SlideShare ist ein Scribd-Unternehmen logo
1 von 41
Origin of the Universe
Understanding Earth’s uniqueness
Planetary evolution
• Where does water come from?
• Why do we have oceans?
• Why do we have life as we know it?
• Elemental composition
• Present day configuration relative to origins
• Hydrological cycle
• Dissolved gases/Ocean and Atmosphere
How did the earth become
habitable?
• How did Earth evolve?
• What makes it different from other planets?
Origin of the universe
• Importance of time scales
• Forces at work in the past – some changes as
planet evolved
• Forces at work today
• How can we measure age of the earth
How old is Earth?
• Biblical scholars of 19th
century (Bishop Ussher) – 6000
years (started at 4004 BC)
• Classical Greeks – infinite – history endlessly repeats
itself
• Mayans believed earth recycled on a 3000 year time
scale
• Han Chinese thought earth was recreated every
23,639,040 years
• The age we now except may change but is consistent
with current theory
More recent efforts
• Lord Kelvin - 80 million years old – based on
cooling of molten Earth
• Darwin - really old based on time for natural
selection (biological argument)
• Hutton – really old based on uniformitarianism
(processes in the past taking place at rates
comparable to today) (geological argument)
Earth’s age
• Earth is about 4.5 (or 4.6) BY old
• First 700 MY Earth was a spinning cloud of gas,
dust and planetoids
• These condensed and settled to solidify into a
series of planets
• Since that time, geological history and evolution
commenced.
Formerly “oldest life”
Oldest life?
1st
Bigbang COSMIC EXPLOSION 20 BYA
2nd
Bigbang SUPERNOVA
3rd
Bigbang Nemesis Hypothesis (65MYA thru
Walter Alvarez)
The Big Bang Theory
• Currently the dominant theory
• First iteration proposed by Georges Lemaître in 1927.
He observed the red shift in distant nebulas and invoked
relativity.
• Hubble found experimental evidence (1929) – galaxies
are moving away from us with speeds proportional to
their distance.
• Theory suggested because it explains the expansion &
predicts the existence of cosmic radiation (leftover
photons) & nucleosynthesis
• 1964 cosmic radiation discovered (Arno Penzias &
Robert Wilson who won the Nobel Prize)
Big Bang – what is it?
• Collapsing cloud of interstellar dust
• Cloud dense and cold so collapses under its own self-
gravity (cold gas has less internal pressure to counteract
gravity)
• Once collapsed, it immediately warms up because of
release of gravitational energy during collapse
• All mass and energy concentrated at a geometric point
Big Bang
• ~14 or 15 BY ago
• Beginning of space and time
• Expansion/cooling of universe began
• Protons and neutrons form
• Cooling initiated the formation of atoms – first
mostly H (the most abundant form of matter in the
universe) and He (two lightest elements)
The universe
• H2 and He gas are still the dominant elements in
the universe
– Still about 99% of all material
• Giant gas and dust clouds form
– Clouds begin to break into megaclouds
– Megaclouds organized into spiral and elliptical shapes
due to rotational forces
– Galaxies or nebulae are the gases and dust in the disk
• Some of the gas in these galaxies broke up into
smaller clusters to form stars
– Gravitational collapse of stars produces heat
– Initiates fusion reactions that make other elements
The Eagle Nebula from the
Hubble telescope
Interstellar clouds
Formation of galaxy and stars
• Galaxy – rotating aggregation of stars, dust, gas and
debris held together by gravity
• Stars are massive spheres of incandescent gases
• 100’s of billions of galaxies in the universe and 100’s
of billions of stars in the galaxies
• Sun is a star
• Sun plus its family of planets is our solar system
• Our solar system formed about 5 BY ago
• Our galaxy is out in a spiral arm
• Our solar system orbits the galaxy’s core
– (230 million year orbit at 280 km/s)
Formation of the Sun
• Clouds in interstellar space are many 1000’s of
times the mass of the sun
• Clouds contract, producing smaller fragments
• Form 1 or more star – depending how fast the
cloud fragment is rotating (faster yields more
stars)
The disk around the star Beta Pictoris as seen from
the Hubble Space Telescope) – real and false color
Stars
• Stars form in nebulae, large diffuse clouds of dust and
gas.
• Condensation theory – spinning nebula starts to shrink
and heat under its own gravity
• Protostar – condensed gases
• At temperature of ~10 million degrees C, nuclear fusion
begins (H’s fuse to form He) which releases energy and
stops shrinkage
• Star is stable once fusion reactions begin (form atoms
as heavy as C and O)
Star classification – most fall along main sequence band and are “normal”
Effective radiating temperature calculated using Wein’s law
Brightest bluest and most massive are O and B, early type stars (left)
Dimmest, reddest and least massive are K and M, late type stars
Our sun is a G2 star
Our sun
in 5 by
Our sun
eventually
Element synthesis
• Series of fusion reactions producing
elements up to Fe
• Fusion reactions convert a small amount of
mass to heat
– Heats up star
– Increases stars density
• Combine to increase core temperature
Beginning of the end
• Star starts consuming heavier atoms increasing
energy output and swelling to a “red giant”
• Nuclear fuel in core is spent
• Incinerates planet and throws off matter
including heavy elements
• More massive stars get hotter and consume H at
higher rates and make heavier atoms (e.g., Fe)
Our Solar System
• Our solar nebula was struck by a supernova
• Caused our condensing nebula to spin
• Introduced heavy atoms to seed the formation of planets
• 5 BY ago, the solar nebula was 75% H, 23% He and 2%
other material
• Center became protosun
• Outer material became planets – smaller bodies that
orbit a star but do not shine by their own light
Chemical composition of Sun
• Our sun did not form early after the big bang
