SlideShare ist ein Scribd-Unternehmen logo
1 von 53
Estimación con EViews
1. Uso de Comandos:
LS LOGM C LOGPBI LOGprecio
Nombre del modelo: MODELO
Equation MODELO.LS Log(M) c Log(PBI) Log(precio)
2. Ventana de Dialogo: Quick/Estimate Equation/…
Escribir la ecuación con el método seleccionar
muestra.
3. Creación de Ecuación: Objects/New Object
/Equation.
Se activa una ventana de dialogo igual al caso uno.
Nota: también se puede introducir variables directamente
como log(X), D(x,d), X(-n), exp(x), abs(X), etc…
Ventanas de Eviews con MCO
Escribir la ecuación a estimar
Selección del método de estimación . Por
defecto Eviews utiliza mínimos cuadrados
ordinarios, LS-Least Quares .
Selección del periodo o muestra.
Estimación de Parámetros y Prueba estadísticas
Modelo de Demanda de Dinero:
• STD.Error: Error estándar de los coeficientes estimar.
• t-Statistic: Valor del estadístico t, bajo la hipótesis individual que las
variables (H0: βi =0).Con t-k grados de libertad, Indica que la variable
contribuye a explicar la variable endógena.
• Prob: Si los Valores son superiores al 5% (α=5%) no se rechaza la hipótesis
(significativa la variable) nula y la variable exógena sirve para explicar el
modelo.
• R squared: Es el R cuadrado de la ecuación y representa el porcentaje de
la variabilidad de la variable dependiente explicad por la variable
independiente.
• Adjusted R-squared: Permite medir el incremento neto de R cuadrado,
cuando se incluye un nuevo regresor.
• SE. Of regression: SCE
• Sum squared resid: SCR
• Log likelihood: Representa el valor de la función de verosimilitud en los
parametros, útil para la interpretación del ratio de verosimilitud.
• Durbin-Watson stat: Sirve para contrastar la hipótesis de
incorrelación entre perturbaciones aleatorias frente a la presencia de
autocorrelación.
• Mean depent var: Representa la media la variable dependiente.
• S.D depent var: Representa la cuasidesviación típica de la
muestra.
• F-statistic: Es el estadístico que esta asociado a la hipótesis
conjunta de que los parámetros asociados son iguales a cero (
excepto el intercepto). H0 : β1 =β2 =β3 =βi
• Prob(F-statistic): Mide la probabilidad de cometer el erro tipo I .
Se calcula con la distribución F de Snedecor Fk-1;T-k.
• Criterios de Información: Son el Akaike info criterion y
Schwarz criterion, estos criterios nos dan información de la
capacidad explicativa del modelo y permite realizar
comparaciones de los modelos analizados.
Test de Normalidad
Uno de los problema más frecuentes al trabajar con
variables es saber si tiene distribución Normal. Pues no
se puede aplicar los Test estadísticos si la población no
es normal.
Eviews 7 tiene incorporado variaras pruebas para
analizar la normalidad, las más utilizadas son:
Test de Jarque – Bera
Prueba de Normalidad (Quantile - Quantile)
El Diagrama de caja
Test de Jarque – Bera
H0 : εt se aproxima a una distribución Normal.
H1 : εt no se aproxima a una distribución Normal.
Luego de correr la regresión, abrir la variable“Resid” ir a
View/ Descriptive Statistics & Tests / Histogram and Stats
Prueba de Normalidad (Quantile - Quantile)
Para que exista normalidad en los residuos los puntos debrá
estar a lo largo de la recta, pero si los puntos están muy
dispersos y la mayoría esta fuera de la recta no existe
normalidad.
* La instrucción en Eviews es doble click en Resid ir a View/
Graph y en sepecificación seleccionar Quantile - Quantile en
opcónes seleccionar Theoretical
Como se puede apreciar los puntos están sobre
la recta entonces podemos decir que la variable
Resid (Error) tiene una distribución normal.
Diagrama de Caja
Si en el gráfico la media esta en medio de la caja y los
“bigotes” de la caja tiene casi la misma distancia a la
caja se acepta la normalidad de la variable.
Este gráfico se basa en la media, los cuartiles y valores
extremos. Donde la caja encierra el rango intercuartil que
encierra el 50% de los valores y tiene una media
dibujada dentro, además el intercuartil tiene como
extremos el percentil 75 y el percentil 25.
Instrucción en Views es abrir Resid con doble click ir a
View/Graph/ Seleccionar la especificación Boxplot.
Como se observa en el gráfico la media esta en la
mitad de la caja y los “bigotes” tiene igual
distancia a la caja, entonces Resid tiene una
distribución normal
Test Estadísticos sobre los Coeficientes
Eviews tiene tres pruebas sobre los coeficientes del modelo y estas
son:
Pruebas de Restricción de Coeficientes: Esta prueba se basa en la
prueba de Wald, que puede ser individual (H0: βi = 0) o grupal (H0:
β1 = β2 =… βk =0)
En la ventana de la ecuación ir a View/Coefficient Diagnostics/Wald
Test-Coefficient Restrictions… En la ventana de dialogo se escriben
las restricciones entre comas ejemplo: H0 : C(1)-2*C(2) = 0
F ( q=1;T=70;0.95)
Como se observa en el
rectángulo de color
verde que tiene una
baja probabilidad 0.02%
de no rechazar la
hipótesis nula.
Entonces:
Rechazar la H0
q: Número de
restricciones.
2112
)()()( qRbRXXRSqRbW
o Pruebas de Variables Omitidas: Nos da una idea si una lista de
variable adicional podría mejorar el modelo.
View/Coefficient Diagnostics /Omitted Variables Test-Likelihood Ratio.
En el cuadro de dialogo se escriben las variables a omitir (caso:
inter)
H0 : La variable inter es no
significativa para el modelo
(C(3)=0)
H1 : inter es una variable
significativa para el modelo
(C(3)≠ 0).
Con una probabilidad
0.07% se rechaza la
hipótesis nula de no
significancia para el
modelo,
o Pruebas de Variables Redundantes: Prueba si la exclusión
de una lista de variable podría mejor el ajuste del modelo.
* Ubicamos en cuadro de la ecuación nos dirigimos a
