SlideShare ist ein Scribd-Unternehmen logo
1 von 5
Body Systems
The body comprises of a number of systems including
the: Cardiovascular system, Digestive system, Endocrine system,Muscular system, Neurological system, Respira
tory system and the Skeletal system.
The Neurological System
All of our body systems work in conjunction with each other and none are capable of working in isolation. The
nervous system controls and coordinates the functioning of all other systems in response to our surroundings.
Each stimulus or change in our environment is detected by our senses and messages are interpreted by the
brain that in turn, sends directions to the various organs to respond and adapt according to the external
conditions which affect our body.
The function of the Neurological System is to transmit and receive a constant series of messages via electrical
impulses to and from the control centre situated in the brain. These messages are either those receiving
"information" from various body tissues via the sensory nerves, or those initiating the function of other tissues
such as organs, muscles, etc.
The nervous system is divided into the central nervous system (CNS) that includes the brain and spinal cord,
and the peripheral nervous system (PNS) comprising cranial nerves and spinal nerves. The PNS includes nerves
emerging from the brain (cranial nerves) and nerves emerging from the spinal cord (spinal nerves). These
nerves are divided into sensory nerves that conduct messages from various parts of the body to the CNS, whilst
motor nerves conduct impulses from the CNS to muscles and glands. The PNS is further divided into the
Somatic System (SNS) and Autonomic System (ANS), depending on the area of the body these messages are
transmitted to and from.
The SNS consists of sensory neurons from the head, body wall, extremities, and motor neurons to skeletal
muscle. The motor responses are under conscious control and therefore the SNS is voluntary. Certain peripheral
nerves perform specialised functions and form the autonomic nervous system; they control various activities
that occur automatically or involuntarily such as the contraction of smooth muscle in the walls of the digestive
system. The autonomic system is further divided into the sympathetic and parasympathetic systems. These two
systems provide nerve stimuli to the same organs throughout the body, but bring about different effects.
The Sympathetic Nervous System helps prepare the body for "fight or flight" and create conditions in the tissues
for physical activity. It is stimulated by strong emotions such as anger and excitement and will therefore speed
up heart rate, increase the activity of sweat glands, adrenal glands, and decrease those of the digestive system.
It also produces rapid redistribution of blood between the skin and skeletal muscles.
Conversely, the Parasympathetic Nervous System slows down the body and helps prepare for a more relaxed
state, ready for digestion and sleep. It will therefore increase peristalsis of the alimentary canal, slow down the
heart rate, and constrict the bronchioles in the lungs. The balance between these two systems is controlled to
create a state of homeostasis that is where the internal stability of the bodily systems are maintained in
response to the external environment.
Nervous System
he nervous system is the part of an animal's body that coordinates the voluntary and involuntary actions of the animal and
transmits signals between different parts of its body. In most types of animals it consists of two main parts, the central nervous
system (CNS) and the peripheral nervous system (PNS). The CNS contains the brain and spinal cord. The PNS consists mainly
of nerves, which are long fibers that connect the CNS to every other part of the body. The PNS includes motor neurons,
mediating voluntary movement, the autonomic nervous system, comprising the sympathetic nervous system and
the parasympathetic nervous system and regulating involuntary functions, and the enteric nervous system, a semi-independent
part of the nervous system whose function is to control
the gastrointestinal system.
At the cellular level, the nervous system is defined by
the presence of a special type of cell, called the neuron,
also known as a "nerve cell". Neurons have special
structures that allow them to send signals rapidly and
precisely to other cells. They send these signals in the
form of electrochemical waves traveling along thin
fibers called axons, which cause chemicals
called neurotransmitters to be released at junctions
calledsynapses. A cell that receives a synaptic signal
from a neuron may be excited, inhibited, or otherwise
modulated. The connections between neurons form
neural circuits that generate an organism's perception
of the world and determine its behavior. Along with
neurons, the nervous system contains other specialized
cells called glial cells (or simply glia), which provide
structural and metabolic support.
Nervous systems are found in most multicellular
animals, but vary greatly in complexity.
[1]
The only
multicellular animals that have no nervous system at all
are sponges, placozoans and mesozoans, which have
very simple body plans. The nervous systems
of ctenophores (comb jellies) and cnidarians (e.g.,
anemones, hydras, corals and jellyfishes) consist of a
diffuse nerve net. All other types of animals, with the
exception of a few types of worms, have a nervous system containing a brain, a central cord (or two cords running in parallel),
and nerves radiating from the brain and central cord. The size of the nervous system ranges from a few hundred cells in the
simplest worms, to on the order of 100 billion cells in humans.
At the most basic level, the function of the nervous system is to send signals from one cell to others, or from one part of the body
to others. The nervous system is susceptible to malfunction in a wide variety of ways, as a result of genetic defects, physical
damage due to trauma or poison, infection, or simply aging. The medical specialty of neurology studies the causes of nervous
system malfunction, and looks for interventions that can prevent it or treat it. In the peripheral nervous system, the most
commonly occurring type of problem is failure of nerve conduction, which can have a variety of causes including diabetic
neuropathy and demyelinating disorders such as multiple sclerosis and amyotrophic lateral sclerosis.
Neuroscience is the field of science that focuses on the study of the nervous system.
STRUCTURE
The nervous system derives its name from nerves, which are cylindrical bundles of fibers that emanate from the brain and
central cord, and branch repeatedly to innervate every part of the body.
[2]
Nerves are large enough to have been recognized by
the ancient Egyptians, Greeks, and Romans,
[3]
but their internal structure was not understood until it became possible to
examine them using a microscope.
[4]
A microscopic examination shows that nerves consist primarily of the axons of neurons,
along with a variety of membranes that wrap around them and segregate them intofascicles. The neurons that give rise to
nerves do not lie entirely within the nerves themselves—their cell bodies reside within the brain, central cord, or peripheral
ganglia.
[2]
All animals more advanced than sponges have nervous systems. However, even sponges, unicellular animals, and non-animals
such as slime molds have cell-to-cell signalling mechanisms that are precursors to those of neurons.
[5]
In radially symmetric
animals such as the jellyfish and hydra, the nervous system consists of a diffuse network of isolated cells.
[6]
In bilaterian animals,
which make up the great majority of existing species, the nervous system has a common structure that originated early in the
Cambrian period, over 500 million years ago.
CELLS
The nervous system contains two main categories or types of cells: neurons and glial cells.
NEURONS
The nervous system is defined by the presence of a special type of cell—the neuron (sometimes called "neurone" or "nerve
cell").
[2]
Neurons can be distinguished from other cells in a number of ways, but their most fundamental property is that they
communicate with other cells via synapses, which are membrane-to-membrane junctions containing molecular machinery that
allows rapid transmission of signals, either electrical or chemical.
[2]
Many types of neuron possess anaxon, a protoplasmic
protrusion that can extend to distant parts of the body and make thousands of synaptic contacts.
[8]
Axons frequently travel
through the body in bundles called nerves.
Even in the nervous system of a single species such as humans, hundreds of different types of neurons exist, with a wide variety
of morphologies and functions.
[8]
These include sensory neurons that transmute physical stimuli such as light and sound into
neural signals, and motor neurons that transmute neural signals into activation of muscles or glands; however in many species
the great majority of neurons receive all of their input from other neurons and send their output to other neurons.
GLIAL CELLS
Glial cells (named from the Greek for "glue")
