SlideShare ist ein Scribd-Unternehmen logo
1 von 17
Downloaden Sie, um offline zu lesen
Mon. Not. R. Astron. Soc. 000, 1–17 (XXXX)       Printed 22 August 2012      (MN L TEX style file v2.2)
                                                                                                                               A




                                              A Weak-Lensing Mass Reconstruction of the Large-Scale Filament
                                              Feeding the Massive Galaxy Cluster MACSJ0717.5+3745
arXiv:1208.4323v1 [astro-ph.CO] 21 Aug 2012




                                              Mathilde Jauzac,1,2⋆ Eric Jullo,1,3 Jean-Paul Kneib,1 Harald Ebeling,4 Alexie Leauthaud,5
                                              Cheng-Jiun Ma,4 Marceau Limousin,1,6 Richard Massey,7 Johan Richard8
                                              1 Laboratoire   d’Astrophysique de Marseille - LAM, Universit´ d’Aix-Marseille & CNRS, UMR7326, 38 rue F. Joliot-Curie, 13388 Marseille Cedex 13, France
                                                                                                           e
                                              2 Astrophysics   and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
                                              3 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
                                              4 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, Hawaii 96822, USA
                                              5 Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa, Japan 277-8583

                                              (Kavli IPMU, WPI)
                                              6 Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark
                                              7 Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE, U.K.
                                              8
                                                CRAL, Observatoire de Lyon, Universit´ Lyon 1, 9 Avenue Ch. Andr´ , 69561 Saint Genis Laval Cedex, France
                                                                                        e                           e



                                              Accepted 2012 August 20. Received 2012 August 15; in original form: 2012 April 27



                                                                                     ABSTRACT
                                                                                     We report the first weak-lensing detection of a large-scale filament funneling matter onto the
                                                                                     core of the massive galaxy cluster MACSJ0717.5+3745.
                                                                                          Our analysis is based on a mosaic of 18 multi-passband images obtained with the Ad-
                                                                                     vanced Camera for Surveys aboard the Hubble Space Telescope, covering an area of ∼ 10×20
                                                                                     arcmin2 . We use a weak-lensing pipeline developed for the COSMOS survey, modified for the
                                                                                     analysis of galaxy clusters, to produce a weak-lensing catalogue. A mass map is then com-
                                                                                     puted by applying a weak-gravitational-lensing multi-scale reconstruction technique designed
                                                                                     to describe irregular mass distributions such as the one investigated here. We test the result-
                                                                                     ing mass map by comparing the mass distribution inferred for the cluster core with the one
                                                                                     derived from strong-lensing constraints and find excellent agreement.
                                                                                          Our analysis detects the MACSJ0717.5+3745 filament within the 3 sigma detection con-
                                                                                     tour of the lensing mass reconstruction, and underlines the importance of filaments for the-
                                                                                     oretical and numerical models of the mass distribution in the Cosmic Web. We measure the
                                                                                     filament’s projected length as ∼ 4.5 h−1 Mpc, and its mean density as (2.92±0.66)×108 h74 M⊙
                                                                                                                           74
                                                                                     kpc−2 . Combined with the redshift distribution of galaxies obtained after an extensive spectro-
                                                                                     scopic follow-up in the area, we can rule out any projection effect resulting from the chance
                                                                                     alignment on the sky of unrelated galaxy group-scale structures. Assuming plausible con-
                                                                                     straints concerning the structure’s geometry based on its galaxy velocity field, we construct a
                                                                                     3D model of the large-scale filament. Within this framework, we derive the three-dimensional
                                                                                     length of the filament to be 18 h−1 Mpc. The filament’s deprojected density in terms of the
                                                                                                                        74
                                                                                     critical density of the Universe is measured as (206 ± 46) × ρcrit , a value that lies at the very
                                                                                     high end of the range predicted by numerical simulations. Finally, we study the distribution
                                                                                     of stellar mass in the field of MACSJ0717.5+3749 and, adopting a mean mass-to-light ratio
                                                                                      M∗ /LK of 0.73 ± 0.22 and assuming a Chabrier Initial-Mass Function, measure a stellar
                                                                                     mass fraction along the filament of (0.9 ± 0.2)%, consistent with previous measurements in
                                                                                     the vicinity of massive clusters.
                                                                                     Key words: cosmology: observations - gravitational lensing - large-scale structure of Uni-
                                                                                     verse



                                                                                                                            1 INTRODUCTION
                                                                                                                            In a Universe dominated by Cold Dark Matter (CDM), such as
                                              ⋆   E-mail: mathilde.jauzac@gmail.com (MJ)                                    the one parameterised by the ΛCDM concordance cosmology, hi-
2     M. Jauzac, E. Jullo, J.-P. Kneib, H. Ebeling, A. Leauthaud, C. J. Ma, M. Limousin, R. Massey, J. Richard
erarchical structure formation causes massive galaxy clusters to
form through a series of successive mergers of smaller clusters
and groups of galaxies, as well as through continuous accretion
of surrounding matter. N-body simulations of the dark-matter dis-
tribution on very large scales (Bond et al. 1996; Yess & Shandarin
1996; Arag´ n-Calvo et al. 2007; Hahn et al. 2007) predict that
              o
these processes of merging and accretion occur along preferred di-
rections, i.e., highly anisotropically. The result is the “cosmic web”
(Bond et al. 1996), a spatially highly correlated structure of inter-
connected filaments and vertices marked by massive galaxy clus-
ters. Abundant observational support for this picture has been pro-
vided by large-scale galaxy redshift surveys (e.g., Geller & Huchra
1989; York et al. 2000; Colless et al. 2001) showing voids sur-
rounded and connected by filaments and sheets of galaxies.
      A variety of methods have been developed to detect filaments
in surveys, among them a “friends of friends” algorithm (FOF,
Huchra & Geller 1982) combined with “Shapefinders” statistics
(Sheth & Jain 2003); the “Skeleton” algorithm (Novikov et al.
2006; Sousbie et al. 2006); a two-dimensional technique developed
by Moody et al. (1983); and the Smoothed Hessian Major Axis Fil-
ament Finder (SHMAFF, Bond et al. 2010).
                                                                         Figure 1. Area of our spectroscopic survey of MACSJ0717.5+3745. Out-
      Although ubiquitous in large-scale galaxy surveys, filaments
                                                                         lined in red is the region covered by our Keck/DEIMOS masks; outlined
have proven hard to characterise physically, owing to their low          in blue is the area observed with HST/ACS. Small circles correspond to
density and the fact that the best observational candidates often        objects for which redshifts were obtained; large filled circles mark cluster
turn out to be not primordial in nature but the result of recent         members. The black contours show the projected galaxy density (see Ma et
cluster mergers. Specifically, attempts to study the warm-hot in-         al. 2008).
tergalactic medium (WHIM, Cen & Ostriker 1999), resulting from
the expected gravitational heating of the intergalactic medium in
filaments, remain largely inconclusive because it is hard to ascer-       gaps between CCD chips. Indeed, Gavazzi et al. (2004) showed
tain for filaments near cluster whether spectral X-ray features orig-     the detection to have been spurious by means of a second study
inate from the filament or from past or ongoing clusters merg-            of MS0302+17 using the CFHT12K camera. A weak gravitational
ers (Kaastra et al. 2006; Rasmussen 2007; Galeazzi et al. 2009;          lensing analysis with MPG/ESO Wide Field Imager conducted by
Williams et al. 2010). Some detections appear robust as they have        Gray et al. (2002) claimed the detection of a filament in the triple
been repeatedly confirmed (Fang et al. 2002, 2007; Williams et al.        cluster A901/902. The candidate filament appeared to connect two
2007) but are based on just one X-ray line. An alternative observa-      of the clusters and was detected in both the galaxy distribution and
tional method is based on a search for filamentary overdensities of       in the weak-lensing mass map. However, this detection too was
galaxies relative to the background (Pimbblet & Drinkwater 2004;         of low significance and coincided partly with a gap between two
Ebeling et al. 2004). When conducted in 3D, i.e., including spec-        chips of the camera. As in the case of MS0302+17, a re-analysis of
troscopic galaxy redshifts, this method is well suited to detecting      the A901/A902 complex using high-quality HST/ACS images by
filament candidates. It does, however, not allow the determination        Heymans et al. (2008) failed to detect the filament and led the au-
of key physical properties unless it is supplemented by follow-up        thors to conclude that the earlier detection was caused by residual
studies targeting the presumed WHIM and dark matter which are            PSF systematics and limitation of the KS93 mass reconstruction
expected to constitute the vast majority of the mass of large-scale      used in the study by Gray et al. (2002). A further detection of a
filaments. By contrast, weak gravitational lensing offers the tan-         filament candidate was reported by Dietrich et al. (2005) based on
talising possibility of detecting directly the total mass content of     a weak gravitational lensing analysis of the close double cluster
filaments (Mead et al. 2010), since the weak-lensing signal arises        A222/A223. However, as in other similar cases, the proximity of
from luminous and dark matter alike, regardless of its dynamical         the two clusters connected by the putative filament raises the pos-
state.                                                                   sibility of the latter being a merger remnant rather than primordial
      Previous weak gravitational lensing studies of binary clusters     in nature.
found tentative evidence of filaments, but did not result in clear de-          In this paper we describe the first weak gravitational analy-
tections. One of the first efforts was made by Clowe et al. (1998)         sis of the very massive cluster MACSJ0717.5+3745 (z = 0.55;
who reported the detection of a filament apparently extending from        Edge et al. 2003; Ebeling et al. 2004, 2007; Ma et al. 2008, 2009).
the distant cluster RX J1716+67 (z = 0.81), using images obtained        Optical and X-ray analyses of the system (Ebeling et al. 2004;
with the Keck 10m telescope and University of Hawaii (UH) 2.2m           Ma et al. 2008, 2009) find compelling evidence of a filamentary
telescope. This filamentary structure would relate two distinct sub       structure extending toward the South-East of the cluster core. Us-
clusters detected on the mass and light maps. The detection was          ing weak-lensing data to reconstruct the mass distribution in and
not confirmed though. Almost at the same time Kaiser et al. (1998)        around MACSJ0717.5+3745, we directly detect the reported fila-
conducted a weak lensing study of the supercluster MS0302+17             mentary structure in the field of MACSJ0717.5+3745.
with the UH8K CCD camera on the Canada France Hawaii Tele-                     The paper is organized as follows. After an overview of
scope (CFHT). Their claimed detection of a filament in the field           the observational data in Section 2, we discuss the gravitational
was, however, questioned on the grounds that the putative fila-           lensing data in hand in Section 3. The modeling of the mass
ment overlapped with both a foreground structure as well as with         using a multi-scale approach is described in Section 4. Results are
The Large-Scale Filament Feeding MACSJ0717.5+3745                                                  3

Table 1. Overview of the HST/ACS observations of MACSJ0717.5+3745. *: Cluster core; observed through F555W, rather than F606W filter.


                                                            F606W                               F814W
              R.A. (J2000)    Dec (J2000)        Date         Exposure Time (s)      Date        Exposure Time (s)           Programme ID

               07 17 32.93    +37 45 05.4     2004-04-02*           4470*         2004-04-02               4560                    9722
               07 17 31.81    +37 49 20.6     2005-02-08            1980          2005-02-08               4020                   10420
               07 17 20.38    +37 47 07.5     2005-01-27            1980          2005-01-27               4020                   10420
               07 17 08.95    +37 44 54.3     2005-01-27            1980          2005-01-27               4020                   10420
               07 17 43.23    +37 47 03.1     2005-01-30            1980          2005-01-30               4020                   10420
               07 17 20.18    +37 42 38.8     2005-02-01            1980          2005-02-01               4020                   10420
               07 17 54.26    +37 44 49.3     2005-01-27            1980          2005-01-27               4020                   10420
               07 17 42.82    +37 42 36.3     2005-01-24            1980          2005-01-25               4020                   10420
               07 17 31.39    +37 40 23.3     2005-02-01            1980          2005-02-01               4020                   10420
               07 18 05.46    +37 42 33.6     2005-02-04            1980          2005-02-04               4020                   10420
               07 17 54.02    +37 40 20.6     2005-02-04            1980          2005-02-04               4020                   10420
               07 17 42.79    +37 38 05.7     2005-02-05            1980          2005-02-05               4020                   10420
               07 18 16.65    +37 40 17.7     2005-02-05            1980          2005-02-05               4020                   10420
               07 18 05.22    +37 38 04.9     2005-02-05            1980          2005-02-05               4020                   10420
               07 17 53.79    +37 35 52.0     2005-02-05            1980          2005-02-05               4020                   10420
               07 18 27.84    +37 38 01.9     2005-02-08            1980          2005-02-08               4020                   10420
               07 18 16.40    +37 35 49.1     2005-02-08            1980          2005-02-08               4020                   10420
               07 18 04.97    +37 33 36.2     2005-02-09            1980          2005-02-09               4020                   10420




discussed in Section 5, and we present our conclusions in Section 6.        Table 2. Overview         of       groundbased       imaging    observations        of
                                                                            MACSJ0717.5+3745.
All our results use the ΛCDM concordance cosmology with
ΩM = 0.3, ΩΛ = 0.7, and a Hubble constant H0 = 74 km s−1 Mpc−1 ,
hence 1” corresponds to 6.065 kpc at the redshift of the cluster.                                                 Subaru                         CFHT
Magnitudes are quoted in the AB system.                                                          B         V      RC       IC      z’      u*     J        KS

                                                                              Exposure (hr)     0.4     0.6       0.8      0.4    0.5      1.9   1.8    1.7
                                                                              Seeing (arcsec)   0.8     0.7       1.0      0.8    0.6      1.0   0.9    0.7
2 OBSERVATIONS
The MAssive Cluster Survey (MACS, Ebeling et al. 2001) was the
first cluster survey to search exclusively for very massive clusters
at moderate to high redshift. Covering over 20,000 deg2 and us-
ing dedicated optical follow-up observations to identify faint X-
ray sources detected in the ROSAT All-Sky Survey, MACS com-
piled a sample of over 120 very X-ray luminous clusters at z > 0.3,         February 9, 2005, with the ACS aboard HST (GO-10420, PI Ebel-
thereby more than tripling the number of such systems previously            ing). The 3×6 mosaic consists of images in the F606W and F814W
known. The high-redshift MACS subsample (Ebeling et al. 2007)               filters, observed for roughly 2.0 ks and 4.0 ks respectively (1 & 2
comprises 12 clusters a z > 0.5. MACSJ0717.5+3745 is one of                 HST orbits). Only 17 of the 18 tiles of the mosaic were covered
them. All 12 were observed with the ACIS-I imaging spectrograph             though, since the core of the cluster had been observed already (see
onboard the Chandra X-ray Observatory. Moderately deep optical              Tab. 1 for more details).
images covering 30 × 27 arcmin2 were obtained in five passbands                    Charge Transfer Inefficiency (CTI), due to radiation damage
(B, V, R, I, z′ ) with the SuprimeCam wide-field imager on the               of the ACS CCDs above the Earth’s atmosphere, creates spurious
Subaru 8.2m Telescope, and supplemented with u-band imaging                 trails behind objects in HST/ACS images. Since CTI affects galaxy
obtained with MegaCam on the Canada France Hawaii Telescope                 photometry, astrometry, and shape measurements, correcting the ef-
(CFHT). Finally, the cores of all clusters in this MACS subsam-             fect is critical for weak-lensing studies. We apply the algorithm
ple were observed with the Advanced Camera for Surveys (ACS)                proposed by Massey et al. (2010) which operates on the raw data
onboard HST in two bands, F555W & F814W, for 4.5ks in both                  and returns individual electrons to the pixels from which they were
bands, as part of programmes GO-09722 and GO-11560 (PI Ebel-                erroneously dragged during readout. Image registration, geometric
ing).                                                                       distortion corrections, sky subtraction, cosmic ray rejection, and the
                                                                            final combination of the dithered images are then performed using
                                                                            the standard MULTIDRIZZLE routines (Koekemoer et al. 2002).
                                                                            MULTIDRIZZLE parameters are set to values optimised for pre-
2.1 HST/ACS Wide-Field Imaging
                                                                            cise galaxy shape measurement (Rhodes et al. 2007), and output
A mosaic of images of MACSJ0717.5+3745 and the filamentary                   images created with a 0.03” pixel grid, compared to the native ACS
structure to the South-East was obtained between January 24 and             pixel scale of 0.05”.
4      M. Jauzac, E. Jullo, J.-P. Kneib, H. Ebeling, A. Leauthaud, C. J. Ma, M. Limousin, R. Massey, J. Richard

                     4
                               BRI selection                                                                                             BRI Redshift Distribution
                               All galaxies                                                                                                   before BRI selection
                               Foreground galaxies (zphot)                                                250                                  after BRI selection
                               Cluster galaxies (zphot)
                               Foreground & Cluster galaxies (zspec)


                     3                                                                                    200




                                                                                     Number of galaxies
       MAGB −MAGRc




                                                                                                          150
                     2

                                                                                                          100



                     1                                                                                    50



                                                                                                           0
                         0.0                     0.5           1.0        1.5                                   0.2   0.4   0.6    0.8        1.0       1.2          1.4
                                                 MAGRc − MAGIc                                                                    z

