SlideShare ist ein Scribd-Unternehmen logo
1 von 26
Cosmological B−L Breaking:
(Dark) Matter & Gravitational Waves
Wilfried Buchm¨uller
DESY, Hamburg
with Valerie Domcke, Kai Schmitz & Kohei Kamada
1202.6679; 1203.0285, 1210.4105, 1304.XXX
BW2013, Vrnjaˇcka Banja, Serbia, April 2013
I. B−L breaking, inflation & dark matter
• Light neutrino masses can be explained by mixing with Majorana neutrinos
with GUT scale masses from B−L breaking (seesaw mechanism)
• Decays of heavy Majorana neutrinos natural source of baryon asymmetry
(leptogenesis; thermal (Fukugita, Yanagida ’86) or nonthermal (Lazarides, Shafi ’91) )
• In supersymmetric models with spontaneous B−L breaking, natural
connection with inflation (Copeland et al ’94; Dvali, Shafi, Schaefer ’94; ...)
• LSP (gravitino, higgsino,...) natural candidate for dark matter
• Consistent picture of inflation, baryogenesis and dark matter?
• Possible direct test: gravitational waves
1
Leptogenesis and gravitinos: for thermal leptogenesis and typical
superparticle masses, thermal production yields observed amount of DM,
Ω ˜Gh2
= C
TR
1010 GeV
100 GeV
m ˜G
m˜g
1 TeV
2
, C ∼ 0.5 ;
ΩDMh2
∼ 0.1 is natural value; but why TR ∼ TL ?
Starting point simple observation: heavy neutrino decay width
Γ0
N1
=
˜m1
8π
M1
vEW
2
∼ 103
GeV , m1 ∼ 0.01 eV , M1 ∼ 1010
GeV .
yields reheating temperature (for decaying gas of heavy neutrinos)
TR ∼ 0.2 · Γ0
N1
MP ∼ 1010
GeV ,
wanted for gravitino DM. Intriguing hint or misleading coincidence?
2
II. Spontaneous B−L breaking and false vacuum decay
Supersymmetric SM with right-handed neutrinos,
WM = hu
ij10i10jHu + hd
ij5∗
i 10jHd + hν
ij5∗
i nc
jHu + hn
i nc
inc
iS1 ,
in SU(5) notation: 10 = (q, uc
, ec
), 5∗
= (dc
, l); electroweak symmetry
breaking, Hu,d ∝ vEW , and B−L breaking,
WB−L =
√
λ
2
Φ v2
B−L − 2S1S2 ,
S1,2 = vB−L/
√
2 yields heavy neutrino masses.
Lagrangian is determined by low energy physics: quark, lepton, neutrino
masses etc, but it contains all ingredients wanted in cosmology: inflation,
leptogenesis, dark matter,..., all related!
3
Parameters of B−L breaking sector: mν =
√
m2m3 = 3 × 10−2
eV,
M1 M2,3 mS, m1 = (m†
DmD)11/M1, vB−L.
Spontaneous symmetry breaking: consider Abelian Higgs model in unitary
gauge (→ massive vector multiplet, no Wess-Zumino gauge!),
S1,2 =
1
√
2
S exp(±iT) , V = Z +
i
2g
(T − T∗
) .
Inflaton field Φ: slow motion (quantum corrections), changes mass of
‘waterfall’ field S, rapid change after critical point where mS = 0; basic
mechanism of hybrid inflation.
Shift around time-dependent background, s = 1√
2
(σ +iτ), σ →
√
2v(t)+σ
with v(t) = 1√
2
σ 2
(t, x)
1/2
x ; masses of fluctuations:
4
0
1
2
3
1
0
1
0
0.5
Φ MP
H MP
V MP
4
S / vB-L
/
/
m2
σ =
1
2
λ(3v2
(t) − v2
B−L) , m2
τ =
1
2
λ(v2
B−L + v2
(t)) , m2
φ = λv2
(t) ,
m2
ψ = λv2
(t) , m2
Z = 8g2
v2
(t) , M2
i = (hn
i )2
v2
(t) ;
time-dependent masses of B−L Higgs, inflaton, vector boson, heavy
neutrinos, all supermultiplets!
5
Constraints from cosmic strings and inflation: upper bound on string tension
(Planck Collaboration ’13)
Gµ < 3.2 × 10−7
, µ = 2πB(β)v2
B−L ,
with β = λ/(8 g2
) and B(β) = 2.4 [ln(2/β)]
−1
for β < 10−2
; further
constraint from CMB (cf. Nakayama et al ’10), yields
3 × 1015
GeV vB−L 7 × 1015
GeV ,
10−4
√
λ 10−1
.
Final choice for range of parameters (analysis within FN flavour model):
vB−L = 5 × 1015
GeV , 10−5
eV ≤ m1 ≤ 1 eV ,
109
GeV ≤ M1 ≤ 3 × 1012
GeV .
(range of m1: uncertainty of O(1) parameters)
6
Tachyonic Preheating
Hybrid inflation ends at critical value Φc of inflaton field Φ by rapid growth
of fluctuations of B−L Higgs field S (‘spinodal decomposition’):
0.001
0.01
0.1
1
5 10 15 20 25 30
<φ2(t)>1/2/v,nB(t)
time: mt
φ(t) (Tanh)
<φ2
(t)>1/2
/v (Lattice)
nB(x100) (Tanh)
nB(x100) (Lattice)
1e-07
1e-06
1e-05
0.0001
0.001
0.01
0.1
1
10
0.1 1
Occupationnumber:nk
k/m
Bosons: Lattice
Tanh
Fermions: Lattice
Tanh
in addition, particles which couple to S are produced by rapid increase of
‘waterfall field’ (Garcia-Bellido, Morales ’02); no coherent oscillations!
7
Decay of false vacuum produces long wave-length σ-modes, true vacuum
reached at time tPH (even faster decay with inflaton dynamics),
σ
2
t=tPH
= 2v2
B−L , tPH
1
2mσ
ln
32π2
λ
.
Initial state: nonrelativistic gas of σ-bosons, N2,3, ˜N2,3, A, ˜A, C (contained
in superfield Z), ... ; energy fractions (α = mX/mS, ρ0 = λv4
B−L/4):
ρB/ρ0 2 × 10−3
gs λ f(α, 1.3) , ρF /ρ0 1.5 × 10−3
