SlideShare ist ein Scribd-Unternehmen logo
1 von 42
RCREEE Wind Energy Building Capacity Program – Stage 2 Rabat, Tangier 29 
                         March – 2nd April 2010
                                       p

Review of Wind Turbines’ Drive Systems and why 
                           Gearless Direct Drive 
                           Gearless Direct Drive
                             DR Yehia Shankir




                            www.elsewedyelectric.com                         1
Contents

1. EL Sewedy Electric & SWEG
1 EL Sewedy Electric & SWEG
2. Wind Turbines’ components and generator types
3. Wind Turbines’ drive systems advantages and 
3 Wi d T bi ’ d i                d           d
   disadvantages
4. Comparisons of Wind Turbines’ drive systems
5. Conclusions
6. Appendix
7. References
                          www.elsewedyelectric.com              2
www.elsewedyelectric.com   3
Elsewedy Electric




www.elsewedyelectric.com                       4
www.elsewedyelectric.com   5
EL Sewedy Electric Wind 
EL Sewedy Electric Wind
                  Sector




  www.elsewedyelectric.com   6
I‐ TOWERS

SIAG Company Overview

•   The leading tubular steel tower supplier in 
    Germany and Europe
•   Market share more than 30%  
•   Leading technology in steel industry
•   Nearly 1000 employees
•   Proven track‐record
    of growth in Europe
     f     th i E




                                              www.elsewedyelectric.com   7
II‐ TURBINES
  M‐Torres Company Overview 
      One of the most Innovative 
      Engineering companies in Spain 
      Started in the paper industries & 
      now one of the leaders in 
      supplying machines for the 
      aerospace industry
      A total of 500 high skilled 
      employees 

  M‐Torres Wind Division
  MT       Wi d Di i i
      2001 the first innovative
      1.5 MW prototype
      MTOI engineering, 
      MTOI engineering
      manufacturing, 
      development, O&M




                                           www.elsewedyelectric.com   8
III  BLADES

  Wind Rotor Blades Factory in Egypt
      State of the art  production  
      State of the art production
      technology transfer from a 
      leading German manufacturer.
      State of the art  Blades Design 
      licensed by leading Dutch and 
      licensed by leading Dutch and
      German Designers
      The factory will be equipped 
      with the most advanced 
      Fiberglass moulds and 
      Fib l           ld    d
      equipment to produce 200 sets 
      of blades in stage 1 expandable 
      to 500 sets
      Nearly 500 employees and 
      technicians will be employed in 
      the first stage




   9                                     www.elsewedyelectric.com   9
SWEG
EL Sewedy for Wind Energy Generation 
EL S   d f Wi d E         G      ti
                 the Wind Sector Arm




      www.elsewedyelectric.com          10
Wind Turbines’ components and
                g
                generator types
                           yp




         www.elsewedyelectric.com   11
Wind Turbine System Main 
                                     Wind Turbine System Main
                                                  Components
Mechanical P
M h i l Power                               Electrical P
                                            El t i l Power
  Wind Power           Gearbox                 Power Converter  Transformer   Grid
  Rotor               (Optional)     Generator (Optional)




    Gearless Systems
    Gearless Systems                                    Geared Systems
                                                        Geared Systems
Electrical Excited                                              Squirrel Cage 
Synchronous                                                     Induction Generator 
Generator (EESG)
Generator (EESG)
                                     Types of                   (
                                                                (SCIG)
                                                                     )
                                    Generators
Permanent Magnet                   (AC Machines)                Double Feed 
Synchronous                                                     Induction Generator 
Generator (PMSG)
Generator (PMSG)                                                (DFIG)

                                             www.elsewedyelectric.com                  12
Wound Rotor  IM
                                                                        Squirrel Cage IM
Induction Machine

                      +ve 
                      T


                                                                                Grid
                              Motor                         Generator
                                                                                           Generator
                              Sub Synch (+ve slip)    Super synch (‐ve slip)

                      ‐ve T
                      ‐ve T
                                                                                             Motor

 Operating Torque T

                                                                                            Synch  
                                                                                           Speed = 
                                                                                           120 f/ p
                                                                                                /p

                                                     www.elsewedyelectric.com                     13
Synchronous Generator
              Synchronous Generator




Wound Rotor          Permanent Magnet
                                                    Generator




                              Freq = P x n 
                                 /
                                 /120