Figure 2. Colour-colour diagram (B−R vs R−I) for objects within the             Figure 3. Redshift distribution of all galaxies with B, Rc , and Ic photometry
HST/ACS mosaic of MACSJ0717.5+3745. Grey dots represent all objects             from Subaru/SuprimeCam observations that have photometric or spectro-
in the study area. Unlensed galaxies diluting the shear signal are marked by    scopic redshifts (black histogram). The cyan histogram shows the redshift
different colours: galaxies spectroscopically confirmed as cluster members        distribution of galaxies classified as background objects using the BRI cri-
or foreground galaxies (green); galaxies classified as foreground objects be-    terion illustrated in Fig. 2.
cause of their photometric redshifts (red); and galaxies classified as cluster
members via photometric redshifts (yellow). The solid black lines delin-
eate the BRI colour-cut defined for this work to mitigate shear dilution by
unlensed galaxies.                                                              2.3 Spectroscopic and Photometric Redshifts
                                                                                Spectroscopic observations of MACSJ0717.5+3745 (including the
                                                                                full length of the filament) were conducted between 2000 and 2008,
                                                                                mainly with the DEIMOS spectrograph on the Keck-II 10m tele-
                                                                                scope on Mauna Kea, supplemented by observations of the cluster
2.2 Groundbased Imaging                                                         core region performed with the LRIS and GMOS spectrographs on
                                                                                Keck-I and Gemini-North, respectively. The DEIMOS instrument
MACSJ0717.5+3745 was observed in the B, V, Rc , Ic and z′ bands                 setup combined the 600ZD grating with the GC455 order-blocking
with the Suprime-Cam wide-field camera on the Subaru 8.2m tele-                  filter and a central wavelength between 6300 and 7000 Å; the expo-
scope (Miyazaki et al. 2002). These observations are supplemented               sure time per MOS (multi-object spectroscopy) mask was typically
by images in the u* band obtained with the MegaPrime camera on                  3×1800 s. A total of 18 MOS masks were used in our DEIMOS
the CFHT 3.6m telescope, as well as near-infrared imaging in the                observations; spectra of 1752 unique objects were obtained (65 of
J and KS bands obtained with WIRcam on CFHT. Exposure times                     them with LRIS, and 48 with GMOS), yielding 1079 redshifts, 537
and seeing conditions for these observations are listed in Tab. 2               of them of cluster members. Figure 1 shows the area covered by
(see also C.-J. Ma, Ph.D. thesis). All data were reduced using stan-            our spectroscopic survey as well as the loci of the targeted galax-
dard techniques which were, however, adapted to deal with special               ies. The data were reduced with the DEIMOS pipeline developed
characteristics of the Suprime-Cam and MegaPrime data; for more                 by the DEEP2 project.
details see Donovan (2007).                                                           Photometric redshifts for galaxies with mRc <24.0 were com-
      The groundbased imaging data thus obtained are used primar-               puted using the adaptive SED-fitting code Le Phare (Arnouts et al.
ily to compute photometric redshifts which allow the elimination                1999; Ilbert et al. 2006, 2009). In addition to employing χ2 opti-
of cluster members and foreground galaxies that would otherwise                 mization during SED fitting, Le Phare adaptively adjusts the pho-
dilute the shear signal. To this end we use the object catalogue com-           tometric zero points by using galaxies with spectroscopic redshifts
piled by Ma et al. (2008) which we describe briefly in the follow-               as a training set. This approach reduces the fraction of catastrophic
ing. Imaging data from the passbands listed in Tab. 2 were seeing-              errors and also mitigates systematic trends in the differences be-
matched using the technique described in Kartaltepe et al. (2008)               tween spectroscopic and photometric redshifts (Ilbert et al. 2006).
in order to allow a robust estimate of the spectral energy distribu-                  Further details, e.g. concerning the selection of targets for
tion (SED) for all objects within the field of view. The object cata-            spectroscopy or the spectral templates used for the determination
logue was then created using the SExtractor photometry package                  of photometric redshifts, are provided by Ma et al. (2008). The full
(Bertin & Arnouts 1996) in ”dual mode” using the R-band image as                redshift catalogue as well as an analysis of cluster substructure and
the reference detection image. More details are given in Ma et al.              dynamics as revealed by radial velocities will be presented in Ebel-
(2008).                                                                         ing et al. (2012, in preparation).
The Large-Scale Filament Feeding MACSJ0717.5+3745                                                                   5

                  3.0
                          uBV selection                                                                                                           uBV Redshift Distribution
                          All galaxies                                                                                                                  before uBV selection
                          Foregound galaxies (zphot)                                                    250                                               after uBV selection
                          Cluster galaxies (zphot)
                  2.5     Foreground & Cluster galaxies (zspec)



                                                                                                        200
                  2.0




                                                                                   Number of galaxies
     MAGB −MAGV




                                                                                                        150
                  1.5


                                                                                                        100
                  1.0



                  0.5                                                                                   50



                  0.0                                                                                    0
                        −0.5          0.0        0.5     1.0      1.5                                         0.2       0.4       0.6       0.8         1.0        1.2          1.4
                                             MAGu − MAGB                                                                                   z

Figure 4. As Fig. 2 but for the B−V and u−B colours. The solid black        Figure 5. Redshift distribution of all galaxies with u, B, and V photome-
line delineates the uBV colour-cut defined for this work to mitigate shear   try from CFHT/MegaCam and Subaru/SuprimeCam observations that have
dilution by unlensed galaxies.                                              photometric or spectroscopic redshifts (black histogram). The cyan his-
                                                                            togram shows the redshift distribution of galaxies classified as background
                                                                            objects using the uBV criterion illustrated in Fig. 4.
3 WEAK GRAVITATIONAL LENSING ANALYSIS
3.1 The ACS catalogue                                                       all quantities derived from it. Identifying and eliminating as many
Our weak-lensing analysis is based on shape measurements in the             of the contaminating unlensed galaxies is thus critical.
ACS/F814W band. Following a method developed for the anal-                        As a first step, we identify cluster galaxies with the help
ysis of data obtained for the COSMOS survey and described in                of the catalogue of photometric and spectroscopic redshifts com-
Leauthaud et al. (2007) (hereafter L07) we use the SExtractor               piled by Ma et al. (2008) from groundbased observations of the
photometry package (Bertin & Arnouts 1996) to detect sources in             MACSJ0717.5+3745 field; the limiting magnitude of this cata-
our ACS imaging data in a two-step process. Called the “Hot-Cold”           logue is mRc = 24. According to Ma & Ebeling (2010), all galaxies
technique (Rix et al. 2004, L07), it consists of running SExtractor         with spectroscopic redshifts 0.522 < zspec < 0.566 and with photo-
twice: first with a configuration optimised for the detection of only         metric redshifts 0.48 < z phot < 0.61 can be considered to be cluster
the brightest objects (the “cold” step), then a second time with a          galaxies. An additional criterion can be defined using the photomet-
configuration optimised for the detection of the faint objects (the          ric redshifts derived as described in Sect. 2.3. Taking into account
“hot” step) that contain most of the lensing signal. The resulting          the statistical uncertainty of ∆z = 0.021 of the photometric red-
object catalogue is then cleaned by removing spurious or duplicate          shifts, galaxies are defined as cluster members if their photometric
detections using a semi-automatic algorithm that defines polygonal           redshift satisfies the criterion:
masks around stars or saturated pixels.
                                                                                                                    |z phot − zcluster | < σ phot−z ,
     Star-galaxy classification is performed by examining the dis-
tribution of objects in the magnitude (MAG AUTO) vs peak                    with
surface-brightness (MU MAX) plane. This diagram allows us to
separate three classes of objects: galaxies, stars, and any remaining                                         σ phot−z = (1 + zcluster )∆z = 0.036,
spurious detections (i.e., artifacts, hot pixels and residual cosmic        where z phot and zcluster are the photometric redshift of the galaxy
rays). Finally, the drizzling process introduces pattern-dependent          and the spectroscopic redshift of the galaxy cluster respectively.
correlations between neighbouring pixels which artificially reduces          Reflecting the need for a balance between completeness and con-
the noise level of co-added drizzled images. We apply the remedy            tamination, these redshift limits are much more generous than those
used by L07 by simply scaling up the noise level in each pixel by           used in conjunction with spectroscopic redshifts, which set the red-
the same constant FA ≈ 0.316, defined by Casertano et al. (2000).            shift range for cluster membership to 3σ ∼ 0.0122. For more
                                                                            details, see C.-J. Ma (Ph.D. thesis), as well as Ma et al. (2008);
                                                                            Ma & Ebeling (2010).
3.2 Foreground, Cluster & Background Galaxy
                                                                                 In spite of these cuts according to galaxy redshift, the remain-
    Identifications
                                                                            ing ACS galaxy sample is most likely still contaminated by fore-
Since only galaxies behind the cluster are gravitationally lensed, the      ground and cluster galaxies, the primary reason being the large
presence of cluster members and foreground galaxies in our ACS              difference in angular resolution and depth between the ACS and
catalogue dilutes the observed shear and reduces the significance of         Subaru images. The relatively low resolution of the groundbased
6      M. Jauzac, E. Jullo, J.-P. Kneib, H. Ebeling, A. Leauthaud, C. J. Ma, M. Limousin, R. Massey, J. Richard
data causes the Subaru catalogue to be confusion limited and makes         the lens-source system. The convergence κ is defined as the dimen-
matching galaxies between the two catalogues difficult, especially           sionless surface mass density of the lens:
near the cluster core. As a result, we can assign a redshift to only                1 2        Σ(DOL θ)
∼ 15% of the galaxies in the HST/ACS galaxy catalogue.                     κ(θ) =     ∇ ϕ(θ) =          ,                                    (1)
                                                                                    2            Σcrit
      For galaxies without redshifts, we use colour-colour diagrams
(B−R vs R−I, Fig. 2, and B−V vs u−B, Fig. 4) to identify fore-             where θ is the angular position of the background galaxy, ϕ is the
ground and cluster members. Using galaxies with spectroscopic or           deflection potential, Σ(DOL θ) is the physical surface mass density
photometric redshifts from the full photometric Subaru catalogue           of the lens, and Σcrit is the critical surface mass density defined as
with a magnitude limit of mRc = 25, we identify regions marked                                                    c2 DOS
dominated by unlensed galaxies (foreground galaxies and cluster                                      Σcrit =               .
                                                                                                                4πGDOL DLS
members). In the BRI plane we find B−R < 2.6 (R−I) + 0.05;
(R−I) > 1.03; or (B−R) < 0.9 to best isolate unlensed galaxies; in         Here, DOL , DOS , and DLS represent the angular distances from the
the UBV plane the most efficient criterion is B−V < −0.5 (u−B) +             observer to the lens, from the observer to the source, and from the
0.85.                                                                      lens to the source, respectively.
      Figures 3 and 5 show the galaxy redshift distributions before             Considering the shear γ as a complex number, we define
and after the colour-colour cuts (BRI or uBV) are applied. The re-
                                                                                                          γ = γ1 + iγ2 ,
sults of either kind of filtering are similar. The uBV selection is
more efficient at removing cluster members and foreground galax-             where γ1 = |γ| cos 2φ and γ2 = |γ| sin 2φ are the two components of
ies at z 0.6 (20% remain compared to 30% for the BRI criterion)            the shear, γ, defined previously, and φ is the orientation angle. With
but also erroneously eliminates part of the background galaxy pop-         this definition, the shear is defined in terms of the derivatives of the
ulation. Comparing the convergence maps for both colour-colour             deflection potential as :
selection schemes, we find the uBV selection to yield a better de-
                                                                                                               1
tection of structures in the area surrounding the cluster, indicating                                  γ1 =      (ϕ11 − ϕ22 ),
that suppressing contamination by unlensed galaxies is more im-                                                2
portant than a moderate loss of background galaxies from our final                                        γ2 = ϕ12 = ϕ21 ,
catalogue (see Sect. 5 for more details).
      Since the redshift distribution of the background population         with
peaks at 0.61 < z < 0.70 (cyan curve in Fig. 5) we assign, in the                                      ∂2
mass modelling phase, a redshift z = 0.65 to background galaxies                            ϕi j =            ϕ(θ),       i, j ∈ (1, 2).
                                                                                                     ∂θi ∂θ j
without redshift.
                                                                                Following Kaiser & Squires (1993), the complex shear is re-
                                                                           lated to the convergence by:
3.3 Shape measurements of Galaxies & Lensing Cuts
                                                                                                     1
                                                                                          κ(θ) = −          d2 θ′ Re[D(θ − θ′ )γ∗ (θ′ )].
3.3.1 Theoretical Weak Gravitational Lensing Background                                              π
The shear signal contained in the shapes of lensed background              Here D(θ) is the complex kernel, defined as
galaxies is induced by a given foreground mass distribution. In the                                             2    2
                                                                                                               θ1 − θ2 + 2iθ1 θ2
weak-lensing regime this shear is observed as a statistical deforma-                             D(θ) =                          ,
tion of background sources. The observed shape of a source galaxy,                                                   |θ|4
ε, is directly related to the lensing-induced shear, γ, according to       and Re(x) defines the real part of the complex number x. The aster-
the relation :                                                             isk denotes complex conjugation. The last equation shows that the
                                                                           surface mass density κ(θ) of the lens can be reconstructed straight-
                        ε = εintrinsic + εlensing ,
                                                                           forwardly if the shear γ(θ) caused by the deflector can be measured
where εintrinsic is the intrinsic shape of the source galaxy (which        locally as a function of the angular position θ.
would be observed in the absence of gravitational lensing), and
                                         γ
                             εlensing =     .                              3.3.2 The RRG method
                                        1−κ
Here κ is the convergence. In the weak-lensing regime, κ ≪ 1,              To measure the shape of galaxies we use the RRG method
which reduces the relation between the intrinsic and the observed          (Rhodes et al. 2000) and the pipeline developed by L07. Having
shape of a source galaxy to                                                been developed for the analysis of data obtained from space, the
                                                                           RRG method is ideally suited for use with a small, diffraction-
                           ε = εintrinsic + γ.
                                                                           limited PSF as it decreases the noise on the shear estimators by
Assuming galaxies are randomly oriented on the sky, the ellipticity        correcting each moment of the PSF linearly, and only dividing them
of galaxies is an unbiased estimator of the shear, down to a limit         at the very end to compute an ellipticity.
referred to as “intrinsic shape noise”, σintrinsic (for more details see         The ACS PSF is not as stable as one might expect from a
L07; Leauthaud et al. 2010, hereafter L10). Unavoidable errors in          space-based camera. Rhodes et al. (2007) showed that both the size
the galaxy shape measurement are accounted for by adding them in           and the ellipticity pattern of the PSF varies considerably on time
quadrature to the“intrinsic shape noise”:                                  scales of weeks due to telescope ’breathing’. The thermal expan-
                                                                           sion and contraction of the telescope alter the distance between the
                     σ2 = σ2
                      γ
                                          2
                           measurement + σintrinsic .
                                                                           primary and the secondary mirrors, inducing a deviation of the ef-
     The shear signal induced on a background source by a given            fective focus and thus from the nominal PSF which becomes larger
foreground mass distribution will depend on the configuration of            and more elliptical. Using version 6.3 of the TinyTim ray-tracing
The Large-Scale Filament Feeding MACSJ0717.5+3745                                7
program, Rhodes et al. (2007) created a grid of simulated PSF im-                 In order to optimize the signal-to-noise ratio, we introduce an
ages at varying focus offsets. By comparing the ellipticity of ∼              inverse-variance weighting scheme following L10:
20 stars in each image to these models, Rhodes et al. (2007) were
able to determine the effective focus of the images. Tests of this                                                 1
                                                                                                           wγ =
                                                                                                            ˜        .
algorithm on ACS/WFC images of dense stellar fields confirmed                                                       σ2
                                                                                                                   γ
                                                                                                                   ˜
that the best-fit effective focus can be repeatedly determined from
a random sample of 10 stars brighter than mF814W = 23 with an                Hence faint small galaxies which have large measurement errors
rms error of 1µm. Once images have been grouped by their effec-               are down-weighted with respect to sources that have well measured
tive focus position, the few stars in each images can be combined            shapes.
into one large catalog. PSF parameters are then interpolated using
a polynomial fit in the usual weak-lensing fashion (Massey et al.
2002). More details on the PSF modelling scheme are given in
Rhodes et al. (2007).                                                        3.3.4 Lensing Cuts
      The RRG method returns three parameters: d, a measure of the
galaxy size, and, the ellipticity represented by the vector e = (e1 , e2 )   The last step in constructing the weak-lensing catalogue for the
defined as follows:                                                           MACSJ0717.5+3745 field consists of applying lensing cuts, i.e.,
                                                                             to exclude galaxies whose shape parameters are ill-determined and
             a2 − b2                                                         will increase the noise in the shear measurement more than they add
 e   =
             a2 + b2                                                         to the shear signal. However, in doing so, we need to take care not
e1   =       e cos(2φ)                                                       to introduce any biases. We use three galaxy properties to establish
e2   =       e sin(2φ),                                                      the following selection criteria:
where a and b are the half-major and half-minor axis of the back-              • Their estimated detection significance:
ground galaxy, respectively, and φ is the orientation angle of the
ellipse defined previously. The ellipticity e is then calibrated by a                           S    FLUX AUT O
                                                                                                 =               > 4.5;
factor called shear polarizability, G, to obtain the shear estimator γ:
                                                                     ˜                         N   FLUXERR AUT O
       e                                                                     where FLUX AUTO and FLUXERR AUTO are parameters re-
γ=C
˜        .                                                            (2)
       G                                                                     turned by SExtractor;
The shear susceptibility factor G is measured from moments of the               • Their total ellipticity:
global distribution of e and other shape parameters of higher or-
der (see Rhodes et al. 2000). The Shear TEsting Program (STEP;                                        e=      e2 + e2 < 1;
                                                                                                               1    2
Massey et al. 2007) for COSMOS images showed that G is not con-
stant but varies as a function of redshift and S/N. To determine G             • Their size as defined by the RRG d parameter:
for our galaxy sample we use the same definition as the one used
for the COSMOS weak-lensing catalogue (see L07):                                                           d > 0.13′′ .
                                                  S /N − 17
                   G = 1.125 + 0.04 arctan                  .                      The requirement that the galaxy ellipticity be less than unity
                                                      4
                                                                             may appear trivial and superfluous. In practice it is meaningful
Finally, C, in Eq. 2 is the calibration factor. It was determined            though since the RRG method allows measured ellipticity values
using a set of simulated images similar to those used by STEP                to be greater than 1 because of noise, although ellipticity is by def-
(Heymans et al. 2006; Massey et al. 2006) for COSMOS images,                 inition restricted to e 1. Because Lenstool prevents ellipticities
and is given by C = (0.86−0.05 )−1 (for more details see L07).
                         +0.07
                                                                             to be larger than 1, we removed the 251 objects with an ellipticity
                                                                             greater than unity from the RRG catalogue (2% of the catalogue).
                                                                             Serving a similar purpose, the restriction in the RRG size parameter
3.3.3 Error of the Shear Estimator                                           d aims to eliminate sources with uncertain shapes. PSF corrections
                                                                             become increasingly significant as the size of a galaxy approaches
As explained in Sect. 3.3.1, the uncertainty in our shear estimator          that of the PSF, making the intrinsic shape of a galaxy difficult to
is a combination of intrinsic shape noise and shape measurement              measure.
error:                                                                             Our final weak-lensing catalogue is composed of 10170 back-
                          σ2 = σ2            2                               ground galaxies, corresponding to a density of ∼ 52 galaxies
                           γ
                           ˜    intrinsic + σmeasurement ,
                                                                             arcmin−2 . In addition to applying the aforementioned cuts, and in
          2
where σγ is referred to as shape noise. The shape measurement
          ˜                                                                  order to ensure an unbiased mass reconstruction in the weak lens-
error is determined for each galaxy as a function of size and mag-           ing regime only, we also remove all background galaxies located
nitude. Applying the method implemented in the PHOTO pipeline                in the multiple-image (strong-lensing) region defined by an ellipse
(Lupton et al. 2001) to analyze data from the Sloan Digital Sky Sur-         aligned with the cluster elongation and with a semi-major axis of
vey, we assume that the optical moments of each object are the               55”, a semi-minor axis of 33”. From the resulting mass-map pre-
same as the moments computed for a best-fit Gaussian. Since the               sented in Sect. 5, we a-posteriori derived a convergence histogram
ellipticity components (which are uncorrelated) are derived from             of the pixels outside this region, and found that 90% of them are
the moments, the variances of the ellipticity components can be              smaller than κ = 0.1, with a mean value of κ = 0.03. The shear
obtained by linearly propagating the covariance matrix of the mo-            and convergence are so weak because the ratio DLS /DOS = 0.14
ments. The value of the intrinsic shape noise, σintrinsic , is taken to be   for background galaxies at redshift zmed = 0.65 and the cluster at
0.27 (for more details see L07, L10).                                        z = 0.54 (see Sect. 4).
8        M. Jauzac, E. Jullo, J.-P. Kneib, H. Ebeling, A. Leauthaud, C. J. Ma, M. Limousin, R. Massey, J. Richard
4 MASS DISTRIBUTION
The mass modelling for the entire MACSJ0717.5+3745 field is
performed using the LENSTOOL1 (Jullo et al. 2007) software, us-
ing the adaptive-grid technique developed by Jullo & Kneib (2009)
and modified by us for weak-lensing mass measurements. Because
LENSTOOL implements a Bayesian sampler, it provides many
mass maps fitting the data that can be used to obtain a mean mass
map and to determine its error.


