SlideShare ist ein Scribd-Unternehmen logo
1 von 85
An Introduction to
Server Virtualisation
August 22, 2013 2
A loose definition
Virtualisatio n is a fram e wo rk o r m e tho do lo g y o f dividing the
re so urce s o f a co m pute r into m ultiple e xe cutio n e nviro nm e nts,
by applying o ne o r m o re co nce pts o r te chno lo g ie s such as
hardware and so ftware partitio ning , tim e -sharing , partialo r
co m ple te m achine sim ulatio n, e m ulatio n, q uality o f se rvice ,
and m any o the rs.
August 22, 2013 3
Some history
− An old concept – first virtual machines
created on IBM mainframes in early ’60s
− Typically, IBM's virtual machines were
identical "copies" of the underlying hardware.
Each instance could run its own operating
system.
− Virtualisation formed the basis of “time
sharing”
August 22, 2013 4
Some virtual machines you may know…
− NT had Virtual DOS Machine (NTVDM) and Windows on
Win32 (WOW)
− Windows 95 used virtual machines to run older (Windows
3.x and DOS) applications
August 22, 2013 5
The old model
− A server for every application
− Software and hardware are
tightly coupled
− Underutilised resources
introduce real cost into the
infrastructure
August 22, 2013 6
The new model
− Physical hardware is abstracted
by a virtualisation layer, or
hype rviso r
− Manage OS and application as a
single unit by encapsulating them
into virtual machines
− Separate OS and hardware and
break hardware dependancies
− Optimise utilisation levels
August 22, 2013 7
Increased Hardware Utilisation
• Before Virtualisation • After Virtualisation
August 22, 2013 8
Underutilisation of Resources
• Most organisations over-
provision
− Multiple processors in each
server
− Memory requirements over-
estimated
• Aim to drive up CPU
utilisation
Actual DSS customer data – 120
servers monitored
August 22, 2013 9
Virtual Infrastructure
• Virtual infrastructure brings uniformity
to the data centre
• Dynamically map computing resources
to the business
• Lower IT costs through increased
efficiency, flexibility and
responsiveness
• Provision new services and change the
amount of resources dedicated to a
software service
• Treat your data centre as a single pool
of processing, storage and networking
power
August 22, 2013 10
How is it implemented?
− Typically, in order to virtualize, you would use a layer of software that
provides the illusion of a "real" machine to multiple instances of "virtual
machines". This layer is traditionally called the Virtual Machine Monitor
(VMM) or “hypervisor”.
− The hypervisor could run directly on the real hardware or it could run as
an application on top of a host operating system.
August 22, 2013 11
Type 1 VMM
Hardware
VMM
Guest
VM
Guest
VM
Guest
VM
IBM CP/CMS
VMware ESX
Windows Virtualisation (2008)
Xen
Virtual Iron
August 22, 2013 12
Type 2 VMM
Hardware
VMM
Guest
VM
Guest
VM
Guest
VM
Host OS
VMware Server
August 22, 2013 13
Hybrid VMM
MS Virtual Server
MS Virtual PC
Hardware
VMM
Host
VM
Guest
VM
Guest
VM
August 22, 2013 14
Paravirtualisation
Paravirtualization is a virtualization technique that presents
a software interface to virtual machines that is similar but
not identical to that of the underlying hardware.
This requires operating systems to be explicitly ported to run
on top of the virtual machine monitor (VMM)
August 22, 2013 15
Full Virtualisation
• Provides a complete simulation of the underlying
hardware
• With binary translation, rewrites some x86 instructions
at run time that cannot be trapped and converts them
into a series of instructions that can be trapped and
virtualised
• Capable of running existing legacy operating systems
without modification
August 22, 2013 16
Native Virtualisation
− Leverages hardware-assisted capabilities available in the
latest processors from Intel (Intel VT – “Vanderpool”) and
Advanced Micro Devices (AMD-V – “Pacifica”) to provide
near-native performance.
− Virtual Iron is one of the first companies to offer
virtualization software to fully support Intel-VT and AMD-V
hardware assisted virtualization.
August 22, 2013 17
Native Virtualisation
− Dell
• Precision 380 Intel Pentium D
• PowerEdge 430 Intel Pentium D
• PowerEdge 440 Intel Xeon 3xxx
• PowerEdge 1435 AMD Opteron 22x
• PowerEdge 1950 Intel Xeon 5xxx
• PowerEdge 1955 Intel Xeon 5xxx
• PowerEdge 2950 Intel Xeon 5xxx
− HP
• ProLiant DL140 G3 Intel Xeon 5xxx
•  ProLiant DL320 G4 Intel Xeon 5xxx
•  ProLiant DL360 G5 Intel Xeon 5xxx
•  ProLiant DL365 AMD Opteron 22xx
•  ProLiant DL380 G5 Intel Xeon 5xxx
•  ProLiant DL385 G2 AMD Opteron 22xx
•  ProLiant DL580 G4 Intel Xeon 7xxx
•  ProLiant DL585 G2 AMD Opteron 82xx
− IBM
• xSeries 100 Intel Pentium-D
•  System x3455 AMD Opteron 22xx
•  System x3550 Intel Xeon 5xxx
•  System x3850 Intel Xeon 7xxx  HS21 Intel Xeon 5xxx
•  LS21 AMD Opteron 22xx
August 22, 2013 18
What’s in a Virtual Machine?
August 22, 2013 19
What’s in a Virtual Machine - BIOS
• VM has its own BIOS
• Has everything you would
expect to see in a real
BIOS
• Boot options may include
floppy, CD-ROM, disk drive
and PXE.
August 22, 2013 20
What’s in a Virtual Machine - Networking
• Each VM has a virtual NIC
• Virtual NICs are connected to
virtual switches implemented
in the virtualisation layer
− VMware – vSwitches
− Microsoft - .vnc-files
• Virtual switches have uplink
connections to physical NICs
on the host
August 22, 2013 21
Combining internal and external virtual switches
• Virtual switch with one
outbound adapter acts as a
DMZ
• Backend applications are
secured behind the firewall
using internal-only switches
August 22, 2013 22
What’s in a Virtual Machine - Storage
• To the applications and guest operating
systems inside each virtual machine, the
storage subsystem is a simple virtual
SCSI host bus adapter connected to
one or more virtual SCSI disks
• Virtual disks are files kept on physical
storage.
− VMware – VMDK files
− Microsoft – VDF files
• Virtual disk represents a local drive on a
virtual server, such as a C or D drive in
Windows
• Physical storage could be
− Direct attached SCSI
− SAN attached
− iSCSI
− NAS
August 22, 2013 23
Licensing Considerations
• On host
− Host OS?
− Virtualisation technology?
• On Guest
− Guest OS?
− Guest Applications
August 22, 2013 24
Support Considerations
• Two meanings
− Is it technically possible?
− Will the vendor support a virtual environment?
• The Microsoft position
− “For Microsoft customers who do not have a Premier-level support agreement,
Microsoft will require the issue to be reproduced independently from the non-
Microsoft hardware virtualization software.”
− “Microsoft supports Windows Server System software running within a Microsoft
Virtual Server environment subject to the Microsoft Support Lifecycle policy ... ““
August 22, 2013 25
Usage Scenarios for Virtualization
Consolidation
Workload Mobility
Business Continuity Management
Development and Test
August 22, 2013 26
1. Logical
2. Physical
3. Rational
Gartner definition
Usage Scenario
Production server consolidation
August 22, 2013 27
Usage Scenario
Production server consolidation
• Consolidate workloads
− Infrastructure applications
− Low-utilization workloads
− Branch office and datacenter workloads
− Efficient use of available hardware resources
• Re-host legacy OS and applications
− NT4 guest applications on virtual platform
• Run on current hardware and current OS
• No application updates required
• Partition resources
− Limit CPU resource per VM
August 22, 2013 28
Usage Scenario
Business continuity management
• Disaster Recovery
− Maintain DR systems as virtual machines
− Eliminate traditional problems associated
with bare metal restores
• OS and application patching
− Deploy and test patches off-production, and
swap
− Eliminate scheduled downtime
• Isolation / sandboxing
− Isolate OS environments for untrusted
applications
− Prevent malicious code from affecting
others
August 22, 2013 29
Usage Scenario
Dynamic datacenter
• Workload mobility
− Package up entire OS environment and move to other
location
− Flexible deployment of workloads
August 22, 2013 30
Usage Scenario
Development and test
• Rapid provisioning of virtual machines
• Create arbitrary test scenarios
• Wider test range for niche scenarios
August 22, 2013 31
Application + OS: Now A Data File
• Server provisioning is similar
to copying a file
• Server migration is now
similar to data migration
• Data management techniques
can be used for server
management
• Server cloning/copying
• Versioning
• Server archival
• Remote mirroring
Entire server – OS, apps, data, devices, and state – is now
simply a file.
August 22, 2013 32
The Role of Shared Storage
• Virtual Machine files are
centrally located.
• Multiple access.
• Virtual Machines can be moved
for DR purposes, system
repair/upgrade, etc.
• Can take advantage of
advanced SAN features such as
snapshots, clones and
replication.
August 22, 2013 33
Live Migration
• Move running virtual machines from one physical
system to another with no downtime
• Zero downtime maintenance
• Balance resource utilisation across infrastructure
August 22, 2013 34
Hardware Infrastructure – Scale Up or Scale
Out?
• Scaling up means fewer,
larger systems
− Advantages
• Fewer ESX Server images to manage
• Lower infrastructure costs
(Ethernet/SAN switches)
− Disadvantages
• Higher hardware costs (servers)
• Big H.A. impact in case of failure of a
node
• Fewer CPUs supported "per rack“
• Headroom required for HA is
expensive
• Servers may go obsolete
• Locked into server architecture
• Scaling out means more,
smaller systems
− Advantages
• Lower hardware costs (servers)
• Low H.A. impact in case of failure
of a node
• More CPUs supported "per rack“
• Headroom required for HA is less
expensive
• Not locked into obsolete hardware
• More flexible
− Disadvantages
• Many hypervisor (ESX) images to
maintain
• Higher infrastructure costs
(Ethernet/SAN switches)
August 22, 2013 35
What should an enterprise ready virtualisation
platform offer?
• Efficient server partitioning
• SMP support in guest VMs
• Scalable memory in guest VMs
• Fault isolation – a crash in one virtual machine should not
impact other virtual machines
• Security isolation – a virtual machine should never access the
memory or I/O operations of another virtual machine
• Resource isolation – runaway applications in one virtual
machine should not “starve” others virtual machines.
• Non-disruptive addition of capacity
• Scalable management tools
August 22, 2013 36
VMware Workstation
• Desktop Virtualisation
• Run multiple operating systems
simultaneously on a single PC
• Supports Windows, Linux,
NetWare, Solaris
• Software development/test
• Training
August 22, 2013 37
VMware Server
• Free virtualisation platform
• Type 2 “hosted” VMM
• Runs on any standard x86 hardware
• Runs on a wide variety of Linux and
Windows host and guest operating
systems
• Intended as a “step up” to Type 1
hypervisor products.
August 22, 2013 38
VMware Infrastructure 3
• VMware ESX Server 3.0 - Type 1
VMM
• VMware VirtualCenter 2.0
• 4-way vSMP / 16GB Virtual RAM
support
• VMware VMotion
• VMware HA
• VMware Distributed Resource
Scheduling
• VMware Consolidated Backup
August 22, 2013 39
Non-disruptive capacity on
demand
August 22, 2013 40
Automate resource assurance for critical
applications
DRS Dynamic Balancing
Continuous Optimization
August 22, 2013 41
Automatic availability for all
applications
VMWARE HA
X
August 22, 2013 42
Backup anytime
VMWARE
CONSOLIDATED
BACKUP
