SlideShare a Scribd company logo
1 of 8
Download to read offline
Reports

/ http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 1/ 10.1126/science.1242279

Downloaded from www.sciencemag.org on December 1, 2013

GRB 130427A: A Nearby Ordinary
Monster

brightest and longest burst detected
above 100 MeV, with the most energetic photon detected at 95 GeV (2). It was
detected by Fermi-GBM (3) at T0,
GBM:47:06.42 UT on April 27 2013.
Hereafter this time will be our reference time T0. The Burst Alert TeleA. Maselli,1* A. Melandri,2 L. Nava,2,3 C. G. Mundell,4 N. Kawai,5,6 S.
2
2
7
1
scope (BAT) (4) onboard Swift
Campana, S. Covino,2 J. R. Cummings, G. Cusumano, P.A.
Evans,8 G. Ghirlanda, G. Ghisellini,2 C. Guidorzi,9 S. Kobayashi,4 P. triggered on GRB 130427A at t = 51.1
s, when Swift completed a pre-planned
Kuin,10 V. La Parola,1 V. Mangano,1,11 S. Oates,10 T. Sakamoto,12 M.
6
4
11
13
8
slew. The Swift slew to the source startSerino, F. Virgili2 B.-B. Zhang, S. Barthelmy, A. Beardmore,
,
M.G. Bernardini, D. 15
Bersier,4 D. Burrows,11 G. Calderone,2,14 M. 10 ed at t = 148 s and ended at t = 192 s.
The Swift UltraViolet Optical TeleCapalbi, 1 J.2Chiang, P. 13
D’Avanzo,2 V. D’Elia,16,17 M. De Pasquale,
scope (UVOT, (5)) began observations
D. Fugazza,20N. Gehrels, A. Gomboc,18,19 R. Harrison,4 H.
18
at t = 181 s while observations by the
Hanayama22 J. Japelj,23 J. Kennea,1124 Kopac,18 C. Kouveliotou,21
,
D.
13
11
Swift X-ray Telescope (XRT, (6)) startD. Kuroda, A. Levan, 8D. Malesani, F. Marshall, J. Nousek, P.
ed at t = 195 s (see (7) for more deO’Brien,8 J.P. Osborne, C. Pagani,81K.L. Page,8 M. Page,10 M.
11
tails). The structure of the γ-ray light
Perri,16,17 T.25
Pritchard,4 P. Romano, Y. Saito,515 Sbarufatti,2,11 R.
B.
8
13
curve revealed by the Swift-BAT in the
Salvaterra, I. Steele, N. Tanvir, G. Vianello,2 B. Weigand, K.
15-350 keV band (Fig. 1) can be dividWiersema,8 Y. Yatsu,5 T. Yoshii,5 G. Tagliaferri
ed in three main episodes: an initial
1
2
INAF-IASF Palermo, Via Ugo La Malfa 153 I-90146 Palermo, Italy. INAF-Osservatorio Astronomico di
peak, beginning at t = 0.1 s and peaking
3
Brera, via E. Bianchi 46, I-23807 Merate, Italy. APC, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu,
at t = 0.5 s; a second large peak show4
Observatoire de Paris, Sorbonne Paris Cité, France. Astrophysics Research Institute, Liverpool John
ing a complex structure with a duration
5
Moores University, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF, UK. Department of
of ∼ 20 s and a third, much weaker
Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
6
episode, starting at t ∼ 120 s showing a
Coordinated Space Observation and Experiment Research Group, RIKEN, 2-1 Hirosawa, Wako, Saitama
7
fast rise/exponential decay behavior.
351-0198, Japan. UMBC/CRESST/NASA Goddard Space Flight Center, Code 661, Greenbelt, MD 20771,
8
The overall duration of the prompt
USA. Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, UK.
9
10
emission was T90 (15 to 150 keV) =
Department of Physics, University of Ferrara, via Saragat 1, I-44122, Ferrara, Italy. Mullard Space
Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT, UK.
276 ± 5 s (i.e., the time containing 90%
11
Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab,
of the fluence) calculated over the first
12
University Park, PA 16802, USA. Department of Physics and Mathematics, Aoyama Gakuin University, 51830 s of BAT observation from T0,
13
10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan. NASA Goddard Space Flight
GBM. During the early phases of the γ14
Center, Greenbelt, MD 20771, USA. Dipartimento di Fisica “G. Occhialini”, Università di Milano-Bicocca,
ray emission strong spectral variability
15
Piazza della Scienza 3, I-20126 Milano, Italy. W. W. Hansen Experimental Physics Laboratory, Kavli
is observed (Fig. 1). A marked spectral
Institute for Particle Astrophysics and Cosmology, Department of Physics, and SLAC National Accelerator
16
hardening is observed during the
Laboratory, Stanford University, Stanford, CA 94305, USA. INAF/Rome Astronomical Observatory, via
17
prompt main event. With a total fluence
Frascati 33, 00040 Monteporzio Catone (Roma), Italy. ASI Science Data Centre, Via Galileo Galilei,
18
F = (4.985 ± 0.002) × 10−4 erg cm−2 in
00044 Frascati (Roma), Italy. Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19
19
1000, Ljubljana, Slovenia. Centre of Excellence Space-si, Askerceva cesta 12, 1000 Ljubljana, Slovenia.
the 15 to 150 keV band, GRB 130427A
20
Ishigakijima Astronomical Observatory, National Astronomical Observatory of Japan, 1024-1 Arakawa,
reached the highest fluence observed
21
Ishigaki, Okinawa 907-0024, Japan. Space Science Office, VP62, NASA/Marshall Space Flight Center,
for a GRB by Swift. The 0.02-10 MeV
22
Huntsville, AL 35812, USA. Okayama Astrophysical Observatory, National Astronomical Observatory of
fluence measured by Konus-Wind (8)
23
Japan, 3037-5 Honjo, Kamogata, Asaguchi, Okayama 719-0232. Department of Physics, University of
for the main emission episode (0 to
24
Warwick, Coventry CV4 7AL, UK. Dark Cosmology Centre, Niels Bohr Institute, University of
18.7 s) is (2.68 ± 0.01) × 10−3 erg cm−2,
25
Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark. INAF-IASF Milano, via E. Bassini 15,
with a spectrum peaking at Epeak = 1028
I-20133 Milano, Italy.
± 8 keV, while the fluence of the emis*Corresponding author. E-mail: maselli@ifc.inaf.it
sion episode at (120 - 250 s) is ∼9
×10−5 erg cm−2, with a spectrum peakLong-duration Gamma-Ray Bursts (GRBs) are an extremely rare outcome of the
ing at ∼240 keV (9).
collapse of massive stars, and are typically found in the distant Universe. Because
This event was extremely bright al53
−1
of its intrinsic luminosity (L ∼ 3 × 10 erg s ) and its relative proximity (z = 0.34),
so in the optical and it was immediately
GRB 130427A was a unique event that reached the highest fluence observed in the
detected by various robotic telescopes:
γ-ray band. Here we present a comprehensive multiwavelength view of GRB
in particular, the Raptor robotic tele130427A with Swift, the 2-m Liverpool and Faulkes telescopes and by other groundscope detected a bright optical counterbased facilities, highlighting the evolution of the burst emission from the prompt to
part already at t = 0.5 s (10). Optical
the afterglow phase. The properties of GRB 130427A are similar to those of the most
spectroscopy of the afterglow deterluminous, high-redshift GRBs, suggesting that a common central engine is
mined the redshift to be z = 0.34 (11);
responsible for producing GRBs in both the contemporary and the early Universe
an UVOT UV grism spectrum (7) was
and over the full range of GRB isotropic energies.
also acquired. At this distance the rest
frame 1 keV-10 MeV isotropic energy
is Eiso = 8.1 × 1053 erg and the peak
GRB 130427A was the brightest burst detected by Swift (1) as well as by
53
−1
several γ-ray detectors onboard other space missions. It was also the luminosity is Liso = 2.7 × 10 erg s . According to the luminosity function of Salvaterra et al. (12) we expect one event like GRB 130427A
every > 60 years. In the nearby Universe (i.e., z ≲ 0.4, corresponding to
an age of ∼10 Gyr) only a handful of long GRBs have been detected.
These GRBs are usually characterized by a low overall isotropic energy
(Eiso ≤ 1052 erg) and are associated with supernovae (SNe) Ib/c, characterized by broad spectral lines indicating high expansion velocities,
called hypernovae (13). GRB 130427A is instead a powerful GRB such
as the ones typically detected at much higher redshifts (z > 1, with a
mean z ∼ 2 corresponding to an age of ∼3 Gyr). The detection of a nearby and extremely powerful GRB gives us the opportunity to test, on the
one hand, if this GRB has the same properties of the cosmological GRBs
and, on the other hand, if also such bright GRBs are associated with
SNe. Up to now, SNe have been associated only to under (or mildly)
energetic GRBs in the local Universe. Since a supernova associated with
this burst, SN 2013cq, has been detected (14), we are now sure that SNe
are also associated with very powerful GRBs, not only to low power
bursts [fig. S6 and figure 1 of (14)]. Naive energetic arguments might
suggest that in powerful GRBs there is not enough power left for a
strong SN: GRB 130427A definitively proves that this is not the case.
The overall behavior of the X-ray afterglow light curve has been
characterized with the main contribution of the XRT onboard Swift and
two additional relevant detections from the MAXI experiment (15) in the
gap between the first and the second Swift-XRT observations (Fig. 2).
The early light curve, starting from t = 260 s, is characterized by an initially steep decay with a slope α0,x = 3.32 ± 0.17 consistent with highlatitude emission (16, 17), a break at t1,x = 424 ± 8 s followed by a flatter
decay with index α1,x = 1.28 ± 0.01. A further break at t2,x = 48 ± 22 ks is
statistically needed (3.8σ) to account for a further steepening to α2,x =
1.35 ± 0.02 (all errors are derived for ∆χ2 = 2.7).
Figure 2 also shows the light curves in the optical and UV derived
from the UVOT as well as from ground-based telescopes (Liverpool
telescope, Faulkes Telescope North, and MITSuME Telescopes). All
optical light curves are well fitted by a broken power law with α1 = 0.96
± 0.01, tbreak = 37.4+4.7 ks, and
−4.0

α 2 = 1.36+0.01 . Fitting the X-ray light
−0.02

curve together with the optical ones, we find the same parameters from
26.6 ks onward, but to fit the early part of the X-ray light curve we need
another power-law segment with a slope of

26.6+4.5
−6.6

1.29+0.02
−0.01

and a break at

ks (Fig. 2). Therefore, from 26.6 ks onward a common de-

scription of all the optical, UV and X-ray behavior is possible, while at
earlier times an extra X-ray component is required.
We interpret the early X-ray light curve (up to 26.6 ks) as the superposition of a standard afterglow (i.e., forward shock emission) and either
the prolonged activity of the central engine or/and the contribution from
the reverse shock emission (e.g., (18–20)). After 26.6 ks the optical and
X-ray light curves share the same behavior and decay slopes (Fig. 2),
including a break at tbreak ∼ 37 ks. This achromatic break is suggestive of
a jet break, although the post-break decay (α2=1.36) is shallower than
predicted in the simplest theory (an increase in decay slope > 1 would be
expected; see (21)). This could be due to additional components contributing to the flux, to a time dependence of the microphysical parameters
governing the fraction of shock energy going to electrons (ϵe) and magnetic field (ϵB), or to the fact that we observe a canonical jet not exactly
on axis, but still within the jet opening angle (22, 23).
Because the optical and the X-ray emission belong to the same spectral
power-law segment it is possible to constrain the characteristic frequencies of the afterglow spectra, in turn constraining the microphysical pa-