are non-neuronal cells that provide support and
nutrition, maintainhomeostasis, form myelin,
and participate in signal transmission in the
nervous system.
[9]
In the human brain, it is
estimated that the total number of glia roughly
equals the number of neurons, although the
proportions vary in different brain
areas.
[10]
Among the most important functions
of glial cells are to support neurons and hold
them in place; to supply nutrients to neurons; to
insulate neurons electrically; to
destroy pathogens and remove dead neurons;
and to provide guidance cues directing the
axons of neurons to their targets.
[9]
A very
important type of glial cell (oligodendrocytes in
the central nervous system, and Schwann
cells in the peripheral nervous system)
generates layers of a fatty substance
called myelin that wraps around axons and provides electrical insulation which allows them to transmit action potentials much
more rapidly and efficiently.
Neural precursors in sponges
Sponges have no cells connected to each other by synaptic junctions, that is, no neurons, and therefore no nervous system.
They do, however, have homologs of many genes that play key roles in synaptic function. Recent studies have shown that
sponge cells express a group of proteins that cluster together to form a structure resembling a postsynaptic density (the signal-
receiving part of a synapse).
[5]
However, the function of this structure is currently unclear. Although sponge cells do not show
synaptic transmission, they do communicate with each other via calcium waves and other impulses, which mediate some simple
actions such as whole-body contraction.
FUNCTIONS
At the most basic level, the function of the nervous system is to send signals from one cell to others, or from one part of the body
to others. There are multiple ways that a cell can send signals to other cells. One is by releasing chemicals called hormones into
the internal circulation, so that they can diffuse to distant sites. In contrast to this "broadcast" mode of signaling, the nervous
system provides "point-to-point" signals—neurons project their axons to specific target areas and make synaptic connections
with specific target cells.
[31]
Thus, neural signaling is capable of a much higher level of specificity than hormonal signaling. It is
also much faster: the fastest nerve signals travel at speeds that exceed 100 meters per second.
At a more integrative level, the primary function of the nervous system is to control the body.
[2]
It does this by extracting
information from the environment using sensory receptors, sending signals that encode this information into the central nervous
system, processing the information to determine an appropriate response, and sending output signals to muscles or glands to
activate the response. The evolution of a complex nervous system has made it possible for various animal species to have
advanced perception abilities such as vision, complex social interactions, rapid coordination of organ systems, and integrated
processing of concurrent signals. In humans, the sophistication of the nervous system makes it possible to have language,
abstract representation of concepts, transmission of culture, and many other features of human society that would not exist
without the human brain.
Neurons and synapses
Most neurons send signals via their axons, although some types are capable of dendrite-to-dendrite communication. (In fact, the
types of neurons called amacrine cells have no axons, and communicate only via their dendrites.) Neural signals propagate
along an axon in the form of electrochemical waves called action potentials, which produce cell-to-cell signals at points
where axon terminals make synaptic contact with other cells.
[32]
Synapses may be electrical or chemical. Electrical synapses make direct electrical connections between
neurons,
[33]
butchemical synapses are much more common, and much more diverse in function.
[34]
At a chemical synapse, the
cell that sends signals is called presynaptic, and the cell that receives signals is called postsynaptic. Both the presynaptic and
postsynaptic areas are full of molecular machinery that carries out the signalling process. The presynaptic area contains large
numbers of tiny spherical vessels called synaptic vesicles, packed with neurotransmitter chemicals.
[32]
When the presynaptic
terminal is electrically stimulated, an array of molecules embedded in the membrane are activated, and cause the contents of
the vesicles to be released into the narrow space between the presynaptic and postsynaptic membranes, called the synaptic
cleft. The neurotransmitter then binds to receptors embedded in the postsynaptic membrane, causing them to enter an activated
state.
[34]
Depending on the type of receptor, the resulting effect on the postsynaptic cell may be excitatory, inhibitory, or
modulatory in more complex ways. For example, release of the neurotransmitter acetylcholine at a synaptic contact between
a motor neuronand a muscle cell induces rapid contraction of the muscle cell.
[35]
The entire synaptic transmission process takes
only a fraction of a millisecond, although the effects on the postsynaptic cell may last much longer (even indefinitely, in cases
where the synaptic signal leads to the formation of a memory trace).
[8]
There are literally hundreds of different types of synapses. In fact, there are over a hundred known neurotransmitters, and many
of them have multiple types of receptors.
[36]
Many synapses use more than one neurotransmitter—a common arrangement is for
a synapse to use one fast-acting small-molecule neurotransmitter such as glutamate or GABA, along with one or
more peptideneurotransmitters that play slower-acting modulatory roles. Molecular neuroscientists generally divide receptors
into two broad groups: chemically gated ion channels and second messenger systems. When a chemically gated ion channel is
activated, it forms a passage that allow specific types of ion to flow across the membrane. Depending on the type of ion, the
effect on the target cell may be excitatory or inhibitory. When a second messenger system is activated, it starts a cascade of
molecular interactions inside the target cell, which may ultimately produce a wide variety of complex effects, such as increasing
or decreasing the sensitivity of the cell to stimuli, or even altering gene transcription.
According to a rule called Dale's principle, which has only a few known exceptions, a neuron releases the same
neurotransmitters at all of its synapses.
[37]
This does not mean, though, that a neuron exerts the same effect on all of its targets,
because the effect of a synapse depends not on the neurotransmitter, but on the receptors that it activates.
[34]
Because different
targets can (and frequently do) use different types of receptors, it is
possible for a neuron to have excitatory effects on one set of target
cells, inhibitory effects on others, and complex modulatory effects on
others still. Nevertheless, it happens that the two most widely used
neurotransmitters, glutamate and GABA, each have largely
consistent effects. Glutamate has several widely occurring types of
receptors, but all of them are excitatory or modulatory. Similarly,
GABA has several widely occurring receptor types, but all of them
are inhibitory.
[38]
Because of this consistency, glutamatergic cells are
frequently referred to as "excitatory neurons", and GABAergic cells
as "inhibitory neurons". Strictly speaking this is an abuse of
terminology—it is the receptors that are excitatory and inhibitory, not
the neurons—but it is commonly seen even in scholarly publications.
One very important subset of synapses are capable of
forming memory traces by means of long-lasting activity-dependent
changes in synaptic strength.
[39]
The best-known form of neural
memory is a process called long-term potentiation(abbreviated LTP),
which operates at synapses that use the
neurotransmitter glutamate acting on a special type of receptor
known as the NMDA receptor.
[40]
The NMDA receptor has an
"associative" property: if the two cells involved in the synapse are
both activated at approximately the same time, a channel opens that
permits calcium to flow into the target cell.
[41]
The calcium entry initiates a second messenger cascade that ultimately leads to an
increase in the number of glutamate receptors in the target cell, thereby increasing the effective strength of the synapse. This
change in strength can last for weeks or longer. Since the discovery of LTP in 1973, many other types of synaptic memory
traces have been found, involving increases or decreases in synaptic strength that are induced by varying conditions, and last
for variable periods of time.
[40]
Reward learning, for example, depends on a variant form of LTP that is conditioned on an extra
input coming from a reward-signalling pathway that uses dopamine as neurotransmitter.
[42]
All these forms of synaptic
modifiability, taken collectively, give rise to neural plasticity, that is, to a capability for the nervous system to adapt itself to
variations in the environment.