Decouple backup from production VMs
20-40% better resource utilization
Pre-integrated with 3rd
party backup products
August 22, 2013 43
Microsoft Virtualisation Products
• Virtual PC
• Microsoft Virtual Server 2005 R2
• Virtual Machine Manager (in Beta but available for
download)
• Windows Virtualisation (to be released after
Longhorn)
August 22, 2013 44
Virtual PC
• Suited to use in testing on a desktop environment
• Not recommended for production servers
− Single CPU support only
− No remote management possible
− No SCSI support
− Starts as an application not as a service
• Shares disk format with Virtual Server
August 22, 2013 45
Virtual Server 2005 R2 SP1
• Microsoft’s current offering for
virtualisation in production
environments
• Shares underlying technology
with Microsoft Virtual PC
• Web based management
portal
• Guests supported include:
− Windows (up to Vista with SP1)
− Linux
Virtual Server 2005 R2: Administration Website
August 22, 2013 46
Clustering in Virtual Server 2005 R2 SP1
Host to Host
Cluster
storage
SAN or iSCSI
connection
Guest to Guest
Cluster
storage
iSCSI
connection
August 22, 2013 47
Virtual Server 2005 R2 SP1
• VM Additions
− VM additions provide enhanced performance and additional
functionality to the guest OS
− Additions available for XP, Windows 2003, Vista and Linux
− Windows additions provide:
• Allow for direct mode kernel execution (faster processing of some
commands)
− Linux additions provide:
• Time sync
• Shutdown support
• SCSI disk
• Does not allow for direct mode kernel execution
− Important to update for each new release to maximise
performance benefits
August 22, 2013 48
Windows Virtualisation
• To be released within 180 days after the Longhorn
release (no Beta available as yet)
• Requires Intel VT or AMD Virtualisation hardware
• Uses Hypervisor (a thin layer of software under the
“Host OS”)
Hardware
VMM (Hypervisor)
Guest 1
(“Host OS”)
Guest 2
August 22, 2013 49
Virtual Machine Manager
Virtual Machine Manager: Centralized management view
August 22, 2013 50
Centralized Management: Reports
Full set ofFull set of
reports,reports,
integration withintegration with
MOM databaseMOM database
Actions one clickActions one click
away in contextaway in context
sensitive Actionssensitive Actions
PanePane
August 22, 2013 51
Self Service Portal
Ability to controlAbility to control
owned virtualowned virtual
machinesmachines
Thumbnails ofThumbnails of
all owned virtualall owned virtual
machinesmachines
August 22, 2013 52
Self-Service Portal
Provisioning
User selects from listUser selects from list
of templatesof templates
Administrator hasAdministrator has
associated with thatassociated with that
useruser
August 22, 2013 53
Self-Service Portal
Provisioning
New virtual machineNew virtual machine
ready for use, Terminalready for use, Terminal
Services connectionServices connection
informationinformation
automatically emailed toautomatically emailed to
user.user.
August 22, 2013 54
Virtual Server 2005 vs
Windows Server Virtualization
Virtual Server 2005 R2 Windows Server Virtualization
32-bit VMs? Yes Yes
64-bit VMs? No Yes
Multi-processor VMs? No Yes, up to 8 processor VMs
VM memory support? 3.6 GB per VM More than 32 GB per VM
Hot add memory/processors? No Yes
Hot add storage/networking? No Yes
Can be managed by System Center
Virtual Machine Manager?
Yes Yes
Microsoft Cluster support? Yes Yes
Scriptable / Extensible? Yes, COM Yes, WMI
Number of running VMs? 64
More than 64.
As many as hardware will allow.
User interface Web Interface MMC 3.0 Interface
August 22, 2013 55
Xen
• Open source hypervisor
solution
• Installs on bare-metal
• Linux VMs fully supported
− Red Hat
− Debian
− Suse
• Windows VMs require Intel VT
or AMD-V processor
− Microsoft Windows Server 2000
− Microsoft Windows Server 2003
− Microsoft Windows XP SP2
August 22, 2013 56
XenSource
August 22, 2013 57
XenSource Products
User Profile Enterprise IT, system
integrators
Windows IT professionals Developers, testers,
support, IT enthusiasts
Windows guest support Windows Server 2003;
Windows XP; Windows
2000 Server
Windows Server 2003;
Windows XP; Windows
2000 Server
Windows Server 2003;
Windows XP; Windows
2000 Server
Linux guest support Red Hat EL 3.6, 3.7, 3.8,
4.1, 4.2, 4.3, 4.4, 5.0;
SUSE SLES 9.2, 9.3,
10.1; Debian Sarge
N/A (Windows guests
support only)
Red Hat EL 3.6, 3.7, 3.8,
4.1, 4.2, 4.3, 4.4, 5.0;
SUSE SLES 9.2, 9.3,
10.1; Debian Sarge
Live Migration Mid-2007 N/A N/A
Shared storage Mid-2007 N/A N/A
August 22, 2013 58
Virtual Iron
• An enterprise ready native virtualisation platform
• Uses hardware-assisted virtualisation technologies of
Intel VT and AMD-V processors
• Based on an open source hypervisor derived from the
Xen open source project
• No software need be installed on physical hardware
August 22, 2013 59
Virtual Iron Components
Component License Function
Hypervisor GPL First software loaded when physical server boots.
Manages all hardware resources
Service Partition GPL Second software loaded when physical server boots.
Manages virtual server creation and configuration
and all I/O.
Virtualisation
Manager
Commercial Controls virtual servers through an agent in the
service partition
Guest operating
systems
Varies Operating systems that are fully virtualised on a
physical server
August 22, 2013 60
Virtualization Manager
• Java-based application
• Allows for central
management of
virtualized servers
• A physical server can
have many virtualized
servers, which are run as
unmodified guest
operating systems.
August 22, 2013 61
Virtual Manager Policy-based Automation
• LiveMigration – moves a running virtual server from one
physical server without pausing or impacting running
applications
• LiveCapacity – monitors virtual server CPU utilisation or other
application needs to determine when a workload needs
additional capacity. When a user-defined threshold is met, the
virtual server is LiveMigrated to a physical server that has the
necessary resources
• LiveRecovery – monitors the status of physical resources and
moves virtual servers to maintain uptime in the event of a
hardware failure
• LiveMaintenance – moves virtual servers to alternative
locations without downtime when a physical server is taken
offline for maintenance
August 22, 2013 62
Virtual Iron Architecture
August 22, 2013 63
Supported Configurations
Feature Support
Operating systems 32 and 64-bit Red Hat Enterprise Linux 4
32 and 64-bit SUSE Linux Enterprise Server 9
32-bit Windows XP
32-bit Windows 2003
Processors Intel Xeon with Intel VT
AMD Opteron with AMD-V
Virtualised Nodes 100s per virtual data centre
Processors per virtual Server Up to 8
RAM per Physical Server Up to 96GB
Virtual servers per physical server CPU Up to 5
Virtual NIC adapters per virtual server Up to 5
Virtual disks per virtual server Up to 16
August 22, 2013 64
Virtuozzo
− Operating System–Level
Virtualisation
− Creates multiple, isolated virtual
environments (VEs)
− Whereas VMs attempt to virtualize
"a complete set of hardware," VEs
represent a "lighter" abstraction,
virtualizing instead "an operating
system instance"
August 22, 2013 65
Parallels Workstation
• Test/Development solution
aimed at desktop market
• Uses hypervisor technology
• Wide guest OS support
− Entire Windows family - 3.1,
3.11, 95, 98, Me, 2000, XP and
2003
− Linux distributions Red Hat,
SuSE, Mandriva, Debian and
Fedora Core
− FreeBSD
− “Legacy” operating systems
e.g. OS/2, eComStation and
MS-DOS.
August 22, 2013 66
HP Virtual Server Environment
• Implemented on HP Integrity and HP 9000 systems
August 22, 2013 67
Physical to Virtual (P2V)
• P2V is the term used to describe the process of
converting physical servers into virtual machines
• Can be performed while server is live
• Some operating systems require cold migration
• Process:
− Analyse source
− Create a target VM
− Transfer data from physical source to virtual target
− Transform VM
August 22, 2013 68
VMware Converter
• Replaces P2V Assistant
• Wizard based conversion
process
• Can convert physical
machines, virtual machines or
third party system images (e.g.
Symantec Ghost, Backup Exec
LiveState Recovery)
• Source physical machines:
− 64-bit Windows XP/2003
− WinNT SP4+
− Windows 2000
− Windows XP
− Windows 2003
August 22, 2013 69
Platespin PowerConvert
• “Anywhere to anywhere”
conversion
− Peer-to-Peer
• Physical to Virtual (P2V)
• Virtual to Virtual (V2V)
• Virtual to Physical (V2P)
• Physical to Physical (P2P)
− Image Capture
• Physical to Image (P2I)
• Virtual to Image (V2I)
− Image Deployment
• Image to Virtual (I2V)
• Image to Physical (I2P)
− Disaster Recovery
• Physical to Virtual (P2V)
• Virtual to Virtual (V2V)
• Windows and Linux sources
can be converted
August 22, 2013 70
Platespin PowerConvert
August 22, 2013 71
Portlock Storage Manager
• Third-party NetWare data
management product
• Can be used for P2V
conversions of NetWare
servers
• Requires some manual
reconfiguration of VM
August 22, 2013 72
Capacity Planning
• Important first step in any server consolidation project
• Aims:
− Understand server performance and utilization rates of a
group of servers
− Identifying servers that are good candidates to be migrated
into virtual machines
− Size virtual environment accurately
• Statistics are gathered and processed
• What-if scenarios can be run to examine different
possible approaches
August 22, 2013 73
VMware Capacity Planner
August 22, 2013 74
Inventory AnalyseWorkload
Data
Collection
Recommend
Platespin PowerRecon
• Onsite data collection and analysis
• Scenario modelling (what-if)
• Agentless operation
August 22, 2013 75
Some additional products…
August 22, 2013 76
VMware Lab Manager
• Create centralised pools
of VMs, storage and
network components
• Rapid setup and tear
down of test/dev
environments
• Maintain library of
customer and production
system environments
August 22, 2013 77
VMware ACE
August 22, 2013 78
VMware Virtual Desktop Infrastructure
August 22, 2013 79
Dunes VS-0
http://www.dunes.ch/content/view/82/157/
Dunes VS-O
August 22, 2013 80
− esxRanger Professional
• LAN/WAN backups
• Backup active servers
• Database of backup activity
− esxReplicator
• Replicate changes to remote
location – “chunked” by time or data
change volumes
• Effective business continuity
Virtual Machine Backup and Replication
August 22, 2013 81
Virtual Machine Backup and Replication
• esXpress
− Virtual Backup Appliance
runs backup jobs within a
VM
− Offloads CPU and memory
utilisation from VMware
ESX console
• Virtual Solution Box
− Also implemented as a
virtual machine appliance
August 22, 2013 82
esxCharter
A Windows based esxtop and more…
August 22, 2013 83
esxMigrator
• Assists customers upgrading
from VMware ESX 2.X to
VMware ESX 3.0
• Uses data manipulation
strategies that can copy virtual
disks much faster than allowed
by the VMware console
• Enables failback contingency
August 22, 2013 84
Best Practice Recommendations
• Explore your options.
• Evaluate your applications for potential
consolidation.
• Understand the differences between various
virtualization solutions.
• Look closely at the licensing and support policies of
your software vendors.
• Start small.
August 22, 2013 85
Best Practice Recommendations
• Manage expectations.
• Beware of “virtual sprawl.”
• Consider blades as a complementary consolidation
strategy.
• Integrate server consolidation with a broader
consolidation strategy.
• Develop a framework for continuous consolidation.

