SlideShare ist ein Scribd-Unternehmen logo
1 von 52
LEPTOQUARK MASS LIMIT IN SU(5)*
Ilja Doršner
University of Sarajevo, Bosnia and Herzegovina
BALKAN WORKSHOP 2013 — BW2013
Vrnjačka Banja, Serbia
April 28, 2013
I. Doršner, Phys. Rev. D 86:055009, 2012, 1206.5998;
I. Doršner, S. Fajfer and N. Košnik, Phys. Rev. D 86:015013, 2012, 1204.0674.
*
• MINIMAL UNIFICATION OF MATTER
THE GEORGI-GLASHOW SU(5) SCENARIO
• d = 6 PROTON DECAY OPERATORS
SCALAR CONTRIBUTIONS
• MINIMAL VIABLE SU(5) UNIFICATION
• p-DECAY PREDICTIONS
SCALAR CONTRIBUTIONS
OUTLINE
THE STANDARD MODEL COMPRISES 15 FERMIONS.
THE GEORGI-GLASHOW SU(5) MODEL*
*See talk by Borut Bajc.
SU(5) SCENARIO*
*H. Georgi and S.L. Glashow (1974).
LEPTONS
QUARKS
FIFTEEN FERMIONS OF THE STANDARD MODEL:
*H. Georgi and S.L. Glashow (1974).
LEPTONS
QUARKS
SU(5) SCENARIO*
FIFTEEN FERMIONS OF THE STANDARD MODEL:
*H. Georgi and S.L. Glashow (1974).
LEPTONS
QUARKS
FIFTEEN FERMIONS OF THE STANDARD MODEL:
SU(5) SCENARIO*
FERMION MASSES
(SCALAR REPRESENTATIONS IN THE MINIMAL SU(5))
&
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
NOTATION
(VACUUM EXPECTATION VALUE)
MD = Y1v⇤
45
1
2
Y3v⇤
5
ME = 3Y T
1 v⇤
45
1
2
Y T
3 v⇤
5
(Y1)ij10i5j45⇤
(Y3)ij10i5j5⇤
h4515
1 i = h4525
2 i = h4535
3 i = v45/
p
2
E†
RDLMdiag
D Mdiag
E ET
L D⇤
R = 4Y1v45
h55
i = v5/
p
2
|v5|2
/2 + 12|v45|2
= v2
t ¯t
(g 2)µ
45 2 126
&
*H. Georgi and S.L. Glashow (1974).
WHAT GOES WRONG WITH SU(5)?*
FERMION MASSES*
v = 246 GeV
Y 10
ij 10i10j45
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
ME = 3Y 5 T
v⇤
45
1 5 T ⇤
1
|v5|2
/2 + 12|v45|2
= v2
v = 246 GeV
Y 10
ij 10i10j45
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
Y 10
ij 10i10j45
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
ME = 3Y 5 T
v⇤
45
ME =
1
2
Y 5 T
v⇤
5
p 5 5 T
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
ME = 3Y 5 T
v⇤
45
ME =
1
2
Y 5 T
v⇤
5
MU = 2
p
2(Y 5
Y 5 T
)v45
p 10 10 T
45
ME =
1
2
Y 5 T
v⇤
5
MU = 2
p
2(Y 5
Y 5 T
)v45
MU =
p
2(Y 10
+ Y 10 T
)v5
10 ⇥ 10 = 5 45 : MU
10 ⇥ 5 = 5 45 : ME, MD
10+1
⇥ 10+1
= 5
+2
45
+2
: MD
10+1
⇥ 5
3
= 5 2
45 2
: MU
3 3 6 6
*See talk by Borut Bajc.
FERMION MASSES
v = 246 GeV
Y 10
ij 10i10j45
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
ME = 3Y 5 T
v⇤
45
1 5 T ⇤
1
|v5|2
/2 + 12|v45|2
= v2
v = 246 GeV
Y 10
ij 10i10j45
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
Y 10
ij 10i10j45
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
ME = 3Y 5 T
v⇤
45
ME =
1
2
Y 5 T
v⇤
5
p 5 5 T
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
ME = 3Y 5 T
v⇤
45
ME =
1
2
Y 5 T
v⇤
5
MU = 2
p
2(Y 5
Y 5 T
)v45
p 10 10 T
45
ME =
1
2
Y 5 T
v⇤
5
MU = 2
p
2(Y 5
Y 5 T
)v45
MU =
p
2(Y 10
+ Y 10 T
)v5
10 ⇥ 10 = 5 45 : MU
10 ⇥ 5 = 5 45 : ME, MD
10+1
⇥ 10+1
= 5
+2
45
+2
: MD
10+1
⇥ 5
3
= 5 2
45 2
: MU
3 3 6 6
FERMION MASSES
v = 246 GeV
Y 10
ij 10i10j45
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
ME = 3Y 5 T
v⇤
45
1 5 T ⇤
1
|v5|2
/2 + 12|v45|2
= v2
v = 246 GeV
Y 10
ij 10i10j45
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
Y 10
ij 10i10j45
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
ME = 3Y 5 T
v⇤
45
ME =
1
2
Y 5 T
v⇤
5
p 5 5 T
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
ME = 3Y 5 T
v⇤
45
ME =
1
2
Y 5 T
v⇤
5
MU = 2
p
2(Y 5
Y 5 T
)v45
p 10 10 T
45
ME =
1
2
Y 5 T
v⇤
5
MU = 2
p
2(Y 5
Y 5 T
)v45
MU =
p
2(Y 10
+ Y 10 T
)v5
10 ⇥ 10 = 5 45 : MU
10 ⇥ 5 = 5 45 : ME, MD
10+1
⇥ 10+1
= 5
+2
45
+2
: MD
10+1
⇥ 5
3
= 5 2
45 2
: MU
3 3 6 6
FERMION MASSES
v = 246 GeV
Y 10
ij 10i10j45
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
ME = 3Y 5 T
v⇤
45
1 5 T ⇤
1
|v5|2
/2 + 12|v45|2
= v2
v = 246 GeV
Y 10
ij 10i10j45
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
Y 10
ij 10i10j45
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
ME = 3Y 5 T
v⇤
45
ME =
1
2
Y 5 T
v⇤
5
p 5 5 T
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
ME = 3Y 5 T
v⇤
45
ME =
1
2
Y 5 T
v⇤
5
MU = 2
p
2(Y 5
Y 5 T
)v45
p 10 10 T
45
ME =
1
2
Y 5 T
v⇤
5
MU = 2
p
2(Y 5
Y 5 T
)v45
MU =
p
2(Y 10
+ Y 10 T
)v5
10 ⇥ 10 = 5 45 : MU
10 ⇥ 5 = 5 45 : ME, MD
10+1
⇥ 10+1
= 5
+2
45
+2
: MD
10+1
⇥ 5
3
= 5 2
45 2
: MU
3 3 6 6
NOTATION
(MASS MATRICES AND UNITARY TRANSFORMATIONS)
UP-TYPE QUARKS, DOWN-TYPE QUARKS AND CHARGED LEPTONS:
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
5 =
0
@
H
1
A
(p ! e+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)13m⌧ mb
2
*H. Georgi and S.L. Glashow (1974).
IS UNIFICATION WRONG WITHIN SU(5)?*
1
↵ 1
1
(p ! e+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)13m⌧ mb
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)12m⌧ ms
2
(p ! e+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
mb(VUD)13
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
ms(VUD)12
2
(p ! e+
⇡0
) ⇠
↵2
(VUD)11[mu +
3
md] +
1
(V †
UDU⇤
2 Mdiag
E U†
2 )11
2
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
1
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
*H. Georgi and S.L. Glashow (1974).
50
M 1012
GeV
24 = (⌃8, ⌃3, ⌃(3,2), ⌃(¯3,2), ⌃24)
✏abcuT
a iCub j
3
3 c
10i 5i , i = 1, 2, 3
24 5 15
16i , i = 1, 2, 3
210 10 126 126
120
⌃3 = (1, 3, 0)
a = (1, 3, 1)
b = (3, 2, 1/6)
ADDRESSING NEUTRINO MASSES ALSO ADDRESSES UNIFICATION
IN A SATISFACTORY MANNER!
NEUTRINO MASSES WITHIN SU(5)?*
¶I. Doršner and P. Fileviez Pérez, Nucl. Phys. B 723:53-76, 2005, hep-ph/0504276.
‡B. Bajc and G. Senjanović, JHEP 0708 014, 2007, hep-ph/0612029.
‡¶
*See talk by Andrea Romanino.
UNIFICATION IN SU(5)*
1
↵ 1
1
(p ! e+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)13m⌧ mb
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)12m⌧ ms
2
(p ! e+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
mb(VUD)13
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
ms(VUD)12
2
(p ! e+
⇡0
) ⇠
↵2
(VUD)11[mu +
3
md] +
1
(V †
UDU⇤
2 Mdiag
E U†
2 )11
2
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
1
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
1
↵ 1
1
(p ! e+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)13m⌧ mb
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)12m⌧ ms
2
(p ! e+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
mb(VUD)13
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
ms(VUD)12
2
(p ! e+
⇡0
) ⇠
↵2
(VUD)11[mu +
3
md] +
1
(V †
UDU⇤
2 Mdiag
E U†
2 )11
2
UNIFICATION IN SU(5)*
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
1
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
*See talk by Andrea Romanino.
1
↵ 1
1
(p ! e+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)13m⌧ mb
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)12m⌧ ms
2
(p ! e+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
mb(VUD)13
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
ms(VUD)12
2
(p ! e+
⇡0
) ⇠
↵2
(VUD)11[mu +
3
md] +
1
(V †
UDU⇤
2 Mdiag
E U†
2 )11
2
UNIFICATION IN SU(5)*
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
1
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
*See talk by Andrea Romanino.
1
↵ 1
1
(p ! e+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)13m⌧ mb
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)12m⌧ ms
2
(p ! e+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
mb(VUD)13
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
ms(VUD)12
2
(p ! e+
⇡0
) ⇠
↵2
(VUD)11[mu +
3
md] +
1
(V †
UDU⇤
2 Mdiag
E U†
2 )11
2
UNIFICATION IN SU(5)*
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
1
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
*See talk by Andrea Romanino.
1
↵ 1
1