Weitere ähnliche Inhalte

Was ist angesagt?

Nervous System and Homeostasis
Nervous System and HomeostasisNervous System and Homeostasis
Nervous System and HomeostasisJohnel Esponilla
 
Invertebrates nervous-system-by-resty-samosa
Invertebrates nervous-system-by-resty-samosaInvertebrates nervous-system-by-resty-samosa
Invertebrates nervous-system-by-resty-samosaResty Samosa
 
Nervous tissue types and functions, Neuron structure and types of Neurons, Ne...
Nervous tissue types and functions, Neuron structure and types of Neurons, Ne...Nervous tissue types and functions, Neuron structure and types of Neurons, Ne...
Nervous tissue types and functions, Neuron structure and types of Neurons, Ne...Shaista Jabeen
 
A&P Chapter 23 Nervous System
A&P Chapter 23 Nervous SystemA&P Chapter 23 Nervous System
A&P Chapter 23 Nervous Systemmarydelaney
 
Report in biology (nervous system)
Report in biology (nervous system)Report in biology (nervous system)
Report in biology (nervous system)Mary Tuazon
 
General organization of nervous system
General organization of nervous systemGeneral organization of nervous system
General organization of nervous systemDuaShaban
 
Nervous system
Nervous systemNervous system
Nervous systemharneth
 
Pengantar sistem saraf (dr. djauhari)
Pengantar sistem saraf (dr. djauhari)Pengantar sistem saraf (dr. djauhari)
Pengantar sistem saraf (dr. djauhari)Achmad Zaky Alfayrozy
 