Weitere ähnliche Inhalte

Was ist angesagt?

VMware Virtualization
VMware Virtualization VMware Virtualization
VMware Virtualization Ashwani Kumar
 
VMware vSphere technical presentation
VMware vSphere technical presentationVMware vSphere technical presentation
VMware vSphere technical presentationaleyeldean
 
VMware Esx Short Presentation
VMware Esx Short PresentationVMware Esx Short Presentation
VMware Esx Short PresentationBarcamp Cork
 
Virtualization
VirtualizationVirtualization
Virtualizationvishnurk
 
Lecture5 virtualization
Lecture5 virtualizationLecture5 virtualization
Lecture5 virtualizationhktripathy
 
VMware Tutorial For Beginners | VMware Workstation | VMware Virtualization | ...
VMware Tutorial For Beginners | VMware Workstation | VMware Virtualization | ...VMware Tutorial For Beginners | VMware Workstation | VMware Virtualization | ...
VMware Tutorial For Beginners | VMware Workstation | VMware Virtualization | ...Edureka!
 
virtualization and hypervisors
virtualization and hypervisorsvirtualization and hypervisors
virtualization and hypervisorsGaurav Suri
 
What is Virtualization
What is VirtualizationWhat is Virtualization
What is VirtualizationIsrael Marcus
 
Virtualization Technology Overview
Virtualization Technology OverviewVirtualization Technology Overview
Virtualization Technology OverviewOpenCity Community
 
Virtualization and its Types
Virtualization and its TypesVirtualization and its Types
Virtualization and its TypesHTS Hosting
 

Was ist angesagt? (20)

Virtualization
VirtualizationVirtualization
Virtualization
 
VMware Virtualization
VMware Virtualization VMware Virtualization
VMware Virtualization
 
Virtualization
VirtualizationVirtualization
Virtualization
 
Virtualization basics
Virtualization basics Virtualization basics
Virtualization basics
 
VMware vSphere technical presentation
VMware vSphere technical presentationVMware vSphere technical presentation
VMware vSphere technical presentation
 
Virtualization 101
Virtualization 101Virtualization 101
Virtualization 101
 
VMware Esx Short Presentation
VMware Esx Short PresentationVMware Esx Short Presentation
VMware Esx Short Presentation
 
Virtualization
VirtualizationVirtualization
Virtualization
 
Lecture5 virtualization
Lecture5 virtualizationLecture5 virtualization
Lecture5 virtualization
 
Cloud Computing: Virtualization
Cloud Computing: VirtualizationCloud Computing: Virtualization
Cloud Computing: Virtualization
 
VMware Tutorial For Beginners | VMware Workstation | VMware Virtualization | ...
VMware Tutorial For Beginners | VMware Workstation | VMware Virtualization | ...VMware Tutorial For Beginners | VMware Workstation | VMware Virtualization | ...
VMware Tutorial For Beginners | VMware Workstation | VMware Virtualization | ...
 