gs λ f(α, 0.8) .
Time evolution: rapid N2,3, ˜N2,3, A, ˜A, C decays, yields initial radiation,
thermal N1’s and gravitinos; σ decays produce nonthermal N1’s; N1 decays
produce most of radiation and baryon asymmetry; details of evolution
described by Boltzmann equations.
8
Reheating Process
Major work: solve network of Boltzmann equations for all (super)particles;
treat nonthermal and thermal contributions differently, varying equation
of state; result: detailed time resolved description of reheating process,
prediction of baryon asymmetry and gravitino density (possibly dark matter).
Illustrative example for parameter choice
M1 = 5.4 × 1010
GeV , m1 = 4.0 × 10−2
eV ,
meG = 100 GeV , m˜g = 1 TeV ; Gµ = 2.0 × 10−7
fixes (within FN flavour model) all other masses, CP asymmetries etc.
Note: emergence of temperature plateau at intermediate times; final result:
ηB 3.7 × 10−9
ηnt
B , ΩeGh2
0.11 ,
i.e., dynamical realization of original conjecture.
9
Thermal and nonthermal number densities
aRH
i aRH aRH
f
Σ Ψ Φ
N2,3 N2,3
N1
nt
N1
nt
N1
th
N1
th
2N1
eq
R
B L
G
100
101
102
103
104
105
106
107
108
1025
1030
1035
1040
1045
1050
10 1
100
101
102
103
Scale factor a
absNa
Inverse temperature M1 T
Comoving number densites of thermal and nonthermla N1s,..., B−L,
gravitinos and radiation as functions of scale factor a.
10
Time evolution of temperature: intermediate plateau
aRH
i aRH aRH
f
100
101
102
103
104
105
106
107
108
107
108
109
1010
1011
1012
10 1
100
101
102
103
Scale factor a
TaGeV
Inverse temperature M1 T
Gravitino abundance can be understood from ‘standard formula’ and
effective ‘reheating temperature’ (determined by neutrino masses).
11
III. Gravitinos & Dark Matter
Thermal production of gravitinos is origin of DM; depending on pattern
of SUSY breaking, gravitino DM or higgsino/wino DM. Mass spectrum of
superparticles motivated ‘large’ Higgs mass measured at the LHC,
mLSP msquark,slepton meG .
LSP is typically ‘pure’ wino or higgsino (bino disfavoured, overproduction
in thermal freeze-out), almost mass degenerate with chargino. Thermal
abundance of wino (w) or higgsino (h) LSP significant for masses above
1 TeV, well approximated by (Arkani-Hamed et al ’06; Hisano et al ’07, Cirelli et al ’07)
Ωth
ew,eh
h2
= cew,eh
mew,eh
1 TeV
2
, cew = 0.014 , ceh = 0.10 ,
Heavy gravitinos (10 TeV . . . 103
TeV) consistent with BBN, τeG 24 ×
12
(10 TeV/meG)3
sec. Total higgsino/wino abundance
Ωew,ehh2
= Ω
eG
ew,eh
h2
+ Ωth
ew,eh
h2
,
Ω
eG
LSPh2
=
mLSP
meG
ΩeGh2
2.7 × 10−2 mLSP
100 GeV
TRH(M1, m1)
1010 GeV
,
with ‘reheating temperature’ determined by neutino masses (takes reheating
process into account),
TRH 1.3 × 1010
GeV
m1
0.04 eV
1/4
M1
1011 GeV
5/4
.
Requirement of LSP dark matter, i.e. ΩLSPh2
= ΩDMh2
0.11, yields
upper bound on the reheating temperature, TRH < 4.2 × 1010
GeV; lower
bound on TRH from successfull leptogenesis (depends on m1).
13
4
He
D
LSP DM
obs
10 4
10 2
100
m1 eV
101
102
103
109
1010
1011
mG
TeV
TRHGeV
h DM
obs
w DM
obs
w
h
G
10 5
10 4
10 3
10 2
10 1
100
500
1000
1500
2000
2500
3000
m1 eV
mLSPGeV
100mG
TeV
For each ‘reheating temperature’, i.e. pair (M1, m1), lower bound on
gravitino mass (taken from Kawasaki et al ’08) (left panel). Requirement of
higgsino/wino dark matter puts upper bound on LSP mass, dependent
on m1, ‘reheating temperature’ (right panel); more stringent for higgsino
mass, since freeze-out contribution larger. E.g., m1 = 0.05 eV implies
meh
<∼ 900 GeV, meG 10 TeV.
14
IV. Gravitational Waves
Relic gravitational waves are window to very early universe; contributions
from inflation, preheating and cosmic strings (Rubakov et al ’82; Garcia-Bellido and
Figueroa ’07; Vilenkin ’81; Hindmarsh et al ’12); cosmological B−L breaking: prediction
of GW spectrum with all contributions!
Perturbations in flat FRW background,
ds2
= a2
(τ)(ηµν + hµν)dxµ
dxν
, ¯hµν = hµν −
1
2
ηµνhρ
ρ ,
determined by linearized Einstein equations,
¯hµν(x, τ) + 2
a
a
¯hµν(x, τ) − 2
x
¯hµν(x, τ) = 16πGTµν(x, τ) .
Spectrum of GW background,
ΩGW (k, τ) =
1
ρc
∂ρGW (k, τ)
∂ ln k
,
15
∞
−∞
d ln k
∂ρGW (k, τ)
∂ ln k
=
1
32πG
˙hij (x, τ) ˙hij
(x, τ) ;
use initial conditions for super-horizon modes from inflation, calculate
correlation function of stress energy tensor.
Contribution from inflation (primordial spectrum, transfer function; cf.
Nakayama et al ’08):
ΩGW(k, τ) =
∆2
t
12
k2
a2
0H2
0
T2
k (τ)
=
∆2
t
12
Ωr
gk
∗
g0
∗
g0
∗,s
gk
∗,s
4/3