(p ! e+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)13m⌧ mb
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)12m⌧ ms
2
(p ! e+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
mb(VUD)13
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
ms(VUD)12
2
(p ! e+
⇡0
) ⇠
↵2
(VUD)11[mu +
3
md] +
1
(V †
UDU⇤
2 Mdiag
E U†
2 )11
2
UNIFICATION IN SU(5)*
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
1
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
*See talk by Andrea Romanino.
1
↵ 1
1
(p ! e+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)13m⌧ mb
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)12m⌧ ms
2
(p ! e+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
mb(VUD)13
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
ms(VUD)12
2
(p ! e+
⇡0
) ⇠
↵2
(VUD)11[mu +
3
md] +
1
(V †
UDU⇤
2 Mdiag
E U†
2 )11
2
UNIFICATION IN SU(5)*
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
1
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
*See talk by Andrea Romanino.
1
↵ 1
1
(p ! e+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)13m⌧ mb
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)12m⌧ ms
2
(p ! e+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
mb(VUD)13
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
ms(VUD)12
2
(p ! e+
⇡0
) ⇠
↵2
(VUD)11[mu +
3
md] +
1
(V †
UDU⇤
2 Mdiag
E U†
2 )11
2
UNIFICATION IN SU(5)*
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
1
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
*See talk by Andrea Romanino.
1
↵ 1
1
(p ! e+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)13m⌧ mb
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)12m⌧ ms
2
(p ! e+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
mb(VUD)13
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
ms(VUD)12
2
(p ! e+
⇡0
) ⇠
↵2
(VUD)11[mu +
3
md] +
1
(V †
UDU⇤
2 Mdiag
E U†
2 )11
2
UNIFICATION IN SU(5)*
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
1
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
*See talk by Andrea Romanino.
1
↵ 1
1
(p ! e+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)13m⌧ mb
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)12m⌧ ms
2
(p ! e+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
mb(VUD)13
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
ms(VUD)12
2
(p ! e+
⇡0
) ⇠
↵2
(VUD)11[mu +
3
md] +
1
(V †
UDU⇤
2 Mdiag
E U†
2 )11
2
UNIFICATION IN SU(5)*
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
1
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
*See talk by Andrea Romanino.
NOTATION
(MASS MATRICES AND UNITARY TRANSFORMATIONS)
MAJORANA NEUTRINOS:
QUALITATIVE ASPECTS OF NEUTRINO PHYSICS ARE NOT
RELEVANT FOR DISCUSSION OF p-DECAY!
HOW PREDICTIVE IS SU(5) FOR p-DECAY?*
*H. Georgi and S.L. Glashow (1974).
≡ Yukawa coupling(s) ≡ Leptoquark mass
*S. Weinberg, Phys. Rev. D 22:1694, 1980.
p-DECAY WIDTHS
(SCALAR CONTRIBUTIONS*)
≡ Yukawa coupling(s) ≡ Leptoquark mass
*S. Weinberg, Phys. Rev. D 22:1694, 1980.
p-DECAY WIDTHS
(SCALAR CONTRIBUTIONS*)
≡ Yukawa coupling(s) ≡ Leptoquark mass
*S. Weinberg, Phys. Rev. D 22:1694, 1980.
p-DECAY WIDTHS
(SCALAR CONTRIBUTIONS*)
a6 ⇠
Y 2
m2
LQ
E = DC
D = EC
U = UC
U†
D = VCKM
N = I
E = I
D = I
EXPERIMENTAL INPUT
(PROTON DECAY)
5
PROCESS ⌧p (1033
years)
p ! K+
¯⌫ 4.0
p ! ⇡+
¯⌫ 0.025
p ! ⇡0
e+
13.0
j = 1, 2, 3 j = 1, 2
La ⌘ (1, 2, 1/2)a = (⌫a ea)T
eC
a ⌘ (1, 1, 1)a
Qa ⌘ (3, 2, 1/6)a = (ua da)T
≡ Yukawa coupling(s) ≡ Leptoquark mass
*S. Weinberg, Phys. Rev. D 22:1694, 1980.
p-DECAY WIDTHS
(SCALAR CONTRIBUTIONS*)
IS AN ACCURATE LIMIT?
KEY QUESTION…
LEPTOQUARK IN SU(5)
(p-DECAY MEDIATING SCALAR LEPTOQUARK)
THERE IS ONLY ONE SET OF PROTON DECAY MEDIATING
SCALARS IN THE MINIMAL SU(5) SETUP!
1
↵ 1
1
5 =
0
@
H
1
A
(p ! e+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)13m⌧ mb
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)12m⌧ ms
2
(p ! e+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
mb(VUD)13
2
(p ! µ+
⇡0
) ⇠
↵2
(V ) [m +
3
m +
1
m ]
2
3
m (V )
2
SU(5) Y 1
ij10i1j10⇤
Y 5
ij5i5j10
(3, 1, 2/3)
⌘ Y 1
ijuC T
a i C⌫C
j
⇤
a 2 1/2
✏abcY 5
ijdC T
a i CdC
b j c
Y 5
= Y 5 T
OH(d↵, e ) = a(d↵, e ) uT
L C 1
d↵ uT
L C 1
e
OH(d↵, eC
) = a(d↵, eC
) uT
L C 1
d↵ eC†
L C 1
uC⇤
OH(dC
↵ , e ) = a(dC
↵ , e ) dC
↵
†
L C 1
uC⇤
uT
L C 1
e
OH(dC
↵ , eC
) = a(dC
↵ , eC
) dC
↵
†
L C 1
uC⇤
eC†
L C 1
uC⇤
OH(d↵, d , ⌫i) = a(d↵, d , ⌫i) uT
L C 1
d↵ dT
L C 1
⌫i
OH(d↵, dC
, ⌫i) = a(d↵, dC
, ⌫i) dC†
L C 1
uC⇤
dT
↵ L C 1
⌫i
OH(d↵, dC
, ⌫C
i ) = a(d↵, dC
, ⌫C
i ) uT
L C 1
d↵ ⌫C
i
†
L C 1
dC⇤
OH(dC
↵ , dC
, ⌫C
i ) = a(dC
↵ , dC
, ⌫C
i ) dC†
L C 1
uC⇤
⌫C
i
†
L C 1
dC
↵
⇤
i(= 1, 2, 3)
d = 6 PROTON DECAY OPERATORS
(SCALAR CONTRIBUTIONS)
(3, 1, 1/3) 2 1/2
✏abcY 5
ijuC T
a i CdC
b j
⇤
c
⌘
2✏abc[Y 10
ij + Y 10
ji ]dT
a iCub j c
2 1/2
Y 5
ijuT
a iCej
⇤
a Y 1
ijdC T
a i C⌫C
j a2[Y 10
ij + Y 10
ji ]eC T
i CuC
a j a
2 1/2
Y 5
ijdT
a iC⌫j
⇤
a
SU(5) ⇥ U(1) Y 10
ij 10+1
i 10+1
j 50 2
(3, 1, 1/3) 2
⌘
12 1/2
✏abc[Y 10
ij + Y 10
ji ]uT
a iCdb j c
3 1/2
[Y 10
ij + Y 10
ji ]⌫C T
i CdC
a j a
↵, (= 1, 2)
↵ + < 4
L(= (1 5)/2)
MU,D,E ! Mdiag
U,D,E
SU(5) Y 1
ij10i1j10⇤
Y 5
ij5i5j10
(3, 1, 2/3)
⌘ Y 1
ijuC T
a i C⌫C
j
⇤
a 2 1/2
✏abcY 5
ijdC T
a i CdC
b j c
Y 5
= Y 5 T
OH(d↵, e ) = a(d↵, e ) uT
L C 1
d↵ uT
L C 1
e
OH(d↵, eC
) = a(d↵, eC
) uT
L C 1
d↵ eC†
L C 1
uC⇤
OH(dC
↵ , e ) = a(dC
↵ , e ) dC
↵
†
L C 1
uC⇤
uT
L C 1
e
OH(dC
↵ , eC
) = a(dC
↵ , eC
) dC
↵
†
L C 1
uC⇤
eC†
L C 1
uC⇤
OH(d↵, d , ⌫i) = a(d↵, d , ⌫i) uT
L C 1
d↵ dT
L C 1
⌫i
OH(d↵, dC
, ⌫i) = a(d↵, dC
, ⌫i) dC†
L C 1
uC⇤
dT
↵ L C 1
⌫i
OH(d↵, dC
, ⌫C
i ) = a(d↵, dC
, ⌫C
i ) uT
L C 1
d↵ ⌫C
i
†
L C 1
dC⇤
OH(dC
↵ , dC
, ⌫C
i ) = a(dC
↵ , dC
, ⌫C
i ) dC†
L C 1
uC⇤
⌫C
i
†
L C 1
dC
↵
⇤
i(= 1, 2, 3)
d = 6 PROTON DECAY OPERATORS
(SCALAR CONTRIBUTIONS*)
*P. Nath and P.F. Pérez, Phys. Rept. 441 (2007) 191-317.
WE WILL TAKE NEUTRINOS TO BE MAJORANA
PARTICLES IN WHAT FOLLOWS.
SU(5) Y 1
ij10i1j10⇤
Y 5
ij5i5j10
(3, 1, 2/3)
⌘ Y 1
ijuC T
a i C⌫C
j
⇤
a 2 1/2
✏abcY 5
ijdC T
a i CdC
b j c
Y 5
= Y 5 T
OH(d↵, e ) = a(d↵, e ) uT
L C 1
d↵ uT
L C 1
e
OH(d↵, eC
) = a(d↵, eC
) uT
L C 1
d↵ eC†
L C 1
uC⇤
OH(dC
↵ , e ) = a(dC
↵ , e ) dC
↵
†
L C 1
uC⇤
uT
L C 1
e
OH(dC
↵ , eC
) = a(dC
↵ , eC
) dC
↵
†
L C 1
uC⇤
eC†
L C 1
uC⇤
OH(d↵, d , ⌫i) = a(d↵, d , ⌫i) uT
L C 1
d↵ dT
L C 1
⌫i
OH(d↵, dC
, ⌫i) = a(d↵, dC
, ⌫i) dC†
L C 1
uC⇤
dT
↵ L C 1
⌫i
OH(d↵, dC
, ⌫C
i ) = a(d↵, dC
, ⌫C
i ) uT
L C 1
d↵ ⌫C
i
†
L C 1
dC⇤
OH(dC
↵ , dC
, ⌫C
i ) = a(dC
↵ , dC
, ⌫C
i ) dC†
L C 1
uC⇤
⌫C
i
†
L C 1
dC
↵
⇤
i(= 1, 2, 3)
d = 6 PROTON DECAY OPERATORS
(SCALAR CONTRIBUTIONS)
⌘ Y 1
ijuC T
a i C⌫C
j
⇤
a 2 1/2
✏abcY 5
ijdC T
a i CdC
b j c
Y 5
= Y 5 T
OH (d↵, e ) = a(d↵, e ) uT
L C 1
d↵ uT
L C 1
e
OH (d↵, eC
) = a(d↵, eC
) uT
L C 1
d↵ eC†
L C 1
uC⇤
OH (dC
↵ , e ) = a(dC
↵ , e ) dC
↵
†
L C 1
uC⇤
uT
L C 1
e
OH (dC
↵ , eC
) = a(dC
↵ , eC
) dC
↵
†
L C 1
uC⇤
eC†
L C 1
uC⇤
OH (d↵, d , ⌫i) = a(d↵, d , ⌫i) uT
L C 1
d↵ dT
L C 1
⌫i
OH (d↵, dC
, ⌫i) = a(d↵, dC
, ⌫i) dC†
L C 1
uC⇤
dT
↵ L C 1
⌫i
OH (d↵, dC
, ⌫C
i ) = a(d↵, dC
, ⌫C
i ) uT
L C 1
d↵ ⌫C
i
†
L C 1
dC⇤
OH (dC
↵ , dC
, ⌫C
i ) = a(dC
↵ , dC
, ⌫C
i ) dC†
L C 1
uC⇤
⌫C
i
†
L C 1
dC
↵
⇤
i(= 1, 2, 3)
OH(d↵, e ) = a(d↵, e ) uT
L C 1
d↵ uT
L C 1
e
OH(d↵, eC
) = a(d↵, eC
) uT
L C 1
d↵ eC†
L C 1
uC⇤
OH(dC
↵ , e ) = a(dC
↵ , e ) dC
↵
†
L C 1
uC⇤
uT
L C 1
e
OH(dC
↵ , eC
) = a(dC
↵ , eC
) dC
↵
†
L C 1
uC⇤
eC†
L C 1
uC⇤
OH(d↵, d , ⌫i) = a(d↵, d , ⌫i) uT
L C 1
d↵ dT
L C 1
⌫i
OH(d↵, dC
, ⌫i) = a(d↵, dC
, ⌫i) dC†
L C 1
uC⇤
dT
↵ L C 1
⌫i
OH(d↵, dC
, ⌫C