• Contains elements that could only form during
death of a red giant (elements beyond Fe)
• Gasses and dust from explosion of a red giant
condensed to form our sun
• Same material that formed the sun also formed the
planets
– Earth and terrestrial planets are also predominantly Fe,
Mg, Si, and O
Our solar system
• Most of the material in the cloud that formed our
sun ended up in the sun
– Chemical elements in sun similar to elements in
universe
• Some material ended up in the nebular disk around
the sun
– Formed planets, moon, asteroids, comets
• This material was different in chemical
composition
– Elements that were contained in dust and ice formed
planets
• Gasses not retained by sun were largely lost
– Exception is some of the large, gassy outer planets
Planets
• Grew by accretion – big clumps use gravitational pull to accrete condensing
matter
• Near sun, first materials to solidify had higher boiling points (metals and
rocky minerals) – Mercury is mostly Fe, Ni. Inner rocky planets.
• Next Mg, Si, H2O and O2 condensed (plus some Fe and Ni). Middle planets
(e.g., Earth).
• CH4 and NH3 in frigid outer zones. Outer gassy planets (Jupiter, Saturn,
Uranus and Neptune).
Timeline (since big bang)
• 10-35
sec ABB (The Big Bang)
– The universe is an infinitely dense, hot fireball.
• 10-6
sec ABB (1 millionth of a second)
– Universe forms: Expansion slows down; universe cools and
becomes less dense
– The most basic forces in nature become distinct: first gravity,
then the strong force, which holds nuclei of atoms together,
followed by the weak and electromagnetic forces. By the first
second, the universe is made up of fundamental particles and
energy: quarks, electrons, photons, neutrinos and less familiar
types. These particles smash together to form protons and
neutrons.
• 3 sec ABB
– Formation of basic elements
– Protons and neutrons come together to form the nuclei of
simple elements: hydrogen (1 proton), helium (2 protons) and
lithium (3 protons) (1, 2 and 3 in periodic table). It will take
another 300,000 years for electrons to be captured into orbits
around these nuclei to form stable atoms.
• 10,000 yr ABB
– Radiation Era
– The first major era in the history of the universe is one in
which most of the energy is in the form of radiation --
different wavelengths of light, X rays, radio waves and
ultraviolet rays. This energy is the remnant of the primordial
fireball, and as the universe expands, the waves of radiation
are stretched and diluted until today, they make up the faint
glow of microwaves which bathe the entire universe.
• 300,000 yr ABB
– Matter dominates
– The energy in matter and the energy in radiation are equal. As
universe expands, waves of light are stretched to lower and
lower energy, while the matter travels onward largely
unaffected. Neutral atoms are formed as electrons link up
with hydrogen and helium nuclei. Microwave background
radiation gives us a direct picture of how matter was
distributed at this early time.
• 300 MY ABB
– Birth of stars and galaxies.
– Gravity amplifies slight irregularities in the density of the
primordial gas. Even as the universe continues to expand
rapidly, pockets of gas become more and more dense. Stars
ignite within these pockets, and groups of stars become the
earliest galaxies. (Still perhaps 12 to 15 billion years before
the present).
• 5 BY ago Birth of the Sun
– The sun forms within a cloud of gas in a spiral arm of the Milky Way Galaxy.
A vast disk of gas and debris that swirls around this new star gives birth to
planets, moons, and asteroids . Earth is the third planet out.
– The image on the left, from the Hubble Space Telescope, shows a
newborn star in the Orion Nebula surrounded by a disk of dust and gas
that may one day collapse into planets, moons and asteroids.
• 3.8 BY ago Earliest Life
– The Earth has cooled and an atmosphere develops. Microscopic living
cells, neither plants nor animals, begin to evolve and flourish in earth's
many volcanic environments.
• 700 MY ago Primitive Animals appear
– These are mostly flatworms, jellyfish and algae. By 570 million years
before the present, large numbers of creatures with hard shells suddenly
appear.
• 200 MY ago Mammals appear
– The first mammals evolved from a class of reptiles that evolved
mammalian traits, such as a segmented jaw and a series of bones that
make up the inner ear.
• 65 MY ago Dinosaurs become extinct
– An asteroid or comet slams into the northern part of the Yucatan
Peninsula in Mexico. This world-wide cataclysm brings to an end the long
age of the dinosaurs, and allows mammals to diversify and expand their
ranges.
• 600,000 yr ago Homo sapiens evolve
– Our earliest ancestors evolve in Africa from a line of creatures that
descended from apes.
• 170,000 yr ago Supernova 1987a explodes
– A star explodes in a dwarf galaxy known as the Large Magellanic
Cloud that lies just beyond the Milky Way. The star, known in
modern times as Sanduleak 69-202, is a blue supergiant 25 times
more massive than our Sun. Such explosions distribute all the
common elements such as Oxygen, Carbon, Nitrogen, Calcium and
Iron into interstellar space where they enrich clouds of Hydrogen
and Helium that are about to form new stars. They also create the
heavier elements (such as gold, silver, lead, and uranium) and
distribute these as well. Their remnants generate the cosmic rays
which lead to mutation and evolution in living cells. These
supernovae, then, are key to the evolution of the Universe and to life
itself.
• 1054 Crab Supernova appears
– A new star in the constellation Taurus outshines Venus. Chinese,
Japanese, and Native American observers record the appearance of a
supernova. It is not, however, recorded in Europe, most likely as a
consequence of lack of study of nature during the Dark Ages. The
remnants of this explosion are visible today as the Crab Nebula. Within
the nebula, astronomers have found a pulsar, the ultra-dense remains of a