1
2 (keq/k)
2
, k0 k keq
1 , keq k kRH
1
2 C3
RH (kRH/k)
2
kRH k kPH
16
with boundary frequences (f = k/(2πa0)),
f0 = 3.58 × 10−19
Hz
h
0.70
,
feq = 1.57 × 10−17
Hz
Ωmh2
0.14
,
fRH = 4.25 × 10−1
Hz
TRH
107 GeV
,
fPH = 1.99 × 104
Hz
λ
10−4
1/6
vB−L
5 × 1015 GeV
2/3
TRH
107 GeV
1/3
.
Contribution from preheating (cf. Dufaux et al ’07):
ΩGW (kPH) h2
cPH (RPHHPH)2 aPH
aRH
Ωrh2 gRH
∗
g0
∗
g0
∗,s
gRH
∗,s
4/3
,
17
with characteristic scalar and vector scales
R
(s)
PH
−1
= (λ vB−L | ˙φc|)1/3
, R
(v)
PH
−1
∼ mZ = 2
√
2 g vB−L .
Contribution from cosmic strings (Abelian Higgs):
ΩGW (k)
1
6π2
Fr vB−L
MPl
4
Ωrh2



(keq/k)2
, k0 k keq
1, keq k kRH
(kRH/k)2
, kRH k
constant Fr
recently determined in numerical simulation (cf. Figueroa, Hindmarsh,
Urrestilla ’12). Result similar to contribution from inflation, but very different
normalization!
18
inflation
cosmic strings
f0
feq fRH fPH
fPH
s
fPH
v
preheating
10 20 10 15 10 10 10 5 100 105 1010
10 25
10 20
10 15
10 10
10 5 100 105 1010 1015 1020 1025
f Hz
GWh2
k Mpc 1
19
Are macroscopically long cosmic strings Nambu-Goto strings? Energy loss of
string network by ‘massive radiation’ or gravitational waves? GW radiation
from NG strings, radiated by loops of length
l(t, ti) = αti − ΓGµ(t − ti) ;
rate for amplitude h and frequency f (cf. Kuroyanagi et al ’12),
d2
R
dzdh
(f, h, z)
3
4
θ2
m
(1 + z)(α + ΓGµ)h
1
αγ2t4(z)
dV (z)
dz
Θ(1 − θm) ;
can be approximately integrated analytically over z and h; results
differs qualitatively from Abelian-Higgs prediction; five orders of magnitude
difference in normalization! Truth somewhere inbetween?
20
Abelian-Higgs Strings vs. Nambu-Goto Strings
Α 10 6
Α 10 12
Nambu Goto
Abelian Higgs
10 20 10 15 10 10 10 5 100 105 1010
10 15
10 10
10 5
10 5 100 105 1010 1015 1020 1025
f Hz
GWh2
k Mpc 1
21
Observational Prospects
78
3
4
5
6
1
2
9
inflation
AH cosmic strings
NG cosmic strings
preheating
10 20 10 15 10 10 10 5 100 105 1010
10 25
10 20
10 15
10 10
10 5
100
10 5 100 105 1010 1015 1020 1025
f Hz
GWh2
k Mpc 1
22
Summary and Outlook
• Decay of false vacuum of unbroken B-L symmetry leads to
consistent picture of inflation, baryogenesis and dark matter
(everything from heavy neutrino decays)
• Prediction: relations between neutrino and superparticle
masses for gravitino or higgsino/wino dark matter
• Possible direct test: detection of relic gravitational
wave background, may provide determination of reheating
temperature
23
(Non)thermal leptogenesis in M1 − ˜m1 plane
10 11
10 10
10 9
10 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1
100
108.5
109
109.5
1010
1010.5
1011
1011.5
1012
1012.5
1013
m1 eV
M1GeV
ΗB m1,M1
vBL5.01015
GeV
Inflation
& strings
ΗB
nt
ΗB
th
ΗB
th
ΗB
obs
ΗB
nt
ΗB
obs
ΗB ΗB
obs
Upper bound on M1 from inflation; lower bound from baryogenesis
24
Gravitino Dark Matter vs. leptogenesis
2 1010
3 1010
5 1010
7 1010
7 10101 1011
2 1011
10 5
10 4
10 3
10 2
10 1
100
5
10
20
50
100
200
500
m1 eV
mG
GeV
M1 GeV such that G h2
0.11
vBL5.01015
GeVmg1TeV
M1 GeV
ΗB
nt
ΗB
obs
ΗB ΗB
obs
Gravitino mass range: 10 GeV <∼ meG
<∼ 700 GeV; heavy neutrino mass
range: 2 × 1010
GeV <∼ M1 <∼ 2 × 1011
GeV (more stringent than inflation)
25

Weitere ähnliche Inhalte

Was ist angesagt?