4.1 Multi-Scale Grid Method
We start with the method proposed by Jullo & Kneib (2009) to
model the cluster mass distribution using gravitational lensing. This                Figure 6. Distribution of grid nodes and galaxy-scale potentials, superim-
recipe uses a multi-scale grid of Radial Basis Functions (RBFs)                      posed on the K-band light map of MACSJ0717.5+3745. Cyan crosses rep-
with physically motivated profiles and lensing properties. With a                     resent the location of 468 RBFs at the nodes of the multi-scale grid; magenta
minimal number of parameters, the grid of RBFs of different sizes                     circles represent galaxy-scale potentials used to describe the contribution of
provides higher resolution and sharper contrast in regions of higher                 individual cluster members. The white dashed line defines the HST/ACS
density where the number of constraints is generally higher. It is                   field of view. The white cross marks the cluster centre at 07:17:30.025,
                                                                                     +37:45:18.58 (R.A., Dec).
well suited to describe irregular mass distributions like the one in-
vestigated here.
     The initial multi-scale grid is created from a smoothed map
                                                                                     Jullo & Kneib (2009) found to yield an optimal compromise be-
of the cluster K-band light and is recursively refined in the densest
                                                                                     tween model flexibility and overfitting. We then adapt the technique
regions. In the case of MACSJ0717.5+3745, this method is fully
                                                                                     proposed by Diego et al. (2007) to our multiscale grid model to fit
adaptive as we want to sample a wide range of masses, from the
                                                                                     the weak-lensing data (κ ≪ 1). Assuming a set of M images and a
cluster core to the far edge of the HST/ACS field where the fil-                                                                                          i
                                                                                     model comprised of N RBFs, the relation between the weights σ2   0
amentary structure is least dense. Initially, the field of interest is
                                                                                     and the 2M components of the shear is given by
limited to a hexagon, centred on the cluster core and split into six
equilateral triangles (see Fig. 1 in Jullo & Kneib 2009). This initial
                                                                                                            (1,1)
                                                                                                                                     ∆(1,N)
                                                                                                   1
                                                                                                                              ···
                                                                                                                                                  
grid is subsequently refined by applying a splitting criterion that is                              γ1
                                                                                                           ∆1
                                                                                                                                    1           
                                                                                                                                                  
                                                                                                                 .                    .
                                                                                                                                                  
based on the surface density of the light map. Hence, a triangle will                              .
                                                                                                  
                                                                                                  
                                                                                                   .      
                                                                                                           
                                                                                                                 .          ..        .
                                                                                                                                                  
                                                                                                                                                  
                                                                                                                                                  
                                                                                                                                 .
                                                                                                          
                                                                                                                   .                    .           σ2 1
                                                                                                   .                                           
                                                                                                                                                            
                                                                                                                                                
be split into four smaller triangles if it contains a single pixel that
                                                                                                           (M,1)
                                                                                                  
                                                                                                   M
                                                                                                   γ
                                                                                                                                   (M,N)        0
                                                                                                                                                            
                                                                                                                                                             
                                                                                                            ∆               ···    ∆1
                                                                                                  
                                                                                                   1      
                                                                                                            1                                    .
                                                                                                                                                           
                                                                                                                                                             
                                                                                                                                                             
exceeds a predefined light-surface-density threshold.                                                                                               .
                                                                                                                                                  
                                                                                                  
                                                                                                          =  (1,1)
                                                                                                           
                                                                                                                                                
                                                                                                                                                   .
                                                                                                                                                             
                                                                                                                                                             
                                                                                                                                     ∆(1,N)
                                                                                                   1
                                                                                                   γ                                                        
                                                                                                            ∆               ···
                                                                                                                                               
                                                                                                                                                           
                                                                                                                                                             
     Once the adaptive grid is set up, RBFs described by Trun-
                                                                                                   2       2                       2                    
                                                                                                  
                                                                                                  
                                                                                                   .      
                                                                                                                                                  2N
                                                                                                                                                  
                                                                                                                                                   σ
                                                                                                                                                             
                                                                                                                                                             
                                                                                                                   .                    .
                                                                                                           
cated Isothermal Mass Distributions (TIMD), circular versions
                                                                                                  
                                                                                                   .      
                                                                                                                 .          ..        .
                                                                                                                                                  
                                                                                                                                                      0
                                                                                                                                 .
                                                                                                  
                                                                                                   .      
                                                                                                                   .                    .
                                                                                                                                                
                                                                                                  
                                                                                                  
                                                                                                          
                                                                                                           
                                                                                                           
                                                                                                                                                  
                                                                                                                                                  
                                                                                                                                                  
of truncated Pseudo Isothermal Elliptical Mass Distributions                                       M       (1,M)                   (M,N)
                                                                                                                                                  
                                                                                                    γ2
                                                                                                                                                  
                                                                                                                ∆2            ···    ∆2
(PIEMD) (see, e.g., Kassiola & Kovner 1993; Kneib et al. 1996;
Limousin et al. 2005; El´asd´ ttir et al. 2007) are placed at the grid
                          ı o                                                        with
node locations. The analytical expression of the TIMD mass sur-                                                               DiLS (i, j)
face density is given by                                                                                          ∆(i, j) =
                                                                                                                   1              γ ,
                                                                                                                              DiOS 1
                                   2
                           Σ(R) = σ0 f (R, rcore , rcut )
                                                                                                                              DiLS (i, j)
with                                                                                                              ∆(i, j) =
                                                                                                                   2              γ ,
                                                                                                                            DiOS 2
                                                                               
                             1      rcut             1                1
                                                                               
     f (R, rcore , rcut ) =
                                              
                                              
                                              
                                              
                                                              −
                                                                                
                                                                                
                                                                                .
                                                                                
                                                                                    where
                            2G rcut − rcore
                                                                               
                                                  rcore + R2
                                                   2
                                                                               
                                                                   2
                                                                   rcut   +R   2
                                                                                                                1
                                                                                                       γ1 j) =
                                                                                                        (i,
                                              
                                                                                                                   (∂11 Φ j (Ri j ) − ∂22 Φi (Ri j )),
                                                                                                                 2
     Hence, f defines the profile, and σ2 defines the weight of the
                                             0
RBF. This profile is characterized by two changes in slope at ra-                                         γ2 j) = ∂12 Φ j (Ri j ) = ∂21 Φ j (Ri j ),
                                                                                                          (i,

dius values of rcore and rcut . Within rcore , the surface density is ap-
proximately constant, between rcore and rcut , it is isothermal (i.e.,               and
Σ ∝ r−1 ), and beyond rcut it falls as Σ ∝ r−3 . This profile is physi-                                              Ri j = |θi − θ j |.
cally motivated and meets the three important criteria of a) featur-
ing a finite total mass, b) featuring a finite central density, and c)                      In the above, DiLS and DiOS are the angular distances from the
being capable of describing extended flat regions, in particular in                   RBF j to the background source i and from the observer to the
the centre of clusters.                                                              background source i, respectively, and Φ is the projected gravita-
     The RBFs’ rcore value is set to the size of the smallest nearby                 tional potential. γk=1,2 are the two components of the shear, ∆(i, j)
                                                                                                                                                    k=1,2
triangle, and their rcut parameter is set to 3rcore , a scaling that                                                                          j
                                                                                     is the value of the RBF normalized with σ2 = 1, centered on the
                                                                                                                                  0
                                                                                     grid node located at θ j , and computed at a radius R = |θi − θ j |.
                                                                                     The contribution of this RBF to the predicted shear at location θi is
                                                                                                                    j
1   LENSTOOL is available online: http://lamwws.oamp.fr/lenstool                     given by the product ∆(i, j) σ2 (see Eq. 1). More details about this
                                                                                                            k=1,2 0
The Large-Scale Filament Feeding MACSJ0717.5+3745                                   9
method will be provided in a forthcoming paper (Jullo et al. 2012,
in preparation).
      Figure 6 shows the distribution of the 468 RBFs superimposed
on the light map used to define the multi-scale grid. The smallest
RBF has a rcore = 26′′ . Note that although Lenstool can perform
strong lensing, and reduced-shear optimization, here the proposed
formalism assumes weak-shear with κ ≪ 1. To get an unbiased es-
timator, we remove the background galaxies near the cluster core
from the catalogue, but we keep RBFs in this region as we found it
improves the mass reconstruction. In order to check our weak-shear
assumption, we multiply the resulting convergence map by the fac-
tor 1 − κ, and find this minor correction only represents about 5% at
300 kpc and less than 1% at 500 kpc. It confirms that working with
a weak-shear assumption in this case is not biasing our results. On       Figure 7. Contours of the convergence κ in the MACS0717.5+3745 field
Fig. 8, the black dashed curve corresponds to the corrected weak-         obtained using the inversion method described by Seitz & Schneider (1995),
shear optimization, while the black curve represents the weak-shear       overlaid on the K-band light map. Magenta contours represent the 1, 2 and
optimization profile. Both shows a really good agreement with the          3σ contours. Cyan crosses mark the position of two galaxy groups (see text
strong-lensing results (magenta curve).                                   for details). The white cross marks again the cluster centre (cf. Fig. 6).


                                                                          4.3 Mass Modeling
4.2 Cluster Member Galaxies
                                                                          The mass reconstruction is conducted using LENSTOOL which
Our catalogue of cluster members is compiled from the photomet-           implements an optimisation method based on a Bayesian Markov
ric catalogue of Ma et al. (2008). Within the HST/ACS study area          Chain Monte Carlo (MCMC) approach (Jullo et al. 2007). We
we identify as cluster members 1244 galaxies with spectroscopic           chose this approach because we want to propagate as transparently
and/or photometric redshifts within the redshift ranges defined in         as possible errors on the ellipticity into errors on the filament mass
Sect. 3.2. We use these galaxies’ KS -band luminosities as mass es-       measurement. This method provides two levels of inference: pa-
timators (see below for details).                                         rameter space exploration and model comparison, by means of the
     All cluster members are included in the lens model in the form       posterior Probability Density Function (PDF) and the Bayesian ev-
of truncated PIEMD potentials (see Sect. 4.1) with characteristic         idence, respectively.
properties scaled according to their K-band luminosity:                        All of these quantities are related by the Bayes Theorem:
                                               1/2                                                         Pr(D|θ, M)Pr(θ|M)
                                 ∗       L                                                  Pr(θ|D, M) ∝                     ,
                        rcore = rcore                   ,                                                      Pr(D|M)
                                         L∗
                                                                          where Pr(θ|D, M) is the posterior PDF, Pr(D|θ, M) is the likelihood
                                        L     1/2                         of a realisation yielding the observed data D given the parameters
                                 ∗
                         rcut = rcut                ,                     θ of the model M, and, Pr(θ|M) is the prior PDF for the parame-
                                        L∗
                                                                          ters. Pr(D|M) is the probability of obtaining the observed data D
and,                                                                      given the assumed model M, also called the Bayesian evidence. It
                                              1/4                         measures the complexity of the model. The posterior PDF will be
                                        L
                          σ0 = σ∗
                                0                   .                     the highest for the set of parameters θ that yields the best fit and
                                        L∗                                is consistent with the prior PDF. Jullo et al. (2007) implemented an
      These scaling relations are found to well describe early-           annealed Markov Chain to converge progressively from the prior
type cluster galaxies (e.g. Wuyts et al. 2004; Fritz et al. 2005) un-     PDF to the posterior PDF.
der the assumptions of mass tracing light and the validity of the               For the weak-lensing mass mapping, we implement an addi-
Faber & Jackson (1976) relation. Since the mass, M, is propor-            tional level of complexity based on the Gibbs sampling technique
tional to σ2 rcut , the above relations ensure M ∝ L, assuming that
            0
                                                                          (see Massive Inference in the Bayesys manual, Skilling 1998). Ba-
the mass-to-light ratio is constant for all cluster members.              sically, only the posterior distribution of the most relevant RBFs is
      To find suitable values of rcore , rcut , and σ∗ we take advantage
                                    ∗    ∗                                explored. The number of RBFs to explore is an additional free pa-
                                                    0
of the results of the strong-lensing analysis of MACSJ0717.5+3745         rameter with a Poisson prior. Exploring possible values of this prior
recently conducted by Limousin et al. (2012). Their mass model of         in simulations, we find that the input mass is well recovered when
the cluster also included cluster members, using the scaling rela-        the mean of this prior is set to 2% of the total number of RBFs in
                                                                                                                        i
tions defined above (see also Limousin et al. 2007). For a given L∗        the model. The weights of the RBFs, σ2 , are decomposed into the
                                                                                                                      0
luminosity, given by m∗ = 19.16, the mean apparent magnitude of           product of a quantum element of weight, q, common to all RBF,
a cluster member in K-band, Limousin et al. (2012) set all geomet-        and a multiplicative factor ζ i . In order to have positive masses, we
rical galaxy parameters (centre, ellipticity, position angle) to the      make ζ follow a Poisson prior (case MassInf=1), and q to follow
                                                 ∗
values measured with SExtractor, fixed rcore at 0.3 kpc, and then          the prior distribution π(q) = q−2 q exp−q/q0 , and we fix the initial
                                                                                                              0
                               ∗      ∗                                                                                          i
searched for the values of σ0 and rcut that yield the best fit. We here    guess q0 = 10 km2 /s2 . The final distribution of σ2 is well approxi-
                                                                                                                               0
                                 ∗                     ∗
use the same best-fit values, rcut = 60 kpc and σ0 = 163 kpc/s, to         mated by a distribution π(q) with q0 = 12 km2 /s2 , and, we find that
define the potentials of the cluster members. Hence, all parameters        16.8 ± 4.8 RBFs are necessary on average to reconstruct the mass
describing cluster members are fixed in our model; their positions         distribution given our data, i.e. about 3.5% of the total number of
are marked by the magenta circles in Fig. 6.                              RBFs in the model. This new algorithm is fast, as it can deliver a
10           M. Jauzac, E. Jullo, J.-P. Kneib, H. Ebeling, A. Leauthaud, C. J. Ma, M. Limousin, R. Massey, J. Richard




                                                                              Figure 9. Mass distribution in the core of MACSJ0717.5+3745. Cyan con-
                                                                              tours represent the mass distribution inferred in the strong-lensing study by
                                                                              Limousin et al. (2012); white contours show the mass distribution obtained
                                                                              by our weak-lensing analysis; and magenta contours represent the distribu-
                                                                              tion of the cluster K-band light. The orange cross marks the cluster center
                                                                              adopted in the analysis (cf. Fig. 6).