View/Coefficient Diagnostics /RedundantVariables Test-
Likelihood Ratio…
En el cuadro de dialogo se escriben las variables a omitir
(caso: LOGPBI)
H0 : La variable LogPBI es
redundante para el modelo.
H1 : La variable LogPBI no es
redundante para el modelo .
Con una baja probabilidad de 0 %
(menor α=5%) no se acepta la
hipótesis nula.
Por lo que la variable LogPBI no es
redundante para el modelo de
Cagan
Multicolinealidad
La multicolinealidad en el Modelo Lineal General se presenta cuando las
variables independientes presentan alto nivel de correlación. Por lo que
en términos empíricos hay que definir los limites de tolerancia de
colinealidad.
Siguiendo a Klein en su versión de correlación indica un alto grado
cuando:
RY : Es la raíz cuadrada del coeficiente de determinación
Multicolinealidad Perfecta ρ (X X) < k
Multicolinealidad imperfecta ρ (X X) = k / X X / ≈ 0
Consecuencias: Es el incremento de los errores estándar de la prueba
“t” , se mantiene un buen ajuste R cuadrado alto, una prueba “F”
significativa y “t” bajo para variables que presentan multicolinealidad.
Detección: Análisis de la matriz de correlaciones. Algunos
autores recomiendan correlaciones mayores 0.8 ó 0.85 indica la
presencia de colinealidad.
Análisis de la matriz X X (es o no una matriz singular)
YXX Rr ji
Para ver la matriz de correlaciones en Eviews 7 tenemos que el cuadros
Proc/Make Regressor Group en la nueva ventana ir Group Menbers,
borra la variable LogM hacer click en name y guardalo con el nombre
Matrix.
Abrir el objeto Matrix con doble
click e ir View/Principal
Components… Nos da la matrix
de correlaciones
En el cuadro de comandos
Digitar: Sym
mcorrel=@cor(matrix)
En el cuadro de comandos Digitar:
Scalar det_cor=det(mcorrel)
Abrir el objeto det_cor con doble click ver el valor de la
determinante es 0.61>0. No existe correlación el en modelo
Autocorrelación
Es un caso particular de MCG que se produce cuando los errores del
modelo presentan correlaciones entre ellas (esto puede deberse a
efectos inerciales del pasado como la inflación, una crisis mundial,
rezagos de política, especulación, etc…). Este problema y la
heteroscedasticidad origina que las perturbaciones no sean esféricas.
Por lo que la matriz de varianzas y covarianzas de las perturbaciones
sean distintas a cero.
Violación del supuesto: E( εt;εs)= 0 t ≠ s
Sus efectos son: la los estimadores por MCO de β son insesgados
por ineficientes (varianza no es la mínima) e inconsistentes
reduciendo la probabilidad de hacer pruebas de hipótesis.
Solución: Reparametrizar el modelo y determinar el componente
autorregresivo.
Test de Durbin-Watson: Somete a prueba la autocorrelación de
Primer orden (AR(1)).
Ho : no existe autocorrelación de primer orden
DW=
El valor del DW se puede apreciar en la ventana de resultados. Si el DW
≈ 2 no existe autocorrelación positiva, DW > 2 existe sospechas de una
autocorrelación negativa y si DW < 2 existe sospechas de una
autocorrelación positiva.
Crítica:
* Sólo es valido para la autocorrelación de la perturbación autorregresiva
de orden 1 (AR(1)).
* Requiere de una muestra mínima de 15, para obtener resultados
fiables.
* Presenta zonas de indeterminación
ttt xY
ttt u1
0
)1(2
ˆ
)ˆˆ(
1
2
2
2
1
T
t
T
t
tt
t
Prueba de Breusch - Godfrey
Es un contraste más general que el DW al permitir que la hipótesis
alternativa procesos estocásticos más generales de orden p (AR(p))
o medias móviles de orden q (MA(q)), y se puede utilizar en variables
endógenas retardadas.
(ausencia de Autocorrelación)
AR (r) o MA (r)
Prueba: En la ventana de resultados View/Residual Diagnostics/
Serial Correlation LM Test… teclea 2 rezagos (Lags)
ttt xY
trtrttt u...2211
0...: 210 rH
0...: 211 rH
22
rTRLM
Por tener un probabilidad muy baja 0% (menor de 5%)
se rechaza la hipótesis nula de incorrelación.
Por lo que el modelo presenta autocorrelación de 2
orden (AR(2))
Test de Ljung – Box y Box – Pierce
Este test utiliza el coeficiente de correlación simple y sólo puede ser
aplicado cuando el conjunto de variables explicativas son todas exógenas.
Test Box - Pierce:
Ljung presenta un refinamiento a la formula anterior:
Donde : r i : Es el coeficiente de autocorrelación simple
r
i
rirTQ
1
22
r
i
r
i
iT
r
TTQ
1
2
2
)2(
T
t
t
T
t
tit
ir
1
2
1
Correlograma: Es otra forma de identificar la autocorrelación de
orden p.
En la ventana de resultados View/ Residual Diagnostics/
Correlogram- q stadistis.
En el cuadro de dialogo que aparece seleccionamos sin transformar
(Level) y el número de rezagos 22 (o el máximo que pueda)
• Las banda esta del
correlograma estan
representada por :
• = ± 0.2341los valores
que sean iguales o
mayor a este valor nos
indicara el orden de
AR(r).
• Otra guía para
identificar la
autocorrelación es ver
en el correlograma
cuántas barras salen
de la línea de puntos
(Partial correlation)
73
22
T
Corrección de la
Autocorrelación
Introduciremos el componente
autoregresivo al modelo
estimado.
Comando : equation Cagan.LS
logm logpbi inter AR(1) AR(2)
Heteroscedasticidad
La heteroscedasticidad significa que la varianza de las
perturbaciones no es constante a lo largo de las
observaciones, violando un supuesto básico del modelo (
)
Consecuencias
Una perdida de eficiencia de los estimadores mínimos
cuadrados.
La varianza del estimador por MCO no es mínima.
Solución
Reparamétrizar el modelo para encontrar la ley de
formación de la varianza para cada periodo.
* Como veremos a continuación Eviews tiene incorporado
varias pruebas para detectar la heteroscedasticidad de
los errores
22
)( iE
Supuesto Formal
ttt xY
2
2
2
2
1
/
00
00
00
),()(
T
tt t
EVar