Cluster aggregation with complete collisional fragmentation
Cluster aggregation with complete collisional fragmentationCluster aggregation with complete collisional fragmentation
Cluster aggregation with complete collisional fragmentation
Colm Connaughton
 
Feedback of zonal flows on Rossby-wave turbulence driven by small scale inst...
Feedback of zonal flows on  Rossby-wave turbulence driven by small scale inst...Feedback of zonal flows on  Rossby-wave turbulence driven by small scale inst...
Feedback of zonal flows on Rossby-wave turbulence driven by small scale inst...
Colm Connaughton
 
The Inverse Smoluchowski Problem, Particles In Turbulence 2011, Potsdam, Marc...
The Inverse Smoluchowski Problem, Particles In Turbulence 2011, Potsdam, Marc...The Inverse Smoluchowski Problem, Particles In Turbulence 2011, Potsdam, Marc...
The Inverse Smoluchowski Problem, Particles In Turbulence 2011, Potsdam, Marc...
Colm Connaughton
 
Large scale coherent structures and turbulence in quasi-2D hydrodynamic models
Large scale coherent structures and turbulence in quasi-2D hydrodynamic modelsLarge scale coherent structures and turbulence in quasi-2D hydrodynamic models
Large scale coherent structures and turbulence in quasi-2D hydrodynamic models
Colm Connaughton
 
Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick ...
Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick  ...Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick  ...
Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick ...
Colm Connaughton
 
Cluster-cluster aggregation with (complete) collisional fragmentation
Cluster-cluster aggregation with (complete) collisional fragmentationCluster-cluster aggregation with (complete) collisional fragmentation
Cluster-cluster aggregation with (complete) collisional fragmentation
Colm Connaughton
 
A Pedagogical Discussion on Neutrino Wave Packet Evolution
A Pedagogical Discussion on Neutrino Wave Packet EvolutionA Pedagogical Discussion on Neutrino Wave Packet Evolution
A Pedagogical Discussion on Neutrino Wave Packet Evolution
Cheng-Hsien Li
 
Nled and formation_of_astrophysical_charged_b_hs_03_june_2014
Nled and formation_of_astrophysical_charged_b_hs_03_june_2014Nled and formation_of_astrophysical_charged_b_hs_03_june_2014
Nled and formation_of_astrophysical_charged_b_hs_03_june_2014
SOCIEDAD JULIO GARAVITO
 

Was ist angesagt? (20)

Cluster aggregation with complete collisional fragmentation
Cluster aggregation with complete collisional fragmentationCluster aggregation with complete collisional fragmentation
Cluster aggregation with complete collisional fragmentation
 
Feedback of zonal flows on Rossby-wave turbulence driven by small scale inst...
Feedback of zonal flows on  Rossby-wave turbulence driven by small scale inst...Feedback of zonal flows on  Rossby-wave turbulence driven by small scale inst...
Feedback of zonal flows on Rossby-wave turbulence driven by small scale inst...
 
Epidemiology Meets Quantum: Statistics, Causality, and Bell's Theorem
Epidemiology Meets Quantum: Statistics, Causality, and Bell's TheoremEpidemiology Meets Quantum: Statistics, Causality, and Bell's Theorem
Epidemiology Meets Quantum: Statistics, Causality, and Bell's Theorem
 
Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...
Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...
Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...
 
The Inverse Smoluchowski Problem, Particles In Turbulence 2011, Potsdam, Marc...
The Inverse Smoluchowski Problem, Particles In Turbulence 2011, Potsdam, Marc...The Inverse Smoluchowski Problem, Particles In Turbulence 2011, Potsdam, Marc...
The Inverse Smoluchowski Problem, Particles In Turbulence 2011, Potsdam, Marc...
 
Large scale coherent structures and turbulence in quasi-2D hydrodynamic models
Large scale coherent structures and turbulence in quasi-2D hydrodynamic modelsLarge scale coherent structures and turbulence in quasi-2D hydrodynamic models
Large scale coherent structures and turbulence in quasi-2D hydrodynamic models
 
NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE...
NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE...NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE...
NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE...
 
Quantum information probes
Quantum information probes Quantum information probes
Quantum information probes
 
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
 
Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick ...
Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick  ...Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick  ...
Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick ...
 
Cluster-cluster aggregation with (complete) collisional fragmentation
Cluster-cluster aggregation with (complete) collisional fragmentationCluster-cluster aggregation with (complete) collisional fragmentation
Cluster-cluster aggregation with (complete) collisional fragmentation
 
A Pedagogical Discussion on Neutrino Wave Packet Evolution
A Pedagogical Discussion on Neutrino Wave Packet EvolutionA Pedagogical Discussion on Neutrino Wave Packet Evolution
A Pedagogical Discussion on Neutrino Wave Packet Evolution
 
Koc5(dba)
Koc5(dba)Koc5(dba)
Koc5(dba)
 
Light Stop Notes
Light Stop NotesLight Stop Notes
Light Stop Notes
 
resumoFinal
resumoFinalresumoFinal
resumoFinal
 
N. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark EnergyN. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark Energy
 
Nled and formation_of_astrophysical_charged_b_hs_03_june_2014
Nled and formation_of_astrophysical_charged_b_hs_03_june_2014Nled and formation_of_astrophysical_charged_b_hs_03_june_2014
Nled and formation_of_astrophysical_charged_b_hs_03_june_2014
 
Pulsar - White Dwarf Binaries as Gravity Labs
Pulsar - White Dwarf Binaries as Gravity LabsPulsar - White Dwarf Binaries as Gravity Labs
Pulsar - White Dwarf Binaries as Gravity Labs
 
Serie de dyson
Serie de dysonSerie de dyson
Serie de dyson
 
M. Serone, The Composite Higgs Paradigm
M. Serone, The Composite Higgs ParadigmM. Serone, The Composite Higgs Paradigm
M. Serone, The Composite Higgs Paradigm
 

Andere mochten auch

Andere mochten auch (20)

Cosmic adventure 5.9 Length Contraction at Rest in Visonics
Cosmic adventure 5.9 Length Contraction at Rest in VisonicsCosmic adventure 5.9 Length Contraction at Rest in Visonics
Cosmic adventure 5.9 Length Contraction at Rest in Visonics
 
PM [D03] What is there waving?
PM [D03] What is there waving?PM [D03] What is there waving?
PM [D03] What is there waving?
 