                                                                              mic Bayesian evidence is then given by
Figure 8. Density profiles within the core of MACSJ0717.5+3749. The ma-
genta curve represents strong-lensing results from Limousin et al. (2012);                                                 1
                                                                                                                   1
the black curve shows the profile derived from our weak-lensing analysis;                              log(E) = −               χ2 λ dλ
                                                                                                                   2   0
the black dashed curve shows the weak-lensing profile corrected from the
weak-shear approximation                                                      where the average is computed over a set of 10 MCMC realizations
                                                                              at any given iteration step λi , and the integration is performed over
. The grey area marks the region within which multiple images are observed.
                                                                              all iterations λi from the initial model (λ = 0) to the best-fit result
                                                                              (λ = 1). An increment in dλ depends on the variance between the
                                                                              10 likelihoods computed at a given iteration, and a convergence
mass map in 20 minutes for about 10,000 galaxies and 468 RBFs                 rate that we set equal to 0.1 (see Bayesys manual for details). The
— the previous algorithm used in Jullo & Kneib (2009) was taking              increment gets larger as the algorithm converges towards 1.
more than 4 weeks to converge. The new algorithm has been tested
in parallel on five processors clocked at 2 GHz.
     We define the likelihood function as (see e.g. Schneider et al.           5 RESULTS
(2000):
                                                                              5.1 Kappa Map : Standard mass reconstruction
                                         1        χ2
                               Pr(D|θ) =    exp (− ),                         We test our catalogue of background galaxies by mapping the con-
                                         ZL       2
                                                                              vergence κ in the MACSJ0717.5+3745 field. We use the method
where D is the vector of ellipticity component values, and θ is a             described in Sect. 3.3.1, which is based on the inversion equa-
vector of the free parameters σ2 . χ2 is the usual goodness-of-fit
                                 i                                            tion found by Kaiser & Squires (1993) and developed further by
statistic:                                                                    Seitz & Schneider (1995). It shows that the best density recon-
         M     2                                                              structions are obtained when the smoothing scale is adapted to the
                   (˜ j,i − 2γ j,i (θi ))2
                    γ
χ2 =                                       .                           (3)    strength of the signal. We find a smoothing scale of 3 arcmin to
        i=1 j=1
                            σ2
                             γ˜                                               provide a good compromise between signal-to-noise considerations
                                                                              and map resolution. We estimate the noise directly from the mea-
The 2M intrinsic ellipticity components (M is the number of back-
                                                                              sured errors, σmeasurement , averaged within the grid cells.
ground sources), are defined as follows:
                                                                                   The resulting κ-map is shown in Fig. 7, overlaid on a smoothed
εintrinsic, j = γ j (θ j ) − 2γ j (θ j )
                ˜                                                      (4)    image of the K-band light from cluster galaxies. We identify two
                                                                              substructures south-east of the cluster core whose locations match
and, are assumed to have been drawn from a Gaussian distribution              the extent of the filamentary structure seen in the galaxy distribu-
with variance defined in Sect. 3.3.1 :                                         tion. The first of these, near the cluster core, coincides with the
                                                                              beginning of the optical filament; the second falls close to the ap-
                                σ2 = σ2
                                 γ
                                 ˜
                                                   2
                                      intrinsic + σmeasure .
                                                                              parent end of the filament close to the edge of our study area. A
The normalization factor is given by                                          simple inversion technique thus already yields a 2 sigma detections
                                                                              of parts of the filament.
                                               M
                                                     √                             The Chandra observation of MACS0717.5+3745 shows X-
                                    ZL =              2π σγi .
                                                          ˜                   ray detections of two satellite groups of galaxies embedded in the
                                               i=1
                                                                              filament (private communication H. Ebeling, see also Fig. 1 of
    Note the factor of 2 in Eqn. 3 and 4 because of the particular            Ma et al. 2009, and Fig. 10 of this paper). Their X-ray coordinates
definition of the ellipticity in RRG (see Sect. 3.3.2). The logarith-          (R.A., Dec, J2000) are : i) 07:17:53.618, +37:42:10.46, and, ii)
The Large-Scale Filament Feeding MACSJ0717.5+3745                                           11




Figure 10. Mass map from our weak-gravitational lensing analysis overlaid on the light map of the mosaic. The two sets of contours show the X-ray surface
brightness (cyan), and weak-lensing mass (white). The bold white contour corresponds to a density of 1.84 × 108 h74 M⊙ .kpc−2 . The orange cross marks the
location of the fiducial cluster centre, and the two blue crosses show the positions of the two X-ray detected satellite groups mentioned in Sect. 5.1. The dashed
cyan lines delineates the edges of the Chandra/ACIS-I field of view. The yellow box, finally, marks the cluster core region shown in Fig. 9. The magenta line
emphasises the extent and direction of the large-scale filament.


07:18:19.074, +37:41:13.14 (cyan crosses in Fig. 7). The first of                    the cluster centre because it marks the barycenter of the Einstein
these, close to the filament-cluster interface, is detected by the in-               ring measured by Meneghetti et al. (2011). Another SL analysis of
version technique, but not the second. Conversely, the peak in the                  MACSJ0717.5+3745 was performed by Zitrin et al. (2009) who re-
convergence map in the southeastern corner of our study area is not                 port a mass of MSL (R < 350 kpc) = (7.0 ± 0.5) 1014 h−1 M⊙ .
                                                                                                                                           74
detected in X-rays.                                                                      Figure 8 compares the mass density profiles derived from the
                                                                                    SL analysis (magenta line) and from our WL analysis (black line);
                                                                                    note the very good agreement. The WL density profile has been cut
5.2 Mass Map : Iterative mass reconstruction                                        up to ∼300 kpc as this region corresponds to the multiple-image
                                                                                    regime, therefore does not contain any WL constraints.
The primary goal of this paper is the detection of the large-scale
                                                                                         In Fig. 8, the SL density profile is extrapolated beyond the
filament with weak-lensing techniques and the characterisation of
                                                                                    multiple-image region (the cluster core), while the WL density
its mass content. To calibrate the mass map of the entire structure
                                                                                    profile is extrapolated into the multiple-image region. The WL
(i.e., filament + cluster core) and overcome the mass-sheet degen-
                                                                                    mass thus obtained for the cluster core is MWL (R < 500 kpc) =
eracy, we compare the weak-lensing mass obtained for the cluster
                                                                                    (1.04 ± 0.08) 1015 h−1 M⊙ in excellent agreement with the value
                                                                                                          74
core with the technique described in Sect. 4, with the strong lensing
                                                                                    measured by Limousin et al. (2012). We also measure MWL (R <
(SL) results from Limousin et al. (2012).
                                                                                    350 kpc) = (5.10 ± 0.54) 1014 h−1 M⊙ , in slight disagreement with
                                                                                                                      74
                                                                                    the result reported by Zitrin et al. (2009). But the excellent agree-
                                                                                    ment at larger radii between strong- and weak-lensing results with-
5.2.1 Cluster Core
                                                                                    out any adjustments validates our redshift distribution for the back-
Limousin et al. (2012) inferred a parametric mass model for the                     ground sources, and our new reconstruction method.
core of MACSJ0717.5+3745 using strong-lensing (SL) constraints,                          Figure 9 compares the mass contours from the two different
specifically 15 multiple-image systems identified from multi-color                    gravitational-lensing analyses for the core of MACSJ0717.5+3745
data within a single HST/ACS tile. Spectroscopic follow up of                       and illustrates the remarkable agreement between these totally in-
the lensed features allowed the determination of a well calibrated                  dependent measurements. Our WL analysis requires a bi-modal
mass model. The cyan contours in Fig. 9 show the mass dis-                          mass concentration which coincides with the two main concentra-
tribution obtained from their analysis. Four mass components,                       tions inferred by the SL analysis of Limousin et al. (2012).
associated with the main light components, are needed to sat-
isfy the observational constraints. The cluster mass reported by
Limousin et al. (2012) for the region covered by a single ACS
                                                                                    5.2.2 Detection of a filamentary structure
field-of-view is MSL (R < 500 kpc) = (1.06 ± 0.03) 1015 h−1 M⊙
                                                            74
where the cluster centre is taken to be at the position quoted be-                  Figure 10 shows the mass map obtained for the whole HST/ACS
fore (07:17:30.025 +37:45:18.58). This position was adopted as                      mosaic using the modeling and optimization method described
A weak lensing_mass_reconstruction_of _the_large_scale_filament_massive_galaxy_cluster_macsj0717
A weak lensing_mass_reconstruction_of _the_large_scale_filament_massive_galaxy_cluster_macsj0717
A weak lensing_mass_reconstruction_of _the_large_scale_filament_massive_galaxy_cluster_macsj0717
A weak lensing_mass_reconstruction_of _the_large_scale_filament_massive_galaxy_cluster_macsj0717
A weak lensing_mass_reconstruction_of _the_large_scale_filament_massive_galaxy_cluster_macsj0717
A weak lensing_mass_reconstruction_of _the_large_scale_filament_massive_galaxy_cluster_macsj0717

Weitere ähnliche Inhalte

Was ist angesagt?

Science with small telescopes - exoplanets
Science with small telescopes - exoplanetsScience with small telescopes - exoplanets
Science with small telescopes - exoplanetsguest8aa6ebb
 
The open cluster_ngc6520_and_the_nearby_dark_molecular_cloud_barnard_86
The open cluster_ngc6520_and_the_nearby_dark_molecular_cloud_barnard_86The open cluster_ngc6520_and_the_nearby_dark_molecular_cloud_barnard_86
The open cluster_ngc6520_and_the_nearby_dark_molecular_cloud_barnard_86Sérgio Sacani
 
PhD_Thesis_GionaMatasci_2014_wCopyrights
PhD_Thesis_GionaMatasci_2014_wCopyrightsPhD_Thesis_GionaMatasci_2014_wCopyrights
PhD_Thesis_GionaMatasci_2014_wCopyrightsGiona Matasci
 
Major contributor to_agn_feedback
Major contributor to_agn_feedbackMajor contributor to_agn_feedback
Major contributor to_agn_feedbackSérgio Sacani
 
Free floating planet_in_ab_doradus
Free floating planet_in_ab_doradusFree floating planet_in_ab_doradus
Free floating planet_in_ab_doradusSérgio Sacani
 
Optical characterization of Se90S10-xCdx thin films
Optical characterization of Se90S10-xCdx thin filmsOptical characterization of Se90S10-xCdx thin films
Optical characterization of Se90S10-xCdx thin filmsIOSR Journals
 
Discovery of rotational modulations in the planetary mass companion 2m1207b i...
Discovery of rotational modulations in the planetary mass companion 2m1207b i...Discovery of rotational modulations in the planetary mass companion 2m1207b i...
Discovery of rotational modulations in the planetary mass companion 2m1207b i...Sérgio Sacani
 
Literature study article
Literature study articleLiterature study article
Literature study articleakaspers
 
Gefran controls used for evaluating the focusing performance of mirrors in Ch...
Gefran controls used for evaluating the focusing performance of mirrors in Ch...Gefran controls used for evaluating the focusing performance of mirrors in Ch...
Gefran controls used for evaluating the focusing performance of mirrors in Ch...Gefran Inc.
 

Was ist angesagt? (18)

Science with small telescopes - exoplanets
Science with small telescopes - exoplanetsScience with small telescopes - exoplanets
Science with small telescopes - exoplanets
 
The open cluster_ngc6520_and_the_nearby_dark_molecular_cloud_barnard_86
The open cluster_ngc6520_and_the_nearby_dark_molecular_cloud_barnard_86The open cluster_ngc6520_and_the_nearby_dark_molecular_cloud_barnard_86
The open cluster_ngc6520_and_the_nearby_dark_molecular_cloud_barnard_86
 
PhD_Thesis_GionaMatasci_2014_wCopyrights
PhD_Thesis_GionaMatasci_2014_wCopyrightsPhD_Thesis_GionaMatasci_2014_wCopyrights
PhD_Thesis_GionaMatasci_2014_wCopyrights
 
VO Course 11: Spatial indexing
VO Course 11: Spatial indexingVO Course 11: Spatial indexing
VO Course 11: Spatial indexing
 
Major contributor to_agn_feedback
Major contributor to_agn_feedbackMajor contributor to_agn_feedback
Major contributor to_agn_feedback
 
Optics group research overview
Optics group research overviewOptics group research overview
Optics group research overview
 
Free floating planet_in_ab_doradus
Free floating planet_in_ab_doradusFree floating planet_in_ab_doradus
Free floating planet_in_ab_doradus
 
Aa17067 11
Aa17067 11Aa17067 11
Aa17067 11
 
Optical characterization of Se90S10-xCdx thin films
Optical characterization of Se90S10-xCdx thin filmsOptical characterization of Se90S10-xCdx thin films
Optical characterization of Se90S10-xCdx thin films
 
Discovery of rotational modulations in the planetary mass companion 2m1207b i...
Discovery of rotational modulations in the planetary mass companion 2m1207b i...Discovery of rotational modulations in the planetary mass companion 2m1207b i...
Discovery of rotational modulations in the planetary mass companion 2m1207b i...
 
Star forming cepheus
Star forming cepheusStar forming cepheus
Star forming cepheus
 
Literature study article
Literature study articleLiterature study article
Literature study article
 
Aa17043 11
Aa17043 11Aa17043 11
Aa17043 11
 
Gefran controls used for evaluating the focusing performance of mirrors in Ch...
Gefran controls used for evaluating the focusing performance of mirrors in Ch...Gefran controls used for evaluating the focusing performance of mirrors in Ch...
Gefran controls used for evaluating the focusing performance of mirrors in Ch...
 
Astana spherex
Astana spherexAstana spherex
Astana spherex
 
INVESTIGATING THE STRUCTURE, MORPHOLOGY AND OPTICAL BAND GAP OF CADMIUM SULPH...
INVESTIGATING THE STRUCTURE, MORPHOLOGY AND OPTICAL BAND GAP OF CADMIUM SULPH...INVESTIGATING THE STRUCTURE, MORPHOLOGY AND OPTICAL BAND GAP OF CADMIUM SULPH...
INVESTIGATING THE STRUCTURE, MORPHOLOGY AND OPTICAL BAND GAP OF CADMIUM SULPH...
 