Virtual Machine
Virtual MachineVirtual Machine
Virtual Machine
 
Virtualization
VirtualizationVirtualization
Virtualization
 
Paravirtualization
ParavirtualizationParavirtualization
Paravirtualization
 
virtualization and hypervisors
virtualization and hypervisorsvirtualization and hypervisors
virtualization and hypervisors
 
What is Virtualization
What is VirtualizationWhat is Virtualization
What is Virtualization
 
Virtualization Technology Overview
Virtualization Technology OverviewVirtualization Technology Overview
Virtualization Technology Overview
 
Virtual Machine
Virtual MachineVirtual Machine
Virtual Machine
 
Vmware overview
Vmware overviewVmware overview
Vmware overview
 
Virtualization and its Types
Virtualization and its TypesVirtualization and its Types
Virtualization and its Types
 

Andere mochten auch

Virtualisation - The State of Play in 2009
Virtualisation - The State of Play in 2009Virtualisation - The State of Play in 2009
Virtualisation - The State of Play in 2009Jon Collins
 
Virtualization White Paper
Virtualization White PaperVirtualization White Paper
Virtualization White PaperJNolte
 
Mitel Virtual Solutions[1]
Mitel Virtual Solutions[1]Mitel Virtual Solutions[1]
Mitel Virtual Solutions[1]BobSMitel
 
From Tdm To Ip To Virtualisation
From Tdm To Ip To VirtualisationFrom Tdm To Ip To Virtualisation
From Tdm To Ip To VirtualisationRob Neil
 
Virtualisation optimisation, the cloud and beyond
Virtualisation optimisation, the cloud and beyondVirtualisation optimisation, the cloud and beyond
Virtualisation optimisation, the cloud and beyondInteractiveIdeas
 
Empowering Your Virtual Voice
Empowering Your Virtual VoiceEmpowering Your Virtual Voice
Empowering Your Virtual VoiceDell Social Media
 
Module 21 investigative reports
Module 21 investigative reportsModule 21 investigative reports
Module 21 investigative reportssagaroceanic11
 
Ch01 instructor 1
Ch01 instructor 1Ch01 instructor 1
Ch01 instructor 1bsindaco
 
Introduction To Server Virtualisation Planning And Implementing A Virtualisat...
Introduction To Server Virtualisation Planning And Implementing A Virtualisat...Introduction To Server Virtualisation Planning And Implementing A Virtualisat...
Introduction To Server Virtualisation Planning And Implementing A Virtualisat...Alan McSweeney
 
ITIL Practical Guide - Service Transition
ITIL Practical Guide - Service TransitionITIL Practical Guide - Service Transition
ITIL Practical Guide - Service TransitionAxios Systems
 
Telecom Billing Solutions By Sohag Sarkar
Telecom Billing Solutions By Sohag SarkarTelecom Billing Solutions By Sohag Sarkar
Telecom Billing Solutions By Sohag SarkarSohag Sarkar
 

Andere mochten auch (16)

Virtualisation - The State of Play in 2009
Virtualisation - The State of Play in 2009Virtualisation - The State of Play in 2009
Virtualisation - The State of Play in 2009
 
Virtualization White Paper
Virtualization White PaperVirtualization White Paper
Virtualization White Paper
 
5 service transition
5 service transition5 service transition
5 service transition
 
3 service strategy
3 service strategy3 service strategy
3 service strategy
 
6 service operation
6 service operation6 service operation
6 service operation
 
4 service design
4 service design4 service design
4 service design
 
Mitel Virtual Solutions[1]
Mitel Virtual Solutions[1]Mitel Virtual Solutions[1]
Mitel Virtual Solutions[1]
 
From Tdm To Ip To Virtualisation
From Tdm To Ip To VirtualisationFrom Tdm To Ip To Virtualisation
From Tdm To Ip To Virtualisation
 
Virtualisation optimisation, the cloud and beyond
Virtualisation optimisation, the cloud and beyondVirtualisation optimisation, the cloud and beyond
Virtualisation optimisation, the cloud and beyond
 
Empowering Your Virtual Voice
Empowering Your Virtual VoiceEmpowering Your Virtual Voice
Empowering Your Virtual Voice
 
Telecom Billing
Telecom BillingTelecom Billing
Telecom Billing
 
Module 21 investigative reports
Module 21 investigative reportsModule 21 investigative reports
Module 21 investigative reports
 
Ch01 instructor 1
Ch01 instructor 1Ch01 instructor 1
Ch01 instructor 1
 
Introduction To Server Virtualisation Planning And Implementing A Virtualisat...
Introduction To Server Virtualisation Planning And Implementing A Virtualisat...Introduction To Server Virtualisation Planning And Implementing A Virtualisat...
Introduction To Server Virtualisation Planning And Implementing A Virtualisat...
 
ITIL Practical Guide - Service Transition
ITIL Practical Guide - Service TransitionITIL Practical Guide - Service Transition
ITIL Practical Guide - Service Transition
 
Telecom Billing Solutions By Sohag Sarkar
Telecom Billing Solutions By Sohag SarkarTelecom Billing Solutions By Sohag Sarkar
Telecom Billing Solutions By Sohag Sarkar
 

Ähnlich wie Introduction to virtualisation

Introduction to Virtualization
Introduction to Virtualization Introduction to Virtualization
Introduction to Virtualization Wellshop.pk
 
6-Virtualizaiton-6.pptx
6-Virtualizaiton-6.pptx6-Virtualizaiton-6.pptx
6-Virtualizaiton-6.pptxAnsarHasas1
 
aravind_kmdfdgmfmfmmfmkmkmmgmbmgmbmgbmgmkm.pptx
aravind_kmdfdgmfmfmmfmkmkmmgmbmgmbmgbmgmkm.pptxaravind_kmdfdgmfmfmmfmkmkmmgmbmgmbmgbmgmkm.pptx
aravind_kmdfdgmfmfmmfmkmkmmgmbmgmbmgbmgmkm.pptxaravym456
 
9-cloud-computing.pdf
9-cloud-computing.pdf9-cloud-computing.pdf
9-cloud-computing.pdfErvisTema1
 
An Introduction To Server Virtualisation
An Introduction To Server VirtualisationAn Introduction To Server Virtualisation
An Introduction To Server VirtualisationAlan McSweeney
 
Chap 2 virtulizatin
Chap 2 virtulizatinChap 2 virtulizatin
Chap 2 virtulizatinRaj Sarode
 
lecture5-virtualization-190301171613.pptx
lecture5-virtualization-190301171613.pptxlecture5-virtualization-190301171613.pptx
lecture5-virtualization-190301171613.pptxAnilkumarbehera16
 
Cloud virtualization
Cloud virtualizationCloud virtualization
Cloud virtualizationSarwan Singh
 
Cloud Computing using virtulization
Cloud Computing using virtulizationCloud Computing using virtulization
Cloud Computing using virtulizationAJIT NEGI
 
Principles of virtualization
Principles of virtualizationPrinciples of virtualization
Principles of virtualizationRubal Sagwal
 
cloud_and_virtualization_concepts.pdf
cloud_and_virtualization_concepts.pdfcloud_and_virtualization_concepts.pdf
cloud_and_virtualization_concepts.pdfRAJURAJ111120
 
Cloudweaver commercial keynote
Cloudweaver commercial keynoteCloudweaver commercial keynote
Cloudweaver commercial keynoteLuigi Gregori
 
Virtualization
VirtualizationVirtualization
VirtualizationMadnanS
 

Ähnlich wie Introduction to virtualisation (20)

unit 2.ppt
unit 2.pptunit 2.ppt
unit 2.ppt
 
Introduction to Virtualization
Introduction to Virtualization Introduction to Virtualization
Introduction to Virtualization
 
Cloud-Computing
Cloud-ComputingCloud-Computing
Cloud-Computing
 
6-Virtualizaiton-6.pptx
6-Virtualizaiton-6.pptx6-Virtualizaiton-6.pptx
6-Virtualizaiton-6.pptx
 
aravind_kmdfdgmfmfmmfmkmkmmgmbmgmbmgbmgmkm.pptx
aravind_kmdfdgmfmfmmfmkmkmmgmbmgmbmgbmgmkm.pptxaravind_kmdfdgmfmfmmfmkmkmmgmbmgmbmgbmgmkm.pptx
aravind_kmdfdgmfmfmmfmkmkmmgmbmgmbmgbmgmkm.pptx
 
Virtualization
VirtualizationVirtualization
Virtualization
 
9-cloud-computing.pdf
9-cloud-computing.pdf9-cloud-computing.pdf
9-cloud-computing.pdf
 
An Introduction To Server Virtualisation
An Introduction To Server VirtualisationAn Introduction To Server Virtualisation
An Introduction To Server Virtualisation
 
Chap 2 virtulizatin
Chap 2 virtulizatinChap 2 virtulizatin
Chap 2 virtulizatin
 
lecture5-virtualization-190301171613.pptx
lecture5-virtualization-190301171613.pptxlecture5-virtualization-190301171613.pptx
lecture5-virtualization-190301171613.pptx
 
Cloud virtualization
Cloud virtualizationCloud virtualization
Cloud virtualization
 
Virtualizaiton-3.pptx
Virtualizaiton-3.pptxVirtualizaiton-3.pptx
Virtualizaiton-3.pptx
 
Cloud Computing using virtulization
Cloud Computing using virtulizationCloud Computing using virtulization
Cloud Computing using virtulization
 
Principles of virtualization
Principles of virtualizationPrinciples of virtualization
Principles of virtualization
 
cloud_and_virtualization_concepts.pdf
cloud_and_virtualization_concepts.pdfcloud_and_virtualization_concepts.pdf
cloud_and_virtualization_concepts.pdf
 
Virtualization vs. Cloud Computing: What's the Difference?
Virtualization vs. Cloud Computing: What's the Difference?Virtualization vs. Cloud Computing: What's the Difference?
Virtualization vs. Cloud Computing: What's the Difference?
 