rameters of the relativistic shock. Additional information comes from the
high-energy γ-ray emission (2). The γ-ray flux above 100 MeV peaks at
∼20 s. If this emission is due to afterglow radiation, the peak time implies a bulk Lorentz factor Γ0 ∼ 500 (2, 7). Furthermore, the presence of
the GeV peak suggests a homogeneous circumburst density profile (24).
Guided by these constraints in our choice of parameters, we used the
BOXFIT code developed by van Eerten et al. (25) to model the afterglow. Rather than trying to perform a formal fit to the data we check if
this burst, with an unprecedented data coverage and richness, can be
interpreted in the framework of the standard model for the afterglow
emission, or else if it forces us to abandon the standard framework. We
give more weight to the optical and higher energy fluxes, since they
carry most of the afterglow luminosity, orders of magnitude greater than
the radio flux.
Neither reverse shock nor inverse Compton (IC) emission are included in the model, but this does not affect our conclusions which primarily concern the late time synchrotron afterglow (see (7) for further
details). The synchrotron flux predicted by the model reproduces the
optical emission and the X-ray light curve after ∼ 10 ks reasonably well,
while the early X-ray flux is likely due to an additional component (Fig.
3). Our model underestimates the GeV emission but this, given the large
ϵe/ϵB ratio, can be due to synchrotron Self-Compton emission, as envisaged by (2, 26, 27). The model can also roughly reproduce the radio
emission (further details in (7)).
Consistent with the light curve analysis, the synchrotron flux predicted by the model reproduces reasonably well the optical and X-ray
parts of the spectral energy distribution (SED) of the afterglow (Fig. 4),
but it underestimates the GeV emission. Although the model does not
entirely reproduce the complexity shown by the data, it does capture the
main features of the emission properties in the pure afterglow phase.
Overall, the properties of GRB 130427A are similar to those of the
powerful GRBs typically seen at z ∼ 1 − 2 (see (7) for a comparison).
This is the most powerful GRB at z < 0.9. It obeys the spectral energy
correlations such as the Epeak − Eiso (28) correlation and the E peak − Lpeak
(29) correlation. Interpreting the break observed at ∼37 ks as a jet break
makes GRB 130427A consistent with the collimation corrected-peak
energy correlation (7, 30). GRB 130427A is also associated with a supernova, extending the GRB-SN connection also to such powerful and
high-z bursts. GRB 130427A stands as a unique example indicating that
a common engine is powering these huge explosions at all powers, and
from the nearby to the very far, early Universe.
References and Notes
1. A. Maselli et al., GRB Coordinates Network 14448, 1 (2013).
2. Fermi-LAT Team, Science (2013). 10.1126/science.1242353
3. C. Meegan, G. Lichti, P. N. Bhat, E. Bissaldi, M. S. Briggs, V. Connaughton,
R. Diehl, G. Fishman, J. Greiner, A. S. Hoover, A. J. van der Horst, A. von
Kienlin, R. M. Kippen, C. Kouveliotou, S. McBreen, W. S. Paciesas, R.
Preece, H. Steinle, M. S. Wallace, R. B. Wilson, C. Wilson-Hodge, THE
FERMI GAMMA-RAY BURST MONITOR. Astrophys. J. 702, 791–804
(2009). doi:10.1088/0004-637X/702/1/791
4. S. D. Barthelmy, L. M. Barbier, J. R. Cummings, E. E. Fenimore, N. Gehrels,
D. Hullinger, H. A. Krimm, C. B. Markwardt, D. M. Palmer, A. Parsons, G.
Sato, M. Suzuki, T. Takahashi, M. Tashiro, J. Tueller, The Burst Alert
Telescope (BAT) on the SWIFT Midex Mission. Space Sci. Rev. 120, 143–
164 (2005). doi:10.1007/s11214-005-5096-3
5. P. W. A. Roming, T. E. Kennedy, K. O. Mason, J. A. Nousek, L. Ahr, R. E.
Bingham, P. S. Broos, M. J. Carter, B. K. Hancock, H. E. Huckle, S. D.
Hunsberger, H. Kawakami, R. Killough, T. S. Koch, M. K. Mclelland, K.
Smith, P. J. Smith, J. C. Soto, P. T. Boyd, A. A. Breeveld, S. T. Holland, M.
Ivanushkina, M. S. Pryzby, M. D. Still, J. Stock, The Swift UltraViolet/Optical Telescope. Space Sci. Rev. 120, 95–142 (2005).
doi:10.1007/s11214-005-5095-4
6. D. N. Burrows, J. E. Hill, J. A. Nousek, J. A. Kennea, A. Wells, J. P. Osborne,
A. F. Abbey, A. Beardmore, K. Mukerjee, A. D. T. Short, G. Chincarini, S.

/ http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 2/ 10.1126/science.1242279
Campana, O. Citterio, A. Moretti, C. Pagani, G. Tagliaferri, P. Giommi, M.
Capalbi, F. Tamburelli, L. Angelini, G. Cusumano, H. W. Bräuninger, W.
Burkert, G. D. Hartner, The Swift X-Ray Telescope. Space Sci. Rev. 120,
165–195 (2005). doi:10.1007/s11214-005-5097-2
7. Materials and methods are available as supplementary materials on Science
Online.
8. R. L. Aptekar, D. D. Frederiks, S. V. Golenetskii, V. N. Ilynskii, E. P. Mazets,
V. N. Panov, Z. J. Sokolova, M. M. Terekhov, L. O. Sheshin, T. L. Cline, D.
E. Stilwell, Konus-W gamma-ray burst experiment for the GGS Wind
spacecraft. Space Sci. Rev. 71, 265–272 (1995). doi:10.1007/BF00751332
9. S. Golenetskii et al., GRB Coordinates Network 14487, 1 (2013).
10. T. Vestrand et al., Science (2013). 10.1126/science.1242316
11. A. J. Levan, S. B. Cenko, D. A. Perley, N. R. Tanvir, GRB Coordinates
Network 14455, 1 (2013).
12. R. Salvaterra, S. Campana, S. D. Vergani, S. Covino, P. D’Avanzo, D.
Fugazza, G. Ghirlanda, G. Ghisellini, A. Melandri, L. Nava, B. Sbarufatti, H.
Flores, S. Piranomonte, G. Tagliaferri, A COMPLETE SAMPLE OF
BRIGHT SWIFT LONG GAMMA-RAY BURSTS. I. SAMPLE
PRESENTATION, LUMINOSITY FUNCTION AND EVOLUTION.
Astrophys. J. 749, 68 (2012). doi:10.1088/0004-637X/749/1/68
13. S. E. Woosley, J. S. Bloom, The Supernova–Gamma-Ray Burst Connection.
Annu.
Rev.
Astron.
Astrophys.
44,
507–556
(2006).
doi:10.1146/annurev.astro.43.072103.150558
14. D. Xu et al., arXiv:1305.6832 (2013).
15. M. Matsuoka et al., Publ. Astron. Soc. Jpn. 61, 999 (2009).
16. G. Tagliaferri, M. Goad, G. Chincarini, A. Moretti, S. Campana, D. N.
Burrows, M. Perri, S. D. Barthelmy, N. Gehrels, H. Krimm, T. Sakamoto, P.
Kumar, P. I. Mészáros, S. Kobayashi, B. Zhang, L. Angelini, P. Banat, A. P.
Beardmore, M. Capalbi, S. Covino, G. Cusumano, P. Giommi, O. Godet, J. E.
Hill, J. A. Kennea, V. Mangano, D. C. Morris, J. A. Nousek, P. T. O’Brien, J.
P. Osborne, C. Pagani, K. L. Page, P. Romano, L. Stella, A. Wells, An
unexpectedly rapid decline in the X-ray afterglow emission of long gammaray bursts. Nature 436, 985–988 (2005). doi:10.1038/nature03934 Medline
17. J. A. Nousek, C. Kouveliotou, D. Grupe, K. L. Page, J. Granot, E. RamirezRuiz, S. K. Patel, D. N. Burrows, V. Mangano, S. Barthelmy, A. P.
Beardmore, S. Campana, M. Capalbi, G. Chincarini, G. Cusumano, A. D.
Falcone, N. Gehrels, P. Giommi, M. R. Goad, O. Godet, C. P. Hurkett, J. A.
Kennea, A. Moretti, P. T. O’Brien, J. P. Osborne, P. Romano, G. Tagliaferri,
A. A. Wells, Evidence for a Canonical Gamma‐Ray Burst Afterglow Light
Curve in the Swift XRT Data. Astrophys. J. 642, 389–400 (2006).
doi:10.1086/500724
18. P. Mészáros, Gamma-ray bursts. Rep. Prog. Phys. 69, 2259–2321 (2006).
doi:10.1088/0034-4885/69/8/R01
19. G. Ghisellini, M. Nardini, G. Ghirlanda, A. Celotti, A unifying view of
gamma-ray burst afterglows. Mon. Not. R. Astron. Soc. 393, 253–271 (2009).
doi:10.1111/j.1365-2966.2008.14214.x
20. A. Panaitescu, W. T. Vestrand, Optical afterglows of gamma-ray bursts:
peaks, plateaus and possibilities. Mon. Not. R. Astron. Soc. 414, 3537–3546
(2011). doi:10.1111/j.1365-2966.2011.18653.x
21. R. Sari, T. Piran, J. P. Halpern, Jets in Gamma-Ray Bursts. Astrophys. J. 519,
L17–L20 (1999). doi:10.1086/312109
22. H. van Eerten, W. Zhang, A. MacFadyen, OFF-AXIS GAMMA-RAY
BURST AFTERGLOW MODELING BASED ON A TWO-DIMENSIONAL
AXISYMMETRIC HYDRODYNAMICS SIMULATION. Astrophys. J. 722,
235–247 (2010). doi:10.1088/0004-637X/722/1/235
23. H. J. van Eerten, A. I. MacFadyen, OBSERVATIONAL IMPLICATIONS OF
GAMMA-RAY BURST AFTERGLOW JET SIMULATIONS AND
NUMERICAL LIGHT CURVE CALCULATIONS. Astrophys. J. 751, 155
(2012). doi:10.1088/0004-637X/751/2/155
24. L. Nava, L. Sironi, G. Ghisellini, A. Celotti, G. Ghirlanda, Afterglow
emission in gamma-ray bursts - I. Pair-enriched ambient medium and
radiative blast waves. Mon. Not. R. Astron. Soc. 433, 2107–2121 (2013).
doi:10.1093/mnras/stt872
25. H. van Eerten, A. van der Horst, A. MacFadyen, GAMMA-RAY BURST
AFTERGLOW BROADBAND FITTING BASED DIRECTLY ON
HYDRODYNAMICS SIMULATIONS. Astrophys. J. 749, 44 (2012).
doi:10.1088/0004-637X/749/1/44
26. R. Liu, X. Wang, X. Wu, arXiv:1306.5207 (2013).
27. P.-H. T. Tam, Q.-W. Tang, S.-J. Hou, R.-Y. Liu, X.-Y. Wang, DISCOVERY