Detección de H
Este análisis se basa en los residuos
i) Representación gráfica de residuos estimados versus la
variable dependiente proyectada o tras variables conocidas,
para explicar el comportamiento de la varianza y poder extraer
su ley.
ii) Prueba general de (Goldfeld y Quant, Breusch y Pagan ,
White)
* Si representamos gráficamente los residual elevados al
cuadrado con la variable dependiente pronosticada (o con cada
uno de los regresores ordenados )
* Si en el cuadro de comando digitamos: genr resid_2=resid^2
*del cuadro de resultado activamos Forecast/ok hemos
generados los valores estimados de la variable dependiente
Logmf.
Seleccionando Resid_2 y Logmf y habrimos el cuadro de Ctrl y
doble Click abrimos open Group en
View/Graph/Seleccionamos Scatter/Simple Scatter
* Del gráfico se desprende
que la relación entre las
variables es lineal, lo que
nos lleva a pensar que
errores al cuadrado de las
perturbaciones crece
linealmente elasticidad
demanda de dinero.
Si observamos bien esta
relación es exponencial por
lo que nos animamos ha dar
el factor de la varianza.
22
ˆ)( ii YVar
Prueba de Goldfeld - Quant
H0 : No existe Heteroscedasticidad (igualdad de varianzas)
H1 : Existe Heteroscedasticidad donde h(.) es función
monotona.
* Omitir r observaciones intermedia (r < T/3)
* Los dos grupos tiene tamaño (T-r)/2
En nuestro caso tenemos 73 observaciones, después de ordenar las
observaciones del modelo (se ordena las observaciones de todas la
variables mediante la ventana de Worfile » activamos Procs/Sort Current
Page en el nuevo cuadro de dialogo introducimos la variable Logmf y
ordenamos Ascendentemente), se eliminan las 24 (r < 73/3) centrales
formando dos grupo donde el primer grupo tiene de 1 hasta 24 y el
segundo grupo 49 hasta 73.
)(2
iji xh
Generamos el Scalar en el cuadro de comandos: Scalar se1=@se para el
primer grupo y la desviación del error para el segundo grupo Scalar se2=@se
.
oteamos cual de las dos desviaciones es la mayor por que dividiremos la
mayor desviación entre la menor en el cuadro de comandos, en nuestro caso
es Se2 (0.152044) es mayor a Se1(0.084002). En el cuadro de comando
generamos el estadístico : Scalar f=(se2/se1)^2 , que si revisamos el valor
del objeto f nos da 3.276
Para rezar o no la hipótesis nula necesitamos del estadístico
F, por lo que crearemos este estadístico en el cuadro de
comandos.
Scalar prob=(1-@cfdist(f, 24, 24))
El resultado nos da una probabilidad muy baja de
0.2562139% (menor del 5%). Por lo que se rechaza la
hipotesis nula de Homocedasticidad de la varianza.
* Una solución habitual en este tipo de problemas es
considerar el esquema de la varianza como:
o
2/)(;2/)(;)/( 2
12 rTrTss
F
)()( 2
iji xVar 22
)( jii xVar
F,24,24 implica los grados de libertad, que se deben ajustar para cada modelo.
Prueba de White
Este contraste es el más general por que no especifica
concretamente la heteroscedasticidad.
No existe Heteroscedasticidad
01
22
0
:
:
HverificasenoH
H i
Aplicando la Heteroscedasticidad en Eviews
View que se encuentra en el objeto de ecuación Cagan(es el
nombre de nuestra ecuación) pulsamos View/Residual
Test/Specification White (no cross terms)
Formas de Corregir la
Heteroscedasticidad
Un manera es realizar Mínimos Cuadrados
Ponderados , donde la ponderación se puede
elegir mediante White o el análisis de residuos.
Corrección
* Corrección White (Heteroskedasticy Consiste
Covariances)
* Correción de Newey – West (HAC Consistent
Covariances)
Corrección de Heteroscedasticidad
Corrección de White: Corrige la matriz de Var – Cov por
heteroscedasticidad.
Corrección de Newy – West (HAC Consistente
Covariances): Corrige la matriz de Var – Cov de los
parámetros estimados por heteroscedasticidad y
autocorrelación
q: Representa un número entero
1
1
21
)(ˆ XXXXXX
kT
T T
t
tW
11
)(ˆˆ XXXX
kT
T
NW
T
t
q
v
tvtvtvtttt XXXX
q
v
XX
kT
T
1 1
2
1
1ˆ
9/2
)100/(4 Tq
Estimación en Eviews
En la ventana de resultados hacemos click en estimate y
luego en options
También podemos activar el tipo(type) de ponderación,
como por ejemplo la varianza y la inversa del logPBI
(ponderación se obtiene de la prueba de Wheti) como se
muestra en la siguinte hoja
• Hay que mencionar que los resultados
que no cambian con cualquiera de las
dos pruebas solo cambia los errores
estándar que se corregirán.
Resultados de Corrección de White
Resultados de Corrección de Newey -
West
SERIES TEMPORALES
Como referencia se usará un modelo cuyas variables serán el tipo de
cambio de 3 economías del mundo. Las monedas a elegir son:
LE: moneda de Inglaterra (libra esterlina)
ES: moneda de El Salvador (dólar)
G: moneda de Guatemala (Quetzal)
Antes de estimar un Vector Autoregresivo, se debe verificar que todas son
variables estacionarias.
Se procede variable por variable según View/Unit Root Test...
Prueba ADF – Raíz Unitaria
La hipótesis nula es que LE tiene
Raíz Unitaria, por lo que según los
resultados la variable LE si tiene
Raíz Unitaria.
El siguiente paso es aplicar ADF en
primera diferencia, según se
presenta en la gráfica de abajo.
No hay R.U.
La estimación del VAR, se utilizará 3 variables que son estacionarias.
Seguir la siguiente estructura:
Quick / Estimate VAR
En el cuadro de variables endógenas, incluir las variables en orden de
importancia (por teoría o por hipótesis) de izquierda a derecha.
Este es el resultado, pero solo es
preliminar.
El siguiente paso es identificar el número de rezagos del VAR. (Akaike,
Schwarz, Hannan)
El comando en Eviews es View/Lag structure/Lag lenght criteria
Se debe seleccionar los valores que tienen asterisco, que indica el número de lag.
Si sale el valor 0, entonces es un indicio de que las variables no son endógenas y
quizás se debe buscar otras.
El resultado
es 1 rezago.
Como el resultado anterior es 1 rezago,
entonces se estima el VAR con 1 rezago
El siguiente paso es verificar si los rezagos son significativos. Para esto se
debe dar click en View/Lag structure/lag exclusion test.
Se debe varificar el p-value (paréntesis) que debe ser menor a 5% o 10%
según se haya elegido.
Por el p-value que en
todos los casos es cero,
entonces el rezago UNO
es significativo.
FUNCION IMPLUSO-RESPUESTA
Luego del cálculo del VAR se debe seguir View/Impulse response
La primera fila
muestra la respuesta
al impulso de la
moneda LE, luego a
ES y finalmente a G.
El resultado es que
LE si responde a su
pripio shock, pero no
responde a los
cambios en ES y en
G.
CAUSALIDAD DE GRANGER
Luego de estimar el VAR la
causalidad de Granger se obtiene
con View/Lag structure/Granger
causality
Lo que se espera que es cada
variable sea causada por otra
variable o cause a alguna variable.
Si esto no sucede, la variable se
considera como exógena.
En el ejemplo solo LE y G causan a
ES (indicio de endogeneidad), pero
no las otras.
COINTEGRACION
Para verificar cointegración se usa Johansen.
En Eviews se abre como grupo a todas las variables, y luego se aplica:
View/cointegration test y se utiliza la opción SUMMARIZE ALL
Por las pruebas TRACE o MAX-
EIG se debe buscar la aparición
de los vectores de cointegración
en ambas pruebas.
En el ejemplo no aparece ningún
VEC.
Otro paso es verificar las tablas inferiores de Johansen, para conocer cuántos
rezagos se tiene según Akaike y Schwarz. En el ejemplo se muestra que para
un modelo sin tendencia y con intercepto el número de rezagos según Akaike
es 1.
Finalmente, con esta elección se puede correr el modelo, utilizando 1 lag.
VEC
Cuando las variables cointegran, se
recomienda el VEC.
Al abrir el grupo de variables se
hace click en:
View/Cointegratin Test, y a nivel
general se elige la opción 6.
Como resultado se obtiene la
prueba de Johansen, que indica el
número de rezagos que el VEC
debería tener, según cada criterio,
para cada tipo de modelo.
En el ejemplo se puede escoger
según Akaike, un modelo sin
intercepto ni tendencia con un lag.
Finalmente se puede aplicar dos pasos, el
primero es seguir en el grupo y presionar
Proc/make vector autoregression o abrir
Quick/estimate VAR
Se incluye adecuadamente las variables y el
número de rezagos y liego se presiona OK.
El modelo final es el VEC para las tres
variables