Ch 2
Ch 2Ch 2
Ch 2
 
Cloudweaver commercial keynote
Cloudweaver commercial keynoteCloudweaver commercial keynote
Cloudweaver commercial keynote
 
Virtualization
VirtualizationVirtualization
Virtualization
 
Virtualization
VirtualizationVirtualization
Virtualization
 

Mehr von sagaroceanic11

Module 20 mobile forensics
Module 20 mobile forensicsModule 20 mobile forensics
Module 20 mobile forensicssagaroceanic11
 
Module 19 tracking emails and investigating email crimes
Module 19 tracking emails and investigating email crimesModule 19 tracking emails and investigating email crimes
Module 19 tracking emails and investigating email crimessagaroceanic11
 
Module 18 investigating web attacks
Module 18 investigating web attacksModule 18 investigating web attacks
Module 18 investigating web attackssagaroceanic11
 
Module 17 investigating wireless attacks
Module 17 investigating wireless attacksModule 17 investigating wireless attacks
Module 17 investigating wireless attackssagaroceanic11
 
Module 04 digital evidence
Module 04 digital evidenceModule 04 digital evidence
Module 04 digital evidencesagaroceanic11
 
Module 03 searching and seizing computers
Module 03 searching and seizing computersModule 03 searching and seizing computers
Module 03 searching and seizing computerssagaroceanic11
 
Module 01 computer forensics in todays world
Module 01 computer forensics in todays worldModule 01 computer forensics in todays world
Module 01 computer forensics in todays worldsagaroceanic11
 
Virtualisation with v mware
Virtualisation with v mwareVirtualisation with v mware
Virtualisation with v mwaresagaroceanic11
 
Virtualisation overview
Virtualisation overviewVirtualisation overview
Virtualisation overviewsagaroceanic11
 
2 the service lifecycle
2 the service lifecycle2 the service lifecycle
2 the service lifecyclesagaroceanic11
 
1 introduction to itil v[1].3
1 introduction to itil v[1].31 introduction to itil v[1].3
1 introduction to itil v[1].3sagaroceanic11
 
Visual studio 2008 overview
Visual studio 2008 overviewVisual studio 2008 overview
Visual studio 2008 overviewsagaroceanic11
 
Rubyforjavaprogrammers 1210167973516759-9
Rubyforjavaprogrammers 1210167973516759-9Rubyforjavaprogrammers 1210167973516759-9
Rubyforjavaprogrammers 1210167973516759-9sagaroceanic11
 
Presentationrubyonrails 1221891563546619-8
Presentationrubyonrails 1221891563546619-8Presentationrubyonrails 1221891563546619-8
Presentationrubyonrails 1221891563546619-8sagaroceanic11
 
Understanding san ( storage area network )
Understanding san ( storage area network )Understanding san ( storage area network )
Understanding san ( storage area network )sagaroceanic11
 
Understanding nas (network attached storage)
Understanding nas (network attached storage)Understanding nas (network attached storage)
Understanding nas (network attached storage)sagaroceanic11
 

Mehr von sagaroceanic11 (20)

Module 20 mobile forensics
Module 20 mobile forensicsModule 20 mobile forensics
Module 20 mobile forensics
 
Module 19 tracking emails and investigating email crimes
Module 19 tracking emails and investigating email crimesModule 19 tracking emails and investigating email crimes
Module 19 tracking emails and investigating email crimes
 
Module 18 investigating web attacks
Module 18 investigating web attacksModule 18 investigating web attacks
Module 18 investigating web attacks
 
Module 17 investigating wireless attacks
Module 17 investigating wireless attacksModule 17 investigating wireless attacks
Module 17 investigating wireless attacks
 
Module 04 digital evidence
Module 04 digital evidenceModule 04 digital evidence
Module 04 digital evidence
 
Module 03 searching and seizing computers
Module 03 searching and seizing computersModule 03 searching and seizing computers
Module 03 searching and seizing computers
 
Module 01 computer forensics in todays world
Module 01 computer forensics in todays worldModule 01 computer forensics in todays world
Module 01 computer forensics in todays world
 
Virtualisation with v mware
Virtualisation with v mwareVirtualisation with v mware
Virtualisation with v mware
 
Virtualisation overview
Virtualisation overviewVirtualisation overview
Virtualisation overview
 
Virtualisation basics
Virtualisation basicsVirtualisation basics
Virtualisation basics
 
2 the service lifecycle
2 the service lifecycle2 the service lifecycle
2 the service lifecycle
 
1 introduction to itil v[1].3
1 introduction to itil v[1].31 introduction to itil v[1].3
1 introduction to itil v[1].3
 
Visual studio 2008 overview
Visual studio 2008 overviewVisual studio 2008 overview
Visual studio 2008 overview
 
Vb introduction.
Vb introduction.Vb introduction.
Vb introduction.
 
Vb essentials
Vb essentialsVb essentials
Vb essentials
 
Vb basics
Vb basicsVb basics
Vb basics
 
Rubyforjavaprogrammers 1210167973516759-9
Rubyforjavaprogrammers 1210167973516759-9Rubyforjavaprogrammers 1210167973516759-9
Rubyforjavaprogrammers 1210167973516759-9
 
Presentationrubyonrails 1221891563546619-8
Presentationrubyonrails 1221891563546619-8Presentationrubyonrails 1221891563546619-8
Presentationrubyonrails 1221891563546619-8
 
Understanding san ( storage area network )
Understanding san ( storage area network )Understanding san ( storage area network )
Understanding san ( storage area network )
 
Understanding nas (network attached storage)
Understanding nas (network attached storage)Understanding nas (network attached storage)
Understanding nas (network attached storage)
 

Kürzlich hochgeladen

Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessPixlogix Infotech
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Enterprise Knowledge
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 

Kürzlich hochgeladen (20)

Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 

Introduction to virtualisation

  • 1. An Introduction to Server Virtualisation
  • 2. August 22, 2013 2 A loose definition Virtualisatio n is a fram e wo rk o r m e tho do lo g y o f dividing the re so urce s o f a co m pute r into m ultiple e xe cutio n e nviro nm e nts, by applying o ne o r m o re co nce pts o r te chno lo g ie s such as hardware and so ftware partitio ning , tim e -sharing , partialo r co m ple te m achine sim ulatio n, e m ulatio n, q uality o f se rvice , and m any o the rs.
  • 3. August 22, 2013 3 Some history − An old concept – first virtual machines created on IBM mainframes in early ’60s − Typically, IBM's virtual machines were identical "copies" of the underlying hardware. Each instance could run its own operating system. − Virtualisation formed the basis of “time sharing”
  • 4. August 22, 2013 4 Some virtual machines you may know… − NT had Virtual DOS Machine (NTVDM) and Windows on Win32 (WOW) − Windows 95 used virtual machines to run older (Windows 3.x and DOS) applications
  • 5. August 22, 2013 5 The old model − A server for every application − Software and hardware are tightly coupled − Underutilised resources introduce real cost into the infrastructure
  • 6. August 22, 2013 6 The new model − Physical hardware is abstracted by a virtualisation layer, or hype rviso r − Manage OS and application as a single unit by encapsulating them into virtual machines − Separate OS and hardware and break hardware dependancies − Optimise utilisation levels
  • 7. August 22, 2013 7 Increased Hardware Utilisation • Before Virtualisation • After Virtualisation
  • 8. August 22, 2013 8 Underutilisation of Resources • Most organisations over- provision − Multiple processors in each server − Memory requirements over- estimated • Aim to drive up CPU utilisation Actual DSS customer data – 120 servers monitored
  • 9. August 22, 2013 9 Virtual Infrastructure • Virtual infrastructure brings uniformity to the data centre • Dynamically map computing resources to the business • Lower IT costs through increased efficiency, flexibility and responsiveness • Provision new services and change the amount of resources dedicated to a software service • Treat your data centre as a single pool of processing, storage and networking power
  • 10. August 22, 2013 10 How is it implemented? − Typically, in order to virtualize, you would use a layer of software that provides the illusion of a "real" machine to multiple instances of "virtual machines". This layer is traditionally called the Virtual Machine Monitor (VMM) or “hypervisor”. − The hypervisor could run directly on the real hardware or it could run as an application on top of a host operating system.
  • 11. August 22, 2013 11 Type 1 VMM Hardware VMM Guest VM Guest VM Guest VM IBM CP/CMS VMware ESX Windows Virtualisation (2008) Xen Virtual Iron
  • 12. August 22, 2013 12 Type 2 VMM Hardware VMM Guest VM Guest VM Guest VM Host OS VMware Server
  • 13. August 22, 2013 13 Hybrid VMM MS Virtual Server MS Virtual PC Hardware VMM Host VM Guest VM Guest VM
  • 14. August 22, 2013 14 Paravirtualisation Paravirtualization is a virtualization technique that presents a software interface to virtual machines that is similar but not identical to that of the underlying hardware. This requires operating systems to be explicitly ported to run on top of the virtual machine monitor (VMM)
  • 15. August 22, 2013 15 Full Virtualisation • Provides a complete simulation of the underlying hardware • With binary translation, rewrites some x86 instructions at run time that cannot be trapped and converts them into a series of instructions that can be trapped and virtualised • Capable of running existing legacy operating systems without modification
  • 16. August 22, 2013 16 Native Virtualisation − Leverages hardware-assisted capabilities available in the latest processors from Intel (Intel VT – “Vanderpool”) and Advanced Micro Devices (AMD-V – “Pacifica”) to provide near-native performance. − Virtual Iron is one of the first companies to offer virtualization software to fully support Intel-VT and AMD-V hardware assisted virtualization.
  • 17. August 22, 2013 17 Native Virtualisation − Dell • Precision 380 Intel Pentium D • PowerEdge 430 Intel Pentium D • PowerEdge 440 Intel Xeon 3xxx • PowerEdge 1435 AMD Opteron 22x • PowerEdge 1950 Intel Xeon 5xxx • PowerEdge 1955 Intel Xeon 5xxx • PowerEdge 2950 Intel Xeon 5xxx − HP • ProLiant DL140 G3 Intel Xeon 5xxx •  ProLiant DL320 G4 Intel Xeon 5xxx •  ProLiant DL360 G5 Intel Xeon 5xxx •  ProLiant DL365 AMD Opteron 22xx •  ProLiant DL380 G5 Intel Xeon 5xxx •  ProLiant DL385 G2 AMD Opteron 22xx •  ProLiant DL580 G4 Intel Xeon 7xxx •  ProLiant DL585 G2 AMD Opteron 82xx − IBM • xSeries 100 Intel Pentium-D •  System x3455 AMD Opteron 22xx •  System x3550 Intel Xeon 5xxx •  System x3850 Intel Xeon 7xxx  HS21 Intel Xeon 5xxx •  LS21 AMD Opteron 22xx
  • 18. August 22, 2013 18 What’s in a Virtual Machine?
  • 19. August 22, 2013 19 What’s in a Virtual Machine - BIOS • VM has its own BIOS • Has everything you would expect to see in a real BIOS • Boot options may include floppy, CD-ROM, disk drive and PXE.
  • 20. August 22, 2013 20 What’s in a Virtual Machine - Networking • Each VM has a virtual NIC • Virtual NICs are connected to virtual switches implemented in the virtualisation layer − VMware – vSwitches − Microsoft - .vnc-files • Virtual switches have uplink connections to physical NICs on the host
  • 21. August 22, 2013 21 Combining internal and external virtual switches • Virtual switch with one outbound adapter acts as a DMZ • Backend applications are secured behind the firewall using internal-only switches
  • 22. August 22, 2013 22 What’s in a Virtual Machine - Storage • To the applications and guest operating systems inside each virtual machine, the storage subsystem is a simple virtual SCSI host bus adapter connected to one or more virtual SCSI disks • Virtual disks are files kept on physical storage. − VMware – VMDK files − Microsoft – VDF files • Virtual disk represents a local drive on a virtual server, such as a C or D drive in Windows • Physical storage could be − Direct attached SCSI − SAN attached − iSCSI − NAS
  • 23. August 22, 2013 23 Licensing Considerations • On host − Host OS? − Virtualisation technology? • On Guest − Guest OS? − Guest Applications
  • 24. August 22, 2013 24 Support Considerations • Two meanings − Is it technically possible? − Will the vendor support a virtual environment? • The Microsoft position − “For Microsoft customers who do not have a Premier-level support agreement, Microsoft will require the issue to be reproduced independently from the non- Microsoft hardware virtualization software.” − “Microsoft supports Windows Server System software running within a Microsoft Virtual Server environment subject to the Microsoft Support Lifecycle policy ... ““
  • 25. August 22, 2013 25 Usage Scenarios for Virtualization Consolidation Workload Mobility Business Continuity Management Development and Test
  • 26. August 22, 2013 26 1. Logical 2. Physical 3. Rational Gartner definition Usage Scenario Production server consolidation
  • 27. August 22, 2013 27 Usage Scenario Production server consolidation • Consolidate workloads − Infrastructure applications − Low-utilization workloads − Branch office and datacenter workloads − Efficient use of available hardware resources • Re-host legacy OS and applications − NT4 guest applications on virtual platform • Run on current hardware and current OS • No application updates required • Partition resources − Limit CPU resource per VM
  • 28. August 22, 2013 28 Usage Scenario Business continuity management • Disaster Recovery − Maintain DR systems as virtual machines − Eliminate traditional problems associated with bare metal restores • OS and application patching − Deploy and test patches off-production, and swap − Eliminate scheduled downtime • Isolation / sandboxing − Isolate OS environments for untrusted applications − Prevent malicious code from affecting others
  • 29. August 22, 2013 29 Usage Scenario Dynamic datacenter • Workload mobility − Package up entire OS environment and move to other location − Flexible deployment of workloads
  • 30. August 22, 2013 30 Usage Scenario Development and test • Rapid provisioning of virtual machines • Create arbitrary test scenarios • Wider test range for niche scenarios
  • 31. August 22, 2013 31 Application + OS: Now A Data File • Server provisioning is similar to copying a file • Server migration is now similar to data migration • Data management techniques can be used for server management • Server cloning/copying • Versioning • Server archival • Remote mirroring Entire server – OS, apps, data, devices, and state – is now simply a file.
  • 32. August 22, 2013 32 The Role of Shared Storage • Virtual Machine files are centrally located. • Multiple access. • Virtual Machines can be moved for DR purposes, system repair/upgrade, etc. • Can take advantage of advanced SAN features such as snapshots, clones and replication.
  • 33. August 22, 2013 33 Live Migration • Move running virtual machines from one physical system to another with no downtime • Zero downtime maintenance • Balance resource utilisation across infrastructure
  • 34. August 22, 2013 34 Hardware Infrastructure – Scale Up or Scale Out? • Scaling up means fewer, larger systems − Advantages • Fewer ESX Server images to manage • Lower infrastructure costs (Ethernet/SAN switches) − Disadvantages • Higher hardware costs (servers) • Big H.A. impact in case of failure of a node • Fewer CPUs supported "per rack“ • Headroom required for HA is expensive • Servers may go obsolete • Locked into server architecture • Scaling out means more, smaller systems − Advantages • Lower hardware costs (servers) • Low H.A. impact in case of failure of a node • More CPUs supported "per rack“ • Headroom required for HA is less expensive • Not locked into obsolete hardware • More flexible − Disadvantages • Many hypervisor (ESX) images to maintain • Higher infrastructure costs (Ethernet/SAN switches)
  • 35. August 22, 2013 35 What should an enterprise ready virtualisation platform offer? • Efficient server partitioning • SMP support in guest VMs • Scalable memory in guest VMs • Fault isolation – a crash in one virtual machine should not impact other virtual machines • Security isolation – a virtual machine should never access the memory or I/O operations of another virtual machine • Resource isolation – runaway applications in one virtual machine should not “starve” others virtual machines. • Non-disruptive addition of capacity • Scalable management tools
  • 36. August 22, 2013 36 VMware Workstation • Desktop Virtualisation • Run multiple operating systems simultaneously on a single PC • Supports Windows, Linux, NetWare, Solaris • Software development/test • Training
  • 37. August 22, 2013 37 VMware Server • Free virtualisation platform • Type 2 “hosted” VMM • Runs on any standard x86 hardware • Runs on a wide variety of Linux and Windows host and guest operating systems • Intended as a “step up” to Type 1 hypervisor products.
  • 38. August 22, 2013 38 VMware Infrastructure 3 • VMware ESX Server 3.0 - Type 1 VMM • VMware VirtualCenter 2.0 • 4-way vSMP / 16GB Virtual RAM support • VMware VMotion • VMware HA • VMware Distributed Resource Scheduling • VMware Consolidated Backup
  • 39. August 22, 2013 39 Non-disruptive capacity on demand
  • 40. August 22, 2013 40 Automate resource assurance for critical applications DRS Dynamic Balancing Continuous Optimization
  • 41. August 22, 2013 41 Automatic availability for all applications VMWARE HA X
  • 42. August 22, 2013 42 Backup anytime VMWARE CONSOLIDATED BACKUP Decouple backup from production VMs 20-40% better resource utilization Pre-integrated with 3rd party backup products
  • 43. August 22, 2013 43 Microsoft Virtualisation Products • Virtual PC • Microsoft Virtual Server 2005 R2 • Virtual Machine Manager (in Beta but available for download) • Windows Virtualisation (to be released after Longhorn)
  • 44. August 22, 2013 44 Virtual PC • Suited to use in testing on a desktop environment • Not recommended for production servers − Single CPU support only − No remote management possible − No SCSI support − Starts as an application not as a service • Shares disk format with Virtual Server
  • 45. August 22, 2013 45 Virtual Server 2005 R2 SP1 • Microsoft’s current offering for virtualisation in production environments • Shares underlying technology with Microsoft Virtual PC • Web based management portal • Guests supported include: − Windows (up to Vista with SP1) − Linux Virtual Server 2005 R2: Administration Website
  • 46. August 22, 2013 46 Clustering in Virtual Server 2005 R2 SP1 Host to Host Cluster storage SAN or iSCSI connection Guest to Guest Cluster storage iSCSI connection
  • 47. August 22, 2013 47 Virtual Server 2005 R2 SP1 • VM Additions − VM additions provide enhanced performance and additional functionality to the guest OS − Additions available for XP, Windows 2003, Vista and Linux − Windows additions provide: • Allow for direct mode kernel execution (faster processing of some commands) − Linux additions provide: • Time sync • Shutdown support • SCSI disk • Does not allow for direct mode kernel execution − Important to update for each new release to maximise performance benefits
  • 48. August 22, 2013 48 Windows Virtualisation • To be released within 180 days after the Longhorn release (no Beta available as yet) • Requires Intel VT or AMD Virtualisation hardware • Uses Hypervisor (a thin layer of software under the “Host OS”) Hardware VMM (Hypervisor) Guest 1 (“Host OS”) Guest 2
  • 49. August 22, 2013 49 Virtual Machine Manager Virtual Machine Manager: Centralized management view
  • 50. August 22, 2013 50 Centralized Management: Reports Full set ofFull set of reports,reports, integration withintegration with MOM databaseMOM database Actions one clickActions one click away in contextaway in context sensitive Actionssensitive Actions PanePane
  • 51. August 22, 2013 51 Self Service Portal Ability to controlAbility to control owned virtualowned virtual machinesmachines Thumbnails ofThumbnails of all owned virtualall owned virtual machinesmachines
  • 52. August 22, 2013 52 Self-Service Portal Provisioning User selects from listUser selects from list of templatesof templates Administrator hasAdministrator has associated with thatassociated with that useruser
  • 53. August 22, 2013 53 Self-Service Portal Provisioning New virtual machineNew virtual machine ready for use, Terminalready for use, Terminal Services connectionServices connection informationinformation automatically emailed toautomatically emailed to user.user.
  • 54. August 22, 2013 54 Virtual Server 2005 vs Windows Server Virtualization Virtual Server 2005 R2 Windows Server Virtualization 32-bit VMs? Yes Yes 64-bit VMs? No Yes Multi-processor VMs? No Yes, up to 8 processor VMs VM memory support? 3.6 GB per VM More than 32 GB per VM Hot add memory/processors? No Yes Hot add storage/networking? No Yes Can be managed by System Center Virtual Machine Manager? Yes Yes Microsoft Cluster support? Yes Yes Scriptable / Extensible? Yes, COM Yes, WMI Number of running VMs? 64 More than 64. As many as hardware will allow. User interface Web Interface MMC 3.0 Interface
  • 55. August 22, 2013 55 Xen • Open source hypervisor solution • Installs on bare-metal • Linux VMs fully supported − Red Hat − Debian − Suse • Windows VMs require Intel VT or AMD-V processor − Microsoft Windows Server 2000 − Microsoft Windows Server 2003 − Microsoft Windows XP SP2
  • 56. August 22, 2013 56 XenSource
  • 57. August 22, 2013 57 XenSource Products User Profile Enterprise IT, system integrators Windows IT professionals Developers, testers, support, IT enthusiasts Windows guest support Windows Server 2003; Windows XP; Windows 2000 Server Windows Server 2003; Windows XP; Windows 2000 Server Windows Server 2003; Windows XP; Windows 2000 Server Linux guest support Red Hat EL 3.6, 3.7, 3.8, 4.1, 4.2, 4.3, 4.4, 5.0; SUSE SLES 9.2, 9.3, 10.1; Debian Sarge N/A (Windows guests support only) Red Hat EL 3.6, 3.7, 3.8, 4.1, 4.2, 4.3, 4.4, 5.0; SUSE SLES 9.2, 9.3, 10.1; Debian Sarge Live Migration Mid-2007 N/A N/A Shared storage Mid-2007 N/A N/A
  • 58. August 22, 2013 58 Virtual Iron • An enterprise ready native virtualisation platform • Uses hardware-assisted virtualisation technologies of Intel VT and AMD-V processors • Based on an open source hypervisor derived from the Xen open source project • No software need be installed on physical hardware
  • 59. August 22, 2013 59 Virtual Iron Components Component License Function Hypervisor GPL First software loaded when physical server boots. Manages all hardware resources Service Partition GPL Second software loaded when physical server boots. Manages virtual server creation and configuration and all I/O. Virtualisation Manager Commercial Controls virtual servers through an agent in the service partition Guest operating systems Varies Operating systems that are fully virtualised on a physical server
  • 60. August 22, 2013 60 Virtualization Manager • Java-based application • Allows for central management of virtualized servers • A physical server can have many virtualized servers, which are run as unmodified guest operating systems.
  • 61. August 22, 2013 61 Virtual Manager Policy-based Automation • LiveMigration – moves a running virtual server from one physical server without pausing or impacting running applications • LiveCapacity – monitors virtual server CPU utilisation or other application needs to determine when a workload needs additional capacity. When a user-defined threshold is met, the virtual server is LiveMigrated to a physical server that has the necessary resources • LiveRecovery – monitors the status of physical resources and moves virtual servers to maintain uptime in the event of a hardware failure • LiveMaintenance – moves virtual servers to alternative locations without downtime when a physical server is taken offline for maintenance
  • 62. August 22, 2013 62 Virtual Iron Architecture
  • 63. August 22, 2013 63 Supported Configurations Feature Support Operating systems 32 and 64-bit Red Hat Enterprise Linux 4 32 and 64-bit SUSE Linux Enterprise Server 9 32-bit Windows XP 32-bit Windows 2003 Processors Intel Xeon with Intel VT AMD Opteron with AMD-V Virtualised Nodes 100s per virtual data centre Processors per virtual Server Up to 8 RAM per Physical Server Up to 96GB Virtual servers per physical server CPU Up to 5 Virtual NIC adapters per virtual server Up to 5 Virtual disks per virtual server Up to 16
  • 64. August 22, 2013 64 Virtuozzo − Operating System–Level Virtualisation − Creates multiple, isolated virtual environments (VEs) − Whereas VMs attempt to virtualize "a complete set of hardware," VEs represent a "lighter" abstraction, virtualizing instead "an operating system instance"
  • 65. August 22, 2013 65 Parallels Workstation • Test/Development solution aimed at desktop market • Uses hypervisor technology • Wide guest OS support − Entire Windows family - 3.1, 3.11, 95, 98, Me, 2000, XP and 2003 − Linux distributions Red Hat, SuSE, Mandriva, Debian and Fedora Core − FreeBSD − “Legacy” operating systems e.g. OS/2, eComStation and MS-DOS.
  • 66. August 22, 2013 66 HP Virtual Server Environment • Implemented on HP Integrity and HP 9000 systems
  • 67. August 22, 2013 67 Physical to Virtual (P2V) • P2V is the term used to describe the process of converting physical servers into virtual machines • Can be performed while server is live • Some operating systems require cold migration • Process: − Analyse source − Create a target VM − Transfer data from physical source to virtual target − Transform VM
  • 68. August 22, 2013 68 VMware Converter • Replaces P2V Assistant • Wizard based conversion process • Can convert physical machines, virtual machines or third party system images (e.g. Symantec Ghost, Backup Exec LiveState Recovery) • Source physical machines: − 64-bit Windows XP/2003 − WinNT SP4+ − Windows 2000 − Windows XP − Windows 2003
  • 69. August 22, 2013 69 Platespin PowerConvert • “Anywhere to anywhere” conversion − Peer-to-Peer • Physical to Virtual (P2V) • Virtual to Virtual (V2V) • Virtual to Physical (V2P) • Physical to Physical (P2P) − Image Capture • Physical to Image (P2I) • Virtual to Image (V2I) − Image Deployment • Image to Virtual (I2V) • Image to Physical (I2P) − Disaster Recovery • Physical to Virtual (P2V) • Virtual to Virtual (V2V) • Windows and Linux sources can be converted
  • 70. August 22, 2013 70 Platespin PowerConvert
  • 71. August 22, 2013 71 Portlock Storage Manager • Third-party NetWare data management product • Can be used for P2V conversions of NetWare servers • Requires some manual reconfiguration of VM
  • 72. August 22, 2013 72 Capacity Planning • Important first step in any server consolidation project • Aims: − Understand server performance and utilization rates of a group of servers − Identifying servers that are good candidates to be migrated into virtual machines − Size virtual environment accurately • Statistics are gathered and processed • What-if scenarios can be run to examine different possible approaches
  • 73. August 22, 2013 73 VMware Capacity Planner
  • 74. August 22, 2013 74 Inventory AnalyseWorkload Data Collection Recommend Platespin PowerRecon • Onsite data collection and analysis • Scenario modelling (what-if) • Agentless operation
  • 75. August 22, 2013 75 Some additional products…
  • 76. August 22, 2013 76 VMware Lab Manager • Create centralised pools of VMs, storage and network components • Rapid setup and tear down of test/dev environments • Maintain library of customer and production system environments
  • 77. August 22, 2013 77 VMware ACE
  • 78. August 22, 2013 78 VMware Virtual Desktop Infrastructure
  • 79. August 22, 2013 79 Dunes VS-0 http://www.dunes.ch/content/view/82/157/ Dunes VS-O
  • 80. August 22, 2013 80 − esxRanger Professional • LAN/WAN backups • Backup active servers • Database of backup activity − esxReplicator • Replicate changes to remote location – “chunked” by time or data change volumes • Effective business continuity Virtual Machine Backup and Replication
  • 81. August 22, 2013 81 Virtual Machine Backup and Replication • esXpress − Virtual Backup Appliance runs backup jobs within a VM − Offloads CPU and memory utilisation from VMware ESX console • Virtual Solution Box − Also implemented as a virtual machine appliance
  • 82. August 22, 2013 82 esxCharter A Windows based esxtop and more…
  • 83. August 22, 2013 83 esxMigrator • Assists customers upgrading from VMware ESX 2.X to VMware ESX 3.0 • Uses data manipulation strategies that can copy virtual disks much faster than allowed by the VMware console • Enables failback contingency
  • 84. August 22, 2013 84 Best Practice Recommendations • Explore your options. • Evaluate your applications for potential consolidation. • Understand the differences between various virtualization solutions. • Look closely at the licensing and support policies of your software vendors. • Start small.
  • 85. August 22, 2013 85 Best Practice Recommendations • Manage expectations. • Beware of “virtual sprawl.” • Consider blades as a complementary consolidation strategy. • Integrate server consolidation with a broader consolidation strategy. • Develop a framework for continuous consolidation.