OF AN EXTRA HARD SPECTRAL COMPONENT IN THE HIGHENERGY AFTERGLOW EMISSION OF GRB 130427A. Astrophys. J. 771,
L13 (2013). doi:10.1088/2041-8205/771/1/L13
28. L. Amati, F. Frontera, M. Tavani, J. J. M. in ’t Zand, A. Antonelli, E. Costa,
M. Feroci, C. Guidorzi, J. Heise, N. Masetti, E. Montanari, L. Nicastro, E.
Palazzi, E. Pian, L. Piro, P. Soffitta, Intrinsic spectra and energetics of
BeppoSAX Gamma–Ray Bursts with known redshifts. Astron. Astrophys.
390, 81–89 (2002). doi:10.1051/0004-6361:20020722
29. D. Yonetoku, T. Murakami, T. Nakamura, R. Yamazaki, A. K. Inoue, K. Ioka,
Gamma‐Ray Burst Formation Rate Inferred from the Spectral Peak Energy–
Peak Luminosity Relation. Astrophys. J. 609, 935–951 (2004).
doi:10.1086/421285
30. G. Ghirlanda, G. Ghisellini, D. Lazzati, The Collimation‐corrected
Gamma‐Ray Burst Energies Correlate with the Peak Energy of Their ν F ν
Spectrum. Astrophys. J. 616, 331–338 (2004). doi:10.1086/424913
31. T. Laskar et al., arXiv:1305.2453 (2013).
32. A. von Kienlin, GRB Coordinates Network 14473, 1 (2013).
33. D. A. Perley, GRB Coordinates Network 14494, 1 (2013).
34. P. Romano, S. Campana, G. Chincarini, J. Cummings, G. Cusumano, S. T.
Holland, V. Mangano, T. Mineo, K. L. Page, V. Pal’shin, E. Rol, T.
Sakamoto, B. Zhang, R. Aptekar, S. Barbier, S. Barthelmy, A. P. Beardmore,
P. Boyd, D. N. Burrows, M. Capalbi, E. E. Fenimore, D. Frederiks, N.
Gehrels, P. Giommi, M. R. Goad, O. Godet, S. Golenetskii, D. Guetta, J. A.
Kennea, V. La Parola, D. Malesani, F. Marshall, A. Moretti, J. A. Nousek, P.
T. O’Brien, J. P. Osborne, M. Perri, G. Tagliaferri, Panchromatic study of
GRB 060124: from precursor to afterglow. Astron. Astrophys. 456, 917–927
(2006). doi:10.1051/0004-6361:20065071
35. P. W. Roming et al., Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, K. A. Flanagan, O. H. Siegmund, eds. (2000), vol.
4140 of Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, pp. 76-86.
36. P. W. A. Roming et al., Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, K. A. Flanagan, O. H. W. Siegmund, eds. (2004),
vol. 5165 of Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, pp. 262-276.
37. S. R. Oates, M. J. Page, P. Schady, M. de Pasquale, T. S. Koch, A. A.
Breeveld, P. J. Brown, M. M. Chester, S. T. Holland, E. A. Hoversten, N. P.
M. Kuin, F. E. Marshall, P. W. A. Roming, M. Still, D. E. Vanden Berk, S.
Zane, J. A. Nousek, A statistical study of gamma-ray burst afterglows
measured by the Swift Ultraviolet Optical Telescope. Mon. Not. R. Astron.
Soc. 395, 490–503 (2009). doi:10.1111/j.1365-2966.2009.14544.x
38. M. J. Page et al., arXiv:1309.4816 (2013).
39. A. A. Breeveld et al., Mon. Not. R. Astron. Soc. 406, 1687 (2010).
40. A. A. Breeveld et al., American Institute of Physics Conference Series, J. E.
McEnery, J. L. Racusin, N. Gehrels, eds. (2011), vol. 1358 of American
Institute of Physics Conference Series, pp. 373-376.
41. T. S. Poole, A. A. Breeveld, M. J. Page, W. Landsman, S. T. Holland, P.
Roming, N. P. M. Kuin, P. J. Brown, C. Gronwall, S. Hunsberger, S. Koch, K.
O. Mason, P. Schady, D. V. Berk, A. J. Blustin, P. Boyd, P. Broos, M. Carter,
M. M. Chester, A. Cucchiara, B. Hancock, H. Huckle, S. Immler, M.
Ivanushkina, T. Kennedy, F. Marshall, A. Morgan, S. B. Pandey, M. De
Pasquale, P. J. Smith, M. Still, Photometric calibration of the Swift
ultraviolet/optical telescope. Mon. Not. R. Astron. Soc. 383, 627–645 (2008).
doi:10.1111/j.1365-2966.2007.12563.x
42. T. Mihara et al., Publ. Astron. Soc. Jpn. 63, 623 (2011).
43. M. Sugizaki et al., Publ. Astron. Soc. Jpn. 63, 635 (2011).
44. N. R. Butler, D. Kocevski, X‐Ray Hardness Evolution in GRB Afterglows
and Flares: Late‐Time GRB Activity without N H Variations. Astrophys. J.
663, 407–419 (2007). doi:10.1086/518023
45. P. A. Evans, A. P. Beardmore, K. L. Page, J. P. Osborne, P. T. O’Brien, R.
Willingale, R. L. C. Starling, D. N. Burrows, O. Godet, L. Vetere, J. Racusin,
M. R. Goad, K. Wiersema, L. Angelini, M. Capalbi, G. Chincarini, N.
Gehrels, J. A. Kennea, R. Margutti, D. C. Morris, C. J. Mountford, C. Pagani,
M. Perri, P. Romano, N. Tanvir, Methods and results of an automatic analysis
of a complete sample of Swift -XRT observations of GRBs. Mon. Not. R.
Astron. Soc. 397, 1177–1201 (2009). doi:10.1111/j.1365-2966.2009.14913.x
46. R. Margutti, E. Zaninoni, M. G. Bernardini, G. Chincarini, F. Pasotti, C.
Guidorzi, L. Angelini, D. N. Burrows, M. Capalbi, P. A. Evans, N. Gehrels, J.
Kennea, V. Mangano, A. Moretti, J. Nousek, J. P. Osborne, K. L. Page, M.

/ http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 3/ 10.1126/science.1242279
Perri, J. Racusin, P. Romano, B. Sbarufatti, S. Stafford, M. Stamatikos, The
prompt-afterglow connection in gamma-ray bursts: a comprehensive
statistical analysis of Swift X-ray light curves. Mon. Not. R. Astron. Soc. 428,
729–742 (2013). doi:10.1093/mnras/sts066
47. C. Guidorzi, A. Monfardini, A. Gomboc, C. J. Mottram, C. G. Mundell, I. A.
Steele, D. Carter, M. F. Bode, R. J. Smith, S. N. Fraser, M. J. Burgdorf, A. M.
Newsam, The Automatic Real‐Time Gamma‐Ray Burst Pipeline of the 2 m
Liverpool Telescope. Publ. Astron. Soc. Pac. 118, 288–296 (2006).
doi:10.1086/499289
48. Y. Saito et al., Death of Massive Stars: Supernovae and Gamma-Ray Bursts
(2012), vol. 279 of IAU Symposium, pp. 387-388.
49. R. Sari, Hydrodynamics of Gamma-Ray Burst Afterglow. Astrophys. J. 489,
L37–L40 (1997). doi:10.1086/310957
50. G. Ghirlanda, L. Nava, G. Ghisellini, A. Celotti, D. Burlon, S. Covino, A.
Melandri, Gamma-ray bursts in the comoving frame. Mon. Not. R. Astron.
Soc. 420, 483–494 (2012). doi:10.1111/j.1365-2966.2011.20053.x
51. S. Kobayashi, B. Zhang, Early Optical Afterglows from Wind‐Type
Gamma‐Ray Bursts. Astrophys. J. 597, 455–458 (2003). doi:10.1086/378283
52. D. A. Perley et al., arXiv:1307.4401 (2013).
53. A. Panaitescu, P. Kumar, Fundamental Physical Parameters of Collimated
Gamma-Ray Burst Afterglows. Astrophys. J. 560, L49–L53 (2001).
doi:10.1086/324061
54. P. Kumar, R. Barniol Duran, External forward shock origin of high-energy
emission for three gamma-ray bursts detected by Fermi. Mon. Not. R. Astron.
Soc. 409, 226–236 (2010). doi:10.1111/j.1365-2966.2010.17274.x
55. G. Ghisellini, G. Ghirlanda, L. Nava, A. Celotti, GeV emission from gammaray bursts: a radiative fireball? Mon. Not. R. Astron. Soc. 403, 926–937
(2010). doi:10.1111/j.1365-2966.2009.16171.x
56. E. M. Rossi, D. Lazzati, J. D. Salmonson, G. Ghisellini, The polarization of
afterglow emission reveals γ-ray bursts jet structure. Mon. Not. R. Astron. Soc.
354, 86–100 (2004). doi:10.1111/j.1365-2966.2004.08165.x
57. T. Piran, E. Nakar, ON THE EXTERNAL SHOCK SYNCHROTRON
MODEL FOR GAMMA-RAY BURSTS’ GeV EMISSION. Astrophys. J.
718, L63–L67 (2010). doi:10.1088/2041-8205/718/2/L63
58. H. J. van Eerten, Z. Meliani, R. A. M. J. Wijers, R. Keppens, Mon. Not. R.
Astron. Soc. 410, 2016 (2011).
59. A. Panaitescu, Nuovo Cimento B Serie 121, 1099 (2006).
60. L. Nava, R. Salvaterra, G. Ghirlanda, G. Ghisellini, S. Campana, S. Covino,
G. Cusumano, P. D’Avanzo, V. D’Elia, D. Fugazza, A. Melandri, B.
Sbarufatti, S. D. Vergani, G. Tagliaferri, A complete sample of bright Swift
long gamma-ray bursts: testing the spectral-energy correlations. Mon. Not. R.
Astron. Soc. 421, 1256–1264 (2012). doi:10.1111/j.1365-2966.2011.20394.x
61. D. J. Schlegel, D. P. Finkbeiner, M. Davis, Maps of Dust Infrared Emission
for Use in Estimation of Reddening and Cosmic Microwave Background
Radiation
Foregrounds.
Astrophys.
J.
500,
525–553
(1998).
doi:10.1086/305772
62. M. Fukugita, T. Ichikawa, J. E. Gunn, M. Doi, K. Shimasaku, D. P. Schneider,
The Sloan Digital Sky Survey Photometric System. Astron. J. 111, 1748
(1996). doi:10.1086/117915
Acknowledgments: This work has been supported by ASI grant I/004/11/0 and
by PRIN-MIUR grant 2009ERC3HT. Development of the Boxfit code (25)
was supported in part by NASA through grant NNX10AF62G issued through
the Astrophysics Theory Program and by the NSF through grant AST1009863. This research was partially supported by the Ministry of Education,
Culture, Sports, Science and Technology of Japan (MEXT), Grant-in-Aid No.
14GS0211, 19047001, 19047003, and 24740186. The Liverpool Telescope is
operated by Liverpool John Moores University at the Observatorio del Roque
de los Muchachos of the Instituto de Astrofísica de Canarias. The Faulkes
Telescopes, now owned by Las Cumbres Observatory, are operated with
support from the Dill Faulkes Educational Trust. Swift support at the
University of Leicester and the Mullard Space Science Laboratory is funded
by the UK Space Agency. C.G. Mundell acknowledges financial support from
the Royal Society, the Wolfson Foundation and the Science and Technology
Facilities Council. Andreja Gomboc acknowledges funding from the
Slovenian Research Agency and from the Centre of Excellence for Space
Sciences and Technologies SPACE-SI, an operation partly financed by the
European Union, European Regional Development Fund and Republic of
Slovenia. DARK is funded by the DNRF.

Supplementary Materials
www.sciencemag.org/content/full/science.1242279/DC1
Materials and Methods
Supplementary Text
Figs. S1 to S7
Tables S1 to S10
References (32–62)
21 June 2013; accepted 16 October 2013
Published online 21 November 2013
10.1126/science.1242279

/ http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 4/ 10.1126/science.1242279
Fig. 1. Details of the Swift BAT light curve in the 15-350 keV
band. Top panel: the BAT light curve with a binning time of 64
ms. Inset: the BAT light curve up to 300 s, plotted on a log
intensity scale, showing a fast rise/exponential decay feature
starting at t ∼ 120 s. Bottom panel: the photon index values of a
power-law model fit to the BAT spectrum in the 15 to 150 keV
energy range.

/ http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 5/ 10.1126/science.1242279
Fig. 2. Light curves for GRB 130427A in different wavebands. Swift UV and visible filters (w2, m2, w1, u, b, v); B,
V, r′, and i′ filters correspond to Faulkes Telescope North; r′, and i′ to the Liverpool Telescope; g′, r′, and i′ to the
MITSuME telescopes (see (7) for further details). The scaling factors for the flux density in different filters is shown in
the inset; the scaling factor for the X-ray light curve (flux integrated in the 0.3-10 keV) (7) is also shown. The X-ray
light curve also includes two MAXI data points at t = 3257 s and t = 8821 s (empty squares). The fit performed over all
the light curves required 24 free parameters (curve normalizations, host galaxy optical flux in each band, three
temporal slopes and two breaks). Because of short-term low-level variability superposed to the long-term behavior and
possibly residual inhomogeneity of optical data taken from different telescopes, we added in quadrature a 9%
2
systematic error in the optical and 5% in the X-rays. Final fit yielded χ = 543.02 / 565 d.o.f. A contribution from the
host galaxy has been taken into account in the optical bands by fitting a constant flux of ∼ 0.01 mJy for the reddest
bands, corresponding to rHG = 21.26 mag as tabulated in the SDSS catalog. As a test of consistency, we performed
the fit using a broken power law for the B, g′, r′ and i′ filters individually. Uncertainties are larger, but we do find that the
values of tbreak as well as the decay indices before and after the break time are still consistent, within the errors, with
the values obtained by the overall fit.

/ http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 6/ 10.1126/science.1242279
Fig. 3. Radio (from (31). All measurements are taken at 6.8
GHz but the later one, at 7.3 GHz), optical, X-ray (Fig. 2) and
LAT γ-ray [from (2)] light curves of GRB 130427A and
corresponding model predictions adopting a description in
terms of the van Eerten et al. model (25). To properly fit the
radio data, only a fraction of the electrons must be accelerated
after ∼70 ks (see Table S10 and discussion in (7)).