Weitere ähnliche Inhalte

Was ist angesagt?

Planteamiento de hipotesis
Planteamiento de hipotesisPlanteamiento de hipotesis
Planteamiento de hipotesis
AGENCIAS2
 

Was ist angesagt? (20)

Regresion lineal ppt
Regresion lineal pptRegresion lineal ppt
Regresion lineal ppt
 
Ejemplos modelos econometricos
Ejemplos modelos econometricosEjemplos modelos econometricos
Ejemplos modelos econometricos
 
5. regresión lineal multiple
5.  regresión lineal multiple5.  regresión lineal multiple
5. regresión lineal multiple
 
Clase10 Endogeneidad y estimación por variables instrumentales
Clase10 Endogeneidad y estimación por variables instrumentalesClase10 Endogeneidad y estimación por variables instrumentales
Clase10 Endogeneidad y estimación por variables instrumentales
 
Coeficientes determinacion y correlacion
Coeficientes determinacion y correlacionCoeficientes determinacion y correlacion
Coeficientes determinacion y correlacion
 
Métodos de ecuaciones simultaneas
Métodos de ecuaciones simultaneasMétodos de ecuaciones simultaneas
Métodos de ecuaciones simultaneas
 
Logit
LogitLogit
Logit
 
Regresion lineal multiple
Regresion lineal multipleRegresion lineal multiple
Regresion lineal multiple
 
Resueltos
ResueltosResueltos
Resueltos
 
Análisis de Regresión Múltiple
Análisis de Regresión MúltipleAnálisis de Regresión Múltiple
Análisis de Regresión Múltiple
 
Ejercicios resueltos regresion multiple
Ejercicios resueltos  regresion multipleEjercicios resueltos  regresion multiple
Ejercicios resueltos regresion multiple
 
Ejemplo distribucion normal
Ejemplo distribucion normalEjemplo distribucion normal
Ejemplo distribucion normal
 
Supuesto no autocorrelación de análisis de regresion
Supuesto no autocorrelación de análisis de regresionSupuesto no autocorrelación de análisis de regresion
Supuesto no autocorrelación de análisis de regresion
 
La condición Marshall-Lerner
La condición Marshall-LernerLa condición Marshall-Lerner
La condición Marshall-Lerner
 
Capítulo iv econometría var
Capítulo iv econometría varCapítulo iv econometría var
Capítulo iv econometría var
 
Coeficiente beta
Coeficiente betaCoeficiente beta
Coeficiente beta
 
Planteamiento de hipotesis
Planteamiento de hipotesisPlanteamiento de hipotesis
Planteamiento de hipotesis
 
Análisis de Regresión Lineal
Análisis de Regresión LinealAnálisis de Regresión Lineal
Análisis de Regresión Lineal
 
Taller 1 microeconomía de rubinfeld y pindyck
Taller 1 microeconomía de rubinfeld y pindyckTaller 1 microeconomía de rubinfeld y pindyck
Taller 1 microeconomía de rubinfeld y pindyck
 
Preguntas tipo test_macroeconomia_i_ade
Preguntas tipo test_macroeconomia_i_adePreguntas tipo test_macroeconomia_i_ade
Preguntas tipo test_macroeconomia_i_ade
 

Ähnlich wie Compilacion econometria con Eviews

Simulación: Teoría y aplicaciones con Promodel
Simulación: Teoría y aplicaciones con PromodelSimulación: Teoría y aplicaciones con Promodel
Simulación: Teoría y aplicaciones con Promodel
Alvaro Gil
 
Introduction to R by David Lucy Cap 12-16
Introduction to R by David Lucy Cap 12-16Introduction to R by David Lucy Cap 12-16
Introduction to R by David Lucy Cap 12-16
Luis Pons
 
Manual de minitab (prueba de hipótesis)
Manual de minitab (prueba de hipótesis) Manual de minitab (prueba de hipótesis)
Manual de minitab (prueba de hipótesis)
LauraAnguiano25
 
Distribución exponencial y lognormal
Distribución exponencial y lognormalDistribución exponencial y lognormal
Distribución exponencial y lognormal
Hugo_Franco
 
Cap3. violacion modelo-regresión multiple-2011
Cap3. violacion modelo-regresión multiple-2011Cap3. violacion modelo-regresión multiple-2011
Cap3. violacion modelo-regresión multiple-2011
Noemi Zapata
 
RETROALIMENTACIÓN-CORRELACIÓN Y REGRESIÓN.pdf
RETROALIMENTACIÓN-CORRELACIÓN Y REGRESIÓN.pdfRETROALIMENTACIÓN-CORRELACIÓN Y REGRESIÓN.pdf
RETROALIMENTACIÓN-CORRELACIÓN Y REGRESIÓN.pdf
ThaliaRiosMartinez1
 

Ähnlich wie Compilacion econometria con Eviews (20)

Regresion Multiple2
Regresion Multiple2Regresion Multiple2
Regresion Multiple2
 
Modelos var y de corrección de error
Modelos var y de corrección de errorModelos var y de corrección de error
Modelos var y de corrección de error
 