Nervous System
Nervous SystemNervous System
Nervous System000 07
 
Form 5 note_chapter_3
Form 5 note_chapter_3Form 5 note_chapter_3
Form 5 note_chapter_3Kirsten Lee
 
The peripheral nervous system
The peripheral nervous systemThe peripheral nervous system
The peripheral nervous systemcastillosekel
 
Human nervous system
Human nervous systemHuman nervous system
Human nervous systemGotov .kz
 

Was ist angesagt? (20)

Nervous System and Homeostasis
Nervous System and HomeostasisNervous System and Homeostasis
Nervous System and Homeostasis
 
Invertebrates nervous-system-by-resty-samosa
Invertebrates nervous-system-by-resty-samosaInvertebrates nervous-system-by-resty-samosa
Invertebrates nervous-system-by-resty-samosa
 
Nervous system
Nervous systemNervous system
Nervous system
 
Bjstr.ms.id.003672 2 (1)
Bjstr.ms.id.003672 2 (1)Bjstr.ms.id.003672 2 (1)
Bjstr.ms.id.003672 2 (1)
 
Nervous system
Nervous systemNervous system
Nervous system
 
Nervous tissue types and functions, Neuron structure and types of Neurons, Ne...
Nervous tissue types and functions, Neuron structure and types of Neurons, Ne...Nervous tissue types and functions, Neuron structure and types of Neurons, Ne...
Nervous tissue types and functions, Neuron structure and types of Neurons, Ne...
 
A&P Chapter 23 Nervous System
A&P Chapter 23 Nervous SystemA&P Chapter 23 Nervous System
A&P Chapter 23 Nervous System
 
Report in biology (nervous system)
Report in biology (nervous system)Report in biology (nervous system)
Report in biology (nervous system)
 
General organization of nervous system
General organization of nervous systemGeneral organization of nervous system
General organization of nervous system
 
Nervous system
Nervous systemNervous system
Nervous system
 
Pengantar sistem saraf (dr. djauhari)
Pengantar sistem saraf (dr. djauhari)Pengantar sistem saraf (dr. djauhari)
Pengantar sistem saraf (dr. djauhari)
 
Nervous system
Nervous systemNervous system
Nervous system
 
Nervous System
Nervous SystemNervous System
Nervous System
 
Form 5 note_chapter_3
Form 5 note_chapter_3Form 5 note_chapter_3
Form 5 note_chapter_3
 
Nervous & Endocrine Systems
Nervous & Endocrine SystemsNervous & Endocrine Systems
Nervous & Endocrine Systems
 
Nervous system
Nervous systemNervous system
Nervous system
 
The Nervous System
The Nervous SystemThe Nervous System
The Nervous System
 
The nervous system
The nervous systemThe nervous system
The nervous system
 
The peripheral nervous system
The peripheral nervous systemThe peripheral nervous system
The peripheral nervous system
 
Human nervous system
Human nervous systemHuman nervous system
Human nervous system
 

Andere mochten auch

Personal Desire / Design Fiction
Personal Desire / Design FictionPersonal Desire / Design Fiction
Personal Desire / Design FictionMichael Shilman
 
Open data INPS
Open data INPS Open data INPS
Open data INPS DatiGovIT
 
Minecraft 120331102247-phpapp01
Minecraft 120331102247-phpapp01Minecraft 120331102247-phpapp01
Minecraft 120331102247-phpapp01Nestor_Martin
 
Demystifying windowscommunicationfoundation
Demystifying windowscommunicationfoundationDemystifying windowscommunicationfoundation
Demystifying windowscommunicationfoundationSandeep Arora
 

Andere mochten auch (8)

Personal Desire / Design Fiction
Personal Desire / Design FictionPersonal Desire / Design Fiction
Personal Desire / Design Fiction
 
Class, where are we?
Class, where are we?Class, where are we?
Class, where are we?
 
Open data INPS
Open data INPS Open data INPS
Open data INPS
 
Minecraft 120331102247-phpapp01
Minecraft 120331102247-phpapp01Minecraft 120331102247-phpapp01
Minecraft 120331102247-phpapp01
 
Demystifying windowscommunicationfoundation
Demystifying windowscommunicationfoundationDemystifying windowscommunicationfoundation
Demystifying windowscommunicationfoundation
 
Ticfinal
TicfinalTicfinal
Ticfinal
 
Data Mining
Data MiningData Mining
Data Mining
 
Data Design
Data DesignData Design
Data Design
 

Ähnlich wie Neurological sysyem

Neurophysiology
NeurophysiologyNeurophysiology
NeurophysiologyTiffy John
 
Chemical Coordination and Integration in Class 11 Biology Free Study Material...
Chemical Coordination and Integration in Class 11 Biology Free Study Material...Chemical Coordination and Integration in Class 11 Biology Free Study Material...
Chemical Coordination and Integration in Class 11 Biology Free Study Material...Vivekanand Anglo Vedic Academy
 
The nervous system
The nervous systemThe nervous system
The nervous systemMukul Kumar
 
Anatomy-Nervous-System Anatomy and Physiology updated.pptx
Anatomy-Nervous-System Anatomy and Physiology updated.pptxAnatomy-Nervous-System Anatomy and Physiology updated.pptx
Anatomy-Nervous-System Anatomy and Physiology updated.pptxJRRolfNeuqelet
 