/ http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 7/ 10.1126/science.1242279
Fig. 4. Spectral Energy Distributions (SEDs) of GRB 130427A taken at different times, from the
optical to the GeV bands [LAT data from (2)]. For SED 1 and SED 2 the model is a Band function,
for SED 3 the model is a Band + power law. Short dashed lines: phenomenological fit to the BAT
+ LAT data. Long dashed lines: results of the van Eerten et al. model (25), with parameters
discussed in (7). The different SEDs refer to the following time intervals: 1: [0-6.5 s]; 2: [7.5-8.5 s];
3: [8.5-196 s]; 4: [352-403 s]; 5: [406-722 s]; 6: [722-1830 s]; 7: around 3 ks; 8: around 23 ks; 9:
around 59 ks; 10: around 220 ks (host galaxy contribution has been subtracted in this case). Note
that from the optical SED analysis the intrinsic extinction is negligible.

/ http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 8/ 10.1126/science.1242279

More Related Content

What's hot

A giant galaxy in the young Universe with a massive ring
A giant galaxy in the young Universe with a massive ringA giant galaxy in the young Universe with a massive ring
A giant galaxy in the young Universe with a massive ringSérgio Sacani
 
Carbon star formation as seen through the non-monotonic initial–final mass re...
Carbon star formation as seen through the non-monotonic initial–final mass re...Carbon star formation as seen through the non-monotonic initial–final mass re...
Carbon star formation as seen through the non-monotonic initial–final mass re...Sérgio Sacani
 
Discovery of powerful gamma ray flares from the crab nebula
Discovery of powerful gamma ray flares from the crab nebulaDiscovery of powerful gamma ray flares from the crab nebula
Discovery of powerful gamma ray flares from the crab nebulaSérgio Sacani
 
A thirty-four billion solar mass black hole in SMSS J2157–3602, the most lumi...
A thirty-four billion solar mass black hole in SMSS J2157–3602, the most lumi...A thirty-four billion solar mass black hole in SMSS J2157–3602, the most lumi...
A thirty-four billion solar mass black hole in SMSS J2157–3602, the most lumi...Sérgio Sacani
 
A highly magnetized twin-jet base pinpoints a supermassive black hole
A highly magnetized twin-jet base pinpoints a supermassive black holeA highly magnetized twin-jet base pinpoints a supermassive black hole
A highly magnetized twin-jet base pinpoints a supermassive black holeSérgio Sacani
 
Observation of Bose–Einstein condensates in an Earth-orbiting research lab
Observation of Bose–Einstein condensates in an Earth-orbiting research labObservation of Bose–Einstein condensates in an Earth-orbiting research lab
Observation of Bose–Einstein condensates in an Earth-orbiting research labSérgio Sacani
 
A rare case of FR I interaction with a hot X-ray bridge in the A2384 galaxy c...
A rare case of FR I interaction with a hot X-ray bridge in the A2384 galaxy c...A rare case of FR I interaction with a hot X-ray bridge in the A2384 galaxy c...
A rare case of FR I interaction with a hot X-ray bridge in the A2384 galaxy c...Sérgio Sacani
 
Pawan Kumar Relativistic jets in tidal disruption events
Pawan Kumar	Relativistic jets in tidal disruption eventsPawan Kumar	Relativistic jets in tidal disruption events
Pawan Kumar Relativistic jets in tidal disruption eventsBaurzhan Alzhanov
 
Propagation of highly_efficient_star_formation_in_ngc7000
Propagation of highly_efficient_star_formation_in_ngc7000Propagation of highly_efficient_star_formation_in_ngc7000
Propagation of highly_efficient_star_formation_in_ngc7000Sérgio Sacani
 
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...Sérgio Sacani
 
Красное пятно на полюсе Харона
Красное пятно на полюсе ХаронаКрасное пятно на полюсе Харона
Красное пятно на полюсе ХаронаAnatol Alizar
 
The open cluster_ngc6520_and_the_nearby_dark_molecular_cloud_barnard_86
The open cluster_ngc6520_and_the_nearby_dark_molecular_cloud_barnard_86The open cluster_ngc6520_and_the_nearby_dark_molecular_cloud_barnard_86
The open cluster_ngc6520_and_the_nearby_dark_molecular_cloud_barnard_86Sérgio Sacani
 
Galaxy dynamics and the mass density of the universe
Galaxy dynamics and the mass density of the universeGalaxy dynamics and the mass density of the universe
Galaxy dynamics and the mass density of the universeSérgio Sacani
 
The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...
The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...
The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...WellingtonRodrigues2014
 
The dust disk_and_companion_of_the_nearby_agb_star_l2_puppis
The dust disk_and_companion_of_the_nearby_agb_star_l2_puppisThe dust disk_and_companion_of_the_nearby_agb_star_l2_puppis
The dust disk_and_companion_of_the_nearby_agb_star_l2_puppisSérgio Sacani
 
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY PUBLICA UN PROYECTO DE INVE...
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY PUBLICA UN PROYECTO DE INVE...MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY PUBLICA UN PROYECTO DE INVE...
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY PUBLICA UN PROYECTO DE INVE...Ayuntamiento de Alcalá la Real (Jaén)
 
Spitzer observations of_supernova_remmant_ic443
Spitzer observations of_supernova_remmant_ic443Spitzer observations of_supernova_remmant_ic443
Spitzer observations of_supernova_remmant_ic443Sérgio Sacani
 
Future Prospects on UHECR and UHE Photon
Future Prospects on UHECR and UHE PhotonFuture Prospects on UHECR and UHE Photon
Future Prospects on UHECR and UHE PhotonToshihiro FUJII
 

What's hot (20)

A giant galaxy in the young Universe with a massive ring
A giant galaxy in the young Universe with a massive ringA giant galaxy in the young Universe with a massive ring
A giant galaxy in the young Universe with a massive ring
 
Carbon star formation as seen through the non-monotonic initial–final mass re...
Carbon star formation as seen through the non-monotonic initial–final mass re...Carbon star formation as seen through the non-monotonic initial–final mass re...
Carbon star formation as seen through the non-monotonic initial–final mass re...
 
Discovery of powerful gamma ray flares from the crab nebula
Discovery of powerful gamma ray flares from the crab nebulaDiscovery of powerful gamma ray flares from the crab nebula
Discovery of powerful gamma ray flares from the crab nebula
 
A thirty-four billion solar mass black hole in SMSS J2157–3602, the most lumi...
A thirty-four billion solar mass black hole in SMSS J2157–3602, the most lumi...A thirty-four billion solar mass black hole in SMSS J2157–3602, the most lumi...
A thirty-four billion solar mass black hole in SMSS J2157–3602, the most lumi...
 
A highly magnetized twin-jet base pinpoints a supermassive black hole
A highly magnetized twin-jet base pinpoints a supermassive black holeA highly magnetized twin-jet base pinpoints a supermassive black hole
A highly magnetized twin-jet base pinpoints a supermassive black hole
 
Observation of Bose–Einstein condensates in an Earth-orbiting research lab
Observation of Bose–Einstein condensates in an Earth-orbiting research labObservation of Bose–Einstein condensates in an Earth-orbiting research lab
Observation of Bose–Einstein condensates in an Earth-orbiting research lab
 
A rare case of FR I interaction with a hot X-ray bridge in the A2384 galaxy c...
A rare case of FR I interaction with a hot X-ray bridge in the A2384 galaxy c...A rare case of FR I interaction with a hot X-ray bridge in the A2384 galaxy c...
A rare case of FR I interaction with a hot X-ray bridge in the A2384 galaxy c...
 
Pawan Kumar Relativistic jets in tidal disruption events
Pawan Kumar	Relativistic jets in tidal disruption eventsPawan Kumar	Relativistic jets in tidal disruption events
Pawan Kumar Relativistic jets in tidal disruption events
 
Propagation of highly_efficient_star_formation_in_ngc7000
Propagation of highly_efficient_star_formation_in_ngc7000Propagation of highly_efficient_star_formation_in_ngc7000
Propagation of highly_efficient_star_formation_in_ngc7000
 
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
 
Красное пятно на полюсе Харона
Красное пятно на полюсе ХаронаКрасное пятно на полюсе Харона
Красное пятно на полюсе Харона
 
The open cluster_ngc6520_and_the_nearby_dark_molecular_cloud_barnard_86
The open cluster_ngc6520_and_the_nearby_dark_molecular_cloud_barnard_86The open cluster_ngc6520_and_the_nearby_dark_molecular_cloud_barnard_86
The open cluster_ngc6520_and_the_nearby_dark_molecular_cloud_barnard_86
 
Galaxy dynamics and the mass density of the universe
Galaxy dynamics and the mass density of the universeGalaxy dynamics and the mass density of the universe
Galaxy dynamics and the mass density of the universe
 
The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...
The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...
The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...
 
The dust disk_and_companion_of_the_nearby_agb_star_l2_puppis
The dust disk_and_companion_of_the_nearby_agb_star_l2_puppisThe dust disk_and_companion_of_the_nearby_agb_star_l2_puppis
The dust disk_and_companion_of_the_nearby_agb_star_l2_puppis
 
Ehgamberdiev 07082017
Ehgamberdiev 07082017Ehgamberdiev 07082017
Ehgamberdiev 07082017
 
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY PUBLICA UN PROYECTO DE INVE...
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY PUBLICA UN PROYECTO DE INVE...MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY PUBLICA UN PROYECTO DE INVE...
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY PUBLICA UN PROYECTO DE INVE...
 
Spitzer observations of_supernova_remmant_ic443
Spitzer observations of_supernova_remmant_ic443Spitzer observations of_supernova_remmant_ic443
Spitzer observations of_supernova_remmant_ic443
 
Future Prospects on UHECR and UHE Photon
Future Prospects on UHECR and UHE PhotonFuture Prospects on UHECR and UHE Photon
Future Prospects on UHECR and UHE Photon
 
Aa16875 11
Aa16875 11Aa16875 11
Aa16875 11
 

Similar to Grb 130427a a_neraby_ordinary_monster

AT2023fhn (the Finch): a Luminous Fast Blue Optical Transient at a large offs...
AT2023fhn (the Finch): a Luminous Fast Blue Optical Transient at a large offs...AT2023fhn (the Finch): a Luminous Fast Blue Optical Transient at a large offs...
AT2023fhn (the Finch): a Luminous Fast Blue Optical Transient at a large offs...Sérgio Sacani
 
Significant and variable linear polarization during the prompt optical flash ...
Significant and variable linear polarization during the prompt optical flash ...Significant and variable linear polarization during the prompt optical flash ...
Significant and variable linear polarization during the prompt optical flash ...Sérgio Sacani
 
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...Sérgio Sacani
 
A strong ultraviolet_pulse_from_a_newborn_type_ia_supernova
A strong ultraviolet_pulse_from_a_newborn_type_ia_supernovaA strong ultraviolet_pulse_from_a_newborn_type_ia_supernova
A strong ultraviolet_pulse_from_a_newborn_type_ia_supernovaSérgio Sacani
 
Probing the fermi_bubbles_in_ultraviolet_absorption_spectroscopic_signature_o...
Probing the fermi_bubbles_in_ultraviolet_absorption_spectroscopic_signature_o...Probing the fermi_bubbles_in_ultraviolet_absorption_spectroscopic_signature_o...
Probing the fermi_bubbles_in_ultraviolet_absorption_spectroscopic_signature_o...Sérgio Sacani
 
An elevation of 0.1 light-seconds for the optical jet base in an accreting Ga...
An elevation of 0.1 light-seconds for the optical jet base in an accreting Ga...An elevation of 0.1 light-seconds for the optical jet base in an accreting Ga...
An elevation of 0.1 light-seconds for the optical jet base in an accreting Ga...Sérgio Sacani
 
The canarias einstein_ring_a_newly_discovered_optical_einstein_ring
The canarias einstein_ring_a_newly_discovered_optical_einstein_ringThe canarias einstein_ring_a_newly_discovered_optical_einstein_ring
The canarias einstein_ring_a_newly_discovered_optical_einstein_ringSérgio Sacani
 
Eso1437a
Eso1437aEso1437a
Eso1437aGOASA
 
MUSE sneaks a peek at extreme ram-pressure stripping events. I. A kinematic s...
MUSE sneaks a peek at extreme ram-pressure stripping events. I. A kinematic s...MUSE sneaks a peek at extreme ram-pressure stripping events. I. A kinematic s...
MUSE sneaks a peek at extreme ram-pressure stripping events. I. A kinematic s...Sérgio Sacani
 
A surge of light at the birth of a supernova
A surge of light at the birth of a supernovaA surge of light at the birth of a supernova
A surge of light at the birth of a supernovaSérgio Sacani
 
