w l EI 2 2 2 28 w l EI Dept. of CE, GCE Kannur Dr.RajeshKN A B C M/EI diagram for simple beam moments
  • 56. To find slopes at B using Conjugate Beam Method: 2 1 1 2 2M l l M l l w l l⎡ ⎤⎡ ⎤ From span AB: 1 1 1 1 1 1 1 11 1 1 1 1 1 1 2 2 . . . . . . . 2 3 2 3 3 8 2 A B B M l l M l l w l l lV l EI EI EI ⎡ ⎤⎡ ⎤ += + ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦ 3 1 1 1 1 1 1 1 16 3 24 A B B BA M l M l w l V EI EI EI θ⇒ = + + = From span BC: 2 2 2 2 2 2 2 2 22 2 2 2 2 1 1 2 2 . . . . . . . 2 3 2 3 3 8 2 B C B M l l M l l w l l lV l EI EI EI ⎡ ⎤⎡ ⎤ += + ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦ 3 2 2 2 2 2 3 6 24 B C B BC M l M l w l V EI EI EI θ⇒ = + + = Dept. of CE, GCE Kannur Dr.RajeshKN 2 2 23 6 24EI EI EI
  • 57. BAθ A B C BA BCθ Deflected shape 0BA BC BA BCθ θ θ θ+ = ⇒ = − 33 2 2 2 21 1 1 1 3 6 246 3 24 B CA B M l M l w lM l M l w l EI EI EIEI EI EI ⎛ ⎞ + +⇒ + + = −⎜ ⎟ ⎝ ⎠2 2 21 1 1 3 6 246 3 24 EI EI EIEI EI EI ⎝ ⎠ 3 3 1 2l lM l M l w l w l⎛ ⎞1 21 2 1 1 2 2 1 21 2 1 2 2 4 4 A C B l lM l M l w l w l M EI EIEI EI EI EI ⎛ ⎞ +⇒ + + = − −⎜ ⎟ ⎝ ⎠ Dept. of CE, GCE Kannur Dr.RajeshKN
  • 58. 2. General loadingg 1a 2a A B C x x1x 2x 1 1 1 1 1 1 1 16 3 A B BA M l M l a x EI EI EI l θ = + + 2 2 2 2 2 2 2 23 6 B C BC M l M l a x EI EI EI l θ = + + 2 2 2 2 1 21 2 1 1 2 26 6 2A C l lM l M l a x a x M ⎛ ⎞ +⇒ + + = − −⎜ ⎟BA BCθ θ= − Dept. of CE, GCE Kannur Dr.RajeshKN 1 21 2 1 1 2 2 2 BM EI EIEI EI EI l EI l +⇒ + + = − −⎜ ⎟ ⎝ ⎠ BA BCθ θ
  • 59. 2. General loading with support settlement 1a 2a ;A B B C δ δ δ δ > < A B C x x1x 2x M l M l δ δ1 1 1 1 1 1 1 1 16 3 A B A B BA M l M l a x EI EI EI l l δ δ θ − = + + + 2 2 2 2 2 2 2 2 23 6 B C C B BC M l M l a x EI EI EI l l δ δ θ − = + + + BA BCθ θ= − ( ) ( )1 21 2 1 1 2 2 1 21 2 1 1 2 2 1 2 6 66 6 2 A B C BA C B l lM l M l a x a x M EI EIEI EI EI l EI l l l δ δ δ δ− −⎛ ⎞ +⇒ + + = − − − −⎜ ⎟ ⎝ ⎠ Dept. of CE, GCE Kannur Dr.RajeshKN 1 21 2 1 1 2 2 1 2l l l l⎝ ⎠
  • 60. Example 1: 20kN m 20kN m 4m A B C 4m EI is constant 3 3 l lM l M l l l⎛ ⎞ 1 2l l= 3 3 1 21 2 1 1 2 2 1 21 2 1 2 2 4 4 A C B l lM l M l w l w l M EI EIEI EI EI EI ⎛ ⎞ ++ + = − −⎜ ⎟ ⎝ ⎠ 1 2w w=2 2 4 4 B wl M = − 0A CM M= = 0A CM M 2 8 B wl M∴ = − 2 20 4 40 8 kNm × = − = − Dept. of CE, GCE Kannur Dr.RajeshKN 8 8
  • 61. Example 2: W l A B Cl l D EI is constant EI EI Span ABC 0M = EI is constant 3 3 l lM l M l l l⎛ ⎞ 1 2l l= 1 2EI EI= 0AM = 3 3 1 21 2 1 1 2 2 1 21 2 1 2 2 4 4 A C B l lM l M l w l w l M EI EIEI EI EI EI ⎛ ⎞ ++ + = − −⎜ ⎟ ⎝ ⎠ 4 0A B CM M M⇒ + + = 4 0M M⇒ + = ( )1 Dept. of CE, GCE Kannur Dr.RajeshKN 4 0B CM M⇒ + = ( )1