Hinweis der Redaktion

  1. CP-40 was the first operating system that implemented complete virtualization, i.e. it provided a virtual machine environment supporting all aspects of its target computer system (a S/360-40), such that other S/360 operating systems could be installed, tested, and used as if on a stand-alone machine. CP-40 supported fourteen simultaneous virtual machines. Each virtual machine ran in "problem state" – privileged instructions such as I/O operations caused exceptions, which were then caught by the control program and simulated. Similarly, references to virtual memory locations not present in main memory cause page faults, which again were handled by control program rather than reflected to the virtual machine. Further details on this implementation are found in CP/CMS (architecture). The basic architecture and user interface of CP-40 were carried forward into CP-67/CMS, which evolved to become IBM's current VM product line.
  2. NTVDM stands for "NT Virtual DOS Machine". WOW stands for "Windows on Windows". They are both names for the same Win16 subsystem that runs under Windows NT, 2000, and XP. The Win16 subsystem is an emulated DOS subsystem that runs under NT-based Windows operating systems. It allows 16-bit applications to run as if they were being executed on a DOS computer, with that computer's multitasking and segmented memory model. The subsystem is preemptively multitasked, so that 16-bit DOS and Windows applications cannot crash the operating system. Within the subsystem, however, applications behave exactly as they do on a DOS/Win 3.x computer, so 16-bit applications within a Win16 subsystem can crash one another or the Win16 subsystem. When a DOS program running inside a VDM needs to access a peripheral, Windows will either allow this directly (rarely), or will present the DOS program with a Virtual Device Driver (VxD in short) which emulates the hardware using operating system functions.
  3. Traditionally, every application requires its own server. Vendors are often unhappy to share physical servers and operating systems. This leads to a situation whereby a new server is bought for every new application being deployed. The practical result of this is that the application becomes closely coupled with the hardware leading to underutilisation of resources and increased cost of ownership.
  4. In the virtualised model, a thin virtualisation layer, or hypervisor, is introduced which abstracts the physical hardware layer and presents a standardised subset of hardware to the virtual machines running on the system. Virtual machines are isolated from each other and run as processes on the host system. We have now broken the dependancies between applications and physical hardware and provided a safe and supportable mechanism for running multiple applications on a single hardware platform, thus optimising utilisation levels and reducing ownership costs.
  5. Most servers operate and very low levels of CPU utilisation, typically around 10%. However, a CPU efficiency will remain constant up to about 85% utilisation. Any unused CPU cycles between 10% and 85% should be exploited. One way of doing this is to time divide CPU cycles across multiple workloads, in this case by running multiple virtual machines on a single CPU.
  6. When purchasing new hardware for applications, organisations will often overprovision, that is, they will purchase more memory and CPU resources than will actually be used by the application. In a typical situation, the vast majority of servers in an organisation will use less than 10% of CPU resources during normal business hours. As idle hardware is a cost both in terms of acquisition and power consumption, our aim should be to drive up utilisation levels
  7. Server virtualisation helps us to realise the concept of a “virtual infrastructure”. We no longer think of providing extra resources, be they storage, network, memory or CPU resources, to a single application. Resources now become part of a pool that virtual machines can draw upon, using as much or as little of each resource as they each need. Available resources can be taken from the pool and returned to the pool as required. This leads to a more efficient use of the IT infrastructure.
  8. a hypervisor (or virtual machine monitor ) is a virtualization platform that allows multiple operating systems to run on a host computer at the same time. The term usually refers to an implementation using full virtualization. The term hypervisor apparently originated in IBM's CP-370 reimplementation of CP-67 for the System/370, released in 1972 as VM/370.
  9. Type 1 hypervisor (or Type 1 virtual machine monitor ) is software that runs directly on a given hardware platform (as an operating system control program ). A "guest" operating system thus runs at the second level above the hardware. The classic type 1 hypervisor was CP/CMS, developed at IBM in the 1960s, ancestor of IBM's current z/VM. More recent examples are Xen, VMware's ESX Server, and Sun's Hypervisor (released in 2005).
  10. Type 2 hypervisor (or Type 2 virtual machine monitor ) is software that runs within an operating system environment. A "guest" operating system thus runs at the third level above the hardware. Examples include VMware Server and Microsoft Virtual Server.
  11. Microsoft Virtual Server and Virtual PC are referred to by Microsoft as “hybrid VMMs”. They are clearly not Type 1, as they rely on a hosting operating system for much of their functionality. However, neither are they Type 2, as they run their virtual machines directly on the hardware whenever possible. In a hybrid VMM architecture, a small hypervisor kernel, sometimes referred to as as a µ-hypervisor , controls CPU and memory resources, but I/O resources are programmed by device drivers that run in a deprivileged service OS . While a hybrid VMM architecture offers the promise of retaining the best characteristics of Type 1 and Type 2 VMMs, it does introduce new challenges, including new performance overheads, due to frequent privilege-level transitions between guest OS and service OS through the µ-hypervisor,
  12. Here, the virtual machine does not necessarily simulate hardware, but instead (or in addition) offers a special API that can only be used by modifying the "guest" OS. This system call to the hypervisor is called a "hypercall" in Xen, Par r allels Workstation and Enomalism; it is implemented via a DIAG ("diagnose") hardware instruction in IBM's CMS under V r M (which was the origin of the term hypervisor ). Examples include Win4Lin 9x, Sun's Logical Domains, and z/VM.
  13. Full virtualization , is a virtualization technique used to implement a certain kind of virtual machine environment: one that provides a complete simulation of the underlying hardware. The result is a system in which all software capable of execution on the raw hardware can be run in the virtual machine. In particular, this includes all operating systems. Binary translation is the emulation of one instruction set by another through translation of code. Sequences of instructions are translated from the source to the target instruction set.
  14. Intel VT is available on most Pentium 4 6x2, Pentium D 9x0, Xeon 3xxx/5xxx/7xxx [1], Core Duo (excluding T2300E) and Core 2 Duo processors (excluding the T5200, T5500, E4x00). AMD processors using Socket AM2, Socket S1, and Socket F include AMD Virtualization support. In May 2006, AMD introduced such versions of the Athlon 64, Turion 64, and 64-bit Sempron processors. AMD Virtualization is also supported by release two (x2xx series) of the Opteron processors.
  15. As industry standard servers evolve, more systems meet the criteria for native virtualisation. At time of writing, the servers listed above all reached the minimum specifications required.
  16. A virtual machine should contain all the essential hardware elements as found in a physical machine, but represented by virtual rather than real devices. Standard components will include: 1 or more network cards 1 or more storage controllers 1 or more virtual CPUs Virtual memory A mouse A keyboard Floppy and CD/DVD drives In special cases, a virtual machine can also be given access to the following physical devices on the host machine: Parallel ports Serial ports Sound cards
  17. At its most basic, a virtual machine will consist of a virtual BIOS (Basic I/O System). The BIOS will load from a file rather than from a BIOS chip but will have all the functionality found in a normal BIOS and is usually based on an actual commercially available BIOS, such as the PheonixBIOS chip. The BIOS can be used to control the boot order of the virtual machine by allowing you to specify whether to boot from the virtual hard disk, a CD-ROM or even over the network via PXE.
  18. Most virtualisation platforms allow you to define complex networking infrastructures within the virtualisation layer. Virtual switches can be created which provide network connectivity between virtual machines and also to external physical networks. This is usually achieved by linking the virtual machines to the virtual switches by means of virtual NICs. These NICs have all the features of physical NICs, such as MAC addresses and bound IP addresses. Virtual switches can then be connected to the physical network via uplink connections to the physical NICs on the host. These physical NICs normall operate as simple bridges and do not have associated IP addresses.
  19. By combining internal and external virtual switches, more complex network environments can be created within the virtualisation layer. In the example above, two back-end systems provide database and application functionality to a web front-end server. The back-end systems cannot be accessed directly by users and are thus protected by the firewall functionality of the web server.
  20. Virtual machines will see their allocated disk storage as storage devices attached to a storage adapter. In actuality, the storage devices will be monolithic files stored on a central file system. In the case of VMware, these will be VMDK files stored on a VMFS volume. Microsoft Virtual Server uses VDF files stored on an NTFS volume. The virtual machine will use these virtual disks as it needs. On a virtual machine running Windows Server 2003, they could be formated as NTFS and used for standard file storage. On a virtual machine running Linux, they could be formatted as ext3 file systems or used as swap devices, for instance. Physically, most standard storage systems are supported, such as direct attached SCSI, storage area networks, iSCSI and network attached storage.
  21. On the host platform, one must consider how the operating system on the host is to be licensed and how the virtualisation software is to be licensed. In the case of Type 1 VMMs such as VMware ESX and Xen, where the virtualisation layer runs directly on the physical hardware, there are no associated host operating system licensing considerations. However, the virtualisation technology itself will generally be licensed on a per CPU socket basis. In the case of Type 2 VMMs, where the virtualisation software runs as an application within an operating system environment, there may be a licensing requirement for the host OS. There may or may not be a licensing requirement for the virtualisation technology itself. For instance, VMware Server, which runs on Windows or Linux, is available as a free download. Microsoft Virtualisation, a hybrid VMM that will be part of the Longhorn release of Windows Server, will be a free add-on. On the guest, operating system licensing is generally the same as it is on physical servers. An exception is when running Microsoft Virtual Server. When the host OS is Windows 2003 R2 Enterprise Edition, you will be licensed for the host OS and 4 virtual machines running Windows 2003 R2 Enterprise Edition. If the host OS is Windows 2003 R2 DataCenter, you will be licensed for the host OS and an unlimited number of virtual machines running any version of Windows 2003 R2. Guest applications may be licensed on a per CPU basis. In some cases, this may be restricted to the number of virtual CPUs presented to the virtual machine. In other cases, the software vendor may insist on licensing based on the number of physical CPUs in the host server.
  22. Careful consideration must be given to application support issues when considering deployment of a virtual server solution. In some cases, although the application may run correctly and efficiently on a virtual machine, the software vendor may not be prepared to support such a deployment. Microsoft Virtual Server support policy: http://support.microsoft.com/kb/897613 Support policy for Microsoft software running in non-Microsoft hardware virtualization software: http://support.microsoft.com/kb/897615/ The following Windows Server System software is not supported within a Microsoft Virtual Server environment: Microsoft Speech Server Microsoft ISA Server 2000 Microsoft SharePoint Portal Server SharePoint Portal Server is currently not supported running within Virtual Server. Support for SharePoint Portal Server within Virtual Server is expected in a future release. Microsoft Identity Integration Server 2003 Microsoft Identity Integration Feature Pack Note Microsoft ISA Server 2006 is supported within a Microsoft Virtual Server 2005 R2 environment.
  23. There are many reasons why we may choose to deploy servers as virtual machines. We will examine each in turn.
  24. Gartner defines 3 types with progressively greater operational savings, return on investment and end user benefits Logical implement common processes and enable standard systems management procedures across the server applications. Physical Co-location of multiple platforms at fewer locations i.e. reduction in the number of data centres without altering the number of actual servers. Rational implementing multiple applications on fewer, more powerful platforms.
  25. Perhaps the most obvious use of virtualisation is to consolidate existing server workloads onto fewer, more powerful systems. Often the first candidates selected for consolidation are those that could be categorised as infrastructure applications. These will include Active Directory domain controllers, DHCP servers, DNS servers, and file and print servers. These are often identified as having very low utilisation workloads. However, many datacenter workloads can also be good candidates for virtualisation. Another group of systems often targeted for virtualisations are those that run legacy operating systems such as Windows NT 4 Server. As the range of available hardware systems that can run these operating systems diminishes, it makes sense to move them to a platform that will ensure easy recoverability in the event of a hardware failure. The ability of most virtualisation platforms to partition CPU and memory resources means that virtual machines can be limited in the amount of these resources that they can use, ensuring that multiple workloads can be run side by side without any one application monopolising available computing power.
  26. Many organisations find traditional business continuity and disaster recovery strategies difficult to implement. Bare metal restore tools often require that systems are recovered onto identical hardware and require a one-to-one correspondence between production and BC/DR systems. Virtualisation techniques can assist by making it easier to create and maintain “virtual” versions of existing production systems that can be restored rapidly onto any system supported by the preferred virtualisation platform. “Physical-to-Virtual” (P2V) techniques can be used to create these virtual machines which can then be either maintained or archived for later restore. Virtualisation can also make OS and application patching less risky. Copies of production virtual machines can be made or snapshots taken prior to patching. This makes it easier to roll back in the event of issues resulting from the patching process. Virtual networking makes it simple to isolate virtual machines which may be required to prevent malicious code such as viruses, adware and trojan horses from infecting other systems.
  27. The concept of the dynamic datacenter envisages the ability to move virtual machines based on the changing requirements of individual workloads. Depending on the capabilities of the virtualisation platform in question, this could be either an automated process or a manual task. A typical scenario would be where an application requires an increased share of the computing resources available on a server. Other virtual machines running on the same server could be dynamically migrated to other systems, thus freeing up resources for use by the more demanding application.
  28. Rapid provisioning of virtual machines Provide multiple VMs for testing quickly Use save state to start up quickly Maintain libraries of test systems Create arbitrary test scenarios Recreate reported issues Avoid use of production network Use snapshots to rollback to known state Wider test range for niche scenarios Provision multiple VMs with variations Simulate Complex environments
  29. Virtual machines are, in essence, represented by a collection of files. These will typically consist consist of files representing: Virtual hardware configuration Virtual BIOS settings Virtual disks Other aspects such as snapshots, saved states, etc. This means that virtual servers can be treated in a similar way to other types of files. Provisioning a new virtual server can now be as easy as copying a set of template files. Migrating a server to a new location, such as a DR site, can be as easy as a file backup and restore or a network copy. We can clone or copy entire servers using file management techniques, save versions of virtual machines as they change and develop, and keep archives of servers for restore purposes. Using software and hardware based replication techniques, we can also create remote mirrors of running virtual machines for DR purposes.
  30. Shared storage, in the form of fiber channel-based storage area networks (SAN), network attached storage (NAS) or iSCSI, plays a crucial role in the maintenance of a highly available virtual infrastructure. The file representing a virtual machine will be ideally located entirely in a central location that is accessible by a number of systems operating as a cluster. This allows us to move virtual machines as running processes from one physical host to another without having to move the files themselves. Many shared storage solutions also include snapshot, clone and replication technologies that can be leveraged by the virtual infrastructure.
  31. Live migration is the process of moving virtual machines from one host to another without interrupting processing or user connectivity. This is accomplished through a combination of centralised shared storage and high speed copying of memory contents. Because the virtual machines files are centrally stored and accessible by every host taking part in the live migration, there is no need to move files at any time. Only the memory contents of the virtual machine are moved. This is usually accomplished by having a dedicated gigabit Ethernet link between the physical hosts. Virtual machine memory contents are copied across this link from one host to another. When all memory contents have been copied, updates to the memory are temporarily suspended while the running process representing the virtual machine is stopped on one host and restarted on another. Live migration can be used to achieve zero downtime maintenance of the host servers and to dynamically balance resource utilisation across the infrastructure.
  32. The debate as to whether it is better to scale up or to scale out when designing a virtualisation infrastructure continues. While both approaches have advantages and disadvantages, it is generally agreed that scaling out is the best overall approach as it is the most cost effective solution while providing better utilisation levels.
  33. Most of the leading virtualisation platforms provide all of the features outlined above. As new solutions appear on the market, they should be carefully evaluated before being implemented.
  34. For most people, VMware Workstation was their first experience of i386-based virtualisation. It is an example of a Type 2 VMM in that it runs as an application on a host operating system. The product is aimed at those wishing to run multiple operating systems on a single desktop PC and will run on either Windows or Linux. This could be for software test and development or for training purposes. Supported guest operating systems include Windows, Linux, NetWare and Solaris.
  35. VMware Server is VMware’s free virtualisation platform. Again, it is a Type 2 VMM and uses much of the same code as VMware Workstation. The product runs on any x86 hardware so there is no necessity to refer to any hardware compatibility list when installing it. VMware Server is intended as a “step up” product, allowing users to experience virtualisation before moving on to Type 2 hypervisor products.
  36. VMware Infrastructure 3 represents VMware’s flagship virtualisation product and consists of two distinct elements: A Type 1 VMM platform called VMware ESX 3, and a a management application, VMware VirtualCenter 2. 4-way virtual SMP is provided for multi-threaded applications and up to 16GB of RAM can be provided to any individual virtual machine. Live migration is implemented via a licensed feature called VMotion. Also individually licensed are: VMware HA, a high availability technology that provides failover for virtual machines in the event of a hardware failure of a cluster node VMware Distributed Resource Scheduling which can be used to ensure uniform utilisation of resources across the infrastructure VMware Consolidated Backup, a technology that leverages the SAN infrastructure to provide high speed virtual machine backups
  37. VMware Infrastructure 3 provides the ability to add additional processing resources to a cluster with zero downtime and without disrupting any business processes. Additional servers can be introduced and workloads can then be redistributed via live migrations of virtual machines.
  38. The DRS feature improves resource allocation across all hosts in a VMware cluster. DRS collects resource usage information for all hosts and virtual machines in the cluster and generates recommendations for virtual machine placement. These recommendations can be applied automatically. Depending on the configured DRS automation level, DRS displays or applies the following recommendations: Initial placement . When you first power on a virtual machine in the cluster, DRS either places the virtual machine or makes a recommendation. Load balancing . At runtime, DRS tries to improve resource utilization across the luster either by performing automatic migrations of virtual machines (VMotion), or by providing recommendations for virtual machine migrations.
  39. In a VMware HA solution, a set of ESX Server hosts is combined into a cluster with a shared pool of resources. VirtualCenter monitors all hosts in the cluster. If one of the hosts fails, VirtualCenter immediately responds by restarting each associated virtual machine on a different host. VMware HA fully integrated with DRS. If a host has failed and virtual machines have been restarted on other hosts, DRS can provide migration recommendations or migrate virtual machines for balanced resource allocation. If one or both of the source and target hosts of a migration fail, HA can help recover from that failure.