Fleeting Small-scale Surface Magnetic Fields Build the Quiet-Sun Corona
Fleeting Small-scale Surface Magnetic Fields Build the Quiet-Sun CoronaFleeting Small-scale Surface Magnetic Fields Build the Quiet-Sun Corona
Fleeting Small-scale Surface Magnetic Fields Build the Quiet-Sun CoronaSérgio Sacani
 
The Tidal Disruption Event AT2021ehb: Evidence of Relativistic Disk Reflectio...
The Tidal Disruption Event AT2021ehb: Evidence of Relativistic Disk Reflectio...The Tidal Disruption Event AT2021ehb: Evidence of Relativistic Disk Reflectio...
The Tidal Disruption Event AT2021ehb: Evidence of Relativistic Disk Reflectio...Sérgio Sacani
 
An earth sized_planet_with_an_earth_sized_density
An earth sized_planet_with_an_earth_sized_densityAn earth sized_planet_with_an_earth_sized_density
An earth sized_planet_with_an_earth_sized_densitySérgio Sacani
 
A dust obscured_massive_maximum_starburst_galaxy_at_a_redshift_634
A dust obscured_massive_maximum_starburst_galaxy_at_a_redshift_634A dust obscured_massive_maximum_starburst_galaxy_at_a_redshift_634
A dust obscured_massive_maximum_starburst_galaxy_at_a_redshift_634Sérgio Sacani
 
Spirals and clumps in V960 Mon: signs of planet formation via gravitational i...
Spirals and clumps in V960 Mon: signs of planet formation via gravitational i...Spirals and clumps in V960 Mon: signs of planet formation via gravitational i...
Spirals and clumps in V960 Mon: signs of planet formation via gravitational i...Sérgio Sacani
 
A dust-enshrouded tidal disruption event with a resolved radio jet in a galax...
A dust-enshrouded tidal disruption event with a resolved radio jet in a galax...A dust-enshrouded tidal disruption event with a resolved radio jet in a galax...
A dust-enshrouded tidal disruption event with a resolved radio jet in a galax...Sérgio Sacani
 
Reionization and the ISM/Stellar Origins with JWST and ALMA (RIOJA): The Core...
Reionization and the ISM/Stellar Origins with JWST and ALMA (RIOJA): The Core...Reionization and the ISM/Stellar Origins with JWST and ALMA (RIOJA): The Core...
Reionization and the ISM/Stellar Origins with JWST and ALMA (RIOJA): The Core...Sérgio Sacani
 
The most luminous_galaxies_discovered_by_wise
The most luminous_galaxies_discovered_by_wiseThe most luminous_galaxies_discovered_by_wise
The most luminous_galaxies_discovered_by_wiseSérgio Sacani
 
Asassn 15ih a_highly_super_luminous_supernova
Asassn 15ih a_highly_super_luminous_supernovaAsassn 15ih a_highly_super_luminous_supernova
Asassn 15ih a_highly_super_luminous_supernovaSérgio Sacani
 

Similar to Grb 130427a a_neraby_ordinary_monster (20)

AT2023fhn (the Finch): a Luminous Fast Blue Optical Transient at a large offs...
AT2023fhn (the Finch): a Luminous Fast Blue Optical Transient at a large offs...AT2023fhn (the Finch): a Luminous Fast Blue Optical Transient at a large offs...
AT2023fhn (the Finch): a Luminous Fast Blue Optical Transient at a large offs...
 
Significant and variable linear polarization during the prompt optical flash ...
Significant and variable linear polarization during the prompt optical flash ...Significant and variable linear polarization during the prompt optical flash ...
Significant and variable linear polarization during the prompt optical flash ...
 
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
 
Aa17043 11
Aa17043 11Aa17043 11
Aa17043 11
 
A strong ultraviolet_pulse_from_a_newborn_type_ia_supernova
A strong ultraviolet_pulse_from_a_newborn_type_ia_supernovaA strong ultraviolet_pulse_from_a_newborn_type_ia_supernova
A strong ultraviolet_pulse_from_a_newborn_type_ia_supernova
 
Probing the fermi_bubbles_in_ultraviolet_absorption_spectroscopic_signature_o...
Probing the fermi_bubbles_in_ultraviolet_absorption_spectroscopic_signature_o...Probing the fermi_bubbles_in_ultraviolet_absorption_spectroscopic_signature_o...
Probing the fermi_bubbles_in_ultraviolet_absorption_spectroscopic_signature_o...
 
An elevation of 0.1 light-seconds for the optical jet base in an accreting Ga...
An elevation of 0.1 light-seconds for the optical jet base in an accreting Ga...An elevation of 0.1 light-seconds for the optical jet base in an accreting Ga...
An elevation of 0.1 light-seconds for the optical jet base in an accreting Ga...
 
The canarias einstein_ring_a_newly_discovered_optical_einstein_ring
The canarias einstein_ring_a_newly_discovered_optical_einstein_ringThe canarias einstein_ring_a_newly_discovered_optical_einstein_ring
The canarias einstein_ring_a_newly_discovered_optical_einstein_ring
 
Eso1437a
Eso1437aEso1437a
Eso1437a
 
MUSE sneaks a peek at extreme ram-pressure stripping events. I. A kinematic s...
MUSE sneaks a peek at extreme ram-pressure stripping events. I. A kinematic s...MUSE sneaks a peek at extreme ram-pressure stripping events. I. A kinematic s...
MUSE sneaks a peek at extreme ram-pressure stripping events. I. A kinematic s...
 
A surge of light at the birth of a supernova
A surge of light at the birth of a supernovaA surge of light at the birth of a supernova
A surge of light at the birth of a supernova
 
Fleeting Small-scale Surface Magnetic Fields Build the Quiet-Sun Corona
Fleeting Small-scale Surface Magnetic Fields Build the Quiet-Sun CoronaFleeting Small-scale Surface Magnetic Fields Build the Quiet-Sun Corona
Fleeting Small-scale Surface Magnetic Fields Build the Quiet-Sun Corona
 
The Tidal Disruption Event AT2021ehb: Evidence of Relativistic Disk Reflectio...
The Tidal Disruption Event AT2021ehb: Evidence of Relativistic Disk Reflectio...The Tidal Disruption Event AT2021ehb: Evidence of Relativistic Disk Reflectio...
The Tidal Disruption Event AT2021ehb: Evidence of Relativistic Disk Reflectio...
 
An earth sized_planet_with_an_earth_sized_density
An earth sized_planet_with_an_earth_sized_densityAn earth sized_planet_with_an_earth_sized_density
An earth sized_planet_with_an_earth_sized_density
 
A dust obscured_massive_maximum_starburst_galaxy_at_a_redshift_634
A dust obscured_massive_maximum_starburst_galaxy_at_a_redshift_634A dust obscured_massive_maximum_starburst_galaxy_at_a_redshift_634
A dust obscured_massive_maximum_starburst_galaxy_at_a_redshift_634
 
Spirals and clumps in V960 Mon: signs of planet formation via gravitational i...
Spirals and clumps in V960 Mon: signs of planet formation via gravitational i...Spirals and clumps in V960 Mon: signs of planet formation via gravitational i...
Spirals and clumps in V960 Mon: signs of planet formation via gravitational i...
 
A dust-enshrouded tidal disruption event with a resolved radio jet in a galax...
A dust-enshrouded tidal disruption event with a resolved radio jet in a galax...A dust-enshrouded tidal disruption event with a resolved radio jet in a galax...
A dust-enshrouded tidal disruption event with a resolved radio jet in a galax...
 
Reionization and the ISM/Stellar Origins with JWST and ALMA (RIOJA): The Core...
Reionization and the ISM/Stellar Origins with JWST and ALMA (RIOJA): The Core...Reionization and the ISM/Stellar Origins with JWST and ALMA (RIOJA): The Core...
Reionization and the ISM/Stellar Origins with JWST and ALMA (RIOJA): The Core...
 
The most luminous_galaxies_discovered_by_wise
The most luminous_galaxies_discovered_by_wiseThe most luminous_galaxies_discovered_by_wise
The most luminous_galaxies_discovered_by_wise
 
Asassn 15ih a_highly_super_luminous_supernova
Asassn 15ih a_highly_super_luminous_supernovaAsassn 15ih a_highly_super_luminous_supernova
Asassn 15ih a_highly_super_luminous_supernova
 

More from Sérgio Sacani

Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsSérgio Sacani
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Sérgio Sacani
 
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...Sérgio Sacani
 
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Sérgio Sacani
 
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRFirst Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRSérgio Sacani
 
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...Sérgio Sacani
 
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNHydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNSérgio Sacani
 
Huygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldHuygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldSérgio Sacani
 
The Radcliffe Wave Of Milk Way is oscillating
The Radcliffe Wave Of Milk Way  is oscillatingThe Radcliffe Wave Of Milk Way  is oscillating
The Radcliffe Wave Of Milk Way is oscillatingSérgio Sacani
 
Thermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsThermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsSérgio Sacani
 
Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...Sérgio Sacani
 
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...Sérgio Sacani
 
Shiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky Way
Shiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky WayShiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky Way
Shiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky WaySérgio Sacani
 
Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...
Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...
Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...Sérgio Sacani
 
Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...
Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...
Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...Sérgio Sacani
 
Revelando Marte - Livro Sobre a Exploração do Planeta Vermelho
Revelando Marte - Livro Sobre a Exploração do Planeta VermelhoRevelando Marte - Livro Sobre a Exploração do Planeta Vermelho
Revelando Marte - Livro Sobre a Exploração do Planeta VermelhoSérgio Sacani
 
Weak-lensing detection of intracluster filaments in the Coma cluster
Weak-lensing detection of intracluster filaments in the Coma clusterWeak-lensing detection of intracluster filaments in the Coma cluster
Weak-lensing detection of intracluster filaments in the Coma clusterSérgio Sacani
 
Quasar and Microquasar Series - Microquasars in our Galaxy
Quasar and Microquasar Series - Microquasars in our GalaxyQuasar and Microquasar Series - Microquasars in our Galaxy
Quasar and Microquasar Series - Microquasars in our GalaxySérgio Sacani
 
A galactic microquasar mimicking winged radio galaxies
A galactic microquasar mimicking winged radio galaxiesA galactic microquasar mimicking winged radio galaxies
A galactic microquasar mimicking winged radio galaxiesSérgio Sacani
 
The Search Of Nine Planet, Pluto (Artigo Histórico)
The Search Of Nine Planet, Pluto (Artigo Histórico)The Search Of Nine Planet, Pluto (Artigo Histórico)
The Search Of Nine Planet, Pluto (Artigo Histórico)Sérgio Sacani
 

More from Sérgio Sacani (20)

Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive stars
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
 
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
 
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
 
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRFirst Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
 
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
 
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNHydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
 
Huygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldHuygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious World
 
The Radcliffe Wave Of Milk Way is oscillating
The Radcliffe Wave Of Milk Way  is oscillatingThe Radcliffe Wave Of Milk Way  is oscillating
The Radcliffe Wave Of Milk Way is oscillating
 
Thermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsThermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jets
 
Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...
 
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...
 
Shiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky Way
Shiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky WayShiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky Way
Shiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky Way
 
Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...
Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...
Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...
 
Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...
Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...
Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...
 