  • 62. Wl 1 Wl a l= l A B Cl l D Span BCD 4 Wl EI 2 2 . . 2 4 2 a l l x = = 0M ( ) 1 1 2 26 6 4 a x a x l M M M+ + 2 20DM = ( )2 1 4 6 lWl l M M l ⎛ ⎞ ⎜ ⎟ ( ) 1 1 2 2 4B C Dl M M M l l + + = − − ( )2 4 6 . . 22 4 B Cl M M l ⎛ ⎞+ = − ⎜ ⎟ ⎝ ⎠ 3 4 Wl M M ( )24 8 B CM M+ = − ( )2 Wl− Wl M Dept. of CE, GCE Kannur Dr.RajeshKN 10 C Wl M = 40 BM =( ) ( )&1 2
  • 63. 40 Wl 5 Wl A B C 40 10 Wl− D 5 10 Bending moment diagram Dept. of CE, GCE Kannur Dr.RajeshKN 63
  • 64. Example 3: 20kN m 20kN mp 6mA B C 8mEI is constant 20kN m 20kN m 6mA B C 8mImaginary span A’Aspan A A Span A’AB 1 2 0 20 w w kN m = = ' 0AM = 1 2EI EI= Span A AB 3 3 1 2' 1 2 1 1 2 2 2A B A l lM l M l w l w l M EI EI ⎛ ⎞ ++ + = − −⎜ ⎟ ⎝ ⎠ Dept. of CE, GCE Kannur Dr.RajeshKN 1 21 2 1 24 4 A EI EIEI EI EI EI⎜ ⎟ ⎝ ⎠
  • 65. 3 20 6×20 6 2 6 6 4 A BM M × × + × = − 2 180M M+ ( )12 180A BM M+ = − Span ABC ( )1 1 2 20w w kN m= = 3 3 1 21 2 1 1 2 2 1 21 2 1 2 2 4 4 A C B l lM l M l w l w l M EI EIEI EI EI EI ⎛ ⎞ ++ + = − −⎜ ⎟ ⎝ ⎠ 0CM = 1 21 2 1 2⎝ ⎠ 3 3 20 6 20 8 6 2 14 4 4 A BM M × × + × = − − 4 4 3 14 1820A BM M+ = − ( )2 ( ) ( )&1 2 28AM kNm= − 124BM kNm= − Dept. of CE, GCE Kannur Dr.RajeshKN
  • 66. Example 4 (Support settlement): 2 26320EI kN 87δ δEI is constant 20kN m 20kN m20kN m 2 26320EI kNm= 87B C mmδ δ= =EI is constant 6mA D C 3m B3m EI EI EI= =0M Span ABC 1 2EI EI EI= =0AM = ( ) ( )3 3 1 21 2 1 1 2 2 66 C BA BA C l lM l M l w l w l δ δδ δ −−⎛ ⎞ ( ) ( )1 21 2 1 1 2 2 1 21 2 1 2 1 2 66 2 4 4 C BA BA C B l lM l M l w l w l M EI EIEI EI EI EI l l δ δδ δ⎛ ⎞ ++ + = − − − −⎜ ⎟ ⎝ ⎠ ( ) ( )3 3 1 20 3 20 6 6 6 00.087 18 6 26320 4 26320 4 26320 3 6 B CM M × × ×− + = − − − − × × Dept. of CE, GCE Kannur Dr.RajeshKN 3 560.78B CM M+ = ( )1
  • 67. Span BCD 0DM = ( ) ( )3 3 1 21 2 1 1 2 2 6 6 2 4 4 B C D CB D C l lM l M l w l w l M EI EIEI EI EI EI l l δ δ δ δ− −⎛ ⎞ ++ + = − − − −⎜ ⎟ ⎝ ⎠ D 1 21 2 1 2 1 24 4EI EIEI EI EI EI l l⎜ ⎟ ⎝ ⎠ ( ) ( )3 3 1 20 6 20 3 6 0 6 0.087 6 18M M × × × − +( )6 18 26320 4 26320 4 26320 6 3 B CM M+ = − − − − × × 3 560.78B CM M+ = ( )2 140.195BM kNm= 140.195CM kNm= Alternatively, from symmetry, B CM M= Dept. of CE, GCE Kannur Dr.RajeshKN 67 3 560.78B CM M+ = 4 560.78 140.195B BM M kNm⇒ = ⇒ =
  • 68. Examples 5 (Fixed Beam)xa p es 5 ( xed ea ) P A B C l A P A B C A′ B′ l A A′ B Imaginary span A’A Imaginary span BB’span A A span BB 1 21 2 1 1 2 26 6 2A C l lM l M l a x a x M ⎛ ⎞ ++ +⎜ ⎟ Dept. of CE, GCE Kannur Dr.RajeshKN 68 1 21 2 1 1 2 2 1 21 2 1 1 2 2 2A C BM EI EIEI EI EI l EI l ++ + = − −⎜ ⎟ ⎝ ⎠