Ngc7600 1
Ngc7600 1Ngc7600 1
Ngc7600 1
 
Karavasilev
KaravasilevKaravasilev
Karavasilev
 

Andere mochten auch

A 300 parsec-long jet-inflated bubble around a powerful microquasar in the ga...
A 300 parsec-long jet-inflated bubble around a powerful microquasar in the ga...A 300 parsec-long jet-inflated bubble around a powerful microquasar in the ga...
A 300 parsec-long jet-inflated bubble around a powerful microquasar in the ga...Sérgio Sacani
 
The auroral footprint of enceladus on saturn nature09928
The auroral footprint of enceladus on saturn nature09928The auroral footprint of enceladus on saturn nature09928
The auroral footprint of enceladus on saturn nature09928Sérgio Sacani
 
Massive co2 ice deposits sequestered in the south polar layered deposits of mars
Massive co2 ice deposits sequestered in the south polar layered deposits of marsMassive co2 ice deposits sequestered in the south polar layered deposits of mars
Massive co2 ice deposits sequestered in the south polar layered deposits of marsSérgio Sacani
 
Nasaandsocialmedia ragan-110510134620-phpapp02
Nasaandsocialmedia ragan-110510134620-phpapp02Nasaandsocialmedia ragan-110510134620-phpapp02
Nasaandsocialmedia ragan-110510134620-phpapp02Sérgio Sacani
 
Thermal structure and dynamics of saturn northern springtime disturbance
Thermal structure and dynamics of saturn northern springtime disturbanceThermal structure and dynamics of saturn northern springtime disturbance
Thermal structure and dynamics of saturn northern springtime disturbanceSérgio Sacani
 
Pulsed accretion in_a_variable_protostar
Pulsed accretion in_a_variable_protostarPulsed accretion in_a_variable_protostar
Pulsed accretion in_a_variable_protostarSérgio Sacani
 
Phys revlett.106.221101
Phys revlett.106.221101Phys revlett.106.221101
Phys revlett.106.221101Sérgio Sacani
 
Observational evidence against long lived spiral arms in galaxies1
Observational evidence against long lived spiral arms in galaxies1Observational evidence against long lived spiral arms in galaxies1
Observational evidence against long lived spiral arms in galaxies1Sérgio Sacani
 
A vast thin_plane_of_corotating_dwarf_galaxies_orbiting_the_andromeda_galaxy
A vast thin_plane_of_corotating_dwarf_galaxies_orbiting_the_andromeda_galaxyA vast thin_plane_of_corotating_dwarf_galaxies_orbiting_the_andromeda_galaxy
A vast thin_plane_of_corotating_dwarf_galaxies_orbiting_the_andromeda_galaxySérgio Sacani
 
PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STIS
PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STISPROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STIS
PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STISSérgio Sacani
 
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...Sérgio Sacani
 
Measurement of lmpulsive Thrust from a Closed Radio Frequency Cavity in Vacuum
Measurement of lmpulsive Thrust from a Closed Radio Frequency Cavity in VacuumMeasurement of lmpulsive Thrust from a Closed Radio Frequency Cavity in Vacuum
Measurement of lmpulsive Thrust from a Closed Radio Frequency Cavity in VacuumSérgio Sacani
 
Galaxy dynamics and the mass density of the universe
Galaxy dynamics and the mass density of the universeGalaxy dynamics and the mass density of the universe
Galaxy dynamics and the mass density of the universeSérgio Sacani
 

Andere mochten auch (18)

A 300 parsec-long jet-inflated bubble around a powerful microquasar in the ga...
A 300 parsec-long jet-inflated bubble around a powerful microquasar in the ga...A 300 parsec-long jet-inflated bubble around a powerful microquasar in the ga...
A 300 parsec-long jet-inflated bubble around a powerful microquasar in the ga...
 
The auroral footprint of enceladus on saturn nature09928
The auroral footprint of enceladus on saturn nature09928The auroral footprint of enceladus on saturn nature09928
The auroral footprint of enceladus on saturn nature09928
 
Massive co2 ice deposits sequestered in the south polar layered deposits of mars
Massive co2 ice deposits sequestered in the south polar layered deposits of marsMassive co2 ice deposits sequestered in the south polar layered deposits of mars
Massive co2 ice deposits sequestered in the south polar layered deposits of mars
 
Batalha n kepler-10b
Batalha n kepler-10bBatalha n kepler-10b
Batalha n kepler-10b
 
Nasaandsocialmedia ragan-110510134620-phpapp02
Nasaandsocialmedia ragan-110510134620-phpapp02Nasaandsocialmedia ragan-110510134620-phpapp02
Nasaandsocialmedia ragan-110510134620-phpapp02
 
Thermal structure and dynamics of saturn northern springtime disturbance
Thermal structure and dynamics of saturn northern springtime disturbanceThermal structure and dynamics of saturn northern springtime disturbance
Thermal structure and dynamics of saturn northern springtime disturbance
 
Pulsed accretion in_a_variable_protostar
Pulsed accretion in_a_variable_protostarPulsed accretion in_a_variable_protostar
Pulsed accretion in_a_variable_protostar
 
205573.web
205573.web205573.web
205573.web
 
110311japan
110311japan110311japan
110311japan
 
Phys revlett.106.221101
Phys revlett.106.221101Phys revlett.106.221101
Phys revlett.106.221101
 
Aas 221 abstracts
Aas 221 abstractsAas 221 abstracts
Aas 221 abstracts
 
Issue1 astrobiology
Issue1 astrobiologyIssue1 astrobiology
Issue1 astrobiology
 
Observational evidence against long lived spiral arms in galaxies1
Observational evidence against long lived spiral arms in galaxies1Observational evidence against long lived spiral arms in galaxies1
Observational evidence against long lived spiral arms in galaxies1
 
A vast thin_plane_of_corotating_dwarf_galaxies_orbiting_the_andromeda_galaxy
A vast thin_plane_of_corotating_dwarf_galaxies_orbiting_the_andromeda_galaxyA vast thin_plane_of_corotating_dwarf_galaxies_orbiting_the_andromeda_galaxy
A vast thin_plane_of_corotating_dwarf_galaxies_orbiting_the_andromeda_galaxy
 
PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STIS
PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STISPROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STIS
PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STIS
 
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
 
Measurement of lmpulsive Thrust from a Closed Radio Frequency Cavity in Vacuum
Measurement of lmpulsive Thrust from a Closed Radio Frequency Cavity in VacuumMeasurement of lmpulsive Thrust from a Closed Radio Frequency Cavity in Vacuum
Measurement of lmpulsive Thrust from a Closed Radio Frequency Cavity in Vacuum
 
Galaxy dynamics and the mass density of the universe
Galaxy dynamics and the mass density of the universeGalaxy dynamics and the mass density of the universe
Galaxy dynamics and the mass density of the universe
 

Ähnlich wie A weak lensing_mass_reconstruction_of _the_large_scale_filament_massive_galaxy_cluster_macsj0717

Combined strong weak_lensing_analysis_from_sloan_giant_arcs_survey
Combined strong weak_lensing_analysis_from_sloan_giant_arcs_surveyCombined strong weak_lensing_analysis_from_sloan_giant_arcs_survey
Combined strong weak_lensing_analysis_from_sloan_giant_arcs_surveySérgio Sacani
 
Laboca survey of_extended_chandra_deep_field_south
Laboca survey of_extended_chandra_deep_field_southLaboca survey of_extended_chandra_deep_field_south
Laboca survey of_extended_chandra_deep_field_southSérgio Sacani
 
An eclipsing binary_distance_to_the_large_magellanic_cloud_accurate_to_two_pe...
An eclipsing binary_distance_to_the_large_magellanic_cloud_accurate_to_two_pe...An eclipsing binary_distance_to_the_large_magellanic_cloud_accurate_to_two_pe...
An eclipsing binary_distance_to_the_large_magellanic_cloud_accurate_to_two_pe...Sérgio Sacani
 
Comaskey_William_Poster_SULI_FALL_2014
Comaskey_William_Poster_SULI_FALL_2014Comaskey_William_Poster_SULI_FALL_2014
Comaskey_William_Poster_SULI_FALL_2014William Comaskey
 
3D-Spatiotemporal forecasting the expansion of supernova shells using deep le...
3D-Spatiotemporal forecasting the expansion of supernova shells using deep le...3D-Spatiotemporal forecasting the expansion of supernova shells using deep le...
3D-Spatiotemporal forecasting the expansion of supernova shells using deep le...Sérgio Sacani
 
Measuring the Hubble constant with kilonovae using the expanding photosphere ...
Measuring the Hubble constant with kilonovae using the expanding photosphere ...Measuring the Hubble constant with kilonovae using the expanding photosphere ...
Measuring the Hubble constant with kilonovae using the expanding photosphere ...Sérgio Sacani
 
Orbital configurations of spaceborne interferometers for studying photon ring...
Orbital configurations of spaceborne interferometers for studying photon ring...Orbital configurations of spaceborne interferometers for studying photon ring...
Orbital configurations of spaceborne interferometers for studying photon ring...Sérgio Sacani
 
Sgg crest-presentation-final
Sgg crest-presentation-finalSgg crest-presentation-final
Sgg crest-presentation-finalmarpierc
 
The significance of_the_integrated_sachs_wolfe_effect_revisited
The significance of_the_integrated_sachs_wolfe_effect_revisitedThe significance of_the_integrated_sachs_wolfe_effect_revisited
The significance of_the_integrated_sachs_wolfe_effect_revisitedSérgio Sacani
 
A rapidly spinning_supermassive_black_hole_at_the_centre_of_ngc1365
A rapidly spinning_supermassive_black_hole_at_the_centre_of_ngc1365A rapidly spinning_supermassive_black_hole_at_the_centre_of_ngc1365
A rapidly spinning_supermassive_black_hole_at_the_centre_of_ngc1365Sérgio Sacani
 
The laniakea supercluster_of_galaxies
The laniakea supercluster_of_galaxiesThe laniakea supercluster_of_galaxies
The laniakea supercluster_of_galaxiesSérgio Sacani
 
A filament of dark matter between two clusters of galaxies
A filament of dark matter between two clusters of galaxiesA filament of dark matter between two clusters of galaxies
A filament of dark matter between two clusters of galaxiesCarlos Bella
 
The multiverse interpretation of quantum mechanics
The multiverse interpretation of quantum mechanicsThe multiverse interpretation of quantum mechanics
The multiverse interpretation of quantum mechanicsSérgio Sacani
 
Deep wide field_and_panchromatic_view_of_47_tuc_and_smc_with_hubble
Deep wide field_and_panchromatic_view_of_47_tuc_and_smc_with_hubbleDeep wide field_and_panchromatic_view_of_47_tuc_and_smc_with_hubble
Deep wide field_and_panchromatic_view_of_47_tuc_and_smc_with_hubbleSérgio Sacani
 
The local nanohertz gravitational-wave landscape from supermassive black hole...
The local nanohertz gravitational-wave landscape from supermassive black hole...The local nanohertz gravitational-wave landscape from supermassive black hole...
The local nanohertz gravitational-wave landscape from supermassive black hole...Sérgio Sacani
 
An atlas of_predicted_exotic_gravitational_lenses
An atlas of_predicted_exotic_gravitational_lensesAn atlas of_predicted_exotic_gravitational_lenses
An atlas of_predicted_exotic_gravitational_lensesSérgio Sacani
 

Ähnlich wie A weak lensing_mass_reconstruction_of _the_large_scale_filament_massive_galaxy_cluster_macsj0717 (20)

Combined strong weak_lensing_analysis_from_sloan_giant_arcs_survey
Combined strong weak_lensing_analysis_from_sloan_giant_arcs_surveyCombined strong weak_lensing_analysis_from_sloan_giant_arcs_survey
Combined strong weak_lensing_analysis_from_sloan_giant_arcs_survey
 
Laboca survey of_extended_chandra_deep_field_south
Laboca survey of_extended_chandra_deep_field_southLaboca survey of_extended_chandra_deep_field_south
Laboca survey of_extended_chandra_deep_field_south
 
An eclipsing binary_distance_to_the_large_magellanic_cloud_accurate_to_two_pe...
An eclipsing binary_distance_to_the_large_magellanic_cloud_accurate_to_two_pe...An eclipsing binary_distance_to_the_large_magellanic_cloud_accurate_to_two_pe...
An eclipsing binary_distance_to_the_large_magellanic_cloud_accurate_to_two_pe...
 
437FINALREPORTmnras
437FINALREPORTmnras437FINALREPORTmnras
437FINALREPORTmnras
 
Comaskey_William_Poster_SULI_FALL_2014
Comaskey_William_Poster_SULI_FALL_2014Comaskey_William_Poster_SULI_FALL_2014
Comaskey_William_Poster_SULI_FALL_2014
 
3D-Spatiotemporal forecasting the expansion of supernova shells using deep le...
3D-Spatiotemporal forecasting the expansion of supernova shells using deep le...3D-Spatiotemporal forecasting the expansion of supernova shells using deep le...
3D-Spatiotemporal forecasting the expansion of supernova shells using deep le...
 
1008.3907v1
1008.3907v11008.3907v1
1008.3907v1
 
Measuring the Hubble constant with kilonovae using the expanding photosphere ...
Measuring the Hubble constant with kilonovae using the expanding photosphere ...Measuring the Hubble constant with kilonovae using the expanding photosphere ...
Measuring the Hubble constant with kilonovae using the expanding photosphere ...
 
Orbital configurations of spaceborne interferometers for studying photon ring...
Orbital configurations of spaceborne interferometers for studying photon ring...Orbital configurations of spaceborne interferometers for studying photon ring...
Orbital configurations of spaceborne interferometers for studying photon ring...
 
The Cosmic V-Web
The Cosmic V-WebThe Cosmic V-Web
The Cosmic V-Web
 
Sgg crest-presentation-final
Sgg crest-presentation-finalSgg crest-presentation-final
Sgg crest-presentation-final
 
The significance of_the_integrated_sachs_wolfe_effect_revisited
The significance of_the_integrated_sachs_wolfe_effect_revisitedThe significance of_the_integrated_sachs_wolfe_effect_revisited
The significance of_the_integrated_sachs_wolfe_effect_revisited
 
A rapidly spinning_supermassive_black_hole_at_the_centre_of_ngc1365
A rapidly spinning_supermassive_black_hole_at_the_centre_of_ngc1365A rapidly spinning_supermassive_black_hole_at_the_centre_of_ngc1365
A rapidly spinning_supermassive_black_hole_at_the_centre_of_ngc1365
 
The laniakea supercluster_of_galaxies
The laniakea supercluster_of_galaxiesThe laniakea supercluster_of_galaxies
The laniakea supercluster_of_galaxies
 
A filament of dark matter between two clusters of galaxies
A filament of dark matter between two clusters of galaxiesA filament of dark matter between two clusters of galaxies
A filament of dark matter between two clusters of galaxies
 
The multiverse interpretation of quantum mechanics
The multiverse interpretation of quantum mechanicsThe multiverse interpretation of quantum mechanics
The multiverse interpretation of quantum mechanics
 
Deep wide field_and_panchromatic_view_of_47_tuc_and_smc_with_hubble
Deep wide field_and_panchromatic_view_of_47_tuc_and_smc_with_hubbleDeep wide field_and_panchromatic_view_of_47_tuc_and_smc_with_hubble
Deep wide field_and_panchromatic_view_of_47_tuc_and_smc_with_hubble
 
The local nanohertz gravitational-wave landscape from supermassive black hole...
The local nanohertz gravitational-wave landscape from supermassive black hole...The local nanohertz gravitational-wave landscape from supermassive black hole...
The local nanohertz gravitational-wave landscape from supermassive black hole...
 
An atlas of_predicted_exotic_gravitational_lenses
An atlas of_predicted_exotic_gravitational_lensesAn atlas of_predicted_exotic_gravitational_lenses
An atlas of_predicted_exotic_gravitational_lenses
 
Aa16869 11
Aa16869 11Aa16869 11
Aa16869 11
 

Mehr von Sérgio Sacani

Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsSérgio Sacani
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Sérgio Sacani
 
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...Sérgio Sacani
 
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Sérgio Sacani
 
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRFirst Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRSérgio Sacani
 
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...Sérgio Sacani
 
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNHydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNSérgio Sacani
 
Huygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldHuygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldSérgio Sacani
 
The Radcliffe Wave Of Milk Way is oscillating
The Radcliffe Wave Of Milk Way  is oscillatingThe Radcliffe Wave Of Milk Way  is oscillating
The Radcliffe Wave Of Milk Way is oscillatingSérgio Sacani
 
Thermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsThermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsSérgio Sacani
 
Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...Sérgio Sacani
 
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...Sérgio Sacani
 

Mehr von Sérgio Sacani (20)

Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive stars
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
 
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
 
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
 
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRFirst Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
 
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
 
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNHydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
 
Huygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldHuygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious World
 
The Radcliffe Wave Of Milk Way is oscillating
The Radcliffe Wave Of Milk Way  is oscillatingThe Radcliffe Wave Of Milk Way  is oscillating
The Radcliffe Wave Of Milk Way is oscillating
 
Thermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsThermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jets
 
Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...
 
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...
 