Revelando Marte - Livro Sobre a Exploração do Planeta Vermelho
Revelando Marte - Livro Sobre a Exploração do Planeta VermelhoRevelando Marte - Livro Sobre a Exploração do Planeta Vermelho
Revelando Marte - Livro Sobre a Exploração do Planeta Vermelho
 
Weak-lensing detection of intracluster filaments in the Coma cluster
Weak-lensing detection of intracluster filaments in the Coma clusterWeak-lensing detection of intracluster filaments in the Coma cluster
Weak-lensing detection of intracluster filaments in the Coma cluster
 
Quasar and Microquasar Series - Microquasars in our Galaxy
Quasar and Microquasar Series - Microquasars in our GalaxyQuasar and Microquasar Series - Microquasars in our Galaxy
Quasar and Microquasar Series - Microquasars in our Galaxy
 
A galactic microquasar mimicking winged radio galaxies
A galactic microquasar mimicking winged radio galaxiesA galactic microquasar mimicking winged radio galaxies
A galactic microquasar mimicking winged radio galaxies
 
The Search Of Nine Planet, Pluto (Artigo Histórico)
The Search Of Nine Planet, Pluto (Artigo Histórico)The Search Of Nine Planet, Pluto (Artigo Histórico)
The Search Of Nine Planet, Pluto (Artigo Histórico)
 

Recently uploaded

"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxLoriGlavin3
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESmohitsingh558521
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfMounikaPolabathina
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 

Recently uploaded (20)

"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdf
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 