star that blew up.
• 1609 Galileo builds first telescope
– Five years after the appearance of the great supernova of 1604, Galileo
builds his first telescope. He sees the moons of Jupiter, Saturn's rings, the
phases of Venus, and the stars in the Milky Way.
• 1665 Newton describes gravity
» At the age of 23, young Isaac Newton realizes that gravitational
force accounts for falling bodies on earth as well as the motion of
the moon and the planets in orbit. This is a revolutionary step in the
history of thought, as it extends the influence of earthly behavior to
the realm of the heavens. One set of laws, discovered and tested on
our planet, will be seen to govern the entire universe.
• 1905 Einstein’s Theory of Relativity
Relativity recognizes the speed of light as the
absolute speed limit in the universe and, as such, unites the
previously separate concepts of space and time into a
unified spacetime. Eleven years later, his General Theory of
Relativity replaces Newton's model of gravity with one
in which the gravitational force is interpreted as the
response of bodies to distortions in spacetime which
matter itself creates. Predictions of black holes and
an expanding Universe are immediate consequences of
this revolutionary theory which remains unchallenged today
as our description of the cosmos.
• 1929 Hubble discovers universe is expanding
– Edwin Hubble discovers that the universe is expanding. The astronomer
Edwin Hubble uses the new 100-inch telescope on Mt. Wilson in Southern
California to discover that the farther away a galaxy is, the more its light is
shifted to the red. And the redder a galaxy's light, the faster it is moving away
from us. By describing this "Doppler shift," Hubble proves that the universe
is not static, but is expanding in all directions. He also discovers that galaxies
are much further away than anyone had thought.
• 1960 Quasars discovered
– Allan Sandage and Thomas Matthews find sources of intense radio
energy, calling them Quasi Stellar Radio Sources. Four years later,
Maarten Schmidt would discover that these sources lie at the edge of the
visible universe. In recent years, astronomers have realized that they are
gigantic black holes at the centers of young galaxies into which matter is
heated to high temperatures and glows brightly as it rushes in.
• 1964 Microwave radiation discovered
– Scientists at the Bell Telephone Laboratories discovered microwave
radiation that bathes the earth from all directions in space. This radiation
is the afterglow of the Big Bang.
• 1967 Discovery of Pulsars
– A graduate student, Jocelyn Bell, and her professor, Anthony
Hewish, discover intense pulsating sources of radio energy,
known as pulsars. Pulsars were the first known examples of
neutron stars, extremely dense objects that form in the wake
of some supernovae. The crab pulsar, is the remnant of the
bright supernova recorded by Native Americans and cultures
around the world in the year 1054 A.D.
• 1987 Light from supernova 1987 reaches Earth
– The light from this supernova reaches earth, 170,000 years
after is parent star exploded. Underground sensors in the
United States and Japan first detect a wave of subatomic
particles known as neutrinos from the explosion. Astronomers
rush to telescopes in the southern hemisphere to study the
progress of the explosion and perfect models describing the
violent deaths of large stars.
• 1990 Hubble launched
– The twelve-ton telescope, equipped with a 94-inch mirror, is
sent into orbit by astronauts aboard the space shuttle
Discovery. Within two months, a flaw in its mirror is
discovered, placing in jeopardy the largest investment ever in
astronomy.
• 1990 Big Bang confirmed
– Astronomers use the new Cosmic Background Explorer
satellite (COBE) to take a detailed spectrum of the microwave
background radiation. These studies showed that the radiation
is in nearly perfect agreement with the Big Bang theory. Two
years later, scientists used the same instrument to discover
minute variations in the background radiation: the earliest
known evidence of structure in the universe.
• 1993 Hubble optics repaired
– Hubble's greatest legacy so far: detailed images of galaxies
near the limits of the visible universe.
Future• 100 Trillion
– Astronomers assume that the universe will gradually wither
away, provided it keeps on expanding and does not recollapse
under the pull of its own gravity. During the Stelliferous Era,
from 10,000 years to 100 trillion years after the Big Bang,
most of the energy generated by the universe is in the form of
stars burning hydrogen and other elements in their cores.
• 1037
yrs
– Most of the mass that we can currently see in the universe is
locked up in degenerate stars, those that have blown up and
collapsed into black holes and neutron stars, or have withered
into white dwarfs. Energy in this era is generated through
proton decay and particle annihilation.
• 1038
to 10100
The Black Hole Era
– After the epoch of proton decay, the only stellar-like objects
remaining are black holes of widely disparate masses, which
are actively evaporating during this era.
• 10100
Dark Era Begins
– At this late time, protons have decayed and black holes have
evaporated.Only the waste products from these processes
remain: mostly photons of colossal wavelength, neutrinos,
electrons, and positrons. For all intents and purposes, the
universe as we know it has dissipated.
From: PBS Online (http://www.pbs.org/deepspace/timeline/)
Doppler shifting
• Wavelengths emitted by objects moving away are
shifted to lower frequency (towards reds)
• Wavelengths emitted by objects moving towards
us are shifted to higher frequency.
• Example of sound – pitch of fire engine is higher
as truck moves towards you and lower as it moves
away)
• For galaxies outside our group, the redshift is
known as hubble expansion (after Edwin Hubble
who discovered this phenomenon in 1929).