  • 69. Span A’AB 1 l ' 0AM = 4 Pl EI 2 1 . . 2 4 Pl a l l = 1 2EI EI= 4EI 2 2 l x =A B 6Pl6 2 16 A B Pl M M⇒ + = − S ABB’ ( )1 ' 0BM = 1 2EI EI= Span ABB’ 2 1 1, 8 2 Pl l a x= = 8 2 6 2 16 A B Pl M M⇒ + = − ( )2 16 ( ) ( )&1 2 A B Pl M M= = − Dept. of CE, GCE Kannur Dr.RajeshKN 69 ( ) ( )&1 2 8 A BM M
  • 70. Examples 6 (Fixed Beam) w xa p es 6 ( xed ea ) lA B CC Dept. of CE, GCE Kannur Dr.RajeshKN 70
  • 71. ENERGY PRINCIPLES BASED ON DISPLACEMENT FIELDENERGY PRINCIPLES BASED ON DISPLACEMENT FIELD Principle of Minimum Total Potential Castigliano’s Theorem (Part I)Total Potential Energy (PMTPE) Theorem (Part I) alternative forms ofalternative forms of Principle of Stationary TotalPrinciple of Stationary Total Potential Energy (PSTPE) Dept. of CE, GCE Kannur Dr.RajeshKN 71
  • 72. Principle of Stationary Total Potential Energy (PSTPE)p y gy ( ) When the displacement field in a loaded elastic structure is given a ll d bit t b ti i t i i tibilit dsmall and arbitrary perturbation, maintaining compatibility and without disturbing the associated force field, then the first variation of the total potential energy is equal to zero, if the forces are in a state of static equilibrium. Dept. of CE, GCE Kannur Dr.RajeshKN 72
  • 73. Alternative form of Principle of Stationary Total Potential EnergyAlternative form of Principle of Stationary Total Potential Energy (PSTPE) The total potential energy π in a loaded elastic structure expressed as a function of n independent displacements D1, D2, … Dn in a compatible displacement field must be rendered stationary with thecompatible displacement field must be rendered stationary, with the partial derivative of π with respect to every Dj being equal to zero, if the associated force field is to be in a state of static equilibrium. Dept. of CE, GCE Kannur Dr.RajeshKN
  • 74. Principle of Minimum Total Potential Energy (PMTPE)Principle of Minimum Total Potential Energy (PMTPE) When the displacement field in a loaded linear elastic structure is given a small and arbitrary perturbation, maintaining compatibility and without disturbing the associated force field, then the first variation of the total potential energy is equal to zero, if the forces are in ap gy q , state of static equilibrium. Castigliano’s Theorem (Part I) If the strain energy, U, in an elastic structure, subject to a system of external forces in static equilibrium, can be expressed as a functionq , p of n independent displacements D1, D2, … Dn satisfying compatibility, then the partial derivative of U with respect to every Dj will be equal to the value of the conjugate force, Fj. Dept. of CE, GCE Kannur Dr.RajeshKN 74 Dj will be equal to the value of the conjugate force, Fj.