i ) = a(d↵, dC
, ⌫C
i ) uT
L C 1
d↵ ⌫C
i
†
L C 1
dC⇤
OH(dC
↵ , dC
, ⌫C
i ) = a(dC
↵ , dC
, ⌫C
i ) dC†
L C 1
uC⇤
⌫C
i
†
L C 1
dC
↵
⇤
i(= 1, 2, 3)
↵, (= 1, 2)
↵ + < 4
L(= (1 5)/2)
p-DECAY WIDTHS
(SCALAR CONTRIBUTIONS)
(p ! ¯⌫i⇡+
) =
(m2
p m2
⇡+ )2
32⇡f2
⇡m3
p
|↵ a(d1, dC
1 , ⌫i) + a(d1, d1, ⌫i)|2
(1 + D + F)2
(3, 1, 1/3)
(3, 3, 1/3)
(3, 1, 4/3)
(3, 1, 2/3)
SU(5) Y 10
ij 10i10j50
(3, 1, 1/3) 12 1/2
✏abc[Y 10
ij + Y 10
ji ]dT
a iCub j c
⌧ ⇠ 1
m > 1.0 ⇥ 1012
✓
↵
0.0112 GeV3
◆1/2
GeV
(p ! ⇡+
¯⌫)
(p ! K+ ¯⌫)
= 9.0
1
⌧ ⌘
⌧ ⇠ 1
PARTIAL LIFETIME
d = 6 PROTON DECAY COEFFICIENTS
(SCALAR CONTRIBUTIONS)
SU(5) ⇥ U(1) Y 1
ij10+1
i 1+5
j 10⇤ 6
Y 5
ij5i 5j 10+6
(3, 1, 2/3)+6
⌘ Y 1
ijdC T
a i CeC
j
⇤
a 2 1/2
✏abcY 5
ijuC T
a i CuC
b j c
Y 5
= Y 5 T
a(d↵, e ) =
p
2
m2 (UT
(Y 10
+ Y 10 T
)D)1↵ (UT
Y 5
E)1
a(d↵, eC
) =
4
m2 (UT
(Y 10
+ Y 10 T
)D)1↵ (E†
C(Y 10
+ Y 10 T
)†
U⇤
C) 1
a(dC
↵ , e ) =
1
2m2 (D†
CY 5 †
U⇤
C)↵1 (UT
Y 5
E)1
a(dC
↵ , eC
) =
p
2
m2 (D†
CY 5 †
U⇤
C)↵1 (E†
C(Y 10
+ Y 10 T
)†
U⇤
C) 1
a(d↵, d , ⌫i) =
p
2
m2 (UT
(Y 10
+ Y 10 T
)D)1↵ (DT
Y 5
N) i
a(d↵, dC
, ⌫i) =
1
2m2 (D†
CY 5 †
U⇤
C) 1 (DT
Y 5
N)↵i
a(d↵, dC
, ⌫C
i ) =
2
m2 (UT
(Y 10
+ Y 10 T
)D)1↵ (N†
CY 1 †
D⇤
C)i
a(dC
↵ , dC
, ⌫C
i ) =
1
p
2m2
(D†
CY 5 †
U⇤
C) 1 (N†
CY 1 †
D⇤
C)i↵
d = 6 PROTON DECAY COEFFICIENTS
(SCALAR CONTRIBUTIONS*)
SU(5) ⇥ U(1) Y 1
ij10+1
i 1+5
j 10⇤ 6
Y 5
ij5i 5j 10+6
(3, 1, 2/3)+6
⌘ Y 1
ijdC T
a i CeC
j
⇤
a 2 1/2
✏abcY 5
ijuC T
a i CuC
b j c
Y 5
= Y 5 T
a(d↵, e ) =
p
2
m2 (UT
(Y 10
+ Y 10 T
)D)1↵ (UT
Y 5
E)1
a(d↵, eC
) =
4
m2 (UT
(Y 10
+ Y 10 T
)D)1↵ (E†
C(Y 10
+ Y 10 T
)†
U⇤
C) 1
a(dC
↵ , e ) =
1
2m2 (D†
CY 5 †
U⇤
C)↵1 (UT
Y 5
E)1
a(dC
↵ , eC
) =
p
2
m2 (D†
CY 5 †
U⇤
C)↵1 (E†
C(Y 10
+ Y 10 T
)†
U⇤
C) 1
a(d↵, d , ⌫i) =
p
2
m2 (UT
(Y 10
+ Y 10 T
)D)1↵ (DT
Y 5
N) i
a(d↵, dC
, ⌫i) =
1
2m2 (D†
CY 5 †
U⇤
C) 1 (DT
Y 5
N)↵i
a(d↵, dC
, ⌫C
i ) =
2
m2 (UT
(Y 10
+ Y 10 T
)D)1↵ (N†
CY 1 †
D⇤
C)i
a(dC
↵ , dC
, ⌫C
i ) =
1
p
2m2
(D†
CY 5 †
U⇤
C) 1 (N†
CY 1 †
D⇤
C)i↵
*R.N. Mohapatra, Phys. Rev. Lett. 43, 893 (1979).
d = 6 PROTON DECAY COEFFICIENTS
(SCALAR CONTRIBUTIONS*)
*R.N. Mohapatra, Phys. Rev. Lett. 43, 893 (1979).
1
E = DC
D = EC
U = UC
N = I U†
D = VCKM
m > 2.2 ⇥ 1011
✓
|↵|
0.0112 GeV3
◆1/2
GeV
m > 2.2 ⇥ 1011
GeV
E = DC
D = EC
U = UC
U†
D = VCKM
N = I
E = I
D = I
m > 2.2 ⇥ 1011
✓
|↵|
0.0112 GeV3
◆1/2
GeV
m > 2.2 ⇥ 1011
GeV
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
E = DC
D = EC
U = UC
U†
D = VCKM
N = I
E = I
D = I
m > 2.2 ⇥ 1011
✓
|↵|
0.0112 GeV3
◆1/2
GeV
m > 2.2 ⇥ 1011
GeV
MINIMAL SU(5) IS VERY PREDICTIVE BECAUSE IT IS NOT VIABLE!
d = 6 PROTON DECAY COEFFICIENTS
(SCALAR CONTRIBUTIONS*)
*R.N. Mohapatra, Phys. Rev. Lett. 43, 893 (1979).
MINIMAL VIABLE SU(5)
(CHARGED FERMION MASSES)
1
⇤ ⌘
✏↵ ⌘Yij 10↵
i 10j 5⌘
1
⇤ ⌘
✏↵ ⌘Yij 10↵
i 10j 5⌘
Yij 10↵
i 5j 5⇤
↵
Yij 10↵
i
24
⇤
5j 5⇤
↵
X
i
(DT
YDN)↵i(DT
YDN)⇤
i =
1
v2
5
((Mdiag
D )2
)↵
X
i
(DT
YU N)↵i(DT
YU N)⇤
i =
4
v2
5
(V T
UD(Mdiag
U )2
V ⇤
UD)↵
1
⇤ ⌘
✏↵ ⌘Yij 10↵
i 10j 5⌘
Yij 10↵
i 5j 5⇤
↵
Yij 10↵
i
24
⇤
5j 5⇤
↵
X
i
(DT
YDN)↵i(DT
YDN)⇤
i =
1
v2
5
((Mdiag
D )2
)↵
X
i
(DT
YU N)↵i(DT
YU N)⇤
i =
4
v2
5
(V T
UD(Mdiag
U )2
V ⇤
UD)↵
1
⇤ ⌘
✏↵ ⌘Yij 10↵
i 10j 5⌘
Yij 10↵
i 5j 5⇤
↵
Yij 10↵
i
24
⇤
5j 5⇤
↵
X
i
(DT
YDN)↵i(DT
YDN)⇤
i =
1
v2
5
((Mdiag
D )2
)↵
X
i
(DT
YU N)↵i(DT
YU N)⇤
i =
4
v2
5
(V T
UD(Mdiag
U )2
V ⇤
UD)↵
CUTOFF
Y 10
ij 10i10j45
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5 T
v⇤
45⇤
MD =
1
2
Y 5 T
v⇤
5
ME = 3Y 5
v⇤
45
ME =
1
2
Y 5
v⇤
5
Yij 10i10j45
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5 T
v⇤
45⇤
MD =
1
2
Y 5 T
v⇤
5
ME = 3Y 5
v⇤
45
ME =
1
2
Y 5
v⇤
5
MU = 2
p
2(Y 5
Y 5 T
)v
MU =
p
2(Y 10
+ Y 10 T
)v
10 ⇥ 10 = 5 45 : MU
10 ⇥ 5 = 5 45 : ME, M
10+1
⇥ 10+1
= 5
+2
45
+2
PREDICTIONS*
(MINIMAL VIABLE SU(5))
(3, 1, 2/3)
⌘ Y 1
ijuC T
a i C⌫C
j
⇤
a 2 1/2
✏abcY 5
ijdC T
a i CdC
b j c
Y 5
= Y 5 T
OH(d↵, e ) = a(d↵, e ) uT
L C 1
d↵ uT
L C 1
e
OH(d↵, eC
) = a(d↵, eC
) uT
L C 1
d↵ eC†
L C 1
uC⇤
OH(dC
↵ , e ) = a(dC
↵ , e ) dC
↵
†
L C 1
uC⇤
uT
L C 1
e
OH(dC
↵ , eC
) = a(dC
↵ , eC
) dC
↵
†
L C 1
uC⇤
eC†
L C 1
uC⇤
OH(d↵, d , ⌫i) = a(d↵, d , ⌫i) uT
L C 1
d↵ dT
L C 1
⌫i
OH(d↵, dC
, ⌫i) = a(d↵, dC
, ⌫i) dC†
L C 1
uC⇤
dT
↵ L C 1
⌫i
OH(d↵, dC
, ⌫C
i ) = a(d↵, dC
, ⌫C
i ) uT
L C 1
d↵ ⌫C
i
†
L C 1
dC⇤
OH(dC
↵ , dC
, ⌫C
i ) = a(dC
↵ , dC
, ⌫C
i ) dC†
L C 1
uC⇤
⌫C
i
†
L C 1
dC
↵
⇤
*I. Doršner, S. Fajfer and N. Košnik, Phys. Rev. D 86:015013, 2012, 1204.0674.
PREDICTIONS*
(MINIMAL VIABLE SU(5))
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
U†
D ⌘ VUD
U = UCK0
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
U†
D ⌘ VUD
U = UCK0
*I. Doršner, Phys. Rev. D 86:055009, 2012, 1206.5998.
PREDICTIONS
(MINIMAL VIABLE SU(5))UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
U†
D ⌘ VUD
U = UCK0
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
MU = MT
U
U†
D ⌘ VUD
U = UCK0
(K0)11 = ei
5 =
0
@
H
1
A
2
PREDICTIONS
(MINIMAL VIABLE SU(5))
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
U†
D ⌘ VUD
U = UCK0
(K0)11 = ei
5 =
0
@
H
1
A
(p ! e+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)13m⌧ mb
2
↵ 1
1
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
U†
D ⌘ VUD
U = UCK0
(K0)11 = ei
5 =
0
@
H
1
A
5
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
MU = MT
U
U†
D ⌘ VUD
U = UCK0
(K0)11 = ei
5 =
0
@
H
1
A
(p ! e+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)13m⌧ mb
2
PREDICTIONS
(MINIMAL VIABLE SU(5))
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
, ⌫i) =
2
(VUDMdiag
)1k(DT
MDN)ji
PREDICTIONS
(MINIMAL VIABLE SU(5))
3 2 1 0 1 2 3
1.2
1.4
1.6
1.8
2.0
2.2
Φ
m1011
GeV
p K Ν
PREDICTIONS
(MINIMAL VIABLE SU(5))
ut of the way we are ready to
proton decay mediating scalar
o in the next section.
AY LEPTOQUARK
scalar that contributes to pro-
imensional scalar representa-
number violating dimension-
es are [8]
L C−1
dj dT
k L C−1
νi,
C
k
†
L C−1
uC∗
dT
j L C−1
νi,
1, 2) (j + k < 4) represent
γ5)/2. Our notation is such
for the d (s) quark. The color
tensor in the SU(3) space is
i) operators contribute exclu-
with anti-neutrinos in the fi-
ents for the p → π+
¯ν (p →
i=1,2,3
D
Clearly, the lepton mixing matrix does not affect proton decay
signatures through scalar exchange. It is also clear that the
p → π+
¯ν decay rate is significantly suppressed compared to
the p → K+
¯ν one. The suppression factor, as inferred from
Eq. (11), is proportional to (md/ms)2
.
For the decay widths for p → π+
¯ν and p → K+
¯ν channels
we find
Γp→π+ ¯ν = Cπ+ A (m2
u + m2
d + 2mumd cos φ)m2
d,
Γp→K+ ¯ν ≈ CK+ A (m2
u + m2
d + 2mumd cos φ)m2
s,
where we neglect terms suppressed by either (md/ms)2
or
|(VUD)12|2
in the expression for Γp→K+ ¯ν . Here, A =
4|α|2
|(VUD)11|2
/v4
, eiφ
= (K0)11 and we introduce
CK+ =
(m2
p − m2
K+ )2
32πf2
πm3
p
1 +
mp
3mΛ
(D + 3F)
2
. (12)
After we insert all low-energy parameters we find
Γp→π+ ¯ν /Γp→K+ ¯ν = 10−2
. (13)
m > 2.2 ⇥ 1011
✓
|↵|
0.0112 GeV3
◆1/2
GeV
m > 2.2 ⇥ 1011
GeV
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
CONCLUSIONS
Predictions of the minimal viable version of
SU(5) for the two-body p-decay modes induced
through scalar leptoquark exchange exhibit
minimal (one-phase only) model dependence for
p → K+ ν and p → π+ ν channels.
There exists an accurate limit on the mass of the
scalar leptoquark.
The ratio of p-decay widths for channels with π+
and K+ in the final state is phase independent and
predicts strong suppression of the former width
with respect to the latter one.
THANK YOU!
CONTACT E-MAIL:
ILJA.DORSNER@IJS.SI