Grb 130427a a_neraby_ordinary_monster

  • 1. Reports / http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 1/ 10.1126/science.1242279 Downloaded from www.sciencemag.org on December 1, 2013 GRB 130427A: A Nearby Ordinary Monster brightest and longest burst detected above 100 MeV, with the most energetic photon detected at 95 GeV (2). It was detected by Fermi-GBM (3) at T0, GBM:47:06.42 UT on April 27 2013. Hereafter this time will be our reference time T0. The Burst Alert TeleA. Maselli,1* A. Melandri,2 L. Nava,2,3 C. G. Mundell,4 N. Kawai,5,6 S. 2 2 7 1 scope (BAT) (4) onboard Swift Campana, S. Covino,2 J. R. Cummings, G. Cusumano, P.A. Evans,8 G. Ghirlanda, G. Ghisellini,2 C. Guidorzi,9 S. Kobayashi,4 P. triggered on GRB 130427A at t = 51.1 s, when Swift completed a pre-planned Kuin,10 V. La Parola,1 V. Mangano,1,11 S. Oates,10 T. Sakamoto,12 M. 6 4 11 13 8 slew. The Swift slew to the source startSerino, F. Virgili2 B.-B. Zhang, S. Barthelmy, A. Beardmore, , M.G. Bernardini, D. 15 Bersier,4 D. Burrows,11 G. Calderone,2,14 M. 10 ed at t = 148 s and ended at t = 192 s. The Swift UltraViolet Optical TeleCapalbi, 1 J.2Chiang, P. 13 D’Avanzo,2 V. D’Elia,16,17 M. De Pasquale, scope (UVOT, (5)) began observations D. Fugazza,20N. Gehrels, A. Gomboc,18,19 R. Harrison,4 H. 18 at t = 181 s while observations by the Hanayama22 J. Japelj,23 J. Kennea,1124 Kopac,18 C. Kouveliotou,21 , D. 13 11 Swift X-ray Telescope (XRT, (6)) startD. Kuroda, A. Levan, 8D. Malesani, F. Marshall, J. Nousek, P. ed at t = 195 s (see (7) for more deO’Brien,8 J.P. Osborne, C. Pagani,81K.L. Page,8 M. Page,10 M. 11 tails). The structure of the γ-ray light Perri,16,17 T.25 Pritchard,4 P. Romano, Y. Saito,515 Sbarufatti,2,11 R. B. 8 13 curve revealed by the Swift-BAT in the Salvaterra, I. Steele, N. Tanvir, G. Vianello,2 B. Weigand, K. 15-350 keV band (Fig. 1) can be dividWiersema,8 Y. Yatsu,5 T. Yoshii,5 G. Tagliaferri ed in three main episodes: an initial 1 2 INAF-IASF Palermo, Via Ugo La Malfa 153 I-90146 Palermo, Italy. INAF-Osservatorio Astronomico di peak, beginning at t = 0.1 s and peaking 3 Brera, via E. Bianchi 46, I-23807 Merate, Italy. APC, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, at t = 0.5 s; a second large peak show4 Observatoire de Paris, Sorbonne Paris Cité, France. Astrophysics Research Institute, Liverpool John ing a complex structure with a duration 5 Moores University, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF, UK. Department of of ∼ 20 s and a third, much weaker Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan. 6 episode, starting at t ∼ 120 s showing a Coordinated Space Observation and Experiment Research Group, RIKEN, 2-1 Hirosawa, Wako, Saitama 7 fast rise/exponential decay behavior. 351-0198, Japan. UMBC/CRESST/NASA Goddard Space Flight Center, Code 661, Greenbelt, MD 20771, 8 The overall duration of the prompt USA. Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, UK. 9 10 emission was T90 (15 to 150 keV) = Department of Physics, University of Ferrara, via Saragat 1, I-44122, Ferrara, Italy. Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT, UK. 276 ± 5 s (i.e., the time containing 90% 11 Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, of the fluence) calculated over the first 12 University Park, PA 16802, USA. Department of Physics and Mathematics, Aoyama Gakuin University, 51830 s of BAT observation from T0, 13 10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan. NASA Goddard Space Flight GBM. During the early phases of the γ14 Center, Greenbelt, MD 20771, USA. Dipartimento di Fisica “G. Occhialini”, Università di Milano-Bicocca, ray emission strong spectral variability 15 Piazza della Scienza 3, I-20126 Milano, Italy. W. W. Hansen Experimental Physics Laboratory, Kavli is observed (Fig. 1). A marked spectral Institute for Particle Astrophysics and Cosmology, Department of Physics, and SLAC National Accelerator 16 hardening is observed during the Laboratory, Stanford University, Stanford, CA 94305, USA. INAF/Rome Astronomical Observatory, via 17 prompt main event. With a total fluence Frascati 33, 00040 Monteporzio Catone (Roma), Italy. ASI Science Data Centre, Via Galileo Galilei, 18 F = (4.985 ± 0.002) × 10−4 erg cm−2 in 00044 Frascati (Roma), Italy. Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19 19 1000, Ljubljana, Slovenia. Centre of Excellence Space-si, Askerceva cesta 12, 1000 Ljubljana, Slovenia. the 15 to 150 keV band, GRB 130427A 20 Ishigakijima Astronomical Observatory, National Astronomical Observatory of Japan, 1024-1 Arakawa, reached the highest fluence observed 21 Ishigaki, Okinawa 907-0024, Japan. Space Science Office, VP62, NASA/Marshall Space Flight Center, for a GRB by Swift. The 0.02-10 MeV 22 Huntsville, AL 35812, USA. Okayama Astrophysical Observatory, National Astronomical Observatory of fluence measured by Konus-Wind (8) 23 Japan, 3037-5 Honjo, Kamogata, Asaguchi, Okayama 719-0232. Department of Physics, University of for the main emission episode (0 to 24 Warwick, Coventry CV4 7AL, UK. Dark Cosmology Centre, Niels Bohr Institute, University of 18.7 s) is (2.68 ± 0.01) × 10−3 erg cm−2, 25 Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark. INAF-IASF Milano, via E. Bassini 15, with a spectrum peaking at Epeak = 1028 I-20133 Milano, Italy. ± 8 keV, while the fluence of the emis*Corresponding author. E-mail: maselli@ifc.inaf.it sion episode at (120 - 250 s) is ∼9 ×10−5 erg cm−2, with a spectrum peakLong-duration Gamma-Ray Bursts (GRBs) are an extremely rare outcome of the ing at ∼240 keV (9). collapse of massive stars, and are typically found in the distant Universe. Because This event was extremely bright al53 −1 of its intrinsic luminosity (L ∼ 3 × 10 erg s ) and its relative proximity (z = 0.34), so in the optical and it was immediately GRB 130427A was a unique event that reached the highest fluence observed in the detected by various robotic telescopes: γ-ray band. Here we present a comprehensive multiwavelength view of GRB in particular, the Raptor robotic tele130427A with Swift, the 2-m Liverpool and Faulkes telescopes and by other groundscope detected a bright optical counterbased facilities, highlighting the evolution of the burst emission from the prompt to part already at t = 0.5 s (10). Optical the afterglow phase. The properties of GRB 130427A are similar to those of the most spectroscopy of the afterglow deterluminous, high-redshift GRBs, suggesting that a common central engine is mined the redshift to be z = 0.34 (11); responsible for producing GRBs in both the contemporary and the early Universe an UVOT UV grism spectrum (7) was and over the full range of GRB isotropic energies. also acquired. At this distance the rest frame 1 keV-10 MeV isotropic energy is Eiso = 8.1 × 1053 erg and the peak GRB 130427A was the brightest burst detected by Swift (1) as well as by 53 −1 several γ-ray detectors onboard other space missions. It was also the luminosity is Liso = 2.7 × 10 erg s . According to the luminosity function of Salvaterra et al. (12) we expect one event like GRB 130427A
  • 2. every > 60 years. In the nearby Universe (i.e., z ≲ 0.4, corresponding to an age of ∼10 Gyr) only a handful of long GRBs have been detected. These GRBs are usually characterized by a low overall isotropic energy (Eiso ≤ 1052 erg) and are associated with supernovae (SNe) Ib/c, characterized by broad spectral lines indicating high expansion velocities, called hypernovae (13). GRB 130427A is instead a powerful GRB such as the ones typically detected at much higher redshifts (z > 1, with a mean z ∼ 2 corresponding to an age of ∼3 Gyr). The detection of a nearby and extremely powerful GRB gives us the opportunity to test, on the one hand, if this GRB has the same properties of the cosmological GRBs and, on the other hand, if also such bright GRBs are associated with SNe. Up to now, SNe have been associated only to under (or mildly) energetic GRBs in the local Universe. Since a supernova associated with this burst, SN 2013cq, has been detected (14), we are now sure that SNe are also associated with very powerful GRBs, not only to low power bursts [fig. S6 and figure 1 of (14)]. Naive energetic arguments might suggest that in powerful GRBs there is not enough power left for a strong SN: GRB 130427A definitively proves that this is not the case. The overall behavior of the X-ray afterglow light curve has been characterized with the main contribution of the XRT onboard Swift and two additional relevant detections from the MAXI experiment (15) in the gap between the first and the second Swift-XRT observations (Fig. 2). The early light curve, starting from t = 260 s, is characterized by an initially steep decay with a slope α0,x = 3.32 ± 0.17 consistent with highlatitude emission (16, 17), a break at t1,x = 424 ± 8 s followed by a flatter decay with index α1,x = 1.28 ± 0.01. A further break at t2,x = 48 ± 22 ks is statistically needed (3.8σ) to account for a further steepening to α2,x = 1.35 ± 0.02 (all errors are derived for ∆χ2 = 2.7). Figure 2 also shows the light curves in the optical and UV derived from the UVOT as well as from ground-based telescopes (Liverpool telescope, Faulkes Telescope North, and MITSuME Telescopes). All optical light curves are well fitted by a broken power law with α1 = 0.96 ± 0.01, tbreak = 37.4+4.7 ks, and −4.0 α 2 = 1.36+0.01 . Fitting the X-ray light −0.02 curve together with the optical ones, we find the same parameters from 26.6 ks onward, but to fit the early part of the X-ray light curve we need another power-law segment with a slope of 26.6+4.5 −6.6 1.29+0.02 −0.01 and a break at ks (Fig. 2). Therefore, from 26.6 ks onward a common de- scription of all the optical, UV and X-ray behavior is possible, while at earlier times an extra X-ray component is required. We interpret the early X-ray light curve (up to 26.6 ks) as the superposition of a standard afterglow (i.e., forward shock emission) and either the prolonged activity of the central engine or/and the contribution from the reverse shock emission (e.g., (18–20)). After 26.6 ks the optical and X-ray light curves share the same behavior and decay slopes (Fig. 2), including a break at tbreak ∼ 37 ks. This achromatic break is suggestive of a jet break, although the post-break decay (α2=1.36) is shallower than predicted in the simplest theory (an increase in decay slope > 1 would be expected; see (21)). This could be due to additional components contributing to the flux, to a time dependence of the microphysical parameters governing the fraction of shock energy going to electrons (ϵe) and magnetic field (ϵB), or to the fact that we observe a canonical jet not exactly on axis, but still within the jet opening angle (22, 23). Because the optical and the X-ray emission belong to the same spectral power-law segment it is possible to constrain the characteristic frequencies of the afterglow spectra, in turn constraining the microphysical pa- rameters of the relativistic shock. Additional information comes from the high-energy γ-ray emission (2). The γ-ray flux above 100 MeV peaks at ∼20 s. If this emission is due to afterglow radiation, the peak time implies a bulk Lorentz factor Γ0 ∼ 500 (2, 7). Furthermore, the presence of the GeV peak suggests a homogeneous circumburst density profile (24). Guided by these constraints in our choice of parameters, we used the BOXFIT code developed by van Eerten et al. (25) to model the afterglow. Rather than trying to perform a formal fit to the data we check if this burst, with an unprecedented data coverage and richness, can be interpreted in the framework of the standard model for the afterglow emission, or else if it forces us to abandon the standard framework. We give more weight to the optical and higher energy fluxes, since they carry most of the afterglow luminosity, orders of magnitude greater than the radio flux. Neither reverse shock nor inverse Compton (IC) emission are included in the model, but this does not affect our conclusions which primarily concern the late time synchrotron afterglow (see (7) for further details). The synchrotron flux predicted by the model reproduces the optical emission and the X-ray light curve after ∼ 10 ks reasonably well, while the early X-ray flux is likely due to an additional component (Fig. 3). Our model underestimates the GeV emission but this, given the large ϵe/ϵB ratio, can be due to synchrotron Self-Compton emission, as envisaged by (2, 26, 27). The model can also roughly reproduce the radio emission (further details in (7)). Consistent with the light curve analysis, the synchrotron flux predicted by the model reproduces reasonably well the optical and X-ray parts of the spectral energy distribution (SED) of the afterglow (Fig. 4), but it underestimates the GeV emission. Although the model does not entirely reproduce the complexity shown by the data, it does capture the main features of the emission properties in the pure afterglow phase. Overall, the properties of GRB 130427A are similar to those of the powerful GRBs typically seen at z ∼ 1 − 2 (see (7) for a comparison). This is the most powerful GRB at z < 0.9. It obeys the spectral energy correlations such as the Epeak − Eiso (28) correlation and the E peak − Lpeak (29) correlation. Interpreting the break observed at ∼37 ks as a jet break makes GRB 130427A consistent with the collimation corrected-peak energy correlation (7, 30). GRB 130427A is also associated with a supernova, extending the GRB-SN connection also to such powerful and high-z bursts. GRB 130427A stands as a unique example indicating that a common engine is powering these huge explosions at all powers, and from the nearby to the very far, early Universe. References and Notes 1. A. Maselli et al., GRB Coordinates Network 14448, 1 (2013). 2. Fermi-LAT Team, Science (2013). 10.1126/science.1242353 3. C. Meegan, G. Lichti, P. N. Bhat, E. Bissaldi, M. S. Briggs, V. Connaughton, R. Diehl, G. Fishman, J. Greiner, A. S. Hoover, A. J. van der Horst, A. von Kienlin, R. M. Kippen, C. Kouveliotou, S. McBreen, W. S. Paciesas, R. Preece, H. Steinle, M. S. Wallace, R. B. Wilson, C. Wilson-Hodge, THE FERMI GAMMA-RAY BURST MONITOR. Astrophys. J. 702, 791–804 (2009). doi:10.1088/0004-637X/702/1/791 4. S. D. Barthelmy, L. M. Barbier, J. R. Cummings, E. E. Fenimore, N. Gehrels, D. Hullinger, H. A. Krimm, C. B. Markwardt, D. M. Palmer, A. Parsons, G. Sato, M. Suzuki, T. Takahashi, M. Tashiro, J. Tueller, The Burst Alert Telescope (BAT) on the SWIFT Midex Mission. Space Sci. Rev. 120, 143– 164 (2005). doi:10.1007/s11214-005-5096-3 5. P. W. A. Roming, T. E. Kennedy, K. O. Mason, J. A. Nousek, L. Ahr, R. E. Bingham, P. S. Broos, M. J. Carter, B. K. Hancock, H. E. Huckle, S. D. Hunsberger, H. Kawakami, R. Killough, T. S. Koch, M. K. Mclelland, K. Smith, P. J. Smith, J. C. Soto, P. T. Boyd, A. A. Breeveld, S. T. Holland, M. Ivanushkina, M. S. Pryzby, M. D. Still, J. Stock, The Swift UltraViolet/Optical Telescope. Space Sci. Rev. 120, 95–142 (2005). doi:10.1007/s11214-005-5095-4 6. D. N. Burrows, J. E. Hill, J. A. Nousek, J. A. Kennea, A. Wells, J. P. Osborne, A. F. Abbey, A. Beardmore, K. Mukerjee, A. D. T. Short, G. Chincarini, S. / http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 2/ 10.1126/science.1242279