  40. VMware Consolidated Backup (VCB) provides a fast and efficient method of backing up virtual machines by leveraging high speed fiber channel SAN data transfer and the virtual machine snapshot technology of VMware ESX. A Windows Server 2003 proxy server is attached to the SAN used by the VMware servers and is presented with the LUNs used by VMware to store virtual machine files. A VCB pre-backup script runs on the proxy which creates a snapshot of the virtual machine to be backed up and mounts it on the proxy. A third-party backup tool can then be used to move the data to disk and/or tape storage.
  41. Microsoft has been providing virtualisation products since 2004 when it released Virtual PC. This was soon followed by Microsoft Virtual Server. Traditionally, Microsoft virtualistaion solutions have been managed via a web interface. However, this will change with the introduction of Virtual Machine Manager which functions as an MMC snapin. The next generation of Microsoft virtualisation will be called Windows Virtualization and is scheduled to be released within 18 months of the release of the next version of Windows Server, codenamed “Longhorn”
  42. Virtual PC is a product aimed at desktop virtualisation, and as such is not considered a suitable product for production environments. However since it shares the same disk format as Virtual Server, it can be used as a development platform for virtual machines which will eventually run on Microsoft Virtual Server.
  43. Support for Multiple CPUs 4 with Standard 32 with Enterprise Guest limited to single CPU Support for Intel VT and AMD Virtualization New processor designs from AMD and Intel specifically built with virtualisation in mind providing enhanced performance Will not speed up Windows guests (as long as VM additions are installed) but will improve performance for non-Windows guests Will improve install times for Windows
  44. Microsoft Virtual Server 2005 supports clustering both at the guest and the host level. Virtual Machine Clustering Guests can failover to another guest on the same machine Uses shared SCSI on guests Virtual Host Clustering Can cluster host server enabling planned or unplanned moves to another server Requires use of havm.vbs script (available from Microsoft)
  45. Windows Server virtualization is a hypervisor-based technology that is a part of Windows Server “Longhorn”. Windows hypervisor is a thin layer of software running directly on the hardware which works in conjunction with an optimized instance of Windows Server “Longhorn” that allows multiple operating system instances to run on a physical server simultaneously. It leverages the powerful enhancements of processors provides customers with a scalable, reliable, secure and highly available virtualization platform.
  46. System Centre Virtual Machine Manager, an MCC snapin for managing Microsoft virtual environments, is currently in Beta - release is set for October 2007. Its key features will be: Managing and planning deployment of virtual servers. Works with both Virtual Server and Windows Virtualisation. Monitors existing physical servers to identify candidates for virtualisation. Manages load on virtual host servers. Identification of migration candidates is based on an analysis of both peaks and averages. The selection parameters are user definable. Performs physical to virtual migrations Uses VSS to copy data across Process can be either wizard based or scripted through PowerShell Supports Windows 2000 and Windows 2003 Servers
  47. Systems Centre Virtual Machine Manager will feature a full set of preconfigured reports that integrate fully with the Systems Center database.
  48. Virtual infrastructure is commonly used in test and development environments where there is consistent provisioning and teardown of virtual machines for testing purposes. With Virtual Machine Manager, administrators can selectively extend self-provisioning capabilities to user groups and be able to define quotas. The automated provisioning tool will manage the virtual machines through their lifecycles including teardowns. It will allows self service provisioning of virtual servers using a website and a central library of templates. The administrator defines what templates are available to the user.
  49. The forthcoming Windows Server Virtualisation will aim to build on the functionality of Virtual Server 2005. Key improvements will include: Support for 64bit OS’s Virtual SMP for guests Hot add of memory Hot add of processors Hot add of storage Hot add of networking Transition from web-based management to a MMC snap-in.
  50. Xen is an open-source hypervisor solution released under the GNU licensing scheme. It is a solution that installs on bare metal and so requires no host operating system. Several products have started appearing on the market based on the Xen paravirtualisation code and many vendors are including Xen in their OS offerings including Novell, Red Hat and Solaris. The forthcoming Windows Server Virtualisation will share the same core architectural design as Xen.
  51. XenSource offers a solution based on the Xen paravirtualisation approach. Whereas with hardware emulation based products, such as VMware, each virtual machine is presented with an emulated hardware layer that offers the guest operating system the illusion of a standard server with well-known hardware devices, in XenSource products, guests interface with the hypervisor via an efficient, low-level API, known as the hypercall API, rather than through hardware emulation. This allows the hypervisor and operating system to co-operate to optimally virtualize the underlying hardware and schedule guest CPU and I/O, resulting in tremendous performance, security and portability advantages.
  52. XenSource offer a range of products aimed at different levels of usage. XenSource does not offer support for older versions of Windows, such as NT 4. Live Migration and Shared Storage support is promised for mid-2007.
  53. The Xen open source hypervisor provides the foundation for Virtual Iron. It leverages the hardware-assisted virtualization capabilities built into the latest micro-processors to create an abstraction layer between physical hardware and virtual resources. Virtual Iron supports 32-bit Windows and 32 and 64-bit Linux operating systems, up to 8 CPUs per guest operating system, 32 CPUs per physical server, 96 GB memory, and multiple network and storage adaptors.
  54. Virtual Iron’s Virtualization Manager provides a central place to control and automate virtual resources. It is a Java application with a client-server architecture and a high performance distributed object oriented database. The user interface uses a transactional job-based model to provide fault tolerant workflows with rollback. The While the hypervisor and service partition components of Virtual Iron are covered under the GNU public license, the Virtualisation Manager is the commercial property of Virtual Iron and provides much of the advanced features of the product.
  55. Virtualization Manager’s built-in policy engine and event monitor allow users to customize the environment to optimize application performance, ensure availability, and simplify resource management. A remote virtual desktop provides graphical console, keyboard and mouse without client or server-side additions. Virtualization Manager provides the following capabilities: Physical infrastructure: Physical hardware discovery, bare metal provisioning, configuration, control, and monitoring Virtual Infrastructure: Virtual environment creation and hierarchy, visual status dashboards, access controls Virtual Servers: Create, Manage, Stop, Start, Migrate, LiveMigrate Policy-based Automation: LiveCapacity, LiveRecovery, LiveMaintenance, Rules Engine, Statistics, Event Monitor, Custom policies Reports: Resource utilization, System events
  56. LiveMigration – moves a running virtual server from one physical server without pausing or impacting running applications. LiveCapacity – monitors virtual server CPU utilisation or other application needs to determine when a workload needs additional capacity. When a user-defined threshold is met, the virtual server is LiveMigrated to a physical server that has the necessary resources. LiveRecovery – monitors the status of physical resources and moves virtual servers to maintain uptime in the event of a hardware failure. LiveMaintenance – moves virtual servers to alternative locations without downtime when a physical server is taken offline for maintenance.
  57. The Virtual Iron Platform requires a set of x86 servers linked via a standard Ethernet network.Virtualization Manager is installed on one server that is networked to the other servers. Operating system images, including installed enterprise applications, are stored in a network accessible location using NAS or SAN to be deployed on virtual servers. Alternatively, deployment applications can be used to install an operating system directly onto a virtual server. The Virtual Iron Virtualization Manager automatically inventories the physical infrastructure and presents it through the management user interface.When an administrator creates and configures virtual servers, the Virtualization Manager reserves the physical resources, configures the virtual server resources, deploys the operating system, and starts the virtual server.
  58. Again, as with XenSource. Older versions of the Windows operating system are not supported by Virtual Iron. Virtual Iron is only supported on systems with the newer range of Intel and AMD processors that include virtualisation extensions.
  59. Virtuozzo is an operating system level server virtualization solution. Virtuozzo creates isolated partitions or virtual environments (VEs) on a single physical server and OS instance to utilize hardware, software, data center and management efforts with maximum efficiency. The Virtuozzo low-overhead, efficient architecture maximizes server resources. Virtuozzo adds a portable layer to existing operating systems which adds a dynamic partition or Virtual Environment (VE) that resides on a common OS. The single thin Virtuozzo layer introduces only a small percentage of overhead and allows up to 100s of VEs to run on a physical server.
  60. Parallels Workstation is the first desktop virtualization solution to include a lightweight hypervisor that directly controls some of the host computer ’ s hardware resources. It has strong OS support for guest virtual machines, including: The entire Windows family - 3.1, 3.11, 95, 98, Me, 2000, XP and 2003 Linux distributions from popular distributors like Red Hat, SuSE, Mandriva, Debian and Fedora Core FreeBSD “ Legacy” operating systems like OS/2, eComStation and MS-DOS. Parallels Workstation also supports next-generation CPUs built on Intel ’ s VT architecture, and will support AMD Pacifica architecture when it is released to the general public.
  61. The HP Virtual Server Environment encompasses a number of fully integrated, complementary components that enhance the functionality and flexibility of a server environment. Control starts with HP Systems Insight Manager (SIM), a unified infrastructure management platform that provides common fault, configuration, performance, and asset management across all HP Integrity, HP 9000, and HP ProLiant servers and HP StorageWorks storage. The VSE management tools plug into SIM for a central point of administration for consistency and enhanced efficiency. Next is ongoing management and configuration. P Integrity Essentials Virtualization Manager is the first comprehensive, easy-to-use virtualization management tool. It allows you to instantly see the relationship between physical and virtual resources and easily perform configuration management tasks for all your VSE resources. Finally, server resources can be directed to the highest business priorities via intelligent policy engines that monitor service levels in real time and automatically adjust server resource allocation when needed. To help increase flexibility and systems administration efficiency, the HP VSE supports all operating systems that run on the HP Integrity server platform: HP-UX 11i, Microsoft® Windows® Server 2003, Linux, and OpenVMS. To allow you to choose the operating system that best meets your business needs, many of the components of the HP VSE, such as HP Systems Insight Manager and HP Integrity Virtual Machines, were designed specifically for a multi-OS environment.
  62. Often, the most time consuming and difficult aspect of a server consolidation project will be the process of converting physical servers into virtual machines, often referred to as P2V. There are several commercial products available that can be used to accomplish this task. Converting servers can, in some cases, be performed while the server is “live” but will often require that applications are quiesced in order to maintain data consistency. Often, it is better to perform “cold” conversions. Some operating systems, moreover, will not support live transfers of data. The P2V process will usually consist of the following steps: Analysis of the source server to determine memory requirements, data capacities, etc. Creation of a target virtual machine Transfer of data from physical source to virtual target Transformation of the virtual machine to replace drivers, disable unwanted services, reset IP addresses, etc.
  63. VMware Converter is managed through a simple, task based user interface that enables users to convert VMware virtual machines or third-party virtual machines and disk image formats to VMware virtual machines in three easy steps: • Step 1: Specify the source physical server, virtual machine or third-party format to convert. • Step 2: Specify the destination format, virtual machine name, and location for the new virtual machine to be created. • Step 3: Create/Convert to destination virtual machine and configure it. VMware Converter achieves faster speed of conversions through the use of sector based copying ( vs file level copying in other products). VMware Converter first takes a snapshot of the source machine before migrating the data, resulting in fewer failed conversions and no downtime on the source server. VMware Converter communicates directly with the guest OS running on the source physical machine for hot cloning these machines without any downtime and as such has no direct hardware level dependencies.
  64. Platespin PowerConvert is marketed as an “Anywhere-to-Anywhere” conversion tool. The range of sources includes physical servers, virtual machines and system images. Targets can be physical servers, virtual machines or system images. So, as well performing traditional P2V-type operations, one can also perform physical-to-physical (P2P) operations for hardware upgrades, physical-to-image (P2I) and virtual-to-image (V2I) for DR purposes, and numerous other types of transformation.
  65. Platespin PowerConvert features a simple drag-and-drop interface that can be used to automatically create conversion jobs, which can then be edited as necessary.
  66. For customers wishing to convert Novell NetWare servers into virtual machines, there are no products that have been expressly designed to perform P2V operations. However, Portlock Storage Manager has been successfully used to copy entire volumes from a physical server to a virtual machine. The virtual machine can then be easily transformed to create a fully functional server.
  67. Before consolidating servers onto a virtualised platform, it is important to gather as much information as possible about the existing environment to assist with sizing and planning. For this reason, several products have been developed which will gather inventory and performance data and use these data to halp with what is known as capacity planning. Commonly, these products will report on which servers are good candidates for virtualisation and which should be excluded from the virtualisation process, and also help you to size the virtualised environment. What-if scenarios can usually be run to examine the effects of using different types of target hardware, or excluding or including different types of servers.
  68. The VMware Capacity Planner Data Collector is installed on a Windows system at the company site and uses WMI and registry calls to gather server information without requiring the use of agents. The VMware Capacity Planner Data Analyzer serves as the core analytical engine that performs all of the analysis required for intelligent capacity planning. The VMware Capacity Planner Dashboard is the front-end, Web-based user interface to the Information Warehouse and Data Analyzer. The Capacity Planner Dashboard delivers all the key capacity planning analysis and decision support to end-users in a secure and organized manner.
  69. In contrast to VMware Capacity Planner, Platespin PowerRecon collects and stores all data onsite and analyses it locally. Again data is gathered without the use of agents. PowerRecon can be used to create and save P2V jobs that can then be used by Platespin PowerConvert.
  70. VMware Lab Manager automates the setup, capture, storage and sharing of multi-machine software configurations. Development and test teams can access them on-demand through a self-service portal. Features include: Automatically and rapidly set up and tear down complex, multi-machine software configurations for use in development and test activities. Give every developer or test engineer the equivalent of their own fully-equipped data center with dedicated provisioning staff. Maintain a comprehensive library of customer and production system environments
  71. With VMware ACE, security administrators package an IT-managed PC within a secured virtual machine and deploy it to an unmanaged physical PC. Features Provision secured, IT-managed endpoints on unmanaged PCs Secure confidential data on endpoint PCs Run multiple secure PC environments on a single PC Dramatically lower the cost of business continuity
  72. Companies can host individual desktops inside virtual machines that are running in their data center. Users access these desktops remotely from a PC or a thin client using a remote display protocol. Since applications are managed centrally at the corporate data center, organizations gain better control over their desktops. Installations, upgrades, patches and backups can be done with more confidence without user intervention.
  73. Policy-Based Virtual Service Life Cycle Management Provisioning of Virtual Servers Disaster Recovery Virtual Servers backup/archiving Data centre daily operations automation Virtualised environments optimisation High availability of Virtual Servers Change management tracking Implement best practices and business policies
  74. Backing up and replicating virtual machines for the purposes of rapid recovery and DR has traditionally been a challenge. Vizioncore have produced two applications that solve these issues by leveraging the VMware software development kit (SDK) which is made public by VMware. esxRanger Professional creates backups of running virtual machines on VMware ESX servers by taking advantage of the ability to take point-in-time snapshots of virtual machines. Backups can occur over a LAN connection or, by leveraging VMware Consolidated Backup techniques, over a high speed SAN connection. esxRanger maintains a catalogue of backup images which can be rotated in the same way as standard backup media. esxReplicator creates replicas of running virtual machines on a secondary VMware ESX platform for the purposes of business continuity and disaster recovery. It uses the same snapshotting technology as used by esxRanger to achieve this.
  75. esXpress and Virtual Solution Box both provide online backups of virtual machines and are implemented as virtual appliances. That is to say, the application is downloaded and installed as a prebuilt, preconfigured virtual machine which is then customised as necessary by the end user.
  76. esxCharter is a Vizioncore product which allows you to view key performance metrics on a VMware ESX platform in an easy to use dashboard presentation. Key features include: Provides top-down multi-level view that easily allows administrators to identify bottlenecks or other problems. Provides both “real-time” and historical monitoring of hosts and virtual machines. Allows shares adjustment for both individual or groups of virtual machines. Offers threshold alerting. Supports VMware Infrastructure 3.
  77. For customers that have already deployed VMware ESX 2.x and wish to upgrade to VMware ESX 3.x, migrating virtual machines to the new platform can be very time consuming and difficult. esxMigrator allows users to perform the migration with the minimum amount of downtime while always maintaining a failback position.
  78. If you haven’t begun consolidating on virtualized servers, now is the time to explore your options. The benefits are proven, and virtualization is seeing exceptionally rapid adoption. Evaluate your applications for potential consolidation. Legacy applications running on older operating systems are a common first target, but virtualization and consolidation are moving rapidly toward the mid-tier and back-end of the datacenter. Understand the differences between various virtualization solutions. Cost, functionality and performance vary considerably and value will differ depending on your IT and business environment. Look closely at the licensing and support policies of your software vendors. Licensing and support policies are in flux with respect to both virtualization and multi-core processors, and both issues can strongly impact the ROI of a consolidation project. Start small. Virtualization and consolidation involve new products, technologies, usage models and IT procedures, so a small pilot deployment is recommended before consolidating on a broad scale.
  79. Work with business units to manage expectations. Business decision-makers may be reluctant to run their applications on shared physical servers until they understand the benefits and safeguards. Beware of “virtual sprawl.” Virtual servers are extremely easy to deploy and provision, but don’t abandon all constraint. Every new virtual server introduces new OS and application instances, which can increase licensing, patching and general management costs. Consider blades as a complementary consolidation strategy. Blade servers help to consolidate and optimize physical infrastructure, while virtualization software optimizes the use of those physical resources. The combination can be especially effective. Integrate server consolidation with a broader consolidation strategy. Consolidation of facilities, storage and data are equally important, and provide a solid foundation for application consolidation on virtual servers. Develop a framework for continuous consolidation: Products and technologies are changing rapidly. Success will require careful planning, a long-term strategy, and an approach that comprehends benefits, risks and costs.