PM [D05] SK deriving the equation,
PM [D05] SK deriving the equation,PM [D05] SK deriving the equation,
PM [D05] SK deriving the equation,
 
SK nature of matter waves [3 of 3]
SK nature of matter waves [3 of 3]SK nature of matter waves [3 of 3]
SK nature of matter waves [3 of 3]
 
SK nature of matter waves [2 of 3]
SK  nature of matter waves [2 of 3]SK  nature of matter waves [2 of 3]
SK nature of matter waves [2 of 3]
 
CM [007] Galileo's Inertia
CM [007] Galileo's InertiaCM [007] Galileo's Inertia
CM [007] Galileo's Inertia
 
Cosmic Adventure 4:1-4 Earth vs Zyrkonia
Cosmic Adventure 4:1-4 Earth vs ZyrkoniaCosmic Adventure 4:1-4 Earth vs Zyrkonia
Cosmic Adventure 4:1-4 Earth vs Zyrkonia
 
CM [006] Descartes’sLaw
CM [006] Descartes’sLawCM [006] Descartes’sLaw
CM [006] Descartes’sLaw
 
PM [B10] In comes Euler
PM [B10] In comes EulerPM [B10] In comes Euler
PM [B10] In comes Euler
 
Cosmic Adventure 3.11 Einstein, Relativity, & Visonics
Cosmic Adventure 3.11 Einstein, Relativity, & VisonicsCosmic Adventure 3.11 Einstein, Relativity, & Visonics
Cosmic Adventure 3.11 Einstein, Relativity, & Visonics
 
PM [B09] The Trigo Companions
PM [B09] The Trigo CompanionsPM [B09] The Trigo Companions
PM [B09] The Trigo Companions
 
Ch08 lecture
Ch08 lectureCh08 lecture
Ch08 lecture
 
CA 5.11 Velocity Transform in Relativity & Visonics
CA 5.11 Velocity Transform in Relativity & VisonicsCA 5.11 Velocity Transform in Relativity & Visonics
CA 5.11 Velocity Transform in Relativity & Visonics
 
Cosmic Adventure 5.5 Relativistic Length Contraction
Cosmic Adventure 5.5 Relativistic Length ContractionCosmic Adventure 5.5 Relativistic Length Contraction
Cosmic Adventure 5.5 Relativistic Length Contraction
 
SK nature of matter waves [1 of 3]
SK  nature of matter waves [1 of 3]SK  nature of matter waves [1 of 3]
SK nature of matter waves [1 of 3]
 
Cosmic Adventure 3.9-10 World of Finite Light Speed
Cosmic Adventure 3.9-10 World of Finite Light SpeedCosmic Adventure 3.9-10 World of Finite Light Speed
Cosmic Adventure 3.9-10 World of Finite Light Speed
 
EPSC Module 3 Unit 1
EPSC Module 3 Unit 1EPSC Module 3 Unit 1
EPSC Module 3 Unit 1
 
PM [D02] de Broglie deriving the Equation
PM [D02] de Broglie deriving the EquationPM [D02] de Broglie deriving the Equation
PM [D02] de Broglie deriving the Equation
 
PM [D01] Matter Waves
PM [D01] Matter WavesPM [D01] Matter Waves
PM [D01] Matter Waves
 
CA 5.12 Acceleration Transformation
CA 5.12 Acceleration TransformationCA 5.12 Acceleration Transformation
CA 5.12 Acceleration Transformation
 

Ähnlich wie W. Buchmüller: Cosmological B-L Breaking: Baryon Asymmetry, Dark Matter and Gravitational Waves

Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012Nonlinear ele...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012Nonlinear ele...Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012Nonlinear ele...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012Nonlinear ele...
SOCIEDAD JULIO GARAVITO
 

Ähnlich wie W. Buchmüller: Cosmological B-L Breaking: Baryon Asymmetry, Dark Matter and Gravitational Waves (20)

Alexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusAlexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present status
 
Basics Nuclear Physics concepts
Basics Nuclear Physics conceptsBasics Nuclear Physics concepts
Basics Nuclear Physics concepts
 
N. Bilic - "Hamiltonian Method in the Braneworld" 2/3
N. Bilic - "Hamiltonian Method in the Braneworld" 2/3N. Bilic - "Hamiltonian Method in the Braneworld" 2/3
N. Bilic - "Hamiltonian Method in the Braneworld" 2/3
 
Nuclear Basics Summer 2010
Nuclear Basics Summer 2010Nuclear Basics Summer 2010
Nuclear Basics Summer 2010
 
UCI Seminar
UCI SeminarUCI Seminar
UCI Seminar
 
Manuscript 1334
Manuscript 1334Manuscript 1334
Manuscript 1334
 
Manuscript 1334-1
Manuscript 1334-1Manuscript 1334-1
Manuscript 1334-1
 
Enric Verdaguer-Simposio Internacional sobre Solitón
Enric Verdaguer-Simposio Internacional sobre SolitónEnric Verdaguer-Simposio Internacional sobre Solitón
Enric Verdaguer-Simposio Internacional sobre Solitón
 
Gravitational Collider Physics
Gravitational Collider PhysicsGravitational Collider Physics
Gravitational Collider Physics
 
Starobinsky astana 2017
Starobinsky astana 2017Starobinsky astana 2017
Starobinsky astana 2017
 
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
 
Shiba states from BdG
Shiba states from BdGShiba states from BdG
Shiba states from BdG
 
Specific aspects of the evolution of antimatter globular clusters domains
Specific aspects of the evolution of antimatter globular clusters domainsSpecific aspects of the evolution of antimatter globular clusters domains
Specific aspects of the evolution of antimatter globular clusters domains
 
Part VIII - The Standard Model
Part VIII - The Standard ModelPart VIII - The Standard Model
Part VIII - The Standard Model
 
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
 
Huterer_UM_colloq
Huterer_UM_colloqHuterer_UM_colloq
Huterer_UM_colloq
 
Studies on Thin-shells and Thin-shellWormholes
Studies on Thin-shells and Thin-shellWormholesStudies on Thin-shells and Thin-shellWormholes
Studies on Thin-shells and Thin-shellWormholes
 
Hidden Symmetries and Their Consequences in the Hubbard Model of t2g Electrons
Hidden Symmetries and Their Consequences in the Hubbard Model of t2g ElectronsHidden Symmetries and Their Consequences in the Hubbard Model of t2g Electrons
Hidden Symmetries and Their Consequences in the Hubbard Model of t2g Electrons
 
R. Jimenez: Fundamental Physics Beyond the Standard Model from Astronomical O...
R. Jimenez: Fundamental Physics Beyond the Standard Model from Astronomical O...R. Jimenez: Fundamental Physics Beyond the Standard Model from Astronomical O...
R. Jimenez: Fundamental Physics Beyond the Standard Model from Astronomical O...
 