Mic sesión 13
Mic sesión 13Mic sesión 13
Mic sesión 13
 
Simulación: Teoría y aplicaciones con Promodel
Simulación: Teoría y aplicaciones con PromodelSimulación: Teoría y aplicaciones con Promodel
Simulación: Teoría y aplicaciones con Promodel
 
Representaciones graficas
Representaciones graficasRepresentaciones graficas
Representaciones graficas
 
Tema IV Tecnicas de Pronostico Grupo 6.pptx
Tema IV Tecnicas de Pronostico Grupo 6.pptxTema IV Tecnicas de Pronostico Grupo 6.pptx
Tema IV Tecnicas de Pronostico Grupo 6.pptx
 
Web
WebWeb
Web
 
Introducción al análisis de regresión simple
Introducción al análisis de regresión simpleIntroducción al análisis de regresión simple
Introducción al análisis de regresión simple
 
Procesos estocasticos resumen del curso
Procesos estocasticos resumen del cursoProcesos estocasticos resumen del curso
Procesos estocasticos resumen del curso
 
Anova
AnovaAnova
Anova
 
Introduction to R by David Lucy Cap 12-16
Introduction to R by David Lucy Cap 12-16Introduction to R by David Lucy Cap 12-16
Introduction to R by David Lucy Cap 12-16
 
Manual de minitab (prueba de hipótesis)
Manual de minitab (prueba de hipótesis) Manual de minitab (prueba de hipótesis)
Manual de minitab (prueba de hipótesis)
 
Distribución exponencial y lognormal
Distribución exponencial y lognormalDistribución exponencial y lognormal
Distribución exponencial y lognormal
 
Cap3. violacion modelo-regresión multiple-2011
Cap3. violacion modelo-regresión multiple-2011Cap3. violacion modelo-regresión multiple-2011
Cap3. violacion modelo-regresión multiple-2011
 
INFORME FINAL_ESTADISTICA APLICADA AL SECTOR SALUD.docx
INFORME FINAL_ESTADISTICA APLICADA AL SECTOR SALUD.docxINFORME FINAL_ESTADISTICA APLICADA AL SECTOR SALUD.docx
INFORME FINAL_ESTADISTICA APLICADA AL SECTOR SALUD.docx
 
RETROALIMENTACIÓN-CORRELACIÓN Y REGRESIÓN.pdf
RETROALIMENTACIÓN-CORRELACIÓN Y REGRESIÓN.pdfRETROALIMENTACIÓN-CORRELACIÓN Y REGRESIÓN.pdf
RETROALIMENTACIÓN-CORRELACIÓN Y REGRESIÓN.pdf
 
Tipos de graficos de control
Tipos de graficos de controlTipos de graficos de control
Tipos de graficos de control
 
Urbisaia y brufman estimacion robusta
Urbisaia y brufman  estimacion robustaUrbisaia y brufman  estimacion robusta
Urbisaia y brufman estimacion robusta
 
2-el modelo de regresion lineal-2.ppt
2-el modelo de regresion lineal-2.ppt2-el modelo de regresion lineal-2.ppt
2-el modelo de regresion lineal-2.ppt
 
Regresion simple 1 estadistica
Regresion simple 1   estadisticaRegresion simple 1   estadistica
Regresion simple 1 estadistica
 

Mehr von Rodrigo Paniagua (9)

dougherty5e_C07G01_2016_05_05 upb cbba.pptx
dougherty5e_C07G01_2016_05_05 upb cbba.pptxdougherty5e_C07G01_2016_05_05 upb cbba.pptx
dougherty5e_C07G01_2016_05_05 upb cbba.pptx
 
EJERCICIOS DE ECONOMIA MATEMATICA
EJERCICIOS DE ECONOMIA MATEMATICAEJERCICIOS DE ECONOMIA MATEMATICA
EJERCICIOS DE ECONOMIA MATEMATICA
 
EJERCICIOS ECONOMETRIA 2
EJERCICIOS ECONOMETRIA 2EJERCICIOS ECONOMETRIA 2
EJERCICIOS ECONOMETRIA 2
 
EJERCICIOS ECONOMETRIA 1
EJERCICIOS ECONOMETRIA 1EJERCICIOS ECONOMETRIA 1
EJERCICIOS ECONOMETRIA 1
 
Modelo de regresion lineal
Modelo de regresion linealModelo de regresion lineal
Modelo de regresion lineal
 
Repaso de estadistica e inferencia
Repaso de estadistica e inferenciaRepaso de estadistica e inferencia
Repaso de estadistica e inferencia
 
Introduccion a la Econometria
Introduccion a la EconometriaIntroduccion a la Econometria
Introduccion a la Econometria
 
Repaso de algebra matricial
Repaso de algebra matricialRepaso de algebra matricial
Repaso de algebra matricial
 
Repaso matrices
Repaso matricesRepaso matrices
Repaso matrices
 

Kürzlich hochgeladen

ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
zulyvero07
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Francisco158360
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...
JonathanCovena1
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
lupitavic
 

Kürzlich hochgeladen (20)

Imperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperioImperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperio
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDAD
 
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
 
Power Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptxPower Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptx
 
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grande
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes d
 
Presentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza MultigradoPresentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza Multigrado
 
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática4    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática4    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
 
Unidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la InvestigaciónUnidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la Investigación
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptx
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...
 
Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcción
 
Valoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVValoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCV
 
actividades comprensión lectora para 3° grado
actividades comprensión lectora para 3° gradoactividades comprensión lectora para 3° grado
actividades comprensión lectora para 3° grado
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
 