  • 75. ENERGY PRINCIPLES BASED ON FORCE FIELDENERGY PRINCIPLES BASED ON FORCE FIELD Principle of Minimum Total Complementary Potential Castigliano’s Theorem (Part II) Complementary Potential Energy (PMTCPE) Theorem of Least Work alternative forms of Principle of StationaryPrinciple of Stationary Complementary Total Potential Energy (PSCTPE) Dept. of CE, GCE Kannur Dr.RajeshKN
  • 76. Principle of Stationary Total Complementary Potential EnergyPrinciple of Stationary Total Complementary Potential Energy (PSTCPE) When the force field in a loaded elastic structure is given a small and arbitrary perturbation, maintaining equilibrium compatibility and without disturbing the associated displacement field, then the firstg p , variation of the total complementary potential energy is equal to zero, if the displacements satisfy compatibility. Dept. of CE, GCE Kannur Dr.RajeshKN 76
  • 77. Alternative form of Principle of Stationary Total Complementary Potential Energy (PSTCPE)Potential Energy (PSTCPE) The total complementary potential energy π* in a loaded elasticp y p gy structure expressed as a function of n independent forces F1, F2, … Fn in a statically admissible force field must be rendered stationary, with the partial derivative of π* with respect to every Fj being equalw t t e pa t a de vat ve o w t espect to eve y j be g equa to zero, if the associated displacement field is to satisfy compatibility. Dept. of CE, GCE Kannur Dr.RajeshKN
  • 78. Principle of Minimum Total Complementary Potential EnergyPrinciple of Minimum Total Complementary Potential Energy (PMTCPE) When the force field in a loaded linear elastic structure is given a small and arbitrary perturbation, maintaining equilibrium compatibility and without disturbing the associated displacement field, then theg p , first variation of the total complementary potential energy is equal to zero, if the displacement satisfy compatibility. Dept. of CE, GCE Kannur Dr.RajeshKN 78
  • 79. Castigliano’s Theorem (Part II)Castigliano s Theorem (Part II) If the complementary strain energy, U*, in an elastic structure, with a kinematically admissible displacement field, is expressed as a function of n independent external forces F1, F2, … Fn satisfying equilibrium, then the partial derivative of U* with respect to every Fjq , p p y j will be equal to the value of the conjugate displacement, Dj. If the behaviour is linear elastic, U* can be replaced by U. Thus, Castigliano’s Theorem (Part II) can otherwise be stated as: “If U is the total strain energy in a linear elastic structure due to application of external forces F1 F2 F3 F at points A1 A2 A3 Aapplication of external forces F1, F2, F3, … Fn at points A1, A2, A3,…, An respectively in the directions AX1, AX2, AX3,…, AXn then the displacements at points A1, A2, A3,…, An respectively in the directions AX AX AX AX ∂U/∂F ∂U/∂F ∂U/∂F ∂U/∂F Dept. of CE, GCE Kannur Dr.RajeshKN 79 AX1, AX2, AX3,…, AXn are ∂U/∂F1, ∂U/∂F2, ∂U/∂F3,…, ∂U/∂Fn respectively.”