Human Anatomy and Physiology 1 - Chapter 7 and 8.pptx
Human Anatomy and Physiology 1 - Chapter 7 and 8.pptxHuman Anatomy and Physiology 1 - Chapter 7 and 8.pptx
Human Anatomy and Physiology 1 - Chapter 7 and 8.pptxRuchithChandeepa
 
Brenda and annabelle
Brenda and annabelleBrenda and annabelle
Brenda and annabelleDARLYNSIERRA
 
CNS AND PNS NURSING .pptx1-1.pptx
CNS AND PNS NURSING .pptx1-1.pptxCNS AND PNS NURSING .pptx1-1.pptx
CNS AND PNS NURSING .pptx1-1.pptxRaghda ALKhateeb
 
Bilogical basis of psychology
Bilogical basis of psychologyBilogical basis of psychology
Bilogical basis of psychologymaheshpingali
 

Ähnlich wie Neurological sysyem (20)

Neurophysiology
NeurophysiologyNeurophysiology
Neurophysiology
 
Chemical Coordination and Integration in Class 11 Biology Free Study Material...
Chemical Coordination and Integration in Class 11 Biology Free Study Material...Chemical Coordination and Integration in Class 11 Biology Free Study Material...
Chemical Coordination and Integration in Class 11 Biology Free Study Material...
 
Neural control n coordination by BNP.pdf
Neural control n coordination by BNP.pdfNeural control n coordination by BNP.pdf
Neural control n coordination by BNP.pdf
 
The nervous system
The nervous systemThe nervous system
The nervous system
 
Nervous system
Nervous systemNervous system
Nervous system
 
Anatomy-Nervous-System Anatomy and Physiology updated.pptx
Anatomy-Nervous-System Anatomy and Physiology updated.pptxAnatomy-Nervous-System Anatomy and Physiology updated.pptx
Anatomy-Nervous-System Anatomy and Physiology updated.pptx
 
Human Anatomy and Physiology 1 - Chapter 7 and 8.pptx
Human Anatomy and Physiology 1 - Chapter 7 and 8.pptxHuman Anatomy and Physiology 1 - Chapter 7 and 8.pptx
Human Anatomy and Physiology 1 - Chapter 7 and 8.pptx
 
Nervous system
Nervous systemNervous system
Nervous system
 
Animal tissue part -2
Animal tissue part -2Animal tissue part -2
Animal tissue part -2
 
Nervoussystem
NervoussystemNervoussystem
Nervoussystem
 
MHN 413.pptx
MHN  413.pptxMHN  413.pptx
MHN 413.pptx
 
1. Physiology
1. Physiology1. Physiology
1. Physiology
 
Brenda and annabelle
Brenda and annabelleBrenda and annabelle
Brenda and annabelle
 
Nervous tissues
Nervous tissues Nervous tissues
Nervous tissues
 
Nervous system ppt
Nervous system pptNervous system ppt
Nervous system ppt
 
BASIC NEUROSCIENCE BY SHARMA JI.pptx
BASIC NEUROSCIENCE BY SHARMA JI.pptxBASIC NEUROSCIENCE BY SHARMA JI.pptx
BASIC NEUROSCIENCE BY SHARMA JI.pptx
 
Anatomy of ns
Anatomy of nsAnatomy of ns
Anatomy of ns
 
CNS AND PNS NURSING .pptx1-1.pptx
CNS AND PNS NURSING .pptx1-1.pptxCNS AND PNS NURSING .pptx1-1.pptx
CNS AND PNS NURSING .pptx1-1.pptx
 
Nervous system
Nervous systemNervous system
Nervous system
 
Bilogical basis of psychology
Bilogical basis of psychologyBilogical basis of psychology
Bilogical basis of psychology
 

Kürzlich hochgeladen

Call Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
Call Girl Bangalore Nandini 7001305949 Independent Escort Service BangaloreCall Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
Call Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalorenarwatsonia7
 
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original PhotosCall Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original Photosnarwatsonia7
 
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original PhotosBook Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photosnarwatsonia7
 
Glomerular Filtration and determinants of glomerular filtration .pptx
Glomerular Filtration and  determinants of glomerular filtration .pptxGlomerular Filtration and  determinants of glomerular filtration .pptx
Glomerular Filtration and determinants of glomerular filtration .pptxDr.Nusrat Tariq
 
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiCall Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiNehru place Escorts
 
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...narwatsonia7
 
Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...
Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...
Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...rajnisinghkjn
 
Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...
Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...
Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...narwatsonia7
 
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service LucknowVIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknownarwatsonia7
 
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...narwatsonia7
 
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment BookingCall Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment Bookingnarwatsonia7
 
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbersBook Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbersnarwatsonia7
 
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service MumbaiLow Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbaisonalikaur4
 
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...narwatsonia7
 
Call Girls Viman Nagar 7001305949 All Area Service COD available Any Time
Call Girls Viman Nagar 7001305949 All Area Service COD available Any TimeCall Girls Viman Nagar 7001305949 All Area Service COD available Any Time
Call Girls Viman Nagar 7001305949 All Area Service COD available Any Timevijaych2041
 
Pharmaceutical Marketting: Unit-5, Pricing
Pharmaceutical Marketting: Unit-5, PricingPharmaceutical Marketting: Unit-5, Pricing
Pharmaceutical Marketting: Unit-5, PricingArunagarwal328757
 