Weitere ähnliche Inhalte

Was ist angesagt?

Lesson 1 the origin of the universe and solar system
Lesson 1  the origin of the universe and solar systemLesson 1  the origin of the universe and solar system
Lesson 1 the origin of the universe and solar systemMaryJoyValentino
 
Theories on the origin of the universe
Theories on the origin of the universeTheories on the origin of the universe
Theories on the origin of the universeDyenkaye Saludez
 
The origins of the universe
The origins of the universeThe origins of the universe
The origins of the universejhuffer
 
ORIGIN OF THE UNIVERSE.pdf
ORIGIN OF THE UNIVERSE.pdfORIGIN OF THE UNIVERSE.pdf
ORIGIN OF THE UNIVERSE.pdfJulieAmorZantua
 
Origin of the Universe and the Solar System
Origin of the Universe and the Solar SystemOrigin of the Universe and the Solar System
Origin of the Universe and the Solar SystemNikoPatawaran
 
Internal structure of the earth
Internal structure of the earthInternal structure of the earth
Internal structure of the earthJahangir Alam
 
Chapter 1 origin of the universe
Chapter 1   origin of the universeChapter 1   origin of the universe
Chapter 1 origin of the universeNikoPatawaran
 
Earth Science Astronomy - The big bang theory
Earth Science Astronomy - The big bang theoryEarth Science Astronomy - The big bang theory
Earth Science Astronomy - The big bang theoryTim Corner
 
History Of Astronomy (Complete)
History Of Astronomy (Complete)History Of Astronomy (Complete)
History Of Astronomy (Complete)Oyster River HS
 
Theories on the origin of the Universe.
Theories on the origin of the Universe.Theories on the origin of the Universe.
Theories on the origin of the Universe.Jerome Bigael
 
Theories on the origin of the Solar System
Theories on the origin of the Solar SystemTheories on the origin of the Solar System
Theories on the origin of the Solar SystemJerome Bigael
 
THE BIG BANG THEORY
THE BIG BANG THEORYTHE BIG BANG THEORY
THE BIG BANG THEORYtriciapersia
 
Origin of the universe
Origin of the universe Origin of the universe
Origin of the universe Shella69
 

Was ist angesagt? (20)

Lesson 1 the origin of the universe and solar system
Lesson 1  the origin of the universe and solar systemLesson 1  the origin of the universe and solar system
Lesson 1 the origin of the universe and solar system
 
Evolution of universe
Evolution of universeEvolution of universe
Evolution of universe
 
Theories on the origin of the universe
Theories on the origin of the universeTheories on the origin of the universe
Theories on the origin of the universe
 
The origins of the universe
The origins of the universeThe origins of the universe
The origins of the universe
 
ORIGIN OF THE UNIVERSE.pdf
ORIGIN OF THE UNIVERSE.pdfORIGIN OF THE UNIVERSE.pdf
ORIGIN OF THE UNIVERSE.pdf
 
Origin of the Universe and the Solar System
Origin of the Universe and the Solar SystemOrigin of the Universe and the Solar System
Origin of the Universe and the Solar System
 
Internal structure of the earth
Internal structure of the earthInternal structure of the earth
Internal structure of the earth
 
Chapter 1 origin of the universe
Chapter 1   origin of the universeChapter 1   origin of the universe
Chapter 1 origin of the universe
 
Origin of the Earth
Origin of the EarthOrigin of the Earth
Origin of the Earth
 
Origin of the solar system hypotheses
Origin of the solar system hypothesesOrigin of the solar system hypotheses
Origin of the solar system hypotheses
 
Earth Science Astronomy - The big bang theory
Earth Science Astronomy - The big bang theoryEarth Science Astronomy - The big bang theory
Earth Science Astronomy - The big bang theory
 
History Of Astronomy (Complete)
History Of Astronomy (Complete)History Of Astronomy (Complete)
History Of Astronomy (Complete)
 
Origin of earth
Origin of earthOrigin of earth
Origin of earth
 
Origin of the universe
Origin of the universeOrigin of the universe
Origin of the universe
 
Stars - Stellar Evolution
Stars - Stellar EvolutionStars - Stellar Evolution
Stars - Stellar Evolution
 
Theories on the origin of the Universe.
Theories on the origin of the Universe.Theories on the origin of the Universe.
Theories on the origin of the Universe.
 
Theories on the origin of the Solar System
Theories on the origin of the Solar SystemTheories on the origin of the Solar System
Theories on the origin of the Solar System
 
THE BIG BANG THEORY
THE BIG BANG THEORYTHE BIG BANG THEORY
THE BIG BANG THEORY
 
Origin of the universe
Origin of the universe Origin of the universe
Origin of the universe
 
Advancement of solar system
Advancement of solar system Advancement of solar system
Advancement of solar system
 

Andere mochten auch

Venditori di successo. Professionisti
Venditori di successo. ProfessionistiVenditori di successo. Professionisti
Venditori di successo. ProfessionistiProgetto Innesto
 
Eval tercer bim 1 c imp
Eval tercer bim 1 c impEval tercer bim 1 c imp
Eval tercer bim 1 c impDiana Carranza
 
Present simple
Present simplePresent simple
Present simplewikiworks
 
Comparative and superlative
Comparative and superlativeComparative and superlative
Comparative and superlativewikiworks
 
Baphomet da origem templária à associação ao satanismo – gaveta de bagunças
Baphomet  da origem templária à associação ao satanismo – gaveta de bagunçasBaphomet  da origem templária à associação ao satanismo – gaveta de bagunças
Baphomet da origem templária à associação ao satanismo – gaveta de bagunçasAndre Silva
 
Future will and be going to
Future will and be going toFuture will and be going to
Future will and be going towikiworks
 
Graphing Traits Unit
Graphing Traits UnitGraphing Traits Unit
Graphing Traits UnitAngela522
 
Blog 140619035803-phpapp01
Blog 140619035803-phpapp01Blog 140619035803-phpapp01
Blog 140619035803-phpapp01Aimie 'owo
 
ใบงาน2 8
ใบงาน2 8ใบงาน2 8
ใบงาน2 8Aimie 'owo
 
How to work Prezi & BrainPOP
How to work Prezi & BrainPOPHow to work Prezi & BrainPOP
How to work Prezi & BrainPOPAngela522
 
โครงงานคอมพิวเตอร์1
โครงงานคอมพิวเตอร์1โครงงานคอมพิวเตอร์1
โครงงานคอมพิวเตอร์1Thipparat Doungkaew
 
Present perfect for experiences and with
Present perfect for experiences and withPresent perfect for experiences and with
Present perfect for experiences and withwikiworks
 
Tennis Nacho
Tennis NachoTennis Nacho
Tennis Nachowikiworks
 

Andere mochten auch (20)

Graphic file types
Graphic file typesGraphic file types
Graphic file types
 
Venditori di successo. Professionisti
Venditori di successo. ProfessionistiVenditori di successo. Professionisti
Venditori di successo. Professionisti
 
Eval tercer bim 1 c imp
Eval tercer bim 1 c impEval tercer bim 1 c imp
Eval tercer bim 1 c imp
 