Compilacion econometria con Eviews

  • 1. Estimación con EViews 1. Uso de Comandos: LS LOGM C LOGPBI LOGprecio Nombre del modelo: MODELO Equation MODELO.LS Log(M) c Log(PBI) Log(precio) 2. Ventana de Dialogo: Quick/Estimate Equation/… Escribir la ecuación con el método seleccionar muestra. 3. Creación de Ecuación: Objects/New Object /Equation. Se activa una ventana de dialogo igual al caso uno. Nota: también se puede introducir variables directamente como log(X), D(x,d), X(-n), exp(x), abs(X), etc…
  • 2. Ventanas de Eviews con MCO Escribir la ecuación a estimar Selección del método de estimación . Por defecto Eviews utiliza mínimos cuadrados ordinarios, LS-Least Quares . Selección del periodo o muestra.
  • 3. Estimación de Parámetros y Prueba estadísticas Modelo de Demanda de Dinero:
  • 4. • STD.Error: Error estándar de los coeficientes estimar. • t-Statistic: Valor del estadístico t, bajo la hipótesis individual que las variables (H0: βi =0).Con t-k grados de libertad, Indica que la variable contribuye a explicar la variable endógena. • Prob: Si los Valores son superiores al 5% (α=5%) no se rechaza la hipótesis (significativa la variable) nula y la variable exógena sirve para explicar el modelo. • R squared: Es el R cuadrado de la ecuación y representa el porcentaje de la variabilidad de la variable dependiente explicad por la variable independiente. • Adjusted R-squared: Permite medir el incremento neto de R cuadrado, cuando se incluye un nuevo regresor. • SE. Of regression: SCE • Sum squared resid: SCR • Log likelihood: Representa el valor de la función de verosimilitud en los parametros, útil para la interpretación del ratio de verosimilitud.
  • 5. • Durbin-Watson stat: Sirve para contrastar la hipótesis de incorrelación entre perturbaciones aleatorias frente a la presencia de autocorrelación. • Mean depent var: Representa la media la variable dependiente. • S.D depent var: Representa la cuasidesviación típica de la muestra. • F-statistic: Es el estadístico que esta asociado a la hipótesis conjunta de que los parámetros asociados son iguales a cero ( excepto el intercepto). H0 : β1 =β2 =β3 =βi • Prob(F-statistic): Mide la probabilidad de cometer el erro tipo I . Se calcula con la distribución F de Snedecor Fk-1;T-k. • Criterios de Información: Son el Akaike info criterion y Schwarz criterion, estos criterios nos dan información de la capacidad explicativa del modelo y permite realizar comparaciones de los modelos analizados.
  • 6. Test de Normalidad Uno de los problema más frecuentes al trabajar con variables es saber si tiene distribución Normal. Pues no se puede aplicar los Test estadísticos si la población no es normal. Eviews 7 tiene incorporado variaras pruebas para analizar la normalidad, las más utilizadas son: Test de Jarque – Bera Prueba de Normalidad (Quantile - Quantile) El Diagrama de caja
  • 7. Test de Jarque – Bera H0 : εt se aproxima a una distribución Normal. H1 : εt no se aproxima a una distribución Normal. Luego de correr la regresión, abrir la variable“Resid” ir a View/ Descriptive Statistics & Tests / Histogram and Stats
  • 8.
  • 9. Prueba de Normalidad (Quantile - Quantile) Para que exista normalidad en los residuos los puntos debrá estar a lo largo de la recta, pero si los puntos están muy dispersos y la mayoría esta fuera de la recta no existe normalidad. * La instrucción en Eviews es doble click en Resid ir a View/ Graph y en sepecificación seleccionar Quantile - Quantile en opcónes seleccionar Theoretical
  • 10. Como se puede apreciar los puntos están sobre la recta entonces podemos decir que la variable Resid (Error) tiene una distribución normal.
  • 11. Diagrama de Caja Si en el gráfico la media esta en medio de la caja y los “bigotes” de la caja tiene casi la misma distancia a la caja se acepta la normalidad de la variable. Este gráfico se basa en la media, los cuartiles y valores extremos. Donde la caja encierra el rango intercuartil que encierra el 50% de los valores y tiene una media dibujada dentro, además el intercuartil tiene como extremos el percentil 75 y el percentil 25. Instrucción en Views es abrir Resid con doble click ir a View/Graph/ Seleccionar la especificación Boxplot.
  • 12. Como se observa en el gráfico la media esta en la mitad de la caja y los “bigotes” tiene igual distancia a la caja, entonces Resid tiene una distribución normal
  • 13. Test Estadísticos sobre los Coeficientes Eviews tiene tres pruebas sobre los coeficientes del modelo y estas son: Pruebas de Restricción de Coeficientes: Esta prueba se basa en la prueba de Wald, que puede ser individual (H0: βi = 0) o grupal (H0: β1 = β2 =… βk =0) En la ventana de la ecuación ir a View/Coefficient Diagnostics/Wald Test-Coefficient Restrictions… En la ventana de dialogo se escriben las restricciones entre comas ejemplo: H0 : C(1)-2*C(2) = 0
  • 14. F ( q=1;T=70;0.95) Como se observa en el rectángulo de color verde que tiene una baja probabilidad 0.02% de no rechazar la hipótesis nula. Entonces: Rechazar la H0 q: Número de restricciones. 2112 )()()( qRbRXXRSqRbW
  • 15. o Pruebas de Variables Omitidas: Nos da una idea si una lista de variable adicional podría mejorar el modelo. View/Coefficient Diagnostics /Omitted Variables Test-Likelihood Ratio. En el cuadro de dialogo se escriben las variables a omitir (caso: inter) H0 : La variable inter es no significativa para el modelo (C(3)=0) H1 : inter es una variable significativa para el modelo (C(3)≠ 0). Con una probabilidad 0.07% se rechaza la hipótesis nula de no significancia para el modelo,
  • 16. o Pruebas de Variables Redundantes: Prueba si la exclusión de una lista de variable podría mejor el ajuste del modelo. * Ubicamos en cuadro de la ecuación nos dirigimos a View/Coefficient Diagnostics /RedundantVariables Test- Likelihood Ratio… En el cuadro de dialogo se escriben las variables a omitir (caso: LOGPBI) H0 : La variable LogPBI es redundante para el modelo. H1 : La variable LogPBI no es redundante para el modelo . Con una baja probabilidad de 0 % (menor α=5%) no se acepta la hipótesis nula. Por lo que la variable LogPBI no es redundante para el modelo de Cagan