Russian Call Girls Gunjur Mugalur Road : 7001305949 High Profile Model Escort...
Russian Call Girls Gunjur Mugalur Road : 7001305949 High Profile Model Escort...Russian Call Girls Gunjur Mugalur Road : 7001305949 High Profile Model Escort...
Russian Call Girls Gunjur Mugalur Road : 7001305949 High Profile Model Escort...narwatsonia7
 

Kürzlich hochgeladen (20)

Call Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
Call Girl Bangalore Nandini 7001305949 Independent Escort Service BangaloreCall Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
Call Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
 
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Available
 
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original PhotosCall Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
 
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original PhotosBook Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
 
Glomerular Filtration and determinants of glomerular filtration .pptx
Glomerular Filtration and  determinants of glomerular filtration .pptxGlomerular Filtration and  determinants of glomerular filtration .pptx
Glomerular Filtration and determinants of glomerular filtration .pptx
 
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
 
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiCall Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
 
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
 
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
 
Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...
Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...
Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...
 
Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...
Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...
Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...
 
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service LucknowVIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
 
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
 
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment BookingCall Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
 
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbersBook Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
 
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service MumbaiLow Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
 
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...
 
Call Girls Viman Nagar 7001305949 All Area Service COD available Any Time
Call Girls Viman Nagar 7001305949 All Area Service COD available Any TimeCall Girls Viman Nagar 7001305949 All Area Service COD available Any Time
Call Girls Viman Nagar 7001305949 All Area Service COD available Any Time
 
Pharmaceutical Marketting: Unit-5, Pricing
Pharmaceutical Marketting: Unit-5, PricingPharmaceutical Marketting: Unit-5, Pricing
Pharmaceutical Marketting: Unit-5, Pricing
 
Russian Call Girls Gunjur Mugalur Road : 7001305949 High Profile Model Escort...
Russian Call Girls Gunjur Mugalur Road : 7001305949 High Profile Model Escort...Russian Call Girls Gunjur Mugalur Road : 7001305949 High Profile Model Escort...
Russian Call Girls Gunjur Mugalur Road : 7001305949 High Profile Model Escort...
 