Present simple
Present simplePresent simple
Present simple
 
52
5252
52
 
Comparative and superlative
Comparative and superlativeComparative and superlative
Comparative and superlative
 
Ngày chung đôi
Ngày chung đôiNgày chung đôi
Ngày chung đôi
 
Baphomet da origem templária à associação ao satanismo – gaveta de bagunças
Baphomet  da origem templária à associação ao satanismo – gaveta de bagunçasBaphomet  da origem templária à associação ao satanismo – gaveta de bagunças
Baphomet da origem templária à associação ao satanismo – gaveta de bagunças
 
Rubiks cube
Rubiks cubeRubiks cube
Rubiks cube
 
Future will and be going to
Future will and be going toFuture will and be going to
Future will and be going to
 
Ngày chung đôi
Ngày chung đôiNgày chung đôi
Ngày chung đôi
 
Graphing Traits Unit
Graphing Traits UnitGraphing Traits Unit
Graphing Traits Unit
 
Graphic file types
Graphic file typesGraphic file types
Graphic file types
 
Blog 140619035803-phpapp01
Blog 140619035803-phpapp01Blog 140619035803-phpapp01
Blog 140619035803-phpapp01
 
FORMAZIONE UTILE
FORMAZIONE UTILEFORMAZIONE UTILE
FORMAZIONE UTILE
 
ใบงาน2 8
ใบงาน2 8ใบงาน2 8
ใบงาน2 8
 
How to work Prezi & BrainPOP
How to work Prezi & BrainPOPHow to work Prezi & BrainPOP
How to work Prezi & BrainPOP
 
โครงงานคอมพิวเตอร์1
โครงงานคอมพิวเตอร์1โครงงานคอมพิวเตอร์1
โครงงานคอมพิวเตอร์1
 
Present perfect for experiences and with
Present perfect for experiences and withPresent perfect for experiences and with
Present perfect for experiences and with
 
Tennis Nacho
Tennis NachoTennis Nacho
Tennis Nacho
 

Ähnlich wie Ns1 origin of universe

Astonishing Astronomy 101 - Chapter 6
Astonishing Astronomy 101 - Chapter 6Astonishing Astronomy 101 - Chapter 6
Astonishing Astronomy 101 - Chapter 6Don R. Mueller, Ph.D.
 
The Universe, the eight planets, The sun
The Universe, the eight planets, The sunThe Universe, the eight planets, The sun
The Universe, the eight planets, The sunprinceexplore0
 
Origin of Earth.pptx
Origin of Earth.pptxOrigin of Earth.pptx
Origin of Earth.pptxNaleugiSeu
 
Solar system & planets
Solar system & planetsSolar system & planets
Solar system & planetsSanyam Gandotra
 
Earth in space
Earth in spaceEarth in space
Earth in spaceTEWABE
 
Other Theories on the Origin of the Universe.pptx
Other Theories on the Origin of the Universe.pptxOther Theories on the Origin of the Universe.pptx
Other Theories on the Origin of the Universe.pptxMiyahLhorsylGlimada
 
Lecture 01 Earth in Space s.ppt
Lecture 01 Earth in Space s.pptLecture 01 Earth in Space s.ppt
Lecture 01 Earth in Space s.pptFrancis de Castro
 
Presentation History of the Universe_p.ppt
Presentation History of the Universe_p.pptPresentation History of the Universe_p.ppt
Presentation History of the Universe_p.pptPASHKA2
 
Apes earth systems
Apes  earth systemsApes  earth systems
Apes earth systemsBobby Lewis
 
Origin of earth.pptx
Origin of earth.pptxOrigin of earth.pptx
Origin of earth.pptxscience lover
 
The Beginning of the Universe
The Beginning of the UniverseThe Beginning of the Universe
The Beginning of the UniverseRolly Franco
 
Formation of Heavier Elements.pptx
Formation of Heavier Elements.pptxFormation of Heavier Elements.pptx
Formation of Heavier Elements.pptxGabrielleEllis4
 
Space and time ch4
Space and time ch4Space and time ch4
Space and time ch4ohly0002
 
The Sun and our Solar System
The Sun and our Solar System The Sun and our Solar System
The Sun and our Solar System Jeanie Lacob
 
FORMATION-OF-HEAVIER-ELEMENTS.pdf for 11
FORMATION-OF-HEAVIER-ELEMENTS.pdf for 11FORMATION-OF-HEAVIER-ELEMENTS.pdf for 11
FORMATION-OF-HEAVIER-ELEMENTS.pdf for 11ghostlalay
 

Ähnlich wie Ns1 origin of universe (20)

Astonishing Astronomy 101 - Chapter 6
Astonishing Astronomy 101 - Chapter 6Astonishing Astronomy 101 - Chapter 6
Astonishing Astronomy 101 - Chapter 6
 
The Universe, the eight planets, The sun
The Universe, the eight planets, The sunThe Universe, the eight planets, The sun
The Universe, the eight planets, The sun
 
Origin of Earth.pptx
Origin of Earth.pptxOrigin of Earth.pptx
Origin of Earth.pptx
 
David y carlos s.
David y carlos s.David y carlos s.
David y carlos s.
 