  • 17. Multicolinealidad La multicolinealidad en el Modelo Lineal General se presenta cuando las variables independientes presentan alto nivel de correlación. Por lo que en términos empíricos hay que definir los limites de tolerancia de colinealidad. Siguiendo a Klein en su versión de correlación indica un alto grado cuando: RY : Es la raíz cuadrada del coeficiente de determinación Multicolinealidad Perfecta ρ (X X) < k Multicolinealidad imperfecta ρ (X X) = k / X X / ≈ 0 Consecuencias: Es el incremento de los errores estándar de la prueba “t” , se mantiene un buen ajuste R cuadrado alto, una prueba “F” significativa y “t” bajo para variables que presentan multicolinealidad. Detección: Análisis de la matriz de correlaciones. Algunos autores recomiendan correlaciones mayores 0.8 ó 0.85 indica la presencia de colinealidad. Análisis de la matriz X X (es o no una matriz singular) YXX Rr ji
  • 18. Para ver la matriz de correlaciones en Eviews 7 tenemos que el cuadros Proc/Make Regressor Group en la nueva ventana ir Group Menbers, borra la variable LogM hacer click en name y guardalo con el nombre Matrix. Abrir el objeto Matrix con doble click e ir View/Principal Components… Nos da la matrix de correlaciones En el cuadro de comandos Digitar: Sym mcorrel=@cor(matrix)
  • 19. En el cuadro de comandos Digitar: Scalar det_cor=det(mcorrel) Abrir el objeto det_cor con doble click ver el valor de la determinante es 0.61>0. No existe correlación el en modelo
  • 20. Autocorrelación Es un caso particular de MCG que se produce cuando los errores del modelo presentan correlaciones entre ellas (esto puede deberse a efectos inerciales del pasado como la inflación, una crisis mundial, rezagos de política, especulación, etc…). Este problema y la heteroscedasticidad origina que las perturbaciones no sean esféricas. Por lo que la matriz de varianzas y covarianzas de las perturbaciones sean distintas a cero. Violación del supuesto: E( εt;εs)= 0 t ≠ s Sus efectos son: la los estimadores por MCO de β son insesgados por ineficientes (varianza no es la mínima) e inconsistentes reduciendo la probabilidad de hacer pruebas de hipótesis. Solución: Reparametrizar el modelo y determinar el componente autorregresivo.
  • 21. Test de Durbin-Watson: Somete a prueba la autocorrelación de Primer orden (AR(1)). Ho : no existe autocorrelación de primer orden DW= El valor del DW se puede apreciar en la ventana de resultados. Si el DW ≈ 2 no existe autocorrelación positiva, DW > 2 existe sospechas de una autocorrelación negativa y si DW < 2 existe sospechas de una autocorrelación positiva. Crítica: * Sólo es valido para la autocorrelación de la perturbación autorregresiva de orden 1 (AR(1)). * Requiere de una muestra mínima de 15, para obtener resultados fiables. * Presenta zonas de indeterminación ttt xY ttt u1 0 )1(2 ˆ )ˆˆ( 1 2 2 2 1 T t T t tt t
  • 22. Prueba de Breusch - Godfrey Es un contraste más general que el DW al permitir que la hipótesis alternativa procesos estocásticos más generales de orden p (AR(p)) o medias móviles de orden q (MA(q)), y se puede utilizar en variables endógenas retardadas. (ausencia de Autocorrelación) AR (r) o MA (r) Prueba: En la ventana de resultados View/Residual Diagnostics/ Serial Correlation LM Test… teclea 2 rezagos (Lags) ttt xY trtrttt u...2211 0...: 210 rH 0...: 211 rH 22 rTRLM
  • 23. Por tener un probabilidad muy baja 0% (menor de 5%) se rechaza la hipótesis nula de incorrelación. Por lo que el modelo presenta autocorrelación de 2 orden (AR(2))
  • 24. Test de Ljung – Box y Box – Pierce Este test utiliza el coeficiente de correlación simple y sólo puede ser aplicado cuando el conjunto de variables explicativas son todas exógenas. Test Box - Pierce: Ljung presenta un refinamiento a la formula anterior: Donde : r i : Es el coeficiente de autocorrelación simple r i rirTQ 1 22 r i r i iT r TTQ 1 2 2 )2( T t t T t tit ir 1 2 1
  • 25. Correlograma: Es otra forma de identificar la autocorrelación de orden p. En la ventana de resultados View/ Residual Diagnostics/ Correlogram- q stadistis. En el cuadro de dialogo que aparece seleccionamos sin transformar (Level) y el número de rezagos 22 (o el máximo que pueda)
  • 26. • Las banda esta del correlograma estan representada por : • = ± 0.2341los valores que sean iguales o mayor a este valor nos indicara el orden de AR(r). • Otra guía para identificar la autocorrelación es ver en el correlograma cuántas barras salen de la línea de puntos (Partial correlation) 73 22 T
  • 27. Corrección de la Autocorrelación Introduciremos el componente autoregresivo al modelo estimado. Comando : equation Cagan.LS logm logpbi inter AR(1) AR(2)
  • 28. Heteroscedasticidad La heteroscedasticidad significa que la varianza de las perturbaciones no es constante a lo largo de las observaciones, violando un supuesto básico del modelo ( ) Consecuencias Una perdida de eficiencia de los estimadores mínimos cuadrados. La varianza del estimador por MCO no es mínima. Solución Reparamétrizar el modelo para encontrar la ley de formación de la varianza para cada periodo. * Como veremos a continuación Eviews tiene incorporado varias pruebas para detectar la heteroscedasticidad de los errores 22 )( iE
  • 29. Supuesto Formal ttt xY 2 2 2 2 1 / 00 00 00 ),()( T tt t EVar     Detección de H Este análisis se basa en los residuos i) Representación gráfica de residuos estimados versus la variable dependiente proyectada o tras variables conocidas, para explicar el comportamiento de la varianza y poder extraer su ley. ii) Prueba general de (Goldfeld y Quant, Breusch y Pagan , White) * Si representamos gráficamente los residual elevados al cuadrado con la variable dependiente pronosticada (o con cada uno de los regresores ordenados ) * Si en el cuadro de comando digitamos: genr resid_2=resid^2
  • 30. *del cuadro de resultado activamos Forecast/ok hemos generados los valores estimados de la variable dependiente Logmf. Seleccionando Resid_2 y Logmf y habrimos el cuadro de Ctrl y doble Click abrimos open Group en View/Graph/Seleccionamos Scatter/Simple Scatter * Del gráfico se desprende que la relación entre las variables es lineal, lo que nos lleva a pensar que errores al cuadrado de las perturbaciones crece linealmente elasticidad demanda de dinero. Si observamos bien esta relación es exponencial por lo que nos animamos ha dar el factor de la varianza. 22 ˆ)( ii YVar
  • 31. Prueba de Goldfeld - Quant H0 : No existe Heteroscedasticidad (igualdad de varianzas) H1 : Existe Heteroscedasticidad donde h(.) es función monotona. * Omitir r observaciones intermedia (r < T/3) * Los dos grupos tiene tamaño (T-r)/2 En nuestro caso tenemos 73 observaciones, después de ordenar las observaciones del modelo (se ordena las observaciones de todas la variables mediante la ventana de Worfile » activamos Procs/Sort Current Page en el nuevo cuadro de dialogo introducimos la variable Logmf y ordenamos Ascendentemente), se eliminan las 24 (r < 73/3) centrales formando dos grupo donde el primer grupo tiene de 1 hasta 24 y el segundo grupo 49 hasta 73. )(2 iji xh