Weitere ähnliche Inhalte

Was ist angesagt?

19 phuong phap_chung_minh_bdt
19 phuong phap_chung_minh_bdt19 phuong phap_chung_minh_bdt
19 phuong phap_chung_minh_bdt
khangnd82
 
Ejercicios combinados
Ejercicios combinadosEjercicios combinados
Ejercicios combinados
Cinty Fuchs
 
Potencias resueltas 1eso (1)
Potencias resueltas 1eso (1)Potencias resueltas 1eso (1)
Potencias resueltas 1eso (1)
Lina Manriquez
 

Was ist angesagt? (19)

E024033041
E024033041E024033041
E024033041
 
Key pat1 3-52 math
Key pat1 3-52 mathKey pat1 3-52 math
Key pat1 3-52 math
 
An approach to decrease dimensions of drift
An approach to decrease dimensions of driftAn approach to decrease dimensions of drift
An approach to decrease dimensions of drift
 
ゲーム理論BASIC 第18回 -完全ベイジアン均衡-
ゲーム理論BASIC 第18回 -完全ベイジアン均衡-ゲーム理論BASIC 第18回 -完全ベイジアン均衡-
ゲーム理論BASIC 第18回 -完全ベイジアン均衡-
 
End sem solution
End sem solutionEnd sem solution
End sem solution
 
Hn3414011407
Hn3414011407Hn3414011407
Hn3414011407
 
19 phuong phap_chung_minh_bdt
19 phuong phap_chung_minh_bdt19 phuong phap_chung_minh_bdt
19 phuong phap_chung_minh_bdt
 
Sub1567
Sub1567Sub1567
Sub1567
 
I034051056
I034051056I034051056
I034051056
 
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
 
Integrales solucionario
Integrales solucionarioIntegrales solucionario
Integrales solucionario
 
Maths ms
Maths msMaths ms
Maths ms
 
Arithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic SquaresArithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic Squares
 
E1 f9 bộ binh
E1 f9 bộ binhE1 f9 bộ binh
E1 f9 bộ binh
 
E2 f6 bộ binh
E2 f6 bộ binhE2 f6 bộ binh
E2 f6 bộ binh
 
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
 
Ejercicios combinados
Ejercicios combinadosEjercicios combinados
Ejercicios combinados
 
The Ring programming language version 1.9 book - Part 69 of 210
The Ring programming language version 1.9 book - Part 69 of 210The Ring programming language version 1.9 book - Part 69 of 210
The Ring programming language version 1.9 book - Part 69 of 210
 
Potencias resueltas 1eso (1)
Potencias resueltas 1eso (1)Potencias resueltas 1eso (1)
Potencias resueltas 1eso (1)
 

Andere mochten auch

Indenização das empresas urbs
Indenização das empresas   urbsIndenização das empresas   urbs
Indenização das empresas urbs
Professora Josete
 
Cuadro de la temporalidad de un lustro
Cuadro de la temporalidad de un lustroCuadro de la temporalidad de un lustro
Cuadro de la temporalidad de un lustro
Maria Moguel Herrera
 
Mediabrand presents all
Mediabrand presents allMediabrand presents all
Mediabrand presents all
Usanov Aleksey
 
DISA HBSS 201 Adimn eP05.1
DISA HBSS 201 Adimn eP05.1DISA HBSS 201 Adimn eP05.1
DISA HBSS 201 Adimn eP05.1
Bryan Davila
 
Diploma in Digital Marketing
Diploma in Digital MarketingDiploma in Digital Marketing
Diploma in Digital Marketing
Kelly Bath
 

Andere mochten auch (20)

Indenização das empresas urbs
Indenização das empresas   urbsIndenização das empresas   urbs
Indenização das empresas urbs
 
Тема 13
Тема 13Тема 13
Тема 13
 
VuFlo
VuFloVuFlo
VuFlo
 
Cuadro de la temporalidad de un lustro
Cuadro de la temporalidad de un lustroCuadro de la temporalidad de un lustro
Cuadro de la temporalidad de un lustro
 
Mascotas
MascotasMascotas
Mascotas
 
Libro Digital
Libro Digital Libro Digital
Libro Digital
 
Mediabrand presents all
Mediabrand presents allMediabrand presents all
Mediabrand presents all
 
KBR Cert3.PDF
KBR Cert3.PDFKBR Cert3.PDF
KBR Cert3.PDF
 
Trading StocksSemanal03/02/2012
Trading StocksSemanal03/02/2012Trading StocksSemanal03/02/2012
Trading StocksSemanal03/02/2012
 