Solar system & planets
Solar system & planetsSolar system & planets
Solar system & planets
 
Earth in space
Earth in spaceEarth in space
Earth in space
 
Other Theories on the Origin of the Universe.pptx
Other Theories on the Origin of the Universe.pptxOther Theories on the Origin of the Universe.pptx
Other Theories on the Origin of the Universe.pptx
 
Lecture 01 Earth in Space s.ppt
Lecture 01 Earth in Space s.pptLecture 01 Earth in Space s.ppt
Lecture 01 Earth in Space s.ppt
 
Presentation History of the Universe_p.ppt
Presentation History of the Universe_p.pptPresentation History of the Universe_p.ppt
Presentation History of the Universe_p.ppt
 
Apes earth systems
Apes  earth systemsApes  earth systems
Apes earth systems
 
Origin of earth.pptx
Origin of earth.pptxOrigin of earth.pptx
Origin of earth.pptx
 
The Beginning of the Universe
The Beginning of the UniverseThe Beginning of the Universe
The Beginning of the Universe
 
Formation of Heavier Elements.pptx
Formation of Heavier Elements.pptxFormation of Heavier Elements.pptx
Formation of Heavier Elements.pptx
 
Space and time ch4
Space and time ch4Space and time ch4
Space and time ch4
 
Solar System
Solar System Solar System
Solar System
 
1universe hp
1universe hp1universe hp
1universe hp
 
The Sun and our Solar System
The Sun and our Solar System The Sun and our Solar System
The Sun and our Solar System
 
Adolfo
AdolfoAdolfo
Adolfo
 
Solar system
Solar systemSolar system
Solar system
 
FORMATION-OF-HEAVIER-ELEMENTS.pdf for 11
FORMATION-OF-HEAVIER-ELEMENTS.pdf for 11FORMATION-OF-HEAVIER-ELEMENTS.pdf for 11
FORMATION-OF-HEAVIER-ELEMENTS.pdf for 11
 

Kürzlich hochgeladen

Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Angeliki Cooney
 
Cyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdfCyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdfOverkill Security
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...apidays
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfOverkill Security
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Orbitshub
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Jeffrey Haguewood
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Zilliz
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdfSandro Moreira
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024The Digital Insurer
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businesspanagenda
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MIND CTI
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesrafiqahmad00786416
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAndrey Devyatkin
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...apidays
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...apidays
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...apidays
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProduct Anonymous
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingEdi Saputra
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxRustici Software
 

Kürzlich hochgeladen (20)

Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
Cyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdfCyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdf
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdf
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 