  • 32. Generamos el Scalar en el cuadro de comandos: Scalar se1=@se para el primer grupo y la desviación del error para el segundo grupo Scalar se2=@se . oteamos cual de las dos desviaciones es la mayor por que dividiremos la mayor desviación entre la menor en el cuadro de comandos, en nuestro caso es Se2 (0.152044) es mayor a Se1(0.084002). En el cuadro de comando generamos el estadístico : Scalar f=(se2/se1)^2 , que si revisamos el valor del objeto f nos da 3.276
  • 33. Para rezar o no la hipótesis nula necesitamos del estadístico F, por lo que crearemos este estadístico en el cuadro de comandos. Scalar prob=(1-@cfdist(f, 24, 24)) El resultado nos da una probabilidad muy baja de 0.2562139% (menor del 5%). Por lo que se rechaza la hipotesis nula de Homocedasticidad de la varianza. * Una solución habitual en este tipo de problemas es considerar el esquema de la varianza como: o 2/)(;2/)(;)/( 2 12 rTrTss F )()( 2 iji xVar 22 )( jii xVar F,24,24 implica los grados de libertad, que se deben ajustar para cada modelo.
  • 34. Prueba de White Este contraste es el más general por que no especifica concretamente la heteroscedasticidad. No existe Heteroscedasticidad 01 22 0 : : HverificasenoH H i
  • 35. Aplicando la Heteroscedasticidad en Eviews View que se encuentra en el objeto de ecuación Cagan(es el nombre de nuestra ecuación) pulsamos View/Residual Test/Specification White (no cross terms)
  • 36. Formas de Corregir la Heteroscedasticidad Un manera es realizar Mínimos Cuadrados Ponderados , donde la ponderación se puede elegir mediante White o el análisis de residuos. Corrección * Corrección White (Heteroskedasticy Consiste Covariances) * Correción de Newey – West (HAC Consistent Covariances)
  • 37. Corrección de Heteroscedasticidad Corrección de White: Corrige la matriz de Var – Cov por heteroscedasticidad. Corrección de Newy – West (HAC Consistente Covariances): Corrige la matriz de Var – Cov de los parámetros estimados por heteroscedasticidad y autocorrelación q: Representa un número entero 1 1 21 )(ˆ XXXXXX kT T T t tW 11 )(ˆˆ XXXX kT T NW T t q v tvtvtvtttt XXXX q v XX kT T 1 1 2 1 1ˆ 9/2 )100/(4 Tq
  • 38. Estimación en Eviews En la ventana de resultados hacemos click en estimate y luego en options También podemos activar el tipo(type) de ponderación, como por ejemplo la varianza y la inversa del logPBI (ponderación se obtiene de la prueba de Wheti) como se muestra en la siguinte hoja
  • 39. • Hay que mencionar que los resultados que no cambian con cualquiera de las dos pruebas solo cambia los errores estándar que se corregirán.
  • 41. Resultados de Corrección de Newey - West
  • 43. Como referencia se usará un modelo cuyas variables serán el tipo de cambio de 3 economías del mundo. Las monedas a elegir son: LE: moneda de Inglaterra (libra esterlina) ES: moneda de El Salvador (dólar) G: moneda de Guatemala (Quetzal) Antes de estimar un Vector Autoregresivo, se debe verificar que todas son variables estacionarias. Se procede variable por variable según View/Unit Root Test... Prueba ADF – Raíz Unitaria
  • 44. La hipótesis nula es que LE tiene Raíz Unitaria, por lo que según los resultados la variable LE si tiene Raíz Unitaria. El siguiente paso es aplicar ADF en primera diferencia, según se presenta en la gráfica de abajo. No hay R.U.
  • 45. La estimación del VAR, se utilizará 3 variables que son estacionarias. Seguir la siguiente estructura: Quick / Estimate VAR En el cuadro de variables endógenas, incluir las variables en orden de importancia (por teoría o por hipótesis) de izquierda a derecha. Este es el resultado, pero solo es preliminar.
  • 46. El siguiente paso es identificar el número de rezagos del VAR. (Akaike, Schwarz, Hannan) El comando en Eviews es View/Lag structure/Lag lenght criteria Se debe seleccionar los valores que tienen asterisco, que indica el número de lag. Si sale el valor 0, entonces es un indicio de que las variables no son endógenas y quizás se debe buscar otras. El resultado es 1 rezago.
  • 47. Como el resultado anterior es 1 rezago, entonces se estima el VAR con 1 rezago El siguiente paso es verificar si los rezagos son significativos. Para esto se debe dar click en View/Lag structure/lag exclusion test. Se debe varificar el p-value (paréntesis) que debe ser menor a 5% o 10% según se haya elegido. Por el p-value que en todos los casos es cero, entonces el rezago UNO es significativo.
  • 48. FUNCION IMPLUSO-RESPUESTA Luego del cálculo del VAR se debe seguir View/Impulse response La primera fila muestra la respuesta al impulso de la moneda LE, luego a ES y finalmente a G. El resultado es que LE si responde a su pripio shock, pero no responde a los cambios en ES y en G.
  • 49. CAUSALIDAD DE GRANGER Luego de estimar el VAR la causalidad de Granger se obtiene con View/Lag structure/Granger causality Lo que se espera que es cada variable sea causada por otra variable o cause a alguna variable. Si esto no sucede, la variable se considera como exógena. En el ejemplo solo LE y G causan a ES (indicio de endogeneidad), pero no las otras.
  • 50. COINTEGRACION Para verificar cointegración se usa Johansen. En Eviews se abre como grupo a todas las variables, y luego se aplica: View/cointegration test y se utiliza la opción SUMMARIZE ALL Por las pruebas TRACE o MAX- EIG se debe buscar la aparición de los vectores de cointegración en ambas pruebas. En el ejemplo no aparece ningún VEC.
  • 51. Otro paso es verificar las tablas inferiores de Johansen, para conocer cuántos rezagos se tiene según Akaike y Schwarz. En el ejemplo se muestra que para un modelo sin tendencia y con intercepto el número de rezagos según Akaike es 1. Finalmente, con esta elección se puede correr el modelo, utilizando 1 lag.
  • 52. VEC Cuando las variables cointegran, se recomienda el VEC. Al abrir el grupo de variables se hace click en: View/Cointegratin Test, y a nivel general se elige la opción 6. Como resultado se obtiene la prueba de Johansen, que indica el número de rezagos que el VEC debería tener, según cada criterio, para cada tipo de modelo. En el ejemplo se puede escoger según Akaike, un modelo sin intercepto ni tendencia con un lag.
  • 53. Finalmente se puede aplicar dos pasos, el primero es seguir en el grupo y presionar Proc/make vector autoregression o abrir Quick/estimate VAR Se incluye adecuadamente las variables y el número de rezagos y liego se presiona OK. El modelo final es el VEC para las tres variables