Cultura sexo
Cultura sexoCultura sexo
Cultura sexo
 
Triptico oficinas pensión (GAL)
Triptico oficinas pensión (GAL)Triptico oficinas pensión (GAL)
Triptico oficinas pensión (GAL)
 
5
55
5
 
Presentazione Areatel Srl
Presentazione Areatel SrlPresentazione Areatel Srl
Presentazione Areatel Srl
 
Driving discovery and delivery for an Eco Efficient Agriculture
Driving discovery and delivery for an Eco Efficient AgricultureDriving discovery and delivery for an Eco Efficient Agriculture
Driving discovery and delivery for an Eco Efficient Agriculture
 
Mezcla Promociones
Mezcla PromocionesMezcla Promociones
Mezcla Promociones
 
4229_001
4229_0014229_001
4229_001
 
DISA HBSS 201 Adimn eP05.1
DISA HBSS 201 Adimn eP05.1DISA HBSS 201 Adimn eP05.1
DISA HBSS 201 Adimn eP05.1
 
Diploma in Digital Marketing
Diploma in Digital MarketingDiploma in Digital Marketing
Diploma in Digital Marketing
 
Estereotipos: Mujeres-hombres
Estereotipos: Mujeres-hombresEstereotipos: Mujeres-hombres
Estereotipos: Mujeres-hombres
 
2014.04.10 건전 벤처생태계 위한 투자회수시스템 개선 시급하다
2014.04.10 건전 벤처생태계 위한 투자회수시스템 개선 시급하다2014.04.10 건전 벤처생태계 위한 투자회수시스템 개선 시급하다
2014.04.10 건전 벤처생태계 위한 투자회수시스템 개선 시급하다
 

Ähnlich wie I. Doršner, Leptoquark Mass Limit in SU(5)

ゲーム理論BASIC 演習24 -公理から求めるナッシュ交渉解-
ゲーム理論BASIC 演習24 -公理から求めるナッシュ交渉解-ゲーム理論BASIC 演習24 -公理から求めるナッシュ交渉解-
ゲーム理論BASIC 演習24 -公理から求めるナッシュ交渉解-
ssusere0a682
 
Ma5 vector-u-s54
Ma5 vector-u-s54Ma5 vector-u-s54
Ma5 vector-u-s54
S'kae Nfc
 
Espacios de Trabajo - ROBOKIDS.pptx
Espacios de Trabajo - ROBOKIDS.pptxEspacios de Trabajo - ROBOKIDS.pptx
Espacios de Trabajo - ROBOKIDS.pptx
José Manuel
 
Metodologia de la programación - expresiones
Metodologia de la programación - expresionesMetodologia de la programación - expresiones
Metodologia de la programación - expresiones
Mar_Angeles
 

Ähnlich wie I. Doršner, Leptoquark Mass Limit in SU(5) (18)

ゲーム理論BASIC 演習24 -公理から求めるナッシュ交渉解-
ゲーム理論BASIC 演習24 -公理から求めるナッシュ交渉解-ゲーム理論BASIC 演習24 -公理から求めるナッシュ交渉解-
ゲーム理論BASIC 演習24 -公理から求めるナッシュ交渉解-
 
6
66
6
 
Ma5 vector-u-s54
Ma5 vector-u-s54Ma5 vector-u-s54
Ma5 vector-u-s54
 
Espacios de Trabajo - ROBOKIDS.pptx
Espacios de Trabajo - ROBOKIDS.pptxEspacios de Trabajo - ROBOKIDS.pptx
Espacios de Trabajo - ROBOKIDS.pptx
 
Key pat1 3-52
Key pat1 3-52Key pat1 3-52
Key pat1 3-52
 
Ejercicos laplace ruben gonzalez
Ejercicos laplace   ruben gonzalezEjercicos laplace   ruben gonzalez
Ejercicos laplace ruben gonzalez
 
Metodologia de la programación - expresiones
Metodologia de la programación - expresionesMetodologia de la programación - expresiones
Metodologia de la programación - expresiones
 
Change of subject
Change of subjectChange of subject
Change of subject
 
ความน่า
ความน่าความน่า
ความน่า
 
communication-systems-4th-edition-2002-carlson-solution-manual
communication-systems-4th-edition-2002-carlson-solution-manualcommunication-systems-4th-edition-2002-carlson-solution-manual
communication-systems-4th-edition-2002-carlson-solution-manual
 
Sk7 ph
Sk7 phSk7 ph
Sk7 ph
 
Sk7 ph
Sk7 phSk7 ph
Sk7 ph
 
Tugas Kalkulus
Tugas KalkulusTugas Kalkulus
Tugas Kalkulus
 
Tugas Kalkulus Diferentiation
Tugas Kalkulus DiferentiationTugas Kalkulus Diferentiation
Tugas Kalkulus Diferentiation
 
Tugas kalkulus
Tugas kalkulusTugas kalkulus
Tugas kalkulus
 
Chapter 2 sequencess and series
Chapter 2 sequencess and seriesChapter 2 sequencess and series
Chapter 2 sequencess and series
 
Hermite integrators and Riordan arrays
Hermite integrators and Riordan arraysHermite integrators and Riordan arrays
Hermite integrators and Riordan arrays
 
final19
final19final19
final19
 

Mehr von SEENET-MTP

SEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 yearsSEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 years
SEENET-MTP
 

Mehr von SEENET-MTP (20)

SEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 yearsSEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 years
 
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
 
Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"
 
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
 
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
 
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
 
Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"
 
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
 
Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"
 
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
 
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
 
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
 
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
 
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
 
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
 
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
 
Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"
 
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
 
Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"
 
Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"
 

Kürzlich hochgeladen

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
ssuserdda66b
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 

Kürzlich hochgeladen (20)