Ns1 origin of universe

  • 1. Origin of the Universe Understanding Earth’s uniqueness
  • 2. Planetary evolution • Where does water come from? • Why do we have oceans? • Why do we have life as we know it? • Elemental composition • Present day configuration relative to origins • Hydrological cycle • Dissolved gases/Ocean and Atmosphere
  • 3. How did the earth become habitable? • How did Earth evolve? • What makes it different from other planets?
  • 4. Origin of the universe • Importance of time scales • Forces at work in the past – some changes as planet evolved • Forces at work today • How can we measure age of the earth
  • 5. How old is Earth? • Biblical scholars of 19th century (Bishop Ussher) – 6000 years (started at 4004 BC) • Classical Greeks – infinite – history endlessly repeats itself • Mayans believed earth recycled on a 3000 year time scale • Han Chinese thought earth was recreated every 23,639,040 years • The age we now except may change but is consistent with current theory
  • 6. More recent efforts • Lord Kelvin - 80 million years old – based on cooling of molten Earth • Darwin - really old based on time for natural selection (biological argument) • Hutton – really old based on uniformitarianism (processes in the past taking place at rates comparable to today) (geological argument)
  • 7. Earth’s age • Earth is about 4.5 (or 4.6) BY old • First 700 MY Earth was a spinning cloud of gas, dust and planetoids • These condensed and settled to solidify into a series of planets • Since that time, geological history and evolution commenced.
  • 9. 1st Bigbang COSMIC EXPLOSION 20 BYA 2nd Bigbang SUPERNOVA 3rd Bigbang Nemesis Hypothesis (65MYA thru Walter Alvarez)
  • 10. The Big Bang Theory • Currently the dominant theory • First iteration proposed by Georges Lemaître in 1927. He observed the red shift in distant nebulas and invoked relativity. • Hubble found experimental evidence (1929) – galaxies are moving away from us with speeds proportional to their distance. • Theory suggested because it explains the expansion & predicts the existence of cosmic radiation (leftover photons) & nucleosynthesis • 1964 cosmic radiation discovered (Arno Penzias & Robert Wilson who won the Nobel Prize)
  • 11. Big Bang – what is it? • Collapsing cloud of interstellar dust • Cloud dense and cold so collapses under its own self- gravity (cold gas has less internal pressure to counteract gravity) • Once collapsed, it immediately warms up because of release of gravitational energy during collapse • All mass and energy concentrated at a geometric point
  • 12. Big Bang • ~14 or 15 BY ago • Beginning of space and time • Expansion/cooling of universe began • Protons and neutrons form • Cooling initiated the formation of atoms – first mostly H (the most abundant form of matter in the universe) and He (two lightest elements)
  • 13. The universe • H2 and He gas are still the dominant elements in the universe – Still about 99% of all material • Giant gas and dust clouds form – Clouds begin to break into megaclouds – Megaclouds organized into spiral and elliptical shapes due to rotational forces – Galaxies or nebulae are the gases and dust in the disk • Some of the gas in these galaxies broke up into smaller clusters to form stars – Gravitational collapse of stars produces heat – Initiates fusion reactions that make other elements
  • 14. The Eagle Nebula from the Hubble telescope Interstellar clouds
  • 15. Formation of galaxy and stars • Galaxy – rotating aggregation of stars, dust, gas and debris held together by gravity • Stars are massive spheres of incandescent gases • 100’s of billions of galaxies in the universe and 100’s of billions of stars in the galaxies • Sun is a star • Sun plus its family of planets is our solar system • Our solar system formed about 5 BY ago
  • 16. • Our galaxy is out in a spiral arm • Our solar system orbits the galaxy’s core – (230 million year orbit at 280 km/s)
  • 17. Formation of the Sun • Clouds in interstellar space are many 1000’s of times the mass of the sun • Clouds contract, producing smaller fragments • Form 1 or more star – depending how fast the cloud fragment is rotating (faster yields more stars)
  • 18. The disk around the star Beta Pictoris as seen from the Hubble Space Telescope) – real and false color
  • 19. Stars • Stars form in nebulae, large diffuse clouds of dust and gas. • Condensation theory – spinning nebula starts to shrink and heat under its own gravity • Protostar – condensed gases • At temperature of ~10 million degrees C, nuclear fusion begins (H’s fuse to form He) which releases energy and stops shrinkage • Star is stable once fusion reactions begin (form atoms as heavy as C and O)
  • 20. Star classification – most fall along main sequence band and are “normal” Effective radiating temperature calculated using Wein’s law Brightest bluest and most massive are O and B, early type stars (left) Dimmest, reddest and least massive are K and M, late type stars Our sun is a G2 star Our sun in 5 by Our sun eventually
  • 21. Element synthesis • Series of fusion reactions producing elements up to Fe • Fusion reactions convert a small amount of mass to heat – Heats up star – Increases stars density • Combine to increase core temperature
  • 22. Beginning of the end • Star starts consuming heavier atoms increasing energy output and swelling to a “red giant” • Nuclear fuel in core is spent • Incinerates planet and throws off matter including heavy elements • More massive stars get hotter and consume H at higher rates and make heavier atoms (e.g., Fe)
  • 23.
  • 24. Our Solar System • Our solar nebula was struck by a supernova • Caused our condensing nebula to spin • Introduced heavy atoms to seed the formation of planets • 5 BY ago, the solar nebula was 75% H, 23% He and 2% other material • Center became protosun • Outer material became planets – smaller bodies that orbit a star but do not shine by their own light
  • 25. Chemical composition of Sun • Our sun did not form early after the big bang • Contains elements that could only form during death of a red giant (elements beyond Fe) • Gasses and dust from explosion of a red giant condensed to form our sun • Same material that formed the sun also formed the planets – Earth and terrestrial planets are also predominantly Fe, Mg, Si, and O
  • 26. Our solar system • Most of the material in the cloud that formed our sun ended up in the sun – Chemical elements in sun similar to elements in universe • Some material ended up in the nebular disk around the sun – Formed planets, moon, asteroids, comets • This material was different in chemical composition – Elements that were contained in dust and ice formed planets • Gasses not retained by sun were largely lost – Exception is some of the large, gassy outer planets
  • 27.
  • 28. Planets • Grew by accretion – big clumps use gravitational pull to accrete condensing matter • Near sun, first materials to solidify had higher boiling points (metals and rocky minerals) – Mercury is mostly Fe, Ni. Inner rocky planets. • Next Mg, Si, H2O and O2 condensed (plus some Fe and Ni). Middle planets (e.g., Earth). • CH4 and NH3 in frigid outer zones. Outer gassy planets (Jupiter, Saturn, Uranus and Neptune).
  • 29. Timeline (since big bang) • 10-35 sec ABB (The Big Bang) – The universe is an infinitely dense, hot fireball. • 10-6 sec ABB (1 millionth of a second) – Universe forms: Expansion slows down; universe cools and becomes less dense – The most basic forces in nature become distinct: first gravity, then the strong force, which holds nuclei of atoms together, followed by the weak and electromagnetic forces. By the first second, the universe is made up of fundamental particles and energy: quarks, electrons, photons, neutrinos and less familiar types. These particles smash together to form protons and neutrons.
  • 30. • 3 sec ABB – Formation of basic elements – Protons and neutrons come together to form the nuclei of simple elements: hydrogen (1 proton), helium (2 protons) and lithium (3 protons) (1, 2 and 3 in periodic table). It will take another 300,000 years for electrons to be captured into orbits around these nuclei to form stable atoms. • 10,000 yr ABB – Radiation Era – The first major era in the history of the universe is one in which most of the energy is in the form of radiation -- different wavelengths of light, X rays, radio waves and ultraviolet rays. This energy is the remnant of the primordial fireball, and as the universe expands, the waves of radiation are stretched and diluted until today, they make up the faint glow of microwaves which bathe the entire universe.