  • 3. Campana, O. Citterio, A. Moretti, C. Pagani, G. Tagliaferri, P. Giommi, M. Capalbi, F. Tamburelli, L. Angelini, G. Cusumano, H. W. Bräuninger, W. Burkert, G. D. Hartner, The Swift X-Ray Telescope. Space Sci. Rev. 120, 165–195 (2005). doi:10.1007/s11214-005-5097-2 7. Materials and methods are available as supplementary materials on Science Online. 8. R. L. Aptekar, D. D. Frederiks, S. V. Golenetskii, V. N. Ilynskii, E. P. Mazets, V. N. Panov, Z. J. Sokolova, M. M. Terekhov, L. O. Sheshin, T. L. Cline, D. E. Stilwell, Konus-W gamma-ray burst experiment for the GGS Wind spacecraft. Space Sci. Rev. 71, 265–272 (1995). doi:10.1007/BF00751332 9. S. Golenetskii et al., GRB Coordinates Network 14487, 1 (2013). 10. T. Vestrand et al., Science (2013). 10.1126/science.1242316 11. A. J. Levan, S. B. Cenko, D. A. Perley, N. R. Tanvir, GRB Coordinates Network 14455, 1 (2013). 12. R. Salvaterra, S. Campana, S. D. Vergani, S. Covino, P. D’Avanzo, D. Fugazza, G. Ghirlanda, G. Ghisellini, A. Melandri, L. Nava, B. Sbarufatti, H. Flores, S. Piranomonte, G. Tagliaferri, A COMPLETE SAMPLE OF BRIGHT SWIFT LONG GAMMA-RAY BURSTS. I. SAMPLE PRESENTATION, LUMINOSITY FUNCTION AND EVOLUTION. Astrophys. J. 749, 68 (2012). doi:10.1088/0004-637X/749/1/68 13. S. E. Woosley, J. S. Bloom, The Supernova–Gamma-Ray Burst Connection. Annu. Rev. Astron. Astrophys. 44, 507–556 (2006). doi:10.1146/annurev.astro.43.072103.150558 14. D. Xu et al., arXiv:1305.6832 (2013). 15. M. Matsuoka et al., Publ. Astron. Soc. Jpn. 61, 999 (2009). 16. G. Tagliaferri, M. Goad, G. Chincarini, A. Moretti, S. Campana, D. N. Burrows, M. Perri, S. D. Barthelmy, N. Gehrels, H. Krimm, T. Sakamoto, P. Kumar, P. I. Mészáros, S. Kobayashi, B. Zhang, L. Angelini, P. Banat, A. P. Beardmore, M. Capalbi, S. Covino, G. Cusumano, P. Giommi, O. Godet, J. E. Hill, J. A. Kennea, V. Mangano, D. C. Morris, J. A. Nousek, P. T. O’Brien, J. P. Osborne, C. Pagani, K. L. Page, P. Romano, L. Stella, A. Wells, An unexpectedly rapid decline in the X-ray afterglow emission of long gammaray bursts. Nature 436, 985–988 (2005). doi:10.1038/nature03934 Medline 17. J. A. Nousek, C. Kouveliotou, D. Grupe, K. L. Page, J. Granot, E. RamirezRuiz, S. K. Patel, D. N. Burrows, V. Mangano, S. Barthelmy, A. P. Beardmore, S. Campana, M. Capalbi, G. Chincarini, G. Cusumano, A. D. Falcone, N. Gehrels, P. Giommi, M. R. Goad, O. Godet, C. P. Hurkett, J. A. Kennea, A. Moretti, P. T. O’Brien, J. P. Osborne, P. Romano, G. Tagliaferri, A. A. Wells, Evidence for a Canonical Gamma‐Ray Burst Afterglow Light Curve in the Swift XRT Data. Astrophys. J. 642, 389–400 (2006). doi:10.1086/500724 18. P. Mészáros, Gamma-ray bursts. Rep. Prog. Phys. 69, 2259–2321 (2006). doi:10.1088/0034-4885/69/8/R01 19. G. Ghisellini, M. Nardini, G. Ghirlanda, A. Celotti, A unifying view of gamma-ray burst afterglows. Mon. Not. R. Astron. Soc. 393, 253–271 (2009). doi:10.1111/j.1365-2966.2008.14214.x 20. A. Panaitescu, W. T. Vestrand, Optical afterglows of gamma-ray bursts: peaks, plateaus and possibilities. Mon. Not. R. Astron. Soc. 414, 3537–3546 (2011). doi:10.1111/j.1365-2966.2011.18653.x 21. R. Sari, T. Piran, J. P. Halpern, Jets in Gamma-Ray Bursts. Astrophys. J. 519, L17–L20 (1999). doi:10.1086/312109 22. H. van Eerten, W. Zhang, A. MacFadyen, OFF-AXIS GAMMA-RAY BURST AFTERGLOW MODELING BASED ON A TWO-DIMENSIONAL AXISYMMETRIC HYDRODYNAMICS SIMULATION. Astrophys. J. 722, 235–247 (2010). doi:10.1088/0004-637X/722/1/235 23. H. J. van Eerten, A. I. MacFadyen, OBSERVATIONAL IMPLICATIONS OF GAMMA-RAY BURST AFTERGLOW JET SIMULATIONS AND NUMERICAL LIGHT CURVE CALCULATIONS. Astrophys. J. 751, 155 (2012). doi:10.1088/0004-637X/751/2/155 24. L. Nava, L. Sironi, G. Ghisellini, A. Celotti, G. Ghirlanda, Afterglow emission in gamma-ray bursts - I. Pair-enriched ambient medium and radiative blast waves. Mon. Not. R. Astron. Soc. 433, 2107–2121 (2013). doi:10.1093/mnras/stt872 25. H. van Eerten, A. van der Horst, A. MacFadyen, GAMMA-RAY BURST AFTERGLOW BROADBAND FITTING BASED DIRECTLY ON HYDRODYNAMICS SIMULATIONS. Astrophys. J. 749, 44 (2012). doi:10.1088/0004-637X/749/1/44 26. R. Liu, X. Wang, X. Wu, arXiv:1306.5207 (2013). 27. P.-H. T. Tam, Q.-W. Tang, S.-J. Hou, R.-Y. Liu, X.-Y. Wang, DISCOVERY OF AN EXTRA HARD SPECTRAL COMPONENT IN THE HIGHENERGY AFTERGLOW EMISSION OF GRB 130427A. Astrophys. J. 771, L13 (2013). doi:10.1088/2041-8205/771/1/L13 28. L. Amati, F. Frontera, M. Tavani, J. J. M. in ’t Zand, A. Antonelli, E. Costa, M. Feroci, C. Guidorzi, J. Heise, N. Masetti, E. Montanari, L. Nicastro, E. Palazzi, E. Pian, L. Piro, P. Soffitta, Intrinsic spectra and energetics of BeppoSAX Gamma–Ray Bursts with known redshifts. Astron. Astrophys. 390, 81–89 (2002). doi:10.1051/0004-6361:20020722 29. D. Yonetoku, T. Murakami, T. Nakamura, R. Yamazaki, A. K. Inoue, K. Ioka, Gamma‐Ray Burst Formation Rate Inferred from the Spectral Peak Energy– Peak Luminosity Relation. Astrophys. J. 609, 935–951 (2004). doi:10.1086/421285 30. G. Ghirlanda, G. Ghisellini, D. Lazzati, The Collimation‐corrected Gamma‐Ray Burst Energies Correlate with the Peak Energy of Their ν F ν Spectrum. Astrophys. J. 616, 331–338 (2004). doi:10.1086/424913 31. T. Laskar et al., arXiv:1305.2453 (2013). 32. A. von Kienlin, GRB Coordinates Network 14473, 1 (2013). 33. D. A. Perley, GRB Coordinates Network 14494, 1 (2013). 34. P. Romano, S. Campana, G. Chincarini, J. Cummings, G. Cusumano, S. T. Holland, V. Mangano, T. Mineo, K. L. Page, V. Pal’shin, E. Rol, T. Sakamoto, B. Zhang, R. Aptekar, S. Barbier, S. Barthelmy, A. P. Beardmore, P. Boyd, D. N. Burrows, M. Capalbi, E. E. Fenimore, D. Frederiks, N. Gehrels, P. Giommi, M. R. Goad, O. Godet, S. Golenetskii, D. Guetta, J. A. Kennea, V. La Parola, D. Malesani, F. Marshall, A. Moretti, J. A. Nousek, P. T. O’Brien, J. P. Osborne, M. Perri, G. Tagliaferri, Panchromatic study of GRB 060124: from precursor to afterglow. Astron. Astrophys. 456, 917–927 (2006). doi:10.1051/0004-6361:20065071 35. P. W. Roming et al., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, K. A. Flanagan, O. H. Siegmund, eds. (2000), vol. 4140 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pp. 76-86. 36. P. W. A. Roming et al., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, K. A. Flanagan, O. H. W. Siegmund, eds. (2004), vol. 5165 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pp. 262-276. 37. S. R. Oates, M. J. Page, P. Schady, M. de Pasquale, T. S. Koch, A. A. Breeveld, P. J. Brown, M. M. Chester, S. T. Holland, E. A. Hoversten, N. P. M. Kuin, F. E. Marshall, P. W. A. Roming, M. Still, D. E. Vanden Berk, S. Zane, J. A. Nousek, A statistical study of gamma-ray burst afterglows measured by the Swift Ultraviolet Optical Telescope. Mon. Not. R. Astron. Soc. 395, 490–503 (2009). doi:10.1111/j.1365-2966.2009.14544.x 38. M. J. Page et al., arXiv:1309.4816 (2013). 39. A. A. Breeveld et al., Mon. Not. R. Astron. Soc. 406, 1687 (2010). 40. A. A. Breeveld et al., American Institute of Physics Conference Series, J. E. McEnery, J. L. Racusin, N. Gehrels, eds. (2011), vol. 1358 of American Institute of Physics Conference Series, pp. 373-376. 41. T. S. Poole, A. A. Breeveld, M. J. Page, W. Landsman, S. T. Holland, P. Roming, N. P. M. Kuin, P. J. Brown, C. Gronwall, S. Hunsberger, S. Koch, K. O. Mason, P. Schady, D. V. Berk, A. J. Blustin, P. Boyd, P. Broos, M. Carter, M. M. Chester, A. Cucchiara, B. Hancock, H. Huckle, S. Immler, M. Ivanushkina, T. Kennedy, F. Marshall, A. Morgan, S. B. Pandey, M. De Pasquale, P. J. Smith, M. Still, Photometric calibration of the Swift ultraviolet/optical telescope. Mon. Not. R. Astron. Soc. 383, 627–645 (2008). doi:10.1111/j.1365-2966.2007.12563.x 42. T. Mihara et al., Publ. Astron. Soc. Jpn. 63, 623 (2011). 43. M. Sugizaki et al., Publ. Astron. Soc. Jpn. 63, 635 (2011). 44. N. R. Butler, D. Kocevski, X‐Ray Hardness Evolution in GRB Afterglows and Flares: Late‐Time GRB Activity without N H Variations. Astrophys. J. 663, 407–419 (2007). doi:10.1086/518023 45. P. A. Evans, A. P. Beardmore, K. L. Page, J. P. Osborne, P. T. O’Brien, R. Willingale, R. L. C. Starling, D. N. Burrows, O. Godet, L. Vetere, J. Racusin, M. R. Goad, K. Wiersema, L. Angelini, M. Capalbi, G. Chincarini, N. Gehrels, J. A. Kennea, R. Margutti, D. C. Morris, C. J. Mountford, C. Pagani, M. Perri, P. Romano, N. Tanvir, Methods and results of an automatic analysis of a complete sample of Swift -XRT observations of GRBs. Mon. Not. R. Astron. Soc. 397, 1177–1201 (2009). doi:10.1111/j.1365-2966.2009.14913.x 46. R. Margutti, E. Zaninoni, M. G. Bernardini, G. Chincarini, F. Pasotti, C. Guidorzi, L. Angelini, D. N. Burrows, M. Capalbi, P. A. Evans, N. Gehrels, J. Kennea, V. Mangano, A. Moretti, J. Nousek, J. P. Osborne, K. L. Page, M. / http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 3/ 10.1126/science.1242279
  • 4. Perri, J. Racusin, P. Romano, B. Sbarufatti, S. Stafford, M. Stamatikos, The prompt-afterglow connection in gamma-ray bursts: a comprehensive statistical analysis of Swift X-ray light curves. Mon. Not. R. Astron. Soc. 428, 729–742 (2013). doi:10.1093/mnras/sts066 47. C. Guidorzi, A. Monfardini, A. Gomboc, C. J. Mottram, C. G. Mundell, I. A. Steele, D. Carter, M. F. Bode, R. J. Smith, S. N. Fraser, M. J. Burgdorf, A. M. Newsam, The Automatic Real‐Time Gamma‐Ray Burst Pipeline of the 2 m Liverpool Telescope. Publ. Astron. Soc. Pac. 118, 288–296 (2006). doi:10.1086/499289 48. Y. Saito et al., Death of Massive Stars: Supernovae and Gamma-Ray Bursts (2012), vol. 279 of IAU Symposium, pp. 387-388. 49. R. Sari, Hydrodynamics of Gamma-Ray Burst Afterglow. Astrophys. J. 489, L37–L40 (1997). doi:10.1086/310957 50. G. Ghirlanda, L. Nava, G. Ghisellini, A. Celotti, D. Burlon, S. Covino, A. Melandri, Gamma-ray bursts in the comoving frame. Mon. Not. R. Astron. Soc. 420, 483–494 (2012). doi:10.1111/j.1365-2966.2011.20053.x 51. S. Kobayashi, B. Zhang, Early Optical Afterglows from Wind‐Type Gamma‐Ray Bursts. Astrophys. J. 597, 455–458 (2003). doi:10.1086/378283 52. D. A. Perley et al., arXiv:1307.4401 (2013). 53. A. Panaitescu, P. Kumar, Fundamental Physical Parameters of Collimated Gamma-Ray Burst Afterglows. Astrophys. J. 560, L49–L53 (2001). doi:10.1086/324061 54. P. Kumar, R. Barniol Duran, External forward shock origin of high-energy emission for three gamma-ray bursts detected by Fermi. Mon. Not. R. Astron. Soc. 409, 226–236 (2010). doi:10.1111/j.1365-2966.2010.17274.x 55. G. Ghisellini, G. Ghirlanda, L. Nava, A. Celotti, GeV emission from gammaray bursts: a radiative fireball? Mon. Not. R. Astron. Soc. 403, 926–937 (2010). doi:10.1111/j.1365-2966.2009.16171.x 56. E. M. Rossi, D. Lazzati, J. D. Salmonson, G. Ghisellini, The polarization of afterglow emission reveals γ-ray bursts jet structure. Mon. Not. R. Astron. Soc. 354, 86–100 (2004). doi:10.1111/j.1365-2966.2004.08165.x 57. T. Piran, E. Nakar, ON THE EXTERNAL SHOCK SYNCHROTRON MODEL FOR GAMMA-RAY BURSTS’ GeV EMISSION. Astrophys. J. 718, L63–L67 (2010). doi:10.1088/2041-8205/718/2/L63 58. H. J. van Eerten, Z. Meliani, R. A. M. J. Wijers, R. Keppens, Mon. Not. R. Astron. Soc. 410, 2016 (2011). 59. A. Panaitescu, Nuovo Cimento B Serie 121, 1099 (2006). 60. L. Nava, R. Salvaterra, G. Ghirlanda, G. Ghisellini, S. Campana, S. Covino, G. Cusumano, P. D’Avanzo, V. D’Elia, D. Fugazza, A. Melandri, B. Sbarufatti, S. D. Vergani, G. Tagliaferri, A complete sample of bright Swift long gamma-ray bursts: testing the spectral-energy correlations. Mon. Not. R. Astron. Soc. 421, 1256–1264 (2012). doi:10.1111/j.1365-2966.2011.20394.x 61. D. J. Schlegel, D. P. Finkbeiner, M. Davis, Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds. Astrophys. J. 500, 525–553 (1998). doi:10.1086/305772 62. M. Fukugita, T. Ichikawa, J. E. Gunn, M. Doi, K. Shimasaku, D. P. Schneider, The Sloan Digital Sky Survey Photometric System. Astron. J. 111, 1748 (1996). doi:10.1086/117915 Acknowledgments: This work has been supported by ASI grant I/004/11/0 and by PRIN-MIUR grant 2009ERC3HT. Development of the Boxfit code (25) was supported in part by NASA through grant NNX10AF62G issued through the Astrophysics Theory Program and by the NSF through grant AST1009863. This research was partially supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), Grant-in-Aid No. 14GS0211, 19047001, 19047003, and 24740186. The Liverpool Telescope is operated by Liverpool John Moores University at the Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. The Faulkes Telescopes, now owned by Las Cumbres Observatory, are operated with support from the Dill Faulkes Educational Trust. Swift support at the University of Leicester and the Mullard Space Science Laboratory is funded by the UK Space Agency. C.G. Mundell acknowledges financial support from the Royal Society, the Wolfson Foundation and the Science and Technology Facilities Council. Andreja Gomboc acknowledges funding from the Slovenian Research Agency and from the Centre of Excellence for Space Sciences and Technologies SPACE-SI, an operation partly financed by the European Union, European Regional Development Fund and Republic of Slovenia. DARK is funded by the DNRF. Supplementary Materials www.sciencemag.org/content/full/science.1242279/DC1 Materials and Methods Supplementary Text Figs. S1 to S7 Tables S1 to S10 References (32–62) 21 June 2013; accepted 16 October 2013 Published online 21 November 2013 10.1126/science.1242279 / http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 4/ 10.1126/science.1242279
  • 5. Fig. 1. Details of the Swift BAT light curve in the 15-350 keV band. Top panel: the BAT light curve with a binning time of 64 ms. Inset: the BAT light curve up to 300 s, plotted on a log intensity scale, showing a fast rise/exponential decay feature starting at t ∼ 120 s. Bottom panel: the photon index values of a power-law model fit to the BAT spectrum in the 15 to 150 keV energy range. / http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 5/ 10.1126/science.1242279
  • 6. Fig. 2. Light curves for GRB 130427A in different wavebands. Swift UV and visible filters (w2, m2, w1, u, b, v); B, V, r′, and i′ filters correspond to Faulkes Telescope North; r′, and i′ to the Liverpool Telescope; g′, r′, and i′ to the MITSuME telescopes (see (7) for further details). The scaling factors for the flux density in different filters is shown in the inset; the scaling factor for the X-ray light curve (flux integrated in the 0.3-10 keV) (7) is also shown. The X-ray light curve also includes two MAXI data points at t = 3257 s and t = 8821 s (empty squares). The fit performed over all the light curves required 24 free parameters (curve normalizations, host galaxy optical flux in each band, three temporal slopes and two breaks). Because of short-term low-level variability superposed to the long-term behavior and possibly residual inhomogeneity of optical data taken from different telescopes, we added in quadrature a 9% 2 systematic error in the optical and 5% in the X-rays. Final fit yielded χ = 543.02 / 565 d.o.f. A contribution from the host galaxy has been taken into account in the optical bands by fitting a constant flux of ∼ 0.01 mJy for the reddest bands, corresponding to rHG = 21.26 mag as tabulated in the SDSS catalog. As a test of consistency, we performed the fit using a broken power law for the B, g′, r′ and i′ filters individually. Uncertainties are larger, but we do find that the values of tbreak as well as the decay indices before and after the break time are still consistent, within the errors, with the values obtained by the overall fit. / http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 6/ 10.1126/science.1242279
  • 7. Fig. 3. Radio (from (31). All measurements are taken at 6.8 GHz but the later one, at 7.3 GHz), optical, X-ray (Fig. 2) and LAT γ-ray [from (2)] light curves of GRB 130427A and corresponding model predictions adopting a description in terms of the van Eerten et al. model (25). To properly fit the radio data, only a fraction of the electrons must be accelerated after ∼70 ks (see Table S10 and discussion in (7)). / http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 7/ 10.1126/science.1242279
  • 8. Fig. 4. Spectral Energy Distributions (SEDs) of GRB 130427A taken at different times, from the optical to the GeV bands [LAT data from (2)]. For SED 1 and SED 2 the model is a Band function, for SED 3 the model is a Band + power law. Short dashed lines: phenomenological fit to the BAT + LAT data. Long dashed lines: results of the van Eerten et al. model (25), with parameters discussed in (7). The different SEDs refer to the following time intervals: 1: [0-6.5 s]; 2: [7.5-8.5 s]; 3: [8.5-196 s]; 4: [352-403 s]; 5: [406-722 s]; 6: [722-1830 s]; 7: around 3 ks; 8: around 23 ks; 9: around 59 ks; 10: around 220 ks (host galaxy contribution has been subtracted in this case). Note that from the optical SED analysis the intrinsic extinction is negligible. / http://www.sciencemag.org/content/early/recent / 21 November 2013 / Page 8/ 10.1126/science.1242279