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 

I. Doršner, Leptoquark Mass Limit in SU(5)

  • 1. LEPTOQUARK MASS LIMIT IN SU(5)* Ilja Doršner University of Sarajevo, Bosnia and Herzegovina BALKAN WORKSHOP 2013 — BW2013 Vrnjačka Banja, Serbia April 28, 2013 I. Doršner, Phys. Rev. D 86:055009, 2012, 1206.5998; I. Doršner, S. Fajfer and N. Košnik, Phys. Rev. D 86:015013, 2012, 1204.0674. *
  • 2. • MINIMAL UNIFICATION OF MATTER THE GEORGI-GLASHOW SU(5) SCENARIO • d = 6 PROTON DECAY OPERATORS SCALAR CONTRIBUTIONS • MINIMAL VIABLE SU(5) UNIFICATION • p-DECAY PREDICTIONS SCALAR CONTRIBUTIONS OUTLINE
  • 3. THE STANDARD MODEL COMPRISES 15 FERMIONS. THE GEORGI-GLASHOW SU(5) MODEL* *See talk by Borut Bajc.
  • 4. SU(5) SCENARIO* *H. Georgi and S.L. Glashow (1974). LEPTONS QUARKS FIFTEEN FERMIONS OF THE STANDARD MODEL:
  • 5. *H. Georgi and S.L. Glashow (1974). LEPTONS QUARKS SU(5) SCENARIO* FIFTEEN FERMIONS OF THE STANDARD MODEL:
  • 6. *H. Georgi and S.L. Glashow (1974). LEPTONS QUARKS FIFTEEN FERMIONS OF THE STANDARD MODEL: SU(5) SCENARIO*
  • 7. FERMION MASSES (SCALAR REPRESENTATIONS IN THE MINIMAL SU(5)) & UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1
  • 8. NOTATION (VACUUM EXPECTATION VALUE) MD = Y1v⇤ 45 1 2 Y3v⇤ 5 ME = 3Y T 1 v⇤ 45 1 2 Y T 3 v⇤ 5 (Y1)ij10i5j45⇤ (Y3)ij10i5j5⇤ h4515 1 i = h4525 2 i = h4535 3 i = v45/ p 2 E† RDLMdiag D Mdiag E ET L D⇤ R = 4Y1v45 h55 i = v5/ p 2 |v5|2 /2 + 12|v45|2 = v2 t ¯t (g 2)µ 45 2 126 &
  • 9. *H. Georgi and S.L. Glashow (1974). WHAT GOES WRONG WITH SU(5)?*
  • 10. FERMION MASSES* v = 246 GeV Y 10 ij 10i10j45 Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 ME = 3Y 5 T v⇤ 45 1 5 T ⇤ 1 |v5|2 /2 + 12|v45|2 = v2 v = 246 GeV Y 10 ij 10i10j45 Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 Y 10 ij 10i10j45 Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 ME = 3Y 5 T v⇤ 45 ME = 1 2 Y 5 T v⇤ 5 p 5 5 T Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 ME = 3Y 5 T v⇤ 45 ME = 1 2 Y 5 T v⇤ 5 MU = 2 p 2(Y 5 Y 5 T )v45 p 10 10 T 45 ME = 1 2 Y 5 T v⇤ 5 MU = 2 p 2(Y 5 Y 5 T )v45 MU = p 2(Y 10 + Y 10 T )v5 10 ⇥ 10 = 5 45 : MU 10 ⇥ 5 = 5 45 : ME, MD 10+1 ⇥ 10+1 = 5 +2 45 +2 : MD 10+1 ⇥ 5 3 = 5 2 45 2 : MU 3 3 6 6 *See talk by Borut Bajc.
  • 11. FERMION MASSES v = 246 GeV Y 10 ij 10i10j45 Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 ME = 3Y 5 T v⇤ 45 1 5 T ⇤ 1 |v5|2 /2 + 12|v45|2 = v2 v = 246 GeV Y 10 ij 10i10j45 Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 Y 10 ij 10i10j45 Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 ME = 3Y 5 T v⇤ 45 ME = 1 2 Y 5 T v⇤ 5 p 5 5 T Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 ME = 3Y 5 T v⇤ 45 ME = 1 2 Y 5 T v⇤ 5 MU = 2 p 2(Y 5 Y 5 T )v45 p 10 10 T 45 ME = 1 2 Y 5 T v⇤ 5 MU = 2 p 2(Y 5 Y 5 T )v45 MU = p 2(Y 10 + Y 10 T )v5 10 ⇥ 10 = 5 45 : MU 10 ⇥ 5 = 5 45 : ME, MD 10+1 ⇥ 10+1 = 5 +2 45 +2 : MD 10+1 ⇥ 5 3 = 5 2 45 2 : MU 3 3 6 6
  • 12. FERMION MASSES v = 246 GeV Y 10 ij 10i10j45 Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 ME = 3Y 5 T v⇤ 45 1 5 T ⇤ 1 |v5|2 /2 + 12|v45|2 = v2 v = 246 GeV Y 10 ij 10i10j45 Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 Y 10 ij 10i10j45 Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 ME = 3Y 5 T v⇤ 45 ME = 1 2 Y 5 T v⇤ 5 p 5 5 T Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 ME = 3Y 5 T v⇤ 45 ME = 1 2 Y 5 T v⇤ 5 MU = 2 p 2(Y 5 Y 5 T )v45 p 10 10 T 45 ME = 1 2 Y 5 T v⇤ 5 MU = 2 p 2(Y 5 Y 5 T )v45 MU = p 2(Y 10 + Y 10 T )v5 10 ⇥ 10 = 5 45 : MU 10 ⇥ 5 = 5 45 : ME, MD 10+1 ⇥ 10+1 = 5 +2 45 +2 : MD 10+1 ⇥ 5 3 = 5 2 45 2 : MU 3 3 6 6
  • 13. FERMION MASSES v = 246 GeV Y 10 ij 10i10j45 Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 ME = 3Y 5 T v⇤ 45 1 5 T ⇤ 1 |v5|2 /2 + 12|v45|2 = v2 v = 246 GeV Y 10 ij 10i10j45 Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 Y 10 ij 10i10j45 Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 ME = 3Y 5 T v⇤ 45 ME = 1 2 Y 5 T v⇤ 5 p 5 5 T Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 ME = 3Y 5 T v⇤ 45 ME = 1 2 Y 5 T v⇤ 5 MU = 2 p 2(Y 5 Y 5 T )v45 p 10 10 T 45 ME = 1 2 Y 5 T v⇤ 5 MU = 2 p 2(Y 5 Y 5 T )v45 MU = p 2(Y 10 + Y 10 T )v5 10 ⇥ 10 = 5 45 : MU 10 ⇥ 5 = 5 45 : ME, MD 10+1 ⇥ 10+1 = 5 +2 45 +2 : MD 10+1 ⇥ 5 3 = 5 2 45 2 : MU 3 3 6 6
  • 14. NOTATION (MASS MATRICES AND UNITARY TRANSFORMATIONS) UP-TYPE QUARKS, DOWN-TYPE QUARKS AND CHARGED LEPTONS: UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 5 = 0 @ H 1 A (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)13m⌧ mb 2
  • 15. *H. Georgi and S.L. Glashow (1974). IS UNIFICATION WRONG WITHIN SU(5)?* 1 ↵ 1 1 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)13m⌧ mb 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)12m⌧ ms 2 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 mb(VUD)13 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 ms(VUD)12 2 (p ! e+ ⇡0 ) ⇠ ↵2 (VUD)11[mu + 3 md] + 1 (V † UDU⇤ 2 Mdiag E U† 2 )11 2 p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ 1 p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵
  • 16. *H. Georgi and S.L. Glashow (1974). 50 M 1012 GeV 24 = (⌃8, ⌃3, ⌃(3,2), ⌃(¯3,2), ⌃24) ✏abcuT a iCub j 3 3 c 10i 5i , i = 1, 2, 3 24 5 15 16i , i = 1, 2, 3 210 10 126 126 120 ⌃3 = (1, 3, 0) a = (1, 3, 1) b = (3, 2, 1/6) ADDRESSING NEUTRINO MASSES ALSO ADDRESSES UNIFICATION IN A SATISFACTORY MANNER! NEUTRINO MASSES WITHIN SU(5)?* ¶I. Doršner and P. Fileviez Pérez, Nucl. Phys. B 723:53-76, 2005, hep-ph/0504276. ‡B. Bajc and G. Senjanović, JHEP 0708 014, 2007, hep-ph/0612029. ‡¶
  • 17. *See talk by Andrea Romanino. UNIFICATION IN SU(5)* 1 ↵ 1 1 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)13m⌧ mb 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)12m⌧ ms 2 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 mb(VUD)13 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 ms(VUD)12 2 (p ! e+ ⇡0 ) ⇠ ↵2 (VUD)11[mu + 3 md] + 1 (V † UDU⇤ 2 Mdiag E U† 2 )11 2 p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ 1 p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵
  • 18. 1 ↵ 1 1 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)13m⌧ mb 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)12m⌧ ms 2 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 mb(VUD)13 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 ms(VUD)12 2 (p ! e+ ⇡0 ) ⇠ ↵2 (VUD)11[mu + 3 md] + 1 (V † UDU⇤ 2 Mdiag E U† 2 )11 2 UNIFICATION IN SU(5)* p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ 1 p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ *See talk by Andrea Romanino.
  • 19. 1 ↵ 1 1 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)13m⌧ mb 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)12m⌧ ms 2 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 mb(VUD)13 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 ms(VUD)12 2 (p ! e+ ⇡0 ) ⇠ ↵2 (VUD)11[mu + 3 md] + 1 (V † UDU⇤ 2 Mdiag E U† 2 )11 2 UNIFICATION IN SU(5)* p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ 1 p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ *See talk by Andrea Romanino.
  • 20. 1 ↵ 1 1 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)13m⌧ mb 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)12m⌧ ms 2 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 mb(VUD)13 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 ms(VUD)12 2 (p ! e+ ⇡0 ) ⇠ ↵2 (VUD)11[mu + 3 md] + 1 (V † UDU⇤ 2 Mdiag E U† 2 )11 2 UNIFICATION IN SU(5)* p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ 1 p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ *See talk by Andrea Romanino.