  • 31. • 300,000 yr ABB – Matter dominates – The energy in matter and the energy in radiation are equal. As universe expands, waves of light are stretched to lower and lower energy, while the matter travels onward largely unaffected. Neutral atoms are formed as electrons link up with hydrogen and helium nuclei. Microwave background radiation gives us a direct picture of how matter was distributed at this early time. • 300 MY ABB – Birth of stars and galaxies. – Gravity amplifies slight irregularities in the density of the primordial gas. Even as the universe continues to expand rapidly, pockets of gas become more and more dense. Stars ignite within these pockets, and groups of stars become the earliest galaxies. (Still perhaps 12 to 15 billion years before the present).
  • 32. • 5 BY ago Birth of the Sun – The sun forms within a cloud of gas in a spiral arm of the Milky Way Galaxy. A vast disk of gas and debris that swirls around this new star gives birth to planets, moons, and asteroids . Earth is the third planet out. – The image on the left, from the Hubble Space Telescope, shows a newborn star in the Orion Nebula surrounded by a disk of dust and gas that may one day collapse into planets, moons and asteroids. • 3.8 BY ago Earliest Life – The Earth has cooled and an atmosphere develops. Microscopic living cells, neither plants nor animals, begin to evolve and flourish in earth's many volcanic environments. • 700 MY ago Primitive Animals appear – These are mostly flatworms, jellyfish and algae. By 570 million years before the present, large numbers of creatures with hard shells suddenly appear. • 200 MY ago Mammals appear – The first mammals evolved from a class of reptiles that evolved mammalian traits, such as a segmented jaw and a series of bones that make up the inner ear.
  • 33. • 65 MY ago Dinosaurs become extinct – An asteroid or comet slams into the northern part of the Yucatan Peninsula in Mexico. This world-wide cataclysm brings to an end the long age of the dinosaurs, and allows mammals to diversify and expand their ranges. • 600,000 yr ago Homo sapiens evolve – Our earliest ancestors evolve in Africa from a line of creatures that descended from apes. • 170,000 yr ago Supernova 1987a explodes – A star explodes in a dwarf galaxy known as the Large Magellanic Cloud that lies just beyond the Milky Way. The star, known in modern times as Sanduleak 69-202, is a blue supergiant 25 times more massive than our Sun. Such explosions distribute all the common elements such as Oxygen, Carbon, Nitrogen, Calcium and Iron into interstellar space where they enrich clouds of Hydrogen and Helium that are about to form new stars. They also create the heavier elements (such as gold, silver, lead, and uranium) and distribute these as well. Their remnants generate the cosmic rays which lead to mutation and evolution in living cells. These supernovae, then, are key to the evolution of the Universe and to life itself.
  • 34. • 1054 Crab Supernova appears – A new star in the constellation Taurus outshines Venus. Chinese, Japanese, and Native American observers record the appearance of a supernova. It is not, however, recorded in Europe, most likely as a consequence of lack of study of nature during the Dark Ages. The remnants of this explosion are visible today as the Crab Nebula. Within the nebula, astronomers have found a pulsar, the ultra-dense remains of a star that blew up. • 1609 Galileo builds first telescope – Five years after the appearance of the great supernova of 1604, Galileo builds his first telescope. He sees the moons of Jupiter, Saturn's rings, the phases of Venus, and the stars in the Milky Way. • 1665 Newton describes gravity » At the age of 23, young Isaac Newton realizes that gravitational force accounts for falling bodies on earth as well as the motion of the moon and the planets in orbit. This is a revolutionary step in the history of thought, as it extends the influence of earthly behavior to the realm of the heavens. One set of laws, discovered and tested on our planet, will be seen to govern the entire universe.
  • 35. • 1905 Einstein’s Theory of Relativity Relativity recognizes the speed of light as the absolute speed limit in the universe and, as such, unites the previously separate concepts of space and time into a unified spacetime. Eleven years later, his General Theory of Relativity replaces Newton's model of gravity with one in which the gravitational force is interpreted as the response of bodies to distortions in spacetime which matter itself creates. Predictions of black holes and an expanding Universe are immediate consequences of this revolutionary theory which remains unchallenged today as our description of the cosmos.
  • 36. • 1929 Hubble discovers universe is expanding – Edwin Hubble discovers that the universe is expanding. The astronomer Edwin Hubble uses the new 100-inch telescope on Mt. Wilson in Southern California to discover that the farther away a galaxy is, the more its light is shifted to the red. And the redder a galaxy's light, the faster it is moving away from us. By describing this "Doppler shift," Hubble proves that the universe is not static, but is expanding in all directions. He also discovers that galaxies are much further away than anyone had thought. • 1960 Quasars discovered – Allan Sandage and Thomas Matthews find sources of intense radio energy, calling them Quasi Stellar Radio Sources. Four years later, Maarten Schmidt would discover that these sources lie at the edge of the visible universe. In recent years, astronomers have realized that they are gigantic black holes at the centers of young galaxies into which matter is heated to high temperatures and glows brightly as it rushes in. • 1964 Microwave radiation discovered – Scientists at the Bell Telephone Laboratories discovered microwave radiation that bathes the earth from all directions in space. This radiation is the afterglow of the Big Bang.
  • 37. • 1967 Discovery of Pulsars – A graduate student, Jocelyn Bell, and her professor, Anthony Hewish, discover intense pulsating sources of radio energy, known as pulsars. Pulsars were the first known examples of neutron stars, extremely dense objects that form in the wake of some supernovae. The crab pulsar, is the remnant of the bright supernova recorded by Native Americans and cultures around the world in the year 1054 A.D. • 1987 Light from supernova 1987 reaches Earth – The light from this supernova reaches earth, 170,000 years after is parent star exploded. Underground sensors in the United States and Japan first detect a wave of subatomic particles known as neutrinos from the explosion. Astronomers rush to telescopes in the southern hemisphere to study the progress of the explosion and perfect models describing the violent deaths of large stars.
  • 38. • 1990 Hubble launched – The twelve-ton telescope, equipped with a 94-inch mirror, is sent into orbit by astronauts aboard the space shuttle Discovery. Within two months, a flaw in its mirror is discovered, placing in jeopardy the largest investment ever in astronomy. • 1990 Big Bang confirmed – Astronomers use the new Cosmic Background Explorer satellite (COBE) to take a detailed spectrum of the microwave background radiation. These studies showed that the radiation is in nearly perfect agreement with the Big Bang theory. Two years later, scientists used the same instrument to discover minute variations in the background radiation: the earliest known evidence of structure in the universe. • 1993 Hubble optics repaired – Hubble's greatest legacy so far: detailed images of galaxies near the limits of the visible universe.
  • 39. Future• 100 Trillion – Astronomers assume that the universe will gradually wither away, provided it keeps on expanding and does not recollapse under the pull of its own gravity. During the Stelliferous Era, from 10,000 years to 100 trillion years after the Big Bang, most of the energy generated by the universe is in the form of stars burning hydrogen and other elements in their cores. • 1037 yrs – Most of the mass that we can currently see in the universe is locked up in degenerate stars, those that have blown up and collapsed into black holes and neutron stars, or have withered into white dwarfs. Energy in this era is generated through proton decay and particle annihilation.
  • 40. • 1038 to 10100 The Black Hole Era – After the epoch of proton decay, the only stellar-like objects remaining are black holes of widely disparate masses, which are actively evaporating during this era. • 10100 Dark Era Begins – At this late time, protons have decayed and black holes have evaporated.Only the waste products from these processes remain: mostly photons of colossal wavelength, neutrinos, electrons, and positrons. For all intents and purposes, the universe as we know it has dissipated. From: PBS Online (http://www.pbs.org/deepspace/timeline/)
  • 41. Doppler shifting • Wavelengths emitted by objects moving away are shifted to lower frequency (towards reds) • Wavelengths emitted by objects moving towards us are shifted to higher frequency. • Example of sound – pitch of fire engine is higher as truck moves towards you and lower as it moves away) • For galaxies outside our group, the redshift is known as hubble expansion (after Edwin Hubble who discovered this phenomenon in 1929).