Neurological sysyem

  • 1. Body Systems The body comprises of a number of systems including the: Cardiovascular system, Digestive system, Endocrine system,Muscular system, Neurological system, Respira tory system and the Skeletal system. The Neurological System All of our body systems work in conjunction with each other and none are capable of working in isolation. The nervous system controls and coordinates the functioning of all other systems in response to our surroundings. Each stimulus or change in our environment is detected by our senses and messages are interpreted by the brain that in turn, sends directions to the various organs to respond and adapt according to the external conditions which affect our body. The function of the Neurological System is to transmit and receive a constant series of messages via electrical impulses to and from the control centre situated in the brain. These messages are either those receiving "information" from various body tissues via the sensory nerves, or those initiating the function of other tissues such as organs, muscles, etc. The nervous system is divided into the central nervous system (CNS) that includes the brain and spinal cord, and the peripheral nervous system (PNS) comprising cranial nerves and spinal nerves. The PNS includes nerves emerging from the brain (cranial nerves) and nerves emerging from the spinal cord (spinal nerves). These nerves are divided into sensory nerves that conduct messages from various parts of the body to the CNS, whilst motor nerves conduct impulses from the CNS to muscles and glands. The PNS is further divided into the Somatic System (SNS) and Autonomic System (ANS), depending on the area of the body these messages are transmitted to and from. The SNS consists of sensory neurons from the head, body wall, extremities, and motor neurons to skeletal muscle. The motor responses are under conscious control and therefore the SNS is voluntary. Certain peripheral nerves perform specialised functions and form the autonomic nervous system; they control various activities that occur automatically or involuntarily such as the contraction of smooth muscle in the walls of the digestive system. The autonomic system is further divided into the sympathetic and parasympathetic systems. These two systems provide nerve stimuli to the same organs throughout the body, but bring about different effects. The Sympathetic Nervous System helps prepare the body for "fight or flight" and create conditions in the tissues for physical activity. It is stimulated by strong emotions such as anger and excitement and will therefore speed up heart rate, increase the activity of sweat glands, adrenal glands, and decrease those of the digestive system. It also produces rapid redistribution of blood between the skin and skeletal muscles. Conversely, the Parasympathetic Nervous System slows down the body and helps prepare for a more relaxed state, ready for digestion and sleep. It will therefore increase peristalsis of the alimentary canal, slow down the heart rate, and constrict the bronchioles in the lungs. The balance between these two systems is controlled to create a state of homeostasis that is where the internal stability of the bodily systems are maintained in response to the external environment.
  • 2. Nervous System he nervous system is the part of an animal's body that coordinates the voluntary and involuntary actions of the animal and transmits signals between different parts of its body. In most types of animals it consists of two main parts, the central nervous system (CNS) and the peripheral nervous system (PNS). The CNS contains the brain and spinal cord. The PNS consists mainly of nerves, which are long fibers that connect the CNS to every other part of the body. The PNS includes motor neurons, mediating voluntary movement, the autonomic nervous system, comprising the sympathetic nervous system and the parasympathetic nervous system and regulating involuntary functions, and the enteric nervous system, a semi-independent part of the nervous system whose function is to control the gastrointestinal system. At the cellular level, the nervous system is defined by the presence of a special type of cell, called the neuron, also known as a "nerve cell". Neurons have special structures that allow them to send signals rapidly and precisely to other cells. They send these signals in the form of electrochemical waves traveling along thin fibers called axons, which cause chemicals called neurotransmitters to be released at junctions calledsynapses. A cell that receives a synaptic signal from a neuron may be excited, inhibited, or otherwise modulated. The connections between neurons form neural circuits that generate an organism's perception of the world and determine its behavior. Along with neurons, the nervous system contains other specialized cells called glial cells (or simply glia), which provide structural and metabolic support. Nervous systems are found in most multicellular animals, but vary greatly in complexity. [1] The only multicellular animals that have no nervous system at all are sponges, placozoans and mesozoans, which have very simple body plans. The nervous systems of ctenophores (comb jellies) and cnidarians (e.g., anemones, hydras, corals and jellyfishes) consist of a diffuse nerve net. All other types of animals, with the exception of a few types of worms, have a nervous system containing a brain, a central cord (or two cords running in parallel), and nerves radiating from the brain and central cord. The size of the nervous system ranges from a few hundred cells in the simplest worms, to on the order of 100 billion cells in humans. At the most basic level, the function of the nervous system is to send signals from one cell to others, or from one part of the body to others. The nervous system is susceptible to malfunction in a wide variety of ways, as a result of genetic defects, physical damage due to trauma or poison, infection, or simply aging. The medical specialty of neurology studies the causes of nervous system malfunction, and looks for interventions that can prevent it or treat it. In the peripheral nervous system, the most commonly occurring type of problem is failure of nerve conduction, which can have a variety of causes including diabetic neuropathy and demyelinating disorders such as multiple sclerosis and amyotrophic lateral sclerosis. Neuroscience is the field of science that focuses on the study of the nervous system. STRUCTURE The nervous system derives its name from nerves, which are cylindrical bundles of fibers that emanate from the brain and central cord, and branch repeatedly to innervate every part of the body. [2] Nerves are large enough to have been recognized by the ancient Egyptians, Greeks, and Romans, [3] but their internal structure was not understood until it became possible to
  • 3. examine them using a microscope. [4] A microscopic examination shows that nerves consist primarily of the axons of neurons, along with a variety of membranes that wrap around them and segregate them intofascicles. The neurons that give rise to nerves do not lie entirely within the nerves themselves—their cell bodies reside within the brain, central cord, or peripheral ganglia. [2] All animals more advanced than sponges have nervous systems. However, even sponges, unicellular animals, and non-animals such as slime molds have cell-to-cell signalling mechanisms that are precursors to those of neurons. [5] In radially symmetric animals such as the jellyfish and hydra, the nervous system consists of a diffuse network of isolated cells. [6] In bilaterian animals, which make up the great majority of existing species, the nervous system has a common structure that originated early in the Cambrian period, over 500 million years ago. CELLS The nervous system contains two main categories or types of cells: neurons and glial cells. NEURONS The nervous system is defined by the presence of a special type of cell—the neuron (sometimes called "neurone" or "nerve cell"). [2] Neurons can be distinguished from other cells in a number of ways, but their most fundamental property is that they communicate with other cells via synapses, which are membrane-to-membrane junctions containing molecular machinery that allows rapid transmission of signals, either electrical or chemical. [2] Many types of neuron possess anaxon, a protoplasmic protrusion that can extend to distant parts of the body and make thousands of synaptic contacts. [8] Axons frequently travel through the body in bundles called nerves. Even in the nervous system of a single species such as humans, hundreds of different types of neurons exist, with a wide variety of morphologies and functions. [8] These include sensory neurons that transmute physical stimuli such as light and sound into neural signals, and motor neurons that transmute neural signals into activation of muscles or glands; however in many species the great majority of neurons receive all of their input from other neurons and send their output to other neurons. GLIAL CELLS Glial cells (named from the Greek for "glue") are non-neuronal cells that provide support and nutrition, maintainhomeostasis, form myelin, and participate in signal transmission in the nervous system. [9] In the human brain, it is estimated that the total number of glia roughly equals the number of neurons, although the proportions vary in different brain areas. [10] Among the most important functions of glial cells are to support neurons and hold them in place; to supply nutrients to neurons; to insulate neurons electrically; to destroy pathogens and remove dead neurons; and to provide guidance cues directing the axons of neurons to their targets. [9] A very important type of glial cell (oligodendrocytes in the central nervous system, and Schwann cells in the peripheral nervous system) generates layers of a fatty substance called myelin that wraps around axons and provides electrical insulation which allows them to transmit action potentials much more rapidly and efficiently. Neural precursors in sponges Sponges have no cells connected to each other by synaptic junctions, that is, no neurons, and therefore no nervous system. They do, however, have homologs of many genes that play key roles in synaptic function. Recent studies have shown that