  • 21. 1 ↵ 1 1 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)13m⌧ mb 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)12m⌧ ms 2 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 mb(VUD)13 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 ms(VUD)12 2 (p ! e+ ⇡0 ) ⇠ ↵2 (VUD)11[mu + 3 md] + 1 (V † UDU⇤ 2 Mdiag E U† 2 )11 2 UNIFICATION IN SU(5)* p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ 1 p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ *See talk by Andrea Romanino.
  • 22. 1 ↵ 1 1 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)13m⌧ mb 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)12m⌧ ms 2 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 mb(VUD)13 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 ms(VUD)12 2 (p ! e+ ⇡0 ) ⇠ ↵2 (VUD)11[mu + 3 md] + 1 (V † UDU⇤ 2 Mdiag E U† 2 )11 2 UNIFICATION IN SU(5)* p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ 1 p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ *See talk by Andrea Romanino.
  • 23. 1 ↵ 1 1 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)13m⌧ mb 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)12m⌧ ms 2 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 mb(VUD)13 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 ms(VUD)12 2 (p ! e+ ⇡0 ) ⇠ ↵2 (VUD)11[mu + 3 md] + 1 (V † UDU⇤ 2 Mdiag E U† 2 )11 2 UNIFICATION IN SU(5)* p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ 1 p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ *See talk by Andrea Romanino.
  • 24. 1 ↵ 1 1 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)13m⌧ mb 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)12m⌧ ms 2 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 mb(VUD)13 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 ms(VUD)12 2 (p ! e+ ⇡0 ) ⇠ ↵2 (VUD)11[mu + 3 md] + 1 (V † UDU⇤ 2 Mdiag E U† 2 )11 2 UNIFICATION IN SU(5)* p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ 1 p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ *See talk by Andrea Romanino.
  • 25. 1 ↵ 1 1 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)13m⌧ mb 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)12m⌧ ms 2 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 mb(VUD)13 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 ms(VUD)12 2 (p ! e+ ⇡0 ) ⇠ ↵2 (VUD)11[mu + 3 md] + 1 (V † UDU⇤ 2 Mdiag E U† 2 )11 2 UNIFICATION IN SU(5)* p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ 1 p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ *See talk by Andrea Romanino.
  • 26. NOTATION (MASS MATRICES AND UNITARY TRANSFORMATIONS) MAJORANA NEUTRINOS: QUALITATIVE ASPECTS OF NEUTRINO PHYSICS ARE NOT RELEVANT FOR DISCUSSION OF p-DECAY!
  • 27. HOW PREDICTIVE IS SU(5) FOR p-DECAY?* *H. Georgi and S.L. Glashow (1974).
  • 28. ≡ Yukawa coupling(s) ≡ Leptoquark mass *S. Weinberg, Phys. Rev. D 22:1694, 1980. p-DECAY WIDTHS (SCALAR CONTRIBUTIONS*)
  • 29. ≡ Yukawa coupling(s) ≡ Leptoquark mass *S. Weinberg, Phys. Rev. D 22:1694, 1980. p-DECAY WIDTHS (SCALAR CONTRIBUTIONS*)
  • 30. ≡ Yukawa coupling(s) ≡ Leptoquark mass *S. Weinberg, Phys. Rev. D 22:1694, 1980. p-DECAY WIDTHS (SCALAR CONTRIBUTIONS*) a6 ⇠ Y 2 m2 LQ E = DC D = EC U = UC U† D = VCKM N = I E = I D = I
  • 31. EXPERIMENTAL INPUT (PROTON DECAY) 5 PROCESS ⌧p (1033 years) p ! K+ ¯⌫ 4.0 p ! ⇡+ ¯⌫ 0.025 p ! ⇡0 e+ 13.0 j = 1, 2, 3 j = 1, 2 La ⌘ (1, 2, 1/2)a = (⌫a ea)T eC a ⌘ (1, 1, 1)a Qa ⌘ (3, 2, 1/6)a = (ua da)T
  • 32. ≡ Yukawa coupling(s) ≡ Leptoquark mass *S. Weinberg, Phys. Rev. D 22:1694, 1980. p-DECAY WIDTHS (SCALAR CONTRIBUTIONS*)
  • 33. IS AN ACCURATE LIMIT? KEY QUESTION…
  • 34. LEPTOQUARK IN SU(5) (p-DECAY MEDIATING SCALAR LEPTOQUARK) THERE IS ONLY ONE SET OF PROTON DECAY MEDIATING SCALARS IN THE MINIMAL SU(5) SETUP! 1 ↵ 1 1 5 = 0 @ H 1 A (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)13m⌧ mb 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)12m⌧ ms 2 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 mb(VUD)13 2 (p ! µ+ ⇡0 ) ⇠ ↵2 (V ) [m + 3 m + 1 m ] 2 3 m (V ) 2
  • 35. SU(5) Y 1 ij10i1j10⇤ Y 5 ij5i5j10 (3, 1, 2/3) ⌘ Y 1 ijuC T a i C⌫C j ⇤ a 2 1/2 ✏abcY 5 ijdC T a i CdC b j c Y 5 = Y 5 T OH(d↵, e ) = a(d↵, e ) uT L C 1 d↵ uT L C 1 e OH(d↵, eC ) = a(d↵, eC ) uT L C 1 d↵ eC† L C 1 uC⇤ OH(dC ↵ , e ) = a(dC ↵ , e ) dC ↵ † L C 1 uC⇤ uT L C 1 e OH(dC ↵ , eC ) = a(dC ↵ , eC ) dC ↵ † L C 1 uC⇤ eC† L C 1 uC⇤ OH(d↵, d , ⌫i) = a(d↵, d , ⌫i) uT L C 1 d↵ dT L C 1 ⌫i OH(d↵, dC , ⌫i) = a(d↵, dC , ⌫i) dC† L C 1 uC⇤ dT ↵ L C 1 ⌫i OH(d↵, dC , ⌫C i ) = a(d↵, dC , ⌫C i ) uT L C 1 d↵ ⌫C i † L C 1 dC⇤ OH(dC ↵ , dC , ⌫C i ) = a(dC ↵ , dC , ⌫C i ) dC† L C 1 uC⇤ ⌫C i † L C 1 dC ↵ ⇤ i(= 1, 2, 3) d = 6 PROTON DECAY OPERATORS (SCALAR CONTRIBUTIONS) (3, 1, 1/3) 2 1/2 ✏abcY 5 ijuC T a i CdC b j ⇤ c ⌘ 2✏abc[Y 10 ij + Y 10 ji ]dT a iCub j c 2 1/2 Y 5 ijuT a iCej ⇤ a Y 1 ijdC T a i C⌫C j a2[Y 10 ij + Y 10 ji ]eC T i CuC a j a 2 1/2 Y 5 ijdT a iC⌫j ⇤ a SU(5) ⇥ U(1) Y 10 ij 10+1 i 10+1 j 50 2 (3, 1, 1/3) 2 ⌘ 12 1/2 ✏abc[Y 10 ij + Y 10 ji ]uT a iCdb j c 3 1/2 [Y 10 ij + Y 10 ji ]⌫C T i CdC a j a ↵, (= 1, 2) ↵ + < 4 L(= (1 5)/2) MU,D,E ! Mdiag U,D,E
  • 36. SU(5) Y 1 ij10i1j10⇤ Y 5 ij5i5j10 (3, 1, 2/3) ⌘ Y 1 ijuC T a i C⌫C j ⇤ a 2 1/2 ✏abcY 5 ijdC T a i CdC b j c Y 5 = Y 5 T OH(d↵, e ) = a(d↵, e ) uT L C 1 d↵ uT L C 1 e OH(d↵, eC ) = a(d↵, eC ) uT L C 1 d↵ eC† L C 1 uC⇤ OH(dC ↵ , e ) = a(dC ↵ , e ) dC ↵ † L C 1 uC⇤ uT L C 1 e OH(dC ↵ , eC ) = a(dC ↵ , eC ) dC ↵ † L C 1 uC⇤ eC† L C 1 uC⇤ OH(d↵, d , ⌫i) = a(d↵, d , ⌫i) uT L C 1 d↵ dT L C 1 ⌫i OH(d↵, dC , ⌫i) = a(d↵, dC , ⌫i) dC† L C 1 uC⇤ dT ↵ L C 1 ⌫i OH(d↵, dC , ⌫C i ) = a(d↵, dC , ⌫C i ) uT L C 1 d↵ ⌫C i † L C 1 dC⇤ OH(dC ↵ , dC , ⌫C i ) = a(dC ↵ , dC , ⌫C i ) dC† L C 1 uC⇤ ⌫C i † L C 1 dC ↵ ⇤ i(= 1, 2, 3) d = 6 PROTON DECAY OPERATORS (SCALAR CONTRIBUTIONS*) *P. Nath and P.F. Pérez, Phys. Rept. 441 (2007) 191-317. WE WILL TAKE NEUTRINOS TO BE MAJORANA PARTICLES IN WHAT FOLLOWS.
  • 37. SU(5) Y 1 ij10i1j10⇤ Y 5 ij5i5j10 (3, 1, 2/3) ⌘ Y 1 ijuC T a i C⌫C j ⇤ a 2 1/2 ✏abcY 5 ijdC T a i CdC b j c Y 5 = Y 5 T OH(d↵, e ) = a(d↵, e ) uT L C 1 d↵ uT L C 1 e OH(d↵, eC ) = a(d↵, eC ) uT L C 1 d↵ eC† L C 1 uC⇤ OH(dC ↵ , e ) = a(dC ↵ , e ) dC ↵ † L C 1 uC⇤ uT L C 1 e OH(dC ↵ , eC ) = a(dC ↵ , eC ) dC ↵ † L C 1 uC⇤ eC† L C 1 uC⇤ OH(d↵, d , ⌫i) = a(d↵, d , ⌫i) uT L C 1 d↵ dT L C 1 ⌫i OH(d↵, dC , ⌫i) = a(d↵, dC , ⌫i) dC† L C 1 uC⇤ dT ↵ L C 1 ⌫i OH(d↵, dC , ⌫C i ) = a(d↵, dC , ⌫C i ) uT L C 1 d↵ ⌫C i † L C 1 dC⇤ OH(dC ↵ , dC , ⌫C i ) = a(dC ↵ , dC , ⌫C i ) dC† L C 1 uC⇤ ⌫C i † L C 1 dC ↵ ⇤ i(= 1, 2, 3) d = 6 PROTON DECAY OPERATORS (SCALAR CONTRIBUTIONS) ⌘ Y 1 ijuC T a i C⌫C j ⇤ a 2 1/2 ✏abcY 5 ijdC T a i CdC b j c Y 5 = Y 5 T OH (d↵, e ) = a(d↵, e ) uT L C 1 d↵ uT L C 1 e OH (d↵, eC ) = a(d↵, eC ) uT L C 1 d↵ eC† L C 1 uC⇤ OH (dC ↵ , e ) = a(dC ↵ , e ) dC ↵ † L C 1 uC⇤ uT L C 1 e OH (dC ↵ , eC ) = a(dC ↵ , eC ) dC ↵ † L C 1 uC⇤ eC† L C 1 uC⇤ OH (d↵, d , ⌫i) = a(d↵, d , ⌫i) uT L C 1 d↵ dT L C 1 ⌫i OH (d↵, dC , ⌫i) = a(d↵, dC , ⌫i) dC† L C 1 uC⇤ dT ↵ L C 1 ⌫i OH (d↵, dC , ⌫C i ) = a(d↵, dC , ⌫C i ) uT L C 1 d↵ ⌫C i † L C 1 dC⇤ OH (dC ↵ , dC , ⌫C i ) = a(dC ↵ , dC , ⌫C i ) dC† L C 1 uC⇤ ⌫C i † L C 1 dC ↵ ⇤ i(= 1, 2, 3) OH(d↵, e ) = a(d↵, e ) uT L C 1 d↵ uT L C 1 e OH(d↵, eC ) = a(d↵, eC ) uT L C 1 d↵ eC† L C 1 uC⇤ OH(dC ↵ , e ) = a(dC ↵ , e ) dC ↵ † L C 1 uC⇤ uT L C 1 e OH(dC ↵ , eC ) = a(dC ↵ , eC ) dC ↵ † L C 1 uC⇤ eC† L C 1 uC⇤ OH(d↵, d , ⌫i) = a(d↵, d , ⌫i) uT L C 1 d↵ dT L C 1 ⌫i OH(d↵, dC , ⌫i) = a(d↵, dC , ⌫i) dC† L C 1 uC⇤ dT ↵ L C 1 ⌫i OH(d↵, dC , ⌫C i ) = a(d↵, dC , ⌫C i ) uT L C 1 d↵ ⌫C i † L C 1 dC⇤ OH(dC ↵ , dC , ⌫C i ) = a(dC ↵ , dC , ⌫C i ) dC† L C 1 uC⇤ ⌫C i † L C 1 dC ↵ ⇤ i(= 1, 2, 3) ↵, (= 1, 2) ↵ + < 4 L(= (1 5)/2)