  • 80. Proof for Castigliano’s theorem (Part II)Proof for Castigliano s theorem (Part II) Let x1, x2, x3,… xn be deflections at points A1, A2, A3,… An due to F F F Fdue to F1, F2, F3,… Fn Total strain energy, 1 1 2 2 3 3 1 1 1 1 2 2 2 2 n nU F x F x F x F x= + + + +… (1) Let the load F1 alone be increased by 1Fδ Let 1 2 3, , , nx x x xδ δ δ δ… be the additional deflections at points A1, A2, A3,… An I i t iIncrease in strain energy, 1 1 1 2 2 3 3 1 2 n nU F F x F x F x F xδ δ δ δ δ δ⎛ ⎞ = + + + + +⎜ ⎟ ⎝ ⎠ … 2⎝ ⎠ 1 1 2 2 3 3 n nU F x F x F x F xδ δ δ δ δ= + + + +… , neglecting small quantities. Dept. of CE, GCE Kannur Dr.RajeshKN 80 (2)
  • 81. ( )1 1 2 3, , , nF F F F Fδ+ …Let are acting on the original structure ( )( ) ( ) ( ) ( ) 1 1 1 1 U U F F F F Fδ δ δ δ δ δ Total strain energy, ( )( ) ( ) ( ) ( )1 1 1 1 2 2 2 3 3 3 1 1 1 1 2 2 2 2 n n nU+ U F F x x F x x F x x F x xδ δ δ δ δ δ= + + + + + + + + +… (3) 1 1 1 1 U F F F F+ + + +(1) 1 1 2 2 3 3 2 2 2 2 n nU F x F x F x F x= + + + +…(1) 1 1 1 1 U F F F Fδ δ δ δ δ⎛ ⎞ ⎜ ⎟(3) (1) 1 1 1 1 2 2 2 2 2 2 n nU x F F x F x F xδ δ δ δ δ⎛ ⎞ = + + + +⎜ ⎟ ⎝ ⎠ …(3)-(1) ( )2 U x F F x F x F xδ δ δ δ δ= + + + + (4) 1 1 2 2 3 3 n nU F x F x F x F xδ δ δ δ δ= + + + +…(2) ( )1 1 1 1 2 22 n nU x F F x F x F xδ δ δ δ δ= + + + +… (4) Dept. of CE, GCE Kannur Dr.RajeshKN 81 1 1U x Fδ δ=(4)-(2)
  • 82. Uδ U∂ 1 1 U x F δ δ = 1 1 1 0, U When F x F δ ∂ → = ∂ 2 2 2 3 , , n n U U U Similarly, x x x F F F ∂ ∂ ∂ = = = ∂ ∂ ∂ … For example, in the case of bending, 2 2 M U dx EI ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ ∫⎝ ⎠ U M M dx F EI F δ ∂ ∂⎛ ⎞ ∴ = = ⎜ ⎟ ∂ ∂⎝ ⎠ ∫F EI F∂ ∂⎝ ⎠ Dept. of CE, GCE Kannur Dr.RajeshKN 82
  • 83. Example 1: Using Castigliano’s Theorem, analyse the continuous w kN/m p g g , y beam shown in figure. A B C / LLL w kN/m A B C / LL RB L 2 BR wL − 2 BR wL − Let RB be the redundant. Dept. of CE, GCE Kannur Dr.RajeshKN 83 B
  • 84. 2 wxR⎛ ⎞ 22 B x wxR M xwL ⎛ ⎞= −−⎜ ⎟ ⎝ ⎠ From A to B, 0Bδ = 0 B B U M M dx R EI R ∂ ∂⎛ ⎞ ⇒ = =⎜ ⎟ ∂ ∂⎝ ⎠ ∫ 2 M x R ∂ − = ∂ F th ti AC2BR∂ 2 2M M∂ ⎛ ⎞⎛ ⎞ For the entire span AC 2 2 0 0 22 2 B B M M xR x wx dx dxwLx EI R EI ∂ −⎛ ⎞⎛ ⎞ ∴ = ⇒ =− −⎜ ⎟ ⎜ ⎟ ∂⎝ ⎠ ⎝ ⎠ ∫ ∫ 5 B wL R⇒ = Dept. of CE, GCE Kannur Dr.RajeshKN 4 BR⇒
  • 85. Example 2: Using Castigliano’s Theorem analyse the frame shownExample 2: Using Castigliano s Theorem, analyse the frame shown in figure. 3 kN/3 kN/m 2mB C 3 kN/m 2mB C 2m 1m D 2m 1m D A D A VD HD VD V HA VA Let HA be the redundant. Dept. of CE, GCE Kannur Dr.RajeshKN Let HA be the redundant.