A weak lensing_mass_reconstruction_of _the_large_scale_filament_massive_galaxy_cluster_macsj0717

  • 1. Mon. Not. R. Astron. Soc. 000, 1–17 (XXXX) Printed 22 August 2012 (MN L TEX style file v2.2) A A Weak-Lensing Mass Reconstruction of the Large-Scale Filament Feeding the Massive Galaxy Cluster MACSJ0717.5+3745 arXiv:1208.4323v1 [astro-ph.CO] 21 Aug 2012 Mathilde Jauzac,1,2⋆ Eric Jullo,1,3 Jean-Paul Kneib,1 Harald Ebeling,4 Alexie Leauthaud,5 Cheng-Jiun Ma,4 Marceau Limousin,1,6 Richard Massey,7 Johan Richard8 1 Laboratoire d’Astrophysique de Marseille - LAM, Universit´ d’Aix-Marseille & CNRS, UMR7326, 38 rue F. Joliot-Curie, 13388 Marseille Cedex 13, France e 2 Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa 3 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA 4 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, Hawaii 96822, USA 5 Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa, Japan 277-8583 (Kavli IPMU, WPI) 6 Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark 7 Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE, U.K. 8 CRAL, Observatoire de Lyon, Universit´ Lyon 1, 9 Avenue Ch. Andr´ , 69561 Saint Genis Laval Cedex, France e e Accepted 2012 August 20. Received 2012 August 15; in original form: 2012 April 27 ABSTRACT We report the first weak-lensing detection of a large-scale filament funneling matter onto the core of the massive galaxy cluster MACSJ0717.5+3745. Our analysis is based on a mosaic of 18 multi-passband images obtained with the Ad- vanced Camera for Surveys aboard the Hubble Space Telescope, covering an area of ∼ 10×20 arcmin2 . We use a weak-lensing pipeline developed for the COSMOS survey, modified for the analysis of galaxy clusters, to produce a weak-lensing catalogue. A mass map is then com- puted by applying a weak-gravitational-lensing multi-scale reconstruction technique designed to describe irregular mass distributions such as the one investigated here. We test the result- ing mass map by comparing the mass distribution inferred for the cluster core with the one derived from strong-lensing constraints and find excellent agreement. Our analysis detects the MACSJ0717.5+3745 filament within the 3 sigma detection con- tour of the lensing mass reconstruction, and underlines the importance of filaments for the- oretical and numerical models of the mass distribution in the Cosmic Web. We measure the filament’s projected length as ∼ 4.5 h−1 Mpc, and its mean density as (2.92±0.66)×108 h74 M⊙ 74 kpc−2 . Combined with the redshift distribution of galaxies obtained after an extensive spectro- scopic follow-up in the area, we can rule out any projection effect resulting from the chance alignment on the sky of unrelated galaxy group-scale structures. Assuming plausible con- straints concerning the structure’s geometry based on its galaxy velocity field, we construct a 3D model of the large-scale filament. Within this framework, we derive the three-dimensional length of the filament to be 18 h−1 Mpc. The filament’s deprojected density in terms of the 74 critical density of the Universe is measured as (206 ± 46) × ρcrit , a value that lies at the very high end of the range predicted by numerical simulations. Finally, we study the distribution of stellar mass in the field of MACSJ0717.5+3749 and, adopting a mean mass-to-light ratio M∗ /LK of 0.73 ± 0.22 and assuming a Chabrier Initial-Mass Function, measure a stellar mass fraction along the filament of (0.9 ± 0.2)%, consistent with previous measurements in the vicinity of massive clusters. Key words: cosmology: observations - gravitational lensing - large-scale structure of Uni- verse 1 INTRODUCTION In a Universe dominated by Cold Dark Matter (CDM), such as ⋆ E-mail: mathilde.jauzac@gmail.com (MJ) the one parameterised by the ΛCDM concordance cosmology, hi-
  • 2. 2 M. Jauzac, E. Jullo, J.-P. Kneib, H. Ebeling, A. Leauthaud, C. J. Ma, M. Limousin, R. Massey, J. Richard erarchical structure formation causes massive galaxy clusters to form through a series of successive mergers of smaller clusters and groups of galaxies, as well as through continuous accretion of surrounding matter. N-body simulations of the dark-matter dis- tribution on very large scales (Bond et al. 1996; Yess & Shandarin 1996; Arag´ n-Calvo et al. 2007; Hahn et al. 2007) predict that o these processes of merging and accretion occur along preferred di- rections, i.e., highly anisotropically. The result is the “cosmic web” (Bond et al. 1996), a spatially highly correlated structure of inter- connected filaments and vertices marked by massive galaxy clus- ters. Abundant observational support for this picture has been pro- vided by large-scale galaxy redshift surveys (e.g., Geller & Huchra 1989; York et al. 2000; Colless et al. 2001) showing voids sur- rounded and connected by filaments and sheets of galaxies. A variety of methods have been developed to detect filaments in surveys, among them a “friends of friends” algorithm (FOF, Huchra & Geller 1982) combined with “Shapefinders” statistics (Sheth & Jain 2003); the “Skeleton” algorithm (Novikov et al. 2006; Sousbie et al. 2006); a two-dimensional technique developed by Moody et al. (1983); and the Smoothed Hessian Major Axis Fil- ament Finder (SHMAFF, Bond et al. 2010). Figure 1. Area of our spectroscopic survey of MACSJ0717.5+3745. Out- Although ubiquitous in large-scale galaxy surveys, filaments lined in red is the region covered by our Keck/DEIMOS masks; outlined have proven hard to characterise physically, owing to their low in blue is the area observed with HST/ACS. Small circles correspond to density and the fact that the best observational candidates often objects for which redshifts were obtained; large filled circles mark cluster turn out to be not primordial in nature but the result of recent members. The black contours show the projected galaxy density (see Ma et cluster mergers. Specifically, attempts to study the warm-hot in- al. 2008). tergalactic medium (WHIM, Cen & Ostriker 1999), resulting from the expected gravitational heating of the intergalactic medium in filaments, remain largely inconclusive because it is hard to ascer- gaps between CCD chips. Indeed, Gavazzi et al. (2004) showed tain for filaments near cluster whether spectral X-ray features orig- the detection to have been spurious by means of a second study inate from the filament or from past or ongoing clusters merg- of MS0302+17 using the CFHT12K camera. A weak gravitational ers (Kaastra et al. 2006; Rasmussen 2007; Galeazzi et al. 2009; lensing analysis with MPG/ESO Wide Field Imager conducted by Williams et al. 2010). Some detections appear robust as they have Gray et al. (2002) claimed the detection of a filament in the triple been repeatedly confirmed (Fang et al. 2002, 2007; Williams et al. cluster A901/902. The candidate filament appeared to connect two 2007) but are based on just one X-ray line. An alternative observa- of the clusters and was detected in both the galaxy distribution and tional method is based on a search for filamentary overdensities of in the weak-lensing mass map. However, this detection too was galaxies relative to the background (Pimbblet & Drinkwater 2004; of low significance and coincided partly with a gap between two Ebeling et al. 2004). When conducted in 3D, i.e., including spec- chips of the camera. As in the case of MS0302+17, a re-analysis of troscopic galaxy redshifts, this method is well suited to detecting the A901/A902 complex using high-quality HST/ACS images by filament candidates. It does, however, not allow the determination Heymans et al. (2008) failed to detect the filament and led the au- of key physical properties unless it is supplemented by follow-up thors to conclude that the earlier detection was caused by residual studies targeting the presumed WHIM and dark matter which are PSF systematics and limitation of the KS93 mass reconstruction expected to constitute the vast majority of the mass of large-scale used in the study by Gray et al. (2002). A further detection of a filaments. By contrast, weak gravitational lensing offers the tan- filament candidate was reported by Dietrich et al. (2005) based on talising possibility of detecting directly the total mass content of a weak gravitational lensing analysis of the close double cluster filaments (Mead et al. 2010), since the weak-lensing signal arises A222/A223. However, as in other similar cases, the proximity of from luminous and dark matter alike, regardless of its dynamical the two clusters connected by the putative filament raises the pos- state. sibility of the latter being a merger remnant rather than primordial Previous weak gravitational lensing studies of binary clusters in nature. found tentative evidence of filaments, but did not result in clear de- In this paper we describe the first weak gravitational analy- tections. One of the first efforts was made by Clowe et al. (1998) sis of the very massive cluster MACSJ0717.5+3745 (z = 0.55; who reported the detection of a filament apparently extending from Edge et al. 2003; Ebeling et al. 2004, 2007; Ma et al. 2008, 2009). the distant cluster RX J1716+67 (z = 0.81), using images obtained Optical and X-ray analyses of the system (Ebeling et al. 2004; with the Keck 10m telescope and University of Hawaii (UH) 2.2m Ma et al. 2008, 2009) find compelling evidence of a filamentary telescope. This filamentary structure would relate two distinct sub structure extending toward the South-East of the cluster core. Us- clusters detected on the mass and light maps. The detection was ing weak-lensing data to reconstruct the mass distribution in and not confirmed though. Almost at the same time Kaiser et al. (1998) around MACSJ0717.5+3745, we directly detect the reported fila- conducted a weak lensing study of the supercluster MS0302+17 mentary structure in the field of MACSJ0717.5+3745. with the UH8K CCD camera on the Canada France Hawaii Tele- The paper is organized as follows. After an overview of scope (CFHT). Their claimed detection of a filament in the field the observational data in Section 2, we discuss the gravitational was, however, questioned on the grounds that the putative fila- lensing data in hand in Section 3. The modeling of the mass ment overlapped with both a foreground structure as well as with using a multi-scale approach is described in Section 4. Results are
  • 3. The Large-Scale Filament Feeding MACSJ0717.5+3745 3 Table 1. Overview of the HST/ACS observations of MACSJ0717.5+3745. *: Cluster core; observed through F555W, rather than F606W filter. F606W F814W R.A. (J2000) Dec (J2000) Date Exposure Time (s) Date Exposure Time (s) Programme ID 07 17 32.93 +37 45 05.4 2004-04-02* 4470* 2004-04-02 4560 9722 07 17 31.81 +37 49 20.6 2005-02-08 1980 2005-02-08 4020 10420 07 17 20.38 +37 47 07.5 2005-01-27 1980 2005-01-27 4020 10420 07 17 08.95 +37 44 54.3 2005-01-27 1980 2005-01-27 4020 10420 07 17 43.23 +37 47 03.1 2005-01-30 1980 2005-01-30 4020 10420 07 17 20.18 +37 42 38.8 2005-02-01 1980 2005-02-01 4020 10420 07 17 54.26 +37 44 49.3 2005-01-27 1980 2005-01-27 4020 10420 07 17 42.82 +37 42 36.3 2005-01-24 1980 2005-01-25 4020 10420 07 17 31.39 +37 40 23.3 2005-02-01 1980 2005-02-01 4020 10420 07 18 05.46 +37 42 33.6 2005-02-04 1980 2005-02-04 4020 10420 07 17 54.02 +37 40 20.6 2005-02-04 1980 2005-02-04 4020 10420 07 17 42.79 +37 38 05.7 2005-02-05 1980 2005-02-05 4020 10420 07 18 16.65 +37 40 17.7 2005-02-05 1980 2005-02-05 4020 10420 07 18 05.22 +37 38 04.9 2005-02-05 1980 2005-02-05 4020 10420 07 17 53.79 +37 35 52.0 2005-02-05 1980 2005-02-05 4020 10420 07 18 27.84 +37 38 01.9 2005-02-08 1980 2005-02-08 4020 10420 07 18 16.40 +37 35 49.1 2005-02-08 1980 2005-02-08 4020 10420 07 18 04.97 +37 33 36.2 2005-02-09 1980 2005-02-09 4020 10420 discussed in Section 5, and we present our conclusions in Section 6. Table 2. Overview of groundbased imaging observations of MACSJ0717.5+3745. All our results use the ΛCDM concordance cosmology with ΩM = 0.3, ΩΛ = 0.7, and a Hubble constant H0 = 74 km s−1 Mpc−1 , hence 1” corresponds to 6.065 kpc at the redshift of the cluster. Subaru CFHT Magnitudes are quoted in the AB system. B V RC IC z’ u* J KS Exposure (hr) 0.4 0.6 0.8 0.4 0.5 1.9 1.8 1.7 Seeing (arcsec) 0.8 0.7 1.0 0.8 0.6 1.0 0.9 0.7 2 OBSERVATIONS The MAssive Cluster Survey (MACS, Ebeling et al. 2001) was the first cluster survey to search exclusively for very massive clusters at moderate to high redshift. Covering over 20,000 deg2 and us- ing dedicated optical follow-up observations to identify faint X- ray sources detected in the ROSAT All-Sky Survey, MACS com- piled a sample of over 120 very X-ray luminous clusters at z > 0.3, February 9, 2005, with the ACS aboard HST (GO-10420, PI Ebel- thereby more than tripling the number of such systems previously ing). The 3×6 mosaic consists of images in the F606W and F814W known. The high-redshift MACS subsample (Ebeling et al. 2007) filters, observed for roughly 2.0 ks and 4.0 ks respectively (1 & 2 comprises 12 clusters a z > 0.5. MACSJ0717.5+3745 is one of HST orbits). Only 17 of the 18 tiles of the mosaic were covered them. All 12 were observed with the ACIS-I imaging spectrograph though, since the core of the cluster had been observed already (see onboard the Chandra X-ray Observatory. Moderately deep optical Tab. 1 for more details). images covering 30 × 27 arcmin2 were obtained in five passbands Charge Transfer Inefficiency (CTI), due to radiation damage (B, V, R, I, z′ ) with the SuprimeCam wide-field imager on the of the ACS CCDs above the Earth’s atmosphere, creates spurious Subaru 8.2m Telescope, and supplemented with u-band imaging trails behind objects in HST/ACS images. Since CTI affects galaxy obtained with MegaCam on the Canada France Hawaii Telescope photometry, astrometry, and shape measurements, correcting the ef- (CFHT). Finally, the cores of all clusters in this MACS subsam- fect is critical for weak-lensing studies. We apply the algorithm ple were observed with the Advanced Camera for Surveys (ACS) proposed by Massey et al. (2010) which operates on the raw data onboard HST in two bands, F555W & F814W, for 4.5ks in both and returns individual electrons to the pixels from which they were bands, as part of programmes GO-09722 and GO-11560 (PI Ebel- erroneously dragged during readout. Image registration, geometric ing). distortion corrections, sky subtraction, cosmic ray rejection, and the final combination of the dithered images are then performed using the standard MULTIDRIZZLE routines (Koekemoer et al. 2002). MULTIDRIZZLE parameters are set to values optimised for pre- 2.1 HST/ACS Wide-Field Imaging cise galaxy shape measurement (Rhodes et al. 2007), and output A mosaic of images of MACSJ0717.5+3745 and the filamentary images created with a 0.03” pixel grid, compared to the native ACS structure to the South-East was obtained between January 24 and pixel scale of 0.05”.
  • 4. 4 M. Jauzac, E. Jullo, J.-P. Kneib, H. Ebeling, A. Leauthaud, C. J. Ma, M. Limousin, R. Massey, J. Richard 4 BRI selection BRI Redshift Distribution All galaxies before BRI selection Foreground galaxies (zphot) 250 after BRI selection Cluster galaxies (zphot) Foreground & Cluster galaxies (zspec) 3 200 Number of galaxies MAGB −MAGRc 150 2 100 1 50 0 0.0 0.5 1.0 1.5 0.2 0.4 0.6 0.8 1.0 1.2 1.4 MAGRc − MAGIc z Figure 2. Colour-colour diagram (B−R vs R−I) for objects within the Figure 3. Redshift distribution of all galaxies with B, Rc , and Ic photometry HST/ACS mosaic of MACSJ0717.5+3745. Grey dots represent all objects from Subaru/SuprimeCam observations that have photometric or spectro- in the study area. Unlensed galaxies diluting the shear signal are marked by scopic redshifts (black histogram). The cyan histogram shows the redshift different colours: galaxies spectroscopically confirmed as cluster members distribution of galaxies classified as background objects using the BRI cri- or foreground galaxies (green); galaxies classified as foreground objects be- terion illustrated in Fig. 2. cause of their photometric redshifts (red); and galaxies classified as cluster members via photometric redshifts (yellow). The solid black lines delin- eate the BRI colour-cut defined for this work to mitigate shear dilution by unlensed galaxies. 2.3 Spectroscopic and Photometric Redshifts Spectroscopic observations of MACSJ0717.5+3745 (including the full length of the filament) were conducted between 2000 and 2008, mainly with the DEIMOS spectrograph on the Keck-II 10m tele- scope on Mauna Kea, supplemented by observations of the cluster 2.2 Groundbased Imaging core region performed with the LRIS and GMOS spectrographs on Keck-I and Gemini-North, respectively. The DEIMOS instrument MACSJ0717.5+3745 was observed in the B, V, Rc , Ic and z′ bands setup combined the 600ZD grating with the GC455 order-blocking with the Suprime-Cam wide-field camera on the Subaru 8.2m tele- filter and a central wavelength between 6300 and 7000 Å; the expo- scope (Miyazaki et al. 2002). These observations are supplemented sure time per MOS (multi-object spectroscopy) mask was typically by images in the u* band obtained with the MegaPrime camera on 3×1800 s. A total of 18 MOS masks were used in our DEIMOS the CFHT 3.6m telescope, as well as near-infrared imaging in the observations; spectra of 1752 unique objects were obtained (65 of J and KS bands obtained with WIRcam on CFHT. Exposure times them with LRIS, and 48 with GMOS), yielding 1079 redshifts, 537 and seeing conditions for these observations are listed in Tab. 2 of them of cluster members. Figure 1 shows the area covered by (see also C.-J. Ma, Ph.D. thesis). All data were reduced using stan- our spectroscopic survey as well as the loci of the targeted galax- dard techniques which were, however, adapted to deal with special ies. The data were reduced with the DEIMOS pipeline developed characteristics of the Suprime-Cam and MegaPrime data; for more by the DEEP2 project. details see Donovan (2007). Photometric redshifts for galaxies with mRc <24.0 were com- The groundbased imaging data thus obtained are used primar- puted using the adaptive SED-fitting code Le Phare (Arnouts et al. ily to compute photometric redshifts which allow the elimination 1999; Ilbert et al. 2006, 2009). In addition to employing χ2 opti- of cluster members and foreground galaxies that would otherwise mization during SED fitting, Le Phare adaptively adjusts the pho- dilute the shear signal. To this end we use the object catalogue com- tometric zero points by using galaxies with spectroscopic redshifts piled by Ma et al. (2008) which we describe briefly in the follow- as a training set. This approach reduces the fraction of catastrophic ing. Imaging data from the passbands listed in Tab. 2 were seeing- errors and also mitigates systematic trends in the differences be- matched using the technique described in Kartaltepe et al. (2008) tween spectroscopic and photometric redshifts (Ilbert et al. 2006). in order to allow a robust estimate of the spectral energy distribu- Further details, e.g. concerning the selection of targets for tion (SED) for all objects within the field of view. The object cata- spectroscopy or the spectral templates used for the determination logue was then created using the SExtractor photometry package of photometric redshifts, are provided by Ma et al. (2008). The full (Bertin & Arnouts 1996) in ”dual mode” using the R-band image as redshift catalogue as well as an analysis of cluster substructure and the reference detection image. More details are given in Ma et al. dynamics as revealed by radial velocities will be presented in Ebel- (2008). ing et al. (2012, in preparation).