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012Nonlinear ele...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012Nonlinear ele...Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012Nonlinear ele...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012Nonlinear ele...
 

Mehr von SEENET-MTP

SEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 yearsSEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 years
SEENET-MTP
 

Mehr von SEENET-MTP (20)

SEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 yearsSEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 years
 
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
 
Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"
 
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
 
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
 
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
 
Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"
 
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
 
Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"
 
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
 
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
 
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
 
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
 
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
 
Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"
 
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
 
Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"
 
Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"
 
Loriano Bonora "HS theories from effective actions"
Loriano Bonora "HS theories from effective actions"Loriano Bonora "HS theories from effective actions"
Loriano Bonora "HS theories from effective actions"
 
Borut Bajc "Asymptotic safety"
Borut Bajc "Asymptotic safety"Borut Bajc "Asymptotic safety"
Borut Bajc "Asymptotic safety"
 

Kürzlich hochgeladen

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 

Kürzlich hochgeladen (20)

Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 

W. Buchmüller: Cosmological B-L Breaking: Baryon Asymmetry, Dark Matter and Gravitational Waves

  • 1. Cosmological B−L Breaking: (Dark) Matter & Gravitational Waves Wilfried Buchm¨uller DESY, Hamburg with Valerie Domcke, Kai Schmitz & Kohei Kamada 1202.6679; 1203.0285, 1210.4105, 1304.XXX BW2013, Vrnjaˇcka Banja, Serbia, April 2013
  • 2. I. B−L breaking, inflation & dark matter • Light neutrino masses can be explained by mixing with Majorana neutrinos with GUT scale masses from B−L breaking (seesaw mechanism) • Decays of heavy Majorana neutrinos natural source of baryon asymmetry (leptogenesis; thermal (Fukugita, Yanagida ’86) or nonthermal (Lazarides, Shafi ’91) ) • In supersymmetric models with spontaneous B−L breaking, natural connection with inflation (Copeland et al ’94; Dvali, Shafi, Schaefer ’94; ...) • LSP (gravitino, higgsino,...) natural candidate for dark matter • Consistent picture of inflation, baryogenesis and dark matter? • Possible direct test: gravitational waves 1
  • 3. Leptogenesis and gravitinos: for thermal leptogenesis and typical superparticle masses, thermal production yields observed amount of DM, Ω ˜Gh2 = C TR 1010 GeV 100 GeV m ˜G m˜g 1 TeV 2 , C ∼ 0.5 ; ΩDMh2 ∼ 0.1 is natural value; but why TR ∼ TL ? Starting point simple observation: heavy neutrino decay width Γ0 N1 = ˜m1 8π M1 vEW 2 ∼ 103 GeV , m1 ∼ 0.01 eV , M1 ∼ 1010 GeV . yields reheating temperature (for decaying gas of heavy neutrinos) TR ∼ 0.2 · Γ0 N1 MP ∼ 1010 GeV , wanted for gravitino DM. Intriguing hint or misleading coincidence? 2
  • 4. II. Spontaneous B−L breaking and false vacuum decay Supersymmetric SM with right-handed neutrinos, WM = hu ij10i10jHu + hd ij5∗ i 10jHd + hν ij5∗ i nc jHu + hn i nc inc iS1 , in SU(5) notation: 10 = (q, uc , ec ), 5∗ = (dc , l); electroweak symmetry breaking, Hu,d ∝ vEW , and B−L breaking, WB−L = √ λ 2 Φ v2 B−L − 2S1S2 , S1,2 = vB−L/ √ 2 yields heavy neutrino masses. Lagrangian is determined by low energy physics: quark, lepton, neutrino masses etc, but it contains all ingredients wanted in cosmology: inflation, leptogenesis, dark matter,..., all related! 3
  • 5. Parameters of B−L breaking sector: mν = √ m2m3 = 3 × 10−2 eV, M1 M2,3 mS, m1 = (m† DmD)11/M1, vB−L. Spontaneous symmetry breaking: consider Abelian Higgs model in unitary gauge (→ massive vector multiplet, no Wess-Zumino gauge!), S1,2 = 1 √ 2 S exp(±iT) , V = Z + i 2g (T − T∗ ) . Inflaton field Φ: slow motion (quantum corrections), changes mass of ‘waterfall’ field S, rapid change after critical point where mS = 0; basic mechanism of hybrid inflation. Shift around time-dependent background, s = 1√ 2 (σ +iτ), σ → √ 2v(t)+σ with v(t) = 1√ 2 σ 2 (t, x) 1/2 x ; masses of fluctuations: 4