  • 38. p-DECAY WIDTHS (SCALAR CONTRIBUTIONS) (p ! ¯⌫i⇡+ ) = (m2 p m2 ⇡+ )2 32⇡f2 ⇡m3 p |↵ a(d1, dC 1 , ⌫i) + a(d1, d1, ⌫i)|2 (1 + D + F)2 (3, 1, 1/3) (3, 3, 1/3) (3, 1, 4/3) (3, 1, 2/3) SU(5) Y 10 ij 10i10j50 (3, 1, 1/3) 12 1/2 ✏abc[Y 10 ij + Y 10 ji ]dT a iCub j c ⌧ ⇠ 1 m > 1.0 ⇥ 1012 ✓ ↵ 0.0112 GeV3 ◆1/2 GeV (p ! ⇡+ ¯⌫) (p ! K+ ¯⌫) = 9.0 1 ⌧ ⌘ ⌧ ⇠ 1 PARTIAL LIFETIME
  • 39. d = 6 PROTON DECAY COEFFICIENTS (SCALAR CONTRIBUTIONS) SU(5) ⇥ U(1) Y 1 ij10+1 i 1+5 j 10⇤ 6 Y 5 ij5i 5j 10+6 (3, 1, 2/3)+6 ⌘ Y 1 ijdC T a i CeC j ⇤ a 2 1/2 ✏abcY 5 ijuC T a i CuC b j c Y 5 = Y 5 T a(d↵, e ) = p 2 m2 (UT (Y 10 + Y 10 T )D)1↵ (UT Y 5 E)1 a(d↵, eC ) = 4 m2 (UT (Y 10 + Y 10 T )D)1↵ (E† C(Y 10 + Y 10 T )† U⇤ C) 1 a(dC ↵ , e ) = 1 2m2 (D† CY 5 † U⇤ C)↵1 (UT Y 5 E)1 a(dC ↵ , eC ) = p 2 m2 (D† CY 5 † U⇤ C)↵1 (E† C(Y 10 + Y 10 T )† U⇤ C) 1 a(d↵, d , ⌫i) = p 2 m2 (UT (Y 10 + Y 10 T )D)1↵ (DT Y 5 N) i a(d↵, dC , ⌫i) = 1 2m2 (D† CY 5 † U⇤ C) 1 (DT Y 5 N)↵i a(d↵, dC , ⌫C i ) = 2 m2 (UT (Y 10 + Y 10 T )D)1↵ (N† CY 1 † D⇤ C)i a(dC ↵ , dC , ⌫C i ) = 1 p 2m2 (D† CY 5 † U⇤ C) 1 (N† CY 1 † D⇤ C)i↵
  • 40. d = 6 PROTON DECAY COEFFICIENTS (SCALAR CONTRIBUTIONS*) SU(5) ⇥ U(1) Y 1 ij10+1 i 1+5 j 10⇤ 6 Y 5 ij5i 5j 10+6 (3, 1, 2/3)+6 ⌘ Y 1 ijdC T a i CeC j ⇤ a 2 1/2 ✏abcY 5 ijuC T a i CuC b j c Y 5 = Y 5 T a(d↵, e ) = p 2 m2 (UT (Y 10 + Y 10 T )D)1↵ (UT Y 5 E)1 a(d↵, eC ) = 4 m2 (UT (Y 10 + Y 10 T )D)1↵ (E† C(Y 10 + Y 10 T )† U⇤ C) 1 a(dC ↵ , e ) = 1 2m2 (D† CY 5 † U⇤ C)↵1 (UT Y 5 E)1 a(dC ↵ , eC ) = p 2 m2 (D† CY 5 † U⇤ C)↵1 (E† C(Y 10 + Y 10 T )† U⇤ C) 1 a(d↵, d , ⌫i) = p 2 m2 (UT (Y 10 + Y 10 T )D)1↵ (DT Y 5 N) i a(d↵, dC , ⌫i) = 1 2m2 (D† CY 5 † U⇤ C) 1 (DT Y 5 N)↵i a(d↵, dC , ⌫C i ) = 2 m2 (UT (Y 10 + Y 10 T )D)1↵ (N† CY 1 † D⇤ C)i a(dC ↵ , dC , ⌫C i ) = 1 p 2m2 (D† CY 5 † U⇤ C) 1 (N† CY 1 † D⇤ C)i↵ *R.N. Mohapatra, Phys. Rev. Lett. 43, 893 (1979).
  • 41. d = 6 PROTON DECAY COEFFICIENTS (SCALAR CONTRIBUTIONS*) *R.N. Mohapatra, Phys. Rev. Lett. 43, 893 (1979). 1 E = DC D = EC U = UC N = I U† D = VCKM m > 2.2 ⇥ 1011 ✓ |↵| 0.0112 GeV3 ◆1/2 GeV m > 2.2 ⇥ 1011 GeV E = DC D = EC U = UC U† D = VCKM N = I E = I D = I m > 2.2 ⇥ 1011 ✓ |↵| 0.0112 GeV3 ◆1/2 GeV m > 2.2 ⇥ 1011 GeV p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d E = DC D = EC U = UC U† D = VCKM N = I E = I D = I m > 2.2 ⇥ 1011 ✓ |↵| 0.0112 GeV3 ◆1/2 GeV m > 2.2 ⇥ 1011 GeV
  • 42. MINIMAL SU(5) IS VERY PREDICTIVE BECAUSE IT IS NOT VIABLE! d = 6 PROTON DECAY COEFFICIENTS (SCALAR CONTRIBUTIONS*) *R.N. Mohapatra, Phys. Rev. Lett. 43, 893 (1979).
  • 43. MINIMAL VIABLE SU(5) (CHARGED FERMION MASSES) 1 ⇤ ⌘ ✏↵ ⌘Yij 10↵ i 10j 5⌘ 1 ⇤ ⌘ ✏↵ ⌘Yij 10↵ i 10j 5⌘ Yij 10↵ i 5j 5⇤ ↵ Yij 10↵ i 24 ⇤ 5j 5⇤ ↵ X i (DT YDN)↵i(DT YDN)⇤ i = 1 v2 5 ((Mdiag D )2 )↵ X i (DT YU N)↵i(DT YU N)⇤ i = 4 v2 5 (V T UD(Mdiag U )2 V ⇤ UD)↵ 1 ⇤ ⌘ ✏↵ ⌘Yij 10↵ i 10j 5⌘ Yij 10↵ i 5j 5⇤ ↵ Yij 10↵ i 24 ⇤ 5j 5⇤ ↵ X i (DT YDN)↵i(DT YDN)⇤ i = 1 v2 5 ((Mdiag D )2 )↵ X i (DT YU N)↵i(DT YU N)⇤ i = 4 v2 5 (V T UD(Mdiag U )2 V ⇤ UD)↵ 1 ⇤ ⌘ ✏↵ ⌘Yij 10↵ i 10j 5⌘ Yij 10↵ i 5j 5⇤ ↵ Yij 10↵ i 24 ⇤ 5j 5⇤ ↵ X i (DT YDN)↵i(DT YDN)⇤ i = 1 v2 5 ((Mdiag D )2 )↵ X i (DT YU N)↵i(DT YU N)⇤ i = 4 v2 5 (V T UD(Mdiag U )2 V ⇤ UD)↵ CUTOFF Y 10 ij 10i10j45 Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 T v⇤ 45⇤ MD = 1 2 Y 5 T v⇤ 5 ME = 3Y 5 v⇤ 45 ME = 1 2 Y 5 v⇤ 5 Yij 10i10j45 Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 T v⇤ 45⇤ MD = 1 2 Y 5 T v⇤ 5 ME = 3Y 5 v⇤ 45 ME = 1 2 Y 5 v⇤ 5 MU = 2 p 2(Y 5 Y 5 T )v MU = p 2(Y 10 + Y 10 T )v 10 ⇥ 10 = 5 45 : MU 10 ⇥ 5 = 5 45 : ME, M 10+1 ⇥ 10+1 = 5 +2 45 +2
  • 44. PREDICTIONS* (MINIMAL VIABLE SU(5)) (3, 1, 2/3) ⌘ Y 1 ijuC T a i C⌫C j ⇤ a 2 1/2 ✏abcY 5 ijdC T a i CdC b j c Y 5 = Y 5 T OH(d↵, e ) = a(d↵, e ) uT L C 1 d↵ uT L C 1 e OH(d↵, eC ) = a(d↵, eC ) uT L C 1 d↵ eC† L C 1 uC⇤ OH(dC ↵ , e ) = a(dC ↵ , e ) dC ↵ † L C 1 uC⇤ uT L C 1 e OH(dC ↵ , eC ) = a(dC ↵ , eC ) dC ↵ † L C 1 uC⇤ eC† L C 1 uC⇤ OH(d↵, d , ⌫i) = a(d↵, d , ⌫i) uT L C 1 d↵ dT L C 1 ⌫i OH(d↵, dC , ⌫i) = a(d↵, dC , ⌫i) dC† L C 1 uC⇤ dT ↵ L C 1 ⌫i OH(d↵, dC , ⌫C i ) = a(d↵, dC , ⌫C i ) uT L C 1 d↵ ⌫C i † L C 1 dC⇤ OH(dC ↵ , dC , ⌫C i ) = a(dC ↵ , dC , ⌫C i ) dC† L C 1 uC⇤ ⌫C i † L C 1 dC ↵ ⇤ *I. Doršner, S. Fajfer and N. Košnik, Phys. Rev. D 86:015013, 2012, 1204.0674.
  • 45. PREDICTIONS* (MINIMAL VIABLE SU(5)) UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ U† D ⌘ VUD U = UCK0 UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ U† D ⌘ VUD U = UCK0 *I. Doršner, Phys. Rev. D 86:055009, 2012, 1206.5998.
  • 46. PREDICTIONS (MINIMAL VIABLE SU(5))UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ U† D ⌘ VUD U = UCK0 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ MU = MT U U† D ⌘ VUD U = UCK0 (K0)11 = ei 5 = 0 @ H 1 A 2
  • 47. PREDICTIONS (MINIMAL VIABLE SU(5)) a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ U† D ⌘ VUD U = UCK0 (K0)11 = ei 5 = 0 @ H 1 A (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)13m⌧ mb 2 ↵ 1 1 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ U† D ⌘ VUD U = UCK0 (K0)11 = ei 5 = 0 @ H 1 A 5 a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ MU = MT U U† D ⌘ VUD U = UCK0 (K0)11 = ei 5 = 0 @ H 1 A (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)13m⌧ mb 2
  • 48. PREDICTIONS (MINIMAL VIABLE SU(5)) p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC , ⌫i) = 2 (VUDMdiag )1k(DT MDN)ji
  • 49. PREDICTIONS (MINIMAL VIABLE SU(5)) 3 2 1 0 1 2 3 1.2 1.4 1.6 1.8 2.0 2.2 Φ m1011 GeV p K Ν
  • 50. PREDICTIONS (MINIMAL VIABLE SU(5)) ut of the way we are ready to proton decay mediating scalar o in the next section. AY LEPTOQUARK scalar that contributes to pro- imensional scalar representa- number violating dimension- es are [8] L C−1 dj dT k L C−1 νi, C k † L C−1 uC∗ dT j L C−1 νi, 1, 2) (j + k < 4) represent γ5)/2. Our notation is such for the d (s) quark. The color tensor in the SU(3) space is i) operators contribute exclu- with anti-neutrinos in the fi- ents for the p → π+ ¯ν (p → i=1,2,3 D Clearly, the lepton mixing matrix does not affect proton decay signatures through scalar exchange. It is also clear that the p → π+ ¯ν decay rate is significantly suppressed compared to the p → K+ ¯ν one. The suppression factor, as inferred from Eq. (11), is proportional to (md/ms)2 . For the decay widths for p → π+ ¯ν and p → K+ ¯ν channels we find Γp→π+ ¯ν = Cπ+ A (m2 u + m2 d + 2mumd cos φ)m2 d, Γp→K+ ¯ν ≈ CK+ A (m2 u + m2 d + 2mumd cos φ)m2 s, where we neglect terms suppressed by either (md/ms)2 or |(VUD)12|2 in the expression for Γp→K+ ¯ν . Here, A = 4|α|2 |(VUD)11|2 /v4 , eiφ = (K0)11 and we introduce CK+ = (m2 p − m2 K+ )2 32πf2 πm3 p 1 + mp 3mΛ (D + 3F) 2 . (12) After we insert all low-energy parameters we find Γp→π+ ¯ν /Γp→K+ ¯ν = 10−2 . (13) m > 2.2 ⇥ 1011 ✓ |↵| 0.0112 GeV3 ◆1/2 GeV m > 2.2 ⇥ 1011 GeV p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2
  • 51. CONCLUSIONS Predictions of the minimal viable version of SU(5) for the two-body p-decay modes induced through scalar leptoquark exchange exhibit minimal (one-phase only) model dependence for p → K+ ν and p → π+ ν channels. There exists an accurate limit on the mass of the scalar leptoquark. The ratio of p-decay widths for channels with π+ and K+ in the final state is phase independent and predicts strong suppression of the former width with respect to the latter one.