  • 5. The Large-Scale Filament Feeding MACSJ0717.5+3745 5 3.0 uBV selection uBV Redshift Distribution All galaxies before uBV selection Foregound galaxies (zphot) 250 after uBV selection Cluster galaxies (zphot) 2.5 Foreground & Cluster galaxies (zspec) 200 2.0 Number of galaxies MAGB −MAGV 150 1.5 100 1.0 0.5 50 0.0 0 −0.5 0.0 0.5 1.0 1.5 0.2 0.4 0.6 0.8 1.0 1.2 1.4 MAGu − MAGB z Figure 4. As Fig. 2 but for the B−V and u−B colours. The solid black Figure 5. Redshift distribution of all galaxies with u, B, and V photome- line delineates the uBV colour-cut defined for this work to mitigate shear try from CFHT/MegaCam and Subaru/SuprimeCam observations that have dilution by unlensed galaxies. photometric or spectroscopic redshifts (black histogram). The cyan his- togram shows the redshift distribution of galaxies classified as background objects using the uBV criterion illustrated in Fig. 4. 3 WEAK GRAVITATIONAL LENSING ANALYSIS 3.1 The ACS catalogue all quantities derived from it. Identifying and eliminating as many Our weak-lensing analysis is based on shape measurements in the of the contaminating unlensed galaxies is thus critical. ACS/F814W band. Following a method developed for the anal- As a first step, we identify cluster galaxies with the help ysis of data obtained for the COSMOS survey and described in of the catalogue of photometric and spectroscopic redshifts com- Leauthaud et al. (2007) (hereafter L07) we use the SExtractor piled by Ma et al. (2008) from groundbased observations of the photometry package (Bertin & Arnouts 1996) to detect sources in MACSJ0717.5+3745 field; the limiting magnitude of this cata- our ACS imaging data in a two-step process. Called the “Hot-Cold” logue is mRc = 24. According to Ma & Ebeling (2010), all galaxies technique (Rix et al. 2004, L07), it consists of running SExtractor with spectroscopic redshifts 0.522 < zspec < 0.566 and with photo- twice: first with a configuration optimised for the detection of only metric redshifts 0.48 < z phot < 0.61 can be considered to be cluster the brightest objects (the “cold” step), then a second time with a galaxies. An additional criterion can be defined using the photomet- configuration optimised for the detection of the faint objects (the ric redshifts derived as described in Sect. 2.3. Taking into account “hot” step) that contain most of the lensing signal. The resulting the statistical uncertainty of ∆z = 0.021 of the photometric red- object catalogue is then cleaned by removing spurious or duplicate shifts, galaxies are defined as cluster members if their photometric detections using a semi-automatic algorithm that defines polygonal redshift satisfies the criterion: masks around stars or saturated pixels. |z phot − zcluster | < σ phot−z , Star-galaxy classification is performed by examining the dis- tribution of objects in the magnitude (MAG AUTO) vs peak with surface-brightness (MU MAX) plane. This diagram allows us to separate three classes of objects: galaxies, stars, and any remaining σ phot−z = (1 + zcluster )∆z = 0.036, spurious detections (i.e., artifacts, hot pixels and residual cosmic where z phot and zcluster are the photometric redshift of the galaxy rays). Finally, the drizzling process introduces pattern-dependent and the spectroscopic redshift of the galaxy cluster respectively. correlations between neighbouring pixels which artificially reduces Reflecting the need for a balance between completeness and con- the noise level of co-added drizzled images. We apply the remedy tamination, these redshift limits are much more generous than those used by L07 by simply scaling up the noise level in each pixel by used in conjunction with spectroscopic redshifts, which set the red- the same constant FA ≈ 0.316, defined by Casertano et al. (2000). shift range for cluster membership to 3σ ∼ 0.0122. For more details, see C.-J. Ma (Ph.D. thesis), as well as Ma et al. (2008); Ma & Ebeling (2010). 3.2 Foreground, Cluster & Background Galaxy In spite of these cuts according to galaxy redshift, the remain- Identifications ing ACS galaxy sample is most likely still contaminated by fore- Since only galaxies behind the cluster are gravitationally lensed, the ground and cluster galaxies, the primary reason being the large presence of cluster members and foreground galaxies in our ACS difference in angular resolution and depth between the ACS and catalogue dilutes the observed shear and reduces the significance of Subaru images. The relatively low resolution of the groundbased
  • 6. 6 M. Jauzac, E. Jullo, J.-P. Kneib, H. Ebeling, A. Leauthaud, C. J. Ma, M. Limousin, R. Massey, J. Richard data causes the Subaru catalogue to be confusion limited and makes the lens-source system. The convergence κ is defined as the dimen- matching galaxies between the two catalogues difficult, especially sionless surface mass density of the lens: near the cluster core. As a result, we can assign a redshift to only 1 2 Σ(DOL θ) ∼ 15% of the galaxies in the HST/ACS galaxy catalogue. κ(θ) = ∇ ϕ(θ) = , (1) 2 Σcrit For galaxies without redshifts, we use colour-colour diagrams (B−R vs R−I, Fig. 2, and B−V vs u−B, Fig. 4) to identify fore- where θ is the angular position of the background galaxy, ϕ is the ground and cluster members. Using galaxies with spectroscopic or deflection potential, Σ(DOL θ) is the physical surface mass density photometric redshifts from the full photometric Subaru catalogue of the lens, and Σcrit is the critical surface mass density defined as with a magnitude limit of mRc = 25, we identify regions marked c2 DOS dominated by unlensed galaxies (foreground galaxies and cluster Σcrit = . 4πGDOL DLS members). In the BRI plane we find B−R < 2.6 (R−I) + 0.05; (R−I) > 1.03; or (B−R) < 0.9 to best isolate unlensed galaxies; in Here, DOL , DOS , and DLS represent the angular distances from the the UBV plane the most efficient criterion is B−V < −0.5 (u−B) + observer to the lens, from the observer to the source, and from the 0.85. lens to the source, respectively. Figures 3 and 5 show the galaxy redshift distributions before Considering the shear γ as a complex number, we define and after the colour-colour cuts (BRI or uBV) are applied. The re- γ = γ1 + iγ2 , sults of either kind of filtering are similar. The uBV selection is more efficient at removing cluster members and foreground galax- where γ1 = |γ| cos 2φ and γ2 = |γ| sin 2φ are the two components of ies at z 0.6 (20% remain compared to 30% for the BRI criterion) the shear, γ, defined previously, and φ is the orientation angle. With but also erroneously eliminates part of the background galaxy pop- this definition, the shear is defined in terms of the derivatives of the ulation. Comparing the convergence maps for both colour-colour deflection potential as : selection schemes, we find the uBV selection to yield a better de- 1 tection of structures in the area surrounding the cluster, indicating γ1 = (ϕ11 − ϕ22 ), that suppressing contamination by unlensed galaxies is more im- 2 portant than a moderate loss of background galaxies from our final γ2 = ϕ12 = ϕ21 , catalogue (see Sect. 5 for more details). Since the redshift distribution of the background population with peaks at 0.61 < z < 0.70 (cyan curve in Fig. 5) we assign, in the ∂2 mass modelling phase, a redshift z = 0.65 to background galaxies ϕi j = ϕ(θ), i, j ∈ (1, 2). ∂θi ∂θ j without redshift. Following Kaiser & Squires (1993), the complex shear is re- lated to the convergence by: 3.3 Shape measurements of Galaxies & Lensing Cuts 1 κ(θ) = − d2 θ′ Re[D(θ − θ′ )γ∗ (θ′ )]. 3.3.1 Theoretical Weak Gravitational Lensing Background π The shear signal contained in the shapes of lensed background Here D(θ) is the complex kernel, defined as galaxies is induced by a given foreground mass distribution. In the 2 2 θ1 − θ2 + 2iθ1 θ2 weak-lensing regime this shear is observed as a statistical deforma- D(θ) = , tion of background sources. The observed shape of a source galaxy, |θ|4 ε, is directly related to the lensing-induced shear, γ, according to and Re(x) defines the real part of the complex number x. The aster- the relation : isk denotes complex conjugation. The last equation shows that the surface mass density κ(θ) of the lens can be reconstructed straight- ε = εintrinsic + εlensing , forwardly if the shear γ(θ) caused by the deflector can be measured where εintrinsic is the intrinsic shape of the source galaxy (which locally as a function of the angular position θ. would be observed in the absence of gravitational lensing), and γ εlensing = . 3.3.2 The RRG method 1−κ Here κ is the convergence. In the weak-lensing regime, κ ≪ 1, To measure the shape of galaxies we use the RRG method which reduces the relation between the intrinsic and the observed (Rhodes et al. 2000) and the pipeline developed by L07. Having shape of a source galaxy to been developed for the analysis of data obtained from space, the RRG method is ideally suited for use with a small, diffraction- ε = εintrinsic + γ. limited PSF as it decreases the noise on the shear estimators by Assuming galaxies are randomly oriented on the sky, the ellipticity correcting each moment of the PSF linearly, and only dividing them of galaxies is an unbiased estimator of the shear, down to a limit at the very end to compute an ellipticity. referred to as “intrinsic shape noise”, σintrinsic (for more details see The ACS PSF is not as stable as one might expect from a L07; Leauthaud et al. 2010, hereafter L10). Unavoidable errors in space-based camera. Rhodes et al. (2007) showed that both the size the galaxy shape measurement are accounted for by adding them in and the ellipticity pattern of the PSF varies considerably on time quadrature to the“intrinsic shape noise”: scales of weeks due to telescope ’breathing’. The thermal expan- sion and contraction of the telescope alter the distance between the σ2 = σ2 γ 2 measurement + σintrinsic . primary and the secondary mirrors, inducing a deviation of the ef- The shear signal induced on a background source by a given fective focus and thus from the nominal PSF which becomes larger foreground mass distribution will depend on the configuration of and more elliptical. Using version 6.3 of the TinyTim ray-tracing
  • 7. The Large-Scale Filament Feeding MACSJ0717.5+3745 7 program, Rhodes et al. (2007) created a grid of simulated PSF im- In order to optimize the signal-to-noise ratio, we introduce an ages at varying focus offsets. By comparing the ellipticity of ∼ inverse-variance weighting scheme following L10: 20 stars in each image to these models, Rhodes et al. (2007) were able to determine the effective focus of the images. Tests of this 1 wγ = ˜ . algorithm on ACS/WFC images of dense stellar fields confirmed σ2 γ ˜ that the best-fit effective focus can be repeatedly determined from a random sample of 10 stars brighter than mF814W = 23 with an Hence faint small galaxies which have large measurement errors rms error of 1µm. Once images have been grouped by their effec- are down-weighted with respect to sources that have well measured tive focus position, the few stars in each images can be combined shapes. into one large catalog. PSF parameters are then interpolated using a polynomial fit in the usual weak-lensing fashion (Massey et al. 2002). More details on the PSF modelling scheme are given in Rhodes et al. (2007). 3.3.4 Lensing Cuts The RRG method returns three parameters: d, a measure of the galaxy size, and, the ellipticity represented by the vector e = (e1 , e2 ) The last step in constructing the weak-lensing catalogue for the defined as follows: MACSJ0717.5+3745 field consists of applying lensing cuts, i.e., to exclude galaxies whose shape parameters are ill-determined and a2 − b2 will increase the noise in the shear measurement more than they add e = a2 + b2 to the shear signal. However, in doing so, we need to take care not e1 = e cos(2φ) to introduce any biases. We use three galaxy properties to establish e2 = e sin(2φ), the following selection criteria: where a and b are the half-major and half-minor axis of the back- • Their estimated detection significance: ground galaxy, respectively, and φ is the orientation angle of the ellipse defined previously. The ellipticity e is then calibrated by a S FLUX AUT O = > 4.5; factor called shear polarizability, G, to obtain the shear estimator γ: ˜ N FLUXERR AUT O e where FLUX AUTO and FLUXERR AUTO are parameters re- γ=C ˜ . (2) G turned by SExtractor; The shear susceptibility factor G is measured from moments of the • Their total ellipticity: global distribution of e and other shape parameters of higher or- der (see Rhodes et al. 2000). The Shear TEsting Program (STEP; e= e2 + e2 < 1; 1 2 Massey et al. 2007) for COSMOS images showed that G is not con- stant but varies as a function of redshift and S/N. To determine G • Their size as defined by the RRG d parameter: for our galaxy sample we use the same definition as the one used for the COSMOS weak-lensing catalogue (see L07): d > 0.13′′ . S /N − 17 G = 1.125 + 0.04 arctan . The requirement that the galaxy ellipticity be less than unity 4 may appear trivial and superfluous. In practice it is meaningful Finally, C, in Eq. 2 is the calibration factor. It was determined though since the RRG method allows measured ellipticity values using a set of simulated images similar to those used by STEP to be greater than 1 because of noise, although ellipticity is by def- (Heymans et al. 2006; Massey et al. 2006) for COSMOS images, inition restricted to e 1. Because Lenstool prevents ellipticities and is given by C = (0.86−0.05 )−1 (for more details see L07). +0.07 to be larger than 1, we removed the 251 objects with an ellipticity greater than unity from the RRG catalogue (2% of the catalogue). Serving a similar purpose, the restriction in the RRG size parameter 3.3.3 Error of the Shear Estimator d aims to eliminate sources with uncertain shapes. PSF corrections become increasingly significant as the size of a galaxy approaches As explained in Sect. 3.3.1, the uncertainty in our shear estimator that of the PSF, making the intrinsic shape of a galaxy difficult to is a combination of intrinsic shape noise and shape measurement measure. error: Our final weak-lensing catalogue is composed of 10170 back- σ2 = σ2 2 ground galaxies, corresponding to a density of ∼ 52 galaxies γ ˜ intrinsic + σmeasurement , arcmin−2 . In addition to applying the aforementioned cuts, and in 2 where σγ is referred to as shape noise. The shape measurement ˜ order to ensure an unbiased mass reconstruction in the weak lens- error is determined for each galaxy as a function of size and mag- ing regime only, we also remove all background galaxies located nitude. Applying the method implemented in the PHOTO pipeline in the multiple-image (strong-lensing) region defined by an ellipse (Lupton et al. 2001) to analyze data from the Sloan Digital Sky Sur- aligned with the cluster elongation and with a semi-major axis of vey, we assume that the optical moments of each object are the 55”, a semi-minor axis of 33”. From the resulting mass-map pre- same as the moments computed for a best-fit Gaussian. Since the sented in Sect. 5, we a-posteriori derived a convergence histogram ellipticity components (which are uncorrelated) are derived from of the pixels outside this region, and found that 90% of them are the moments, the variances of the ellipticity components can be smaller than κ = 0.1, with a mean value of κ = 0.03. The shear obtained by linearly propagating the covariance matrix of the mo- and convergence are so weak because the ratio DLS /DOS = 0.14 ments. The value of the intrinsic shape noise, σintrinsic , is taken to be for background galaxies at redshift zmed = 0.65 and the cluster at 0.27 (for more details see L07, L10). z = 0.54 (see Sect. 4).