  • 6. 0 1 2 3 1 0 1 0 0.5 Φ MP H MP V MP 4 S / vB-L / / m2 σ = 1 2 λ(3v2 (t) − v2 B−L) , m2 τ = 1 2 λ(v2 B−L + v2 (t)) , m2 φ = λv2 (t) , m2 ψ = λv2 (t) , m2 Z = 8g2 v2 (t) , M2 i = (hn i )2 v2 (t) ; time-dependent masses of B−L Higgs, inflaton, vector boson, heavy neutrinos, all supermultiplets! 5
  • 7. Constraints from cosmic strings and inflation: upper bound on string tension (Planck Collaboration ’13) Gµ < 3.2 × 10−7 , µ = 2πB(β)v2 B−L , with β = λ/(8 g2 ) and B(β) = 2.4 [ln(2/β)] −1 for β < 10−2 ; further constraint from CMB (cf. Nakayama et al ’10), yields 3 × 1015 GeV vB−L 7 × 1015 GeV , 10−4 √ λ 10−1 . Final choice for range of parameters (analysis within FN flavour model): vB−L = 5 × 1015 GeV , 10−5 eV ≤ m1 ≤ 1 eV , 109 GeV ≤ M1 ≤ 3 × 1012 GeV . (range of m1: uncertainty of O(1) parameters) 6
  • 8. Tachyonic Preheating Hybrid inflation ends at critical value Φc of inflaton field Φ by rapid growth of fluctuations of B−L Higgs field S (‘spinodal decomposition’): 0.001 0.01 0.1 1 5 10 15 20 25 30 <φ2(t)>1/2/v,nB(t) time: mt φ(t) (Tanh) <φ2 (t)>1/2 /v (Lattice) nB(x100) (Tanh) nB(x100) (Lattice) 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10 0.1 1 Occupationnumber:nk k/m Bosons: Lattice Tanh Fermions: Lattice Tanh in addition, particles which couple to S are produced by rapid increase of ‘waterfall field’ (Garcia-Bellido, Morales ’02); no coherent oscillations! 7
  • 9. Decay of false vacuum produces long wave-length σ-modes, true vacuum reached at time tPH (even faster decay with inflaton dynamics), σ 2 t=tPH = 2v2 B−L , tPH 1 2mσ ln 32π2 λ . Initial state: nonrelativistic gas of σ-bosons, N2,3, ˜N2,3, A, ˜A, C (contained in superfield Z), ... ; energy fractions (α = mX/mS, ρ0 = λv4 B−L/4): ρB/ρ0 2 × 10−3 gs λ f(α, 1.3) , ρF /ρ0 1.5 × 10−3 gs λ f(α, 0.8) . Time evolution: rapid N2,3, ˜N2,3, A, ˜A, C decays, yields initial radiation, thermal N1’s and gravitinos; σ decays produce nonthermal N1’s; N1 decays produce most of radiation and baryon asymmetry; details of evolution described by Boltzmann equations. 8
  • 10. Reheating Process Major work: solve network of Boltzmann equations for all (super)particles; treat nonthermal and thermal contributions differently, varying equation of state; result: detailed time resolved description of reheating process, prediction of baryon asymmetry and gravitino density (possibly dark matter). Illustrative example for parameter choice M1 = 5.4 × 1010 GeV , m1 = 4.0 × 10−2 eV , meG = 100 GeV , m˜g = 1 TeV ; Gµ = 2.0 × 10−7 fixes (within FN flavour model) all other masses, CP asymmetries etc. Note: emergence of temperature plateau at intermediate times; final result: ηB 3.7 × 10−9 ηnt B , ΩeGh2 0.11 , i.e., dynamical realization of original conjecture. 9
  • 11. Thermal and nonthermal number densities aRH i aRH aRH f Σ Ψ Φ N2,3 N2,3 N1 nt N1 nt N1 th N1 th 2N1 eq R B L G 100 101 102 103 104 105 106 107 108 1025 1030 1035 1040 1045 1050 10 1 100 101 102 103 Scale factor a absNa Inverse temperature M1 T Comoving number densites of thermal and nonthermla N1s,..., B−L, gravitinos and radiation as functions of scale factor a. 10
  • 12. Time evolution of temperature: intermediate plateau aRH i aRH aRH f 100 101 102 103 104 105 106 107 108 107 108 109 1010 1011 1012 10 1 100 101 102 103 Scale factor a TaGeV Inverse temperature M1 T Gravitino abundance can be understood from ‘standard formula’ and effective ‘reheating temperature’ (determined by neutrino masses). 11
  • 13. III. Gravitinos & Dark Matter Thermal production of gravitinos is origin of DM; depending on pattern of SUSY breaking, gravitino DM or higgsino/wino DM. Mass spectrum of superparticles motivated ‘large’ Higgs mass measured at the LHC, mLSP msquark,slepton meG . LSP is typically ‘pure’ wino or higgsino (bino disfavoured, overproduction in thermal freeze-out), almost mass degenerate with chargino. Thermal abundance of wino (w) or higgsino (h) LSP significant for masses above 1 TeV, well approximated by (Arkani-Hamed et al ’06; Hisano et al ’07, Cirelli et al ’07) Ωth ew,eh h2 = cew,eh mew,eh 1 TeV 2 , cew = 0.014 , ceh = 0.10 , Heavy gravitinos (10 TeV . . . 103 TeV) consistent with BBN, τeG 24 × 12
  • 14. (10 TeV/meG)3 sec. Total higgsino/wino abundance Ωew,ehh2 = Ω eG ew,eh h2 + Ωth ew,eh h2 , Ω eG LSPh2 = mLSP meG ΩeGh2 2.7 × 10−2 mLSP 100 GeV TRH(M1, m1) 1010 GeV , with ‘reheating temperature’ determined by neutino masses (takes reheating process into account), TRH 1.3 × 1010 GeV m1 0.04 eV 1/4 M1 1011 GeV 5/4 . Requirement of LSP dark matter, i.e. ΩLSPh2 = ΩDMh2 0.11, yields upper bound on the reheating temperature, TRH < 4.2 × 1010 GeV; lower bound on TRH from successfull leptogenesis (depends on m1). 13