  • 86. 3 kN/m 2m 1 B C From A to B, x AM H x= − 2m 1m D AH A M x H ∂ = − ∂ A 3 AH V = − AH From B to C, 2 3⎛ ⎞HA 3 2 DV 3 AH V + 2 3 23 22 A x A xH M x H⎛ ⎞= − −+⎜ ⎟ ⎝ ⎠ 3 2 A AV = + 2 2A M x H ∂ = − ∂ F D t C M H x= M x ∂ Dept. of CE, GCE Kannur Dr.RajeshKN From D to C, x AM H x= − A x H = − ∂
  • 87. 0 M M dx ∂⎛ ⎞ ∴ ⎜ ⎟∫ 0 A dx EI H ∴ =⎜ ⎟ ∂⎝ ⎠ ∫ 2 2 1 ⎧ ⎫⎛ ⎞⎛ ⎞ ( )( ) ( )( ) 2 2 12 0 0 0 1 3 023 2 22 2 A A AA xH x x dx dx dxH x H xx Hx x EI ⎧ ⎫⎛ ⎞⎛ ⎞⇒ + + =− −−+ − −− −⎨ ⎬⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎩ ⎭ ∫ ∫ ∫ 2 2 13 3 3 2 4 2 3 2 33 03 4A A A A A A H x x H x H x x H x H x x H x x ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ + + =+ − − − − + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦0 0 03 2 12 2 16 2 3 A⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 8 8 8 4A AA A H HH H⎡ ⎤8 8 8 4 03 12 2 8 8 3 32 12 2 A AA A A A H HH H H H ⎡ ⎤+ + =+ − − − − + +⎢ ⎥⎣ ⎦ 3 3.19 2 A A H V kN= + =0.39AH kN= H Dept. of CE, GCE Kannur Dr.RajeshKN 3 2.8 2 A D H V kN= − =
  • 88. Example 4: Using Castigliano’s Theorem, analyse the truss shownp g g , y in figure. AE is constant. CD CD 10kN CD T10kN CD 3m 3m T 4m A B 4m A B T m . . 0 P L P T AE ∂ = ∂ ∑ 6.25T kN= Dept. of CE, GCE Kannur Dr.RajeshKN
  • 89. Example 4: Do the above problem using the method of consistentExample 4: Do the above problem using the method of consistent deformation. P kL′ 10kN 2 P kL AET k L ′ = − ∑ ∑ CD 3m k L AE ∑ A B 4m B P P kT′= + Dept. of CE, GCE Kannur Dr.RajeshKN
  • 90. Note 1: If there are two internal redundants in a truss in method ofNote 1: If there are two internal redundants in a truss, in method of consistent deformation, 2 P k L k L k k L′ 2 1 1 1 2 1 2 0 P k L k L k k L T T AE AE AE ′ + + =∑ ∑ ∑ 2 2 1 2 2 1 2 0 P k L k k L k L T T AE AE AE ′ + + =∑ ∑ ∑AE AE AE Note 2: If there are both internal redundants external redundants in a truss, in method of consistent deformation, 2 1 1 1 0BP k L k L k k L T V ′ + + =∑ ∑ ∑1 0BT V AE AE AE + + =∑ ∑ ∑ 2 P k L k k L k L′ Dept. of CE, GCE Kannur Dr.RajeshKN 2 1 1 0B B B B P k L k k L k L T V AE AE AE ′ + + =∑ ∑ ∑
  • 91. Example 3: Using Castigliano’s Theorem, analyse the pin-jointed h i fi 3m 4m truss shown in figure. A B C 3m 4m 400A = A 3m 500A = 400A = D 80kN Internally indeterminate to degree 1. Take force in BD as redundant. y g 0 P L P ∂ ∑ Dept. of CE, GCE Kannur Dr.RajeshKN 91 Assume force in BD is T . . 0P T AE = ∂ ∑
  • 92. cos45 sin 53.13AD CDF F=cos45 sin 53.13AD CDF F cos45 cos53.13 80AD CDF F T+ + = T 57.14 0.714T− 64.64 0.808T− sin 53.13 cos53.13 80CD CDF F T+ + = 80kN 57.14 0.714CDF T= − i 53 13 ( ) sin 53.13 57.14 0.714 64.64 0.808 cos45 ADF T T= − = − . . 0 P L P T AE ∂ = ∂ ∑ ( ) ( ) ( ) ( ) 4.243 57.14 0.714 5 64.64 0.8083 0.714 3 0.808 0 500 400 400 T TT E E E − −⎛ ⎞ ⎛ ⎞⎛ ⎞ × − + × + × − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ Dept. of CE, GCE Kannur Dr.RajeshKN 9249.09T kN∴ =
  • 93. SummarySummary Statically and kinematically indeterminate structures • Degree of static indeterminacy, Degree of kinematic indeterminacy, Force and displacement method of analysis Force method of analysis • Method of consistent deformation-Analysis of fixed and continuous beams • Clapeyron’s theorem of three moments-Analysis of fixed and continuous beams • Principle of minimum strain energy-Castigliano’s second theorem- Analysis of beams, plane trusses and plane frames. Dept. of CE, GCE Kannur Dr.RajeshKN 93