  • 8. 8 M. Jauzac, E. Jullo, J.-P. Kneib, H. Ebeling, A. Leauthaud, C. J. Ma, M. Limousin, R. Massey, J. Richard 4 MASS DISTRIBUTION The mass modelling for the entire MACSJ0717.5+3745 field is performed using the LENSTOOL1 (Jullo et al. 2007) software, us- ing the adaptive-grid technique developed by Jullo & Kneib (2009) and modified by us for weak-lensing mass measurements. Because LENSTOOL implements a Bayesian sampler, it provides many mass maps fitting the data that can be used to obtain a mean mass map and to determine its error. 4.1 Multi-Scale Grid Method We start with the method proposed by Jullo & Kneib (2009) to model the cluster mass distribution using gravitational lensing. This Figure 6. Distribution of grid nodes and galaxy-scale potentials, superim- recipe uses a multi-scale grid of Radial Basis Functions (RBFs) posed on the K-band light map of MACSJ0717.5+3745. Cyan crosses rep- with physically motivated profiles and lensing properties. With a resent the location of 468 RBFs at the nodes of the multi-scale grid; magenta minimal number of parameters, the grid of RBFs of different sizes circles represent galaxy-scale potentials used to describe the contribution of provides higher resolution and sharper contrast in regions of higher individual cluster members. The white dashed line defines the HST/ACS density where the number of constraints is generally higher. It is field of view. The white cross marks the cluster centre at 07:17:30.025, +37:45:18.58 (R.A., Dec). well suited to describe irregular mass distributions like the one in- vestigated here. The initial multi-scale grid is created from a smoothed map Jullo & Kneib (2009) found to yield an optimal compromise be- of the cluster K-band light and is recursively refined in the densest tween model flexibility and overfitting. We then adapt the technique regions. In the case of MACSJ0717.5+3745, this method is fully proposed by Diego et al. (2007) to our multiscale grid model to fit adaptive as we want to sample a wide range of masses, from the the weak-lensing data (κ ≪ 1). Assuming a set of M images and a cluster core to the far edge of the HST/ACS field where the fil- i model comprised of N RBFs, the relation between the weights σ2 0 amentary structure is least dense. Initially, the field of interest is and the 2M components of the shear is given by limited to a hexagon, centred on the cluster core and split into six equilateral triangles (see Fig. 1 in Jullo & Kneib 2009). This initial   (1,1) ∆(1,N)  1 ···  grid is subsequently refined by applying a splitting criterion that is  γ1    ∆1   1     . .  based on the surface density of the light map. Hence, a triangle will  .    .       . .. .    .    . .   σ2 1  .         be split into four smaller triangles if it contains a single pixel that    (M,1)   M  γ    (M,N)  0      ∆ ··· ∆1   1     1  .     exceeds a predefined light-surface-density threshold.  .     =  (1,1)       .   ∆(1,N)  1  γ    ∆ ···        Once the adaptive grid is set up, RBFs described by Trun-  2   2 2      .       2N   σ   . .   cated Isothermal Mass Distributions (TIMD), circular versions   .     . .. .   0 .   .   . .                of truncated Pseudo Isothermal Elliptical Mass Distributions  M   (1,M) (M,N)  γ2  ∆2 ··· ∆2 (PIEMD) (see, e.g., Kassiola & Kovner 1993; Kneib et al. 1996; Limousin et al. 2005; El´asd´ ttir et al. 2007) are placed at the grid ı o with node locations. The analytical expression of the TIMD mass sur- DiLS (i, j) face density is given by ∆(i, j) = 1 γ , DiOS 1 2 Σ(R) = σ0 f (R, rcore , rcut ) DiLS (i, j) with ∆(i, j) = 2 γ ,   DiOS 2   1 rcut 1 1   f (R, rcore , rcut ) =      −   .   where 2G rcut − rcore   rcore + R2 2    2 rcut +R 2  1 γ1 j) = (i,  (∂11 Φ j (Ri j ) − ∂22 Φi (Ri j )), 2 Hence, f defines the profile, and σ2 defines the weight of the 0 RBF. This profile is characterized by two changes in slope at ra- γ2 j) = ∂12 Φ j (Ri j ) = ∂21 Φ j (Ri j ), (i, dius values of rcore and rcut . Within rcore , the surface density is ap- proximately constant, between rcore and rcut , it is isothermal (i.e., and Σ ∝ r−1 ), and beyond rcut it falls as Σ ∝ r−3 . This profile is physi- Ri j = |θi − θ j |. cally motivated and meets the three important criteria of a) featur- ing a finite total mass, b) featuring a finite central density, and c) In the above, DiLS and DiOS are the angular distances from the being capable of describing extended flat regions, in particular in RBF j to the background source i and from the observer to the the centre of clusters. background source i, respectively, and Φ is the projected gravita- The RBFs’ rcore value is set to the size of the smallest nearby tional potential. γk=1,2 are the two components of the shear, ∆(i, j) k=1,2 triangle, and their rcut parameter is set to 3rcore , a scaling that j is the value of the RBF normalized with σ2 = 1, centered on the 0 grid node located at θ j , and computed at a radius R = |θi − θ j |. The contribution of this RBF to the predicted shear at location θi is j 1 LENSTOOL is available online: http://lamwws.oamp.fr/lenstool given by the product ∆(i, j) σ2 (see Eq. 1). More details about this k=1,2 0
  • 9. The Large-Scale Filament Feeding MACSJ0717.5+3745 9 method will be provided in a forthcoming paper (Jullo et al. 2012, in preparation). Figure 6 shows the distribution of the 468 RBFs superimposed on the light map used to define the multi-scale grid. The smallest RBF has a rcore = 26′′ . Note that although Lenstool can perform strong lensing, and reduced-shear optimization, here the proposed formalism assumes weak-shear with κ ≪ 1. To get an unbiased es- timator, we remove the background galaxies near the cluster core from the catalogue, but we keep RBFs in this region as we found it improves the mass reconstruction. In order to check our weak-shear assumption, we multiply the resulting convergence map by the fac- tor 1 − κ, and find this minor correction only represents about 5% at 300 kpc and less than 1% at 500 kpc. It confirms that working with a weak-shear assumption in this case is not biasing our results. On Figure 7. Contours of the convergence κ in the MACS0717.5+3745 field Fig. 8, the black dashed curve corresponds to the corrected weak- obtained using the inversion method described by Seitz & Schneider (1995), shear optimization, while the black curve represents the weak-shear overlaid on the K-band light map. Magenta contours represent the 1, 2 and optimization profile. Both shows a really good agreement with the 3σ contours. Cyan crosses mark the position of two galaxy groups (see text strong-lensing results (magenta curve). for details). The white cross marks again the cluster centre (cf. Fig. 6). 4.3 Mass Modeling 4.2 Cluster Member Galaxies The mass reconstruction is conducted using LENSTOOL which Our catalogue of cluster members is compiled from the photomet- implements an optimisation method based on a Bayesian Markov ric catalogue of Ma et al. (2008). Within the HST/ACS study area Chain Monte Carlo (MCMC) approach (Jullo et al. 2007). We we identify as cluster members 1244 galaxies with spectroscopic chose this approach because we want to propagate as transparently and/or photometric redshifts within the redshift ranges defined in as possible errors on the ellipticity into errors on the filament mass Sect. 3.2. We use these galaxies’ KS -band luminosities as mass es- measurement. This method provides two levels of inference: pa- timators (see below for details). rameter space exploration and model comparison, by means of the All cluster members are included in the lens model in the form posterior Probability Density Function (PDF) and the Bayesian ev- of truncated PIEMD potentials (see Sect. 4.1) with characteristic idence, respectively. properties scaled according to their K-band luminosity: All of these quantities are related by the Bayes Theorem: 1/2 Pr(D|θ, M)Pr(θ|M) ∗ L Pr(θ|D, M) ∝ , rcore = rcore , Pr(D|M) L∗ where Pr(θ|D, M) is the posterior PDF, Pr(D|θ, M) is the likelihood L 1/2 of a realisation yielding the observed data D given the parameters ∗ rcut = rcut , θ of the model M, and, Pr(θ|M) is the prior PDF for the parame- L∗ ters. Pr(D|M) is the probability of obtaining the observed data D and, given the assumed model M, also called the Bayesian evidence. It 1/4 measures the complexity of the model. The posterior PDF will be L σ0 = σ∗ 0 . the highest for the set of parameters θ that yields the best fit and L∗ is consistent with the prior PDF. Jullo et al. (2007) implemented an These scaling relations are found to well describe early- annealed Markov Chain to converge progressively from the prior type cluster galaxies (e.g. Wuyts et al. 2004; Fritz et al. 2005) un- PDF to the posterior PDF. der the assumptions of mass tracing light and the validity of the For the weak-lensing mass mapping, we implement an addi- Faber & Jackson (1976) relation. Since the mass, M, is propor- tional level of complexity based on the Gibbs sampling technique tional to σ2 rcut , the above relations ensure M ∝ L, assuming that 0 (see Massive Inference in the Bayesys manual, Skilling 1998). Ba- the mass-to-light ratio is constant for all cluster members. sically, only the posterior distribution of the most relevant RBFs is To find suitable values of rcore , rcut , and σ∗ we take advantage ∗ ∗ explored. The number of RBFs to explore is an additional free pa- 0 of the results of the strong-lensing analysis of MACSJ0717.5+3745 rameter with a Poisson prior. Exploring possible values of this prior recently conducted by Limousin et al. (2012). Their mass model of in simulations, we find that the input mass is well recovered when the cluster also included cluster members, using the scaling rela- the mean of this prior is set to 2% of the total number of RBFs in i tions defined above (see also Limousin et al. 2007). For a given L∗ the model. The weights of the RBFs, σ2 , are decomposed into the 0 luminosity, given by m∗ = 19.16, the mean apparent magnitude of product of a quantum element of weight, q, common to all RBF, a cluster member in K-band, Limousin et al. (2012) set all geomet- and a multiplicative factor ζ i . In order to have positive masses, we rical galaxy parameters (centre, ellipticity, position angle) to the make ζ follow a Poisson prior (case MassInf=1), and q to follow ∗ values measured with SExtractor, fixed rcore at 0.3 kpc, and then the prior distribution π(q) = q−2 q exp−q/q0 , and we fix the initial 0 ∗ ∗ i searched for the values of σ0 and rcut that yield the best fit. We here guess q0 = 10 km2 /s2 . The final distribution of σ2 is well approxi- 0 ∗ ∗ use the same best-fit values, rcut = 60 kpc and σ0 = 163 kpc/s, to mated by a distribution π(q) with q0 = 12 km2 /s2 , and, we find that define the potentials of the cluster members. Hence, all parameters 16.8 ± 4.8 RBFs are necessary on average to reconstruct the mass describing cluster members are fixed in our model; their positions distribution given our data, i.e. about 3.5% of the total number of are marked by the magenta circles in Fig. 6. RBFs in the model. This new algorithm is fast, as it can deliver a
  • 10. 10 M. Jauzac, E. Jullo, J.-P. Kneib, H. Ebeling, A. Leauthaud, C. J. Ma, M. Limousin, R. Massey, J. Richard Figure 9. Mass distribution in the core of MACSJ0717.5+3745. Cyan con- tours represent the mass distribution inferred in the strong-lensing study by Limousin et al. (2012); white contours show the mass distribution obtained by our weak-lensing analysis; and magenta contours represent the distribu- tion of the cluster K-band light. The orange cross marks the cluster center adopted in the analysis (cf. Fig. 6). mic Bayesian evidence is then given by Figure 8. Density profiles within the core of MACSJ0717.5+3749. The ma- genta curve represents strong-lensing results from Limousin et al. (2012); 1 1 the black curve shows the profile derived from our weak-lensing analysis; log(E) = − χ2 λ dλ 2 0 the black dashed curve shows the weak-lensing profile corrected from the weak-shear approximation where the average is computed over a set of 10 MCMC realizations at any given iteration step λi , and the integration is performed over . The grey area marks the region within which multiple images are observed. all iterations λi from the initial model (λ = 0) to the best-fit result (λ = 1). An increment in dλ depends on the variance between the 10 likelihoods computed at a given iteration, and a convergence mass map in 20 minutes for about 10,000 galaxies and 468 RBFs rate that we set equal to 0.1 (see Bayesys manual for details). The — the previous algorithm used in Jullo & Kneib (2009) was taking increment gets larger as the algorithm converges towards 1. more than 4 weeks to converge. The new algorithm has been tested in parallel on five processors clocked at 2 GHz. We define the likelihood function as (see e.g. Schneider et al. 5 RESULTS (2000): 5.1 Kappa Map : Standard mass reconstruction 1 χ2 Pr(D|θ) = exp (− ), We test our catalogue of background galaxies by mapping the con- ZL 2 vergence κ in the MACSJ0717.5+3745 field. We use the method where D is the vector of ellipticity component values, and θ is a described in Sect. 3.3.1, which is based on the inversion equa- vector of the free parameters σ2 . χ2 is the usual goodness-of-fit i tion found by Kaiser & Squires (1993) and developed further by statistic: Seitz & Schneider (1995). It shows that the best density recon- M 2 structions are obtained when the smoothing scale is adapted to the (˜ j,i − 2γ j,i (θi ))2 γ χ2 = . (3) strength of the signal. We find a smoothing scale of 3 arcmin to i=1 j=1 σ2 γ˜ provide a good compromise between signal-to-noise considerations and map resolution. We estimate the noise directly from the mea- The 2M intrinsic ellipticity components (M is the number of back- sured errors, σmeasurement , averaged within the grid cells. ground sources), are defined as follows: The resulting κ-map is shown in Fig. 7, overlaid on a smoothed εintrinsic, j = γ j (θ j ) − 2γ j (θ j ) ˜ (4) image of the K-band light from cluster galaxies. We identify two substructures south-east of the cluster core whose locations match and, are assumed to have been drawn from a Gaussian distribution the extent of the filamentary structure seen in the galaxy distribu- with variance defined in Sect. 3.3.1 : tion. The first of these, near the cluster core, coincides with the beginning of the optical filament; the second falls close to the ap- σ2 = σ2 γ ˜ 2 intrinsic + σmeasure . parent end of the filament close to the edge of our study area. A The normalization factor is given by simple inversion technique thus already yields a 2 sigma detections of parts of the filament. M √ The Chandra observation of MACS0717.5+3745 shows X- ZL = 2π σγi . ˜ ray detections of two satellite groups of galaxies embedded in the i=1 filament (private communication H. Ebeling, see also Fig. 1 of Note the factor of 2 in Eqn. 3 and 4 because of the particular Ma et al. 2009, and Fig. 10 of this paper). Their X-ray coordinates definition of the ellipticity in RRG (see Sect. 3.3.2). The logarith- (R.A., Dec, J2000) are : i) 07:17:53.618, +37:42:10.46, and, ii)
  • 11. The Large-Scale Filament Feeding MACSJ0717.5+3745 11 Figure 10. Mass map from our weak-gravitational lensing analysis overlaid on the light map of the mosaic. The two sets of contours show the X-ray surface brightness (cyan), and weak-lensing mass (white). The bold white contour corresponds to a density of 1.84 × 108 h74 M⊙ .kpc−2 . The orange cross marks the location of the fiducial cluster centre, and the two blue crosses show the positions of the two X-ray detected satellite groups mentioned in Sect. 5.1. The dashed cyan lines delineates the edges of the Chandra/ACIS-I field of view. The yellow box, finally, marks the cluster core region shown in Fig. 9. The magenta line emphasises the extent and direction of the large-scale filament. 07:18:19.074, +37:41:13.14 (cyan crosses in Fig. 7). The first of the cluster centre because it marks the barycenter of the Einstein these, close to the filament-cluster interface, is detected by the in- ring measured by Meneghetti et al. (2011). Another SL analysis of version technique, but not the second. Conversely, the peak in the MACSJ0717.5+3745 was performed by Zitrin et al. (2009) who re- convergence map in the southeastern corner of our study area is not port a mass of MSL (R < 350 kpc) = (7.0 ± 0.5) 1014 h−1 M⊙ . 74 detected in X-rays. Figure 8 compares the mass density profiles derived from the SL analysis (magenta line) and from our WL analysis (black line); note the very good agreement. The WL density profile has been cut 5.2 Mass Map : Iterative mass reconstruction up to ∼300 kpc as this region corresponds to the multiple-image regime, therefore does not contain any WL constraints. The primary goal of this paper is the detection of the large-scale In Fig. 8, the SL density profile is extrapolated beyond the filament with weak-lensing techniques and the characterisation of multiple-image region (the cluster core), while the WL density its mass content. To calibrate the mass map of the entire structure profile is extrapolated into the multiple-image region. The WL (i.e., filament + cluster core) and overcome the mass-sheet degen- mass thus obtained for the cluster core is MWL (R < 500 kpc) = eracy, we compare the weak-lensing mass obtained for the cluster (1.04 ± 0.08) 1015 h−1 M⊙ in excellent agreement with the value 74 core with the technique described in Sect. 4, with the strong lensing measured by Limousin et al. (2012). We also measure MWL (R < (SL) results from Limousin et al. (2012). 350 kpc) = (5.10 ± 0.54) 1014 h−1 M⊙ , in slight disagreement with 74 the result reported by Zitrin et al. (2009). But the excellent agree- ment at larger radii between strong- and weak-lensing results with- 5.2.1 Cluster Core out any adjustments validates our redshift distribution for the back- Limousin et al. (2012) inferred a parametric mass model for the ground sources, and our new reconstruction method. core of MACSJ0717.5+3745 using strong-lensing (SL) constraints, Figure 9 compares the mass contours from the two different specifically 15 multiple-image systems identified from multi-color gravitational-lensing analyses for the core of MACSJ0717.5+3745 data within a single HST/ACS tile. Spectroscopic follow up of and illustrates the remarkable agreement between these totally in- the lensed features allowed the determination of a well calibrated dependent measurements. Our WL analysis requires a bi-modal mass model. The cyan contours in Fig. 9 show the mass dis- mass concentration which coincides with the two main concentra- tribution obtained from their analysis. Four mass components, tions inferred by the SL analysis of Limousin et al. (2012). associated with the main light components, are needed to sat- isfy the observational constraints. The cluster mass reported by Limousin et al. (2012) for the region covered by a single ACS 5.2.2 Detection of a filamentary structure field-of-view is MSL (R < 500 kpc) = (1.06 ± 0.03) 1015 h−1 M⊙ 74 where the cluster centre is taken to be at the position quoted be- Figure 10 shows the mass map obtained for the whole HST/ACS fore (07:17:30.025 +37:45:18.58). This position was adopted as mosaic using the modeling and optimization method described