  • 15. 4 He D LSP DM obs 10 4 10 2 100 m1 eV 101 102 103 109 1010 1011 mG TeV TRHGeV h DM obs w DM obs w h G 10 5 10 4 10 3 10 2 10 1 100 500 1000 1500 2000 2500 3000 m1 eV mLSPGeV 100mG TeV For each ‘reheating temperature’, i.e. pair (M1, m1), lower bound on gravitino mass (taken from Kawasaki et al ’08) (left panel). Requirement of higgsino/wino dark matter puts upper bound on LSP mass, dependent on m1, ‘reheating temperature’ (right panel); more stringent for higgsino mass, since freeze-out contribution larger. E.g., m1 = 0.05 eV implies meh <∼ 900 GeV, meG 10 TeV. 14
  • 16. IV. Gravitational Waves Relic gravitational waves are window to very early universe; contributions from inflation, preheating and cosmic strings (Rubakov et al ’82; Garcia-Bellido and Figueroa ’07; Vilenkin ’81; Hindmarsh et al ’12); cosmological B−L breaking: prediction of GW spectrum with all contributions! Perturbations in flat FRW background, ds2 = a2 (τ)(ηµν + hµν)dxµ dxν , ¯hµν = hµν − 1 2 ηµνhρ ρ , determined by linearized Einstein equations, ¯hµν(x, τ) + 2 a a ¯hµν(x, τ) − 2 x ¯hµν(x, τ) = 16πGTµν(x, τ) . Spectrum of GW background, ΩGW (k, τ) = 1 ρc ∂ρGW (k, τ) ∂ ln k , 15
  • 17. ∞ −∞ d ln k ∂ρGW (k, τ) ∂ ln k = 1 32πG ˙hij (x, τ) ˙hij (x, τ) ; use initial conditions for super-horizon modes from inflation, calculate correlation function of stress energy tensor. Contribution from inflation (primordial spectrum, transfer function; cf. Nakayama et al ’08): ΩGW(k, τ) = ∆2 t 12 k2 a2 0H2 0 T2 k (τ) = ∆2 t 12 Ωr gk ∗ g0 ∗ g0 ∗,s gk ∗,s 4/3    1 2 (keq/k) 2 , k0 k keq 1 , keq k kRH 1 2 C3 RH (kRH/k) 2 kRH k kPH 16
  • 18. with boundary frequences (f = k/(2πa0)), f0 = 3.58 × 10−19 Hz h 0.70 , feq = 1.57 × 10−17 Hz Ωmh2 0.14 , fRH = 4.25 × 10−1 Hz TRH 107 GeV , fPH = 1.99 × 104 Hz λ 10−4 1/6 vB−L 5 × 1015 GeV 2/3 TRH 107 GeV 1/3 . Contribution from preheating (cf. Dufaux et al ’07): ΩGW (kPH) h2 cPH (RPHHPH)2 aPH aRH Ωrh2 gRH ∗ g0 ∗ g0 ∗,s gRH ∗,s 4/3 , 17
  • 19. with characteristic scalar and vector scales R (s) PH −1 = (λ vB−L | ˙φc|)1/3 , R (v) PH −1 ∼ mZ = 2 √ 2 g vB−L . Contribution from cosmic strings (Abelian Higgs): ΩGW (k) 1 6π2 Fr vB−L MPl 4 Ωrh2    (keq/k)2 , k0 k keq 1, keq k kRH (kRH/k)2 , kRH k constant Fr recently determined in numerical simulation (cf. Figueroa, Hindmarsh, Urrestilla ’12). Result similar to contribution from inflation, but very different normalization! 18
  • 20. inflation cosmic strings f0 feq fRH fPH fPH s fPH v preheating 10 20 10 15 10 10 10 5 100 105 1010 10 25 10 20 10 15 10 10 10 5 100 105 1010 1015 1020 1025 f Hz GWh2 k Mpc 1 19
  • 21. Are macroscopically long cosmic strings Nambu-Goto strings? Energy loss of string network by ‘massive radiation’ or gravitational waves? GW radiation from NG strings, radiated by loops of length l(t, ti) = αti − ΓGµ(t − ti) ; rate for amplitude h and frequency f (cf. Kuroyanagi et al ’12), d2 R dzdh (f, h, z) 3 4 θ2 m (1 + z)(α + ΓGµ)h 1 αγ2t4(z) dV (z) dz Θ(1 − θm) ; can be approximately integrated analytically over z and h; results differs qualitatively from Abelian-Higgs prediction; five orders of magnitude difference in normalization! Truth somewhere inbetween? 20
  • 22. Abelian-Higgs Strings vs. Nambu-Goto Strings Α 10 6 Α 10 12 Nambu Goto Abelian Higgs 10 20 10 15 10 10 10 5 100 105 1010 10 15 10 10 10 5 10 5 100 105 1010 1015 1020 1025 f Hz GWh2 k Mpc 1 21
  • 23. Observational Prospects 78 3 4 5 6 1 2 9 inflation AH cosmic strings NG cosmic strings preheating 10 20 10 15 10 10 10 5 100 105 1010 10 25 10 20 10 15 10 10 10 5 100 10 5 100 105 1010 1015 1020 1025 f Hz GWh2 k Mpc 1 22
  • 24. Summary and Outlook • Decay of false vacuum of unbroken B-L symmetry leads to consistent picture of inflation, baryogenesis and dark matter (everything from heavy neutrino decays) • Prediction: relations between neutrino and superparticle masses for gravitino or higgsino/wino dark matter • Possible direct test: detection of relic gravitational wave background, may provide determination of reheating temperature 23
  • 25. (Non)thermal leptogenesis in M1 − ˜m1 plane 10 11 10 10 10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 100 108.5 109 109.5 1010 1010.5 1011 1011.5 1012 1012.5 1013 m1 eV M1GeV ΗB m1,M1 vBL5.01015 GeV Inflation & strings ΗB nt ΗB th ΗB th ΗB obs ΗB nt ΗB obs ΗB ΗB obs Upper bound on M1 from inflation; lower bound from baryogenesis 24
  • 26. Gravitino Dark Matter vs. leptogenesis 2 1010 3 1010 5 1010 7 1010 7 10101 1011 2 1011 10 5 10 4 10 3 10 2 10 1 100 5 10 20 50 100 200 500 m1 eV mG GeV M1 GeV such that G h2 0.11 vBL5.01015 GeVmg1TeV M1 GeV ΗB nt ΗB obs ΗB ΗB obs Gravitino mass range: 10 GeV <∼ meG <∼ 700 GeV; heavy neutrino mass range: 2 × 1010 GeV <∼ M1 <∼ 2 × 1011 GeV (more stringent than inflation) 25