  • 4. sponge cells express a group of proteins that cluster together to form a structure resembling a postsynaptic density (the signal- receiving part of a synapse). [5] However, the function of this structure is currently unclear. Although sponge cells do not show synaptic transmission, they do communicate with each other via calcium waves and other impulses, which mediate some simple actions such as whole-body contraction. FUNCTIONS At the most basic level, the function of the nervous system is to send signals from one cell to others, or from one part of the body to others. There are multiple ways that a cell can send signals to other cells. One is by releasing chemicals called hormones into the internal circulation, so that they can diffuse to distant sites. In contrast to this "broadcast" mode of signaling, the nervous system provides "point-to-point" signals—neurons project their axons to specific target areas and make synaptic connections with specific target cells. [31] Thus, neural signaling is capable of a much higher level of specificity than hormonal signaling. It is also much faster: the fastest nerve signals travel at speeds that exceed 100 meters per second. At a more integrative level, the primary function of the nervous system is to control the body. [2] It does this by extracting information from the environment using sensory receptors, sending signals that encode this information into the central nervous system, processing the information to determine an appropriate response, and sending output signals to muscles or glands to activate the response. The evolution of a complex nervous system has made it possible for various animal species to have advanced perception abilities such as vision, complex social interactions, rapid coordination of organ systems, and integrated processing of concurrent signals. In humans, the sophistication of the nervous system makes it possible to have language, abstract representation of concepts, transmission of culture, and many other features of human society that would not exist without the human brain. Neurons and synapses Most neurons send signals via their axons, although some types are capable of dendrite-to-dendrite communication. (In fact, the types of neurons called amacrine cells have no axons, and communicate only via their dendrites.) Neural signals propagate along an axon in the form of electrochemical waves called action potentials, which produce cell-to-cell signals at points where axon terminals make synaptic contact with other cells. [32] Synapses may be electrical or chemical. Electrical synapses make direct electrical connections between neurons, [33] butchemical synapses are much more common, and much more diverse in function. [34] At a chemical synapse, the cell that sends signals is called presynaptic, and the cell that receives signals is called postsynaptic. Both the presynaptic and postsynaptic areas are full of molecular machinery that carries out the signalling process. The presynaptic area contains large numbers of tiny spherical vessels called synaptic vesicles, packed with neurotransmitter chemicals. [32] When the presynaptic terminal is electrically stimulated, an array of molecules embedded in the membrane are activated, and cause the contents of the vesicles to be released into the narrow space between the presynaptic and postsynaptic membranes, called the synaptic cleft. The neurotransmitter then binds to receptors embedded in the postsynaptic membrane, causing them to enter an activated state. [34] Depending on the type of receptor, the resulting effect on the postsynaptic cell may be excitatory, inhibitory, or modulatory in more complex ways. For example, release of the neurotransmitter acetylcholine at a synaptic contact between a motor neuronand a muscle cell induces rapid contraction of the muscle cell. [35] The entire synaptic transmission process takes only a fraction of a millisecond, although the effects on the postsynaptic cell may last much longer (even indefinitely, in cases where the synaptic signal leads to the formation of a memory trace). [8] There are literally hundreds of different types of synapses. In fact, there are over a hundred known neurotransmitters, and many of them have multiple types of receptors. [36] Many synapses use more than one neurotransmitter—a common arrangement is for a synapse to use one fast-acting small-molecule neurotransmitter such as glutamate or GABA, along with one or more peptideneurotransmitters that play slower-acting modulatory roles. Molecular neuroscientists generally divide receptors into two broad groups: chemically gated ion channels and second messenger systems. When a chemically gated ion channel is activated, it forms a passage that allow specific types of ion to flow across the membrane. Depending on the type of ion, the effect on the target cell may be excitatory or inhibitory. When a second messenger system is activated, it starts a cascade of molecular interactions inside the target cell, which may ultimately produce a wide variety of complex effects, such as increasing or decreasing the sensitivity of the cell to stimuli, or even altering gene transcription. According to a rule called Dale's principle, which has only a few known exceptions, a neuron releases the same neurotransmitters at all of its synapses. [37] This does not mean, though, that a neuron exerts the same effect on all of its targets,
  • 5. because the effect of a synapse depends not on the neurotransmitter, but on the receptors that it activates. [34] Because different targets can (and frequently do) use different types of receptors, it is possible for a neuron to have excitatory effects on one set of target cells, inhibitory effects on others, and complex modulatory effects on others still. Nevertheless, it happens that the two most widely used neurotransmitters, glutamate and GABA, each have largely consistent effects. Glutamate has several widely occurring types of receptors, but all of them are excitatory or modulatory. Similarly, GABA has several widely occurring receptor types, but all of them are inhibitory. [38] Because of this consistency, glutamatergic cells are frequently referred to as "excitatory neurons", and GABAergic cells as "inhibitory neurons". Strictly speaking this is an abuse of terminology—it is the receptors that are excitatory and inhibitory, not the neurons—but it is commonly seen even in scholarly publications. One very important subset of synapses are capable of forming memory traces by means of long-lasting activity-dependent changes in synaptic strength. [39] The best-known form of neural memory is a process called long-term potentiation(abbreviated LTP), which operates at synapses that use the neurotransmitter glutamate acting on a special type of receptor known as the NMDA receptor. [40] The NMDA receptor has an "associative" property: if the two cells involved in the synapse are both activated at approximately the same time, a channel opens that permits calcium to flow into the target cell. [41] The calcium entry initiates a second messenger cascade that ultimately leads to an increase in the number of glutamate receptors in the target cell, thereby increasing the effective strength of the synapse. This change in strength can last for weeks or longer. Since the discovery of LTP in 1973, many other types of synaptic memory traces have been found, involving increases or decreases in synaptic strength that are induced by varying conditions, and last for variable periods of time. [40] Reward learning, for example, depends on a variant form of LTP that is conditioned on an extra input coming from a reward-signalling pathway that uses dopamine as neurotransmitter. [42] All these forms of synaptic modifiability, taken collectively, give rise to neural plasticity, that is, to a capability for the nervous system to adapt itself to variations in the environment.