                                              Vdc


                   www.elsewedyelectric.com                 14
Wind Turbines’ Drive Systems,
advantages and disadvantages
       g                    g




         www.elsewedyelectric.com   15
The Typical Types of Drive Systems for Large 
                      The Typical Types of Drive Systems for Large
                                                    Wind Turbines
    Fixed Speed
   Squirrel C
   S i l Cage
Induction Generator
      (SCIG)

       Variable Speed
    Double Feed Induction
     Generator (DFIG)

              Variable Speed
             Electrical Excited
             Synch Generator
                  (EESG)

                   Variable Speed
                 Permanent Magnet
                  Synch Generator
                      (PMSG)

                                  www.elsewedyelectric.com            16
Squirrel C
                           S i l Cage Induction G
                                      I d ti Generatort
                                          Geared, (SCIG)




Directly connected to grid                 ‐ve 
A gearbox is required in the drive train Torque
Almost a Fixed speed. Operates in narrow 
Al        Fi d      d O          i
                                                            P=4                P=2
range of speed
The only speed control is through pole 
changing which leads two rotation speeds.                   % of Synch Speed




                                 www.elsewedyelectric.com                            17
Advantages of Geared SCIG

Cost
  (SCIG) is a very popular machine, it has Low 
  specific mass (kg/kW) and smaller outer 
  diameter (low number of poles)hence lower 
  di     t (l         b    f l )h         l
  cost.
Mechanical, Maintenance & Reliability 
     h i l       i         & li bili
  Mechanical simplicity, robust structure



                       www.elsewedyelectric.com        18
Disadvantages of Geared SCIG
Mechanical, Reliability & Maintenance           Control
   A gearbox in the drive train is required:       No possibility of speed control, only a pole‐
Electrical & Power Quality                         changeable can be  used ,which leads two 
   Directly connected to the grid
   Directly connected to the grid                  rotation speeds. 
                                                             p
   SCIG would disconnect from the grid             The turbine speed cannot be adjusted to the 
   even during quite small disturbances.           wind speed to optimize the aerodynamic 
   They did not have any fault ride‐
   Th did t h             f lt id                  efficiency.
                                                   efficiency.`
   through capability,                             Wind speed fluctuations are directly 
   The machine always requires reactive            translated into electromechanical torque 
   power, and its value cannot be                  variations (no damping control), This causes 
                                                   variations (no damping control) This causes
   controlled. This makes it impossible to         high mechanical and fatigue stresses on the 
   support grid voltage control therefore          system (P = T .  W)
   no grid support,
   Need different gearboxes for different 
   grid frequencies 50Hz / 60 Hz

                                      www.elsewedyelectric.com                               19
Double Fed Induction Generator,
                                            Geared, (DFIG)


                                             Power flow in
                                             Power flow in                  O
                                                                            Operating 
                                                                                  i
                                                        +ve                 Speed
                                                        T
                                                                                          Power flow out

                                                                       N3    N1      N2
Directly connected to grid
                                                               Motor
                                                        ‐ve                               Generator
Rotor Connected to grid via power                       T
converter                                  Operating 
                                             Torque T
A gearbox is required in the drive train
Variable speed, Speed can be controlled 
Variable speed, Speed can be controlled
within a +/‐ 30% around synchronous 
speed (The converter is Feeding or 
Absorbing power from/to the grid)
Absorbing power from/to the grid)

                                 www.elsewedyelectric.com                                              20
Advantages of Geared DFIG
Cost
   Low specific mass (kg/kW) and smaller outer diameter (low number of 
   Low specific mass (kg/kW) and smaller outer diameter (low number of
   poles) hence lower cost.
   The converter for a DFIG is small (30% of rated power). Therefore it is 
   cheaper than for a direct‐drive generator.
     h       th f      di t d i            t
   More complex structure than SCIG
Electrical & Power Quality
   The reactive power can be controlled by controlling the rotor currents with 
   the converter, this allows the supply of voltage support towards the grid. 
   However reactive power is limited by the converter 30% rating.
   However reactive power is limited by the converter 30% rating.
Control
   DFIG supports a wide speed range operation, depending on the size of the 
   frequency converter. Typically Variable speed range is +30% around the 
   f                 t T i ll V i bl             d      i +30%         d th
   synchronous speed
   In DFIG, wind gusts lead to variations in the speed without large torque 
   variations.
                                    www.elsewedyelectric.com                      21
Disadvantages of Geared DFIG
Mechanical, Reliability & Maintenance
   A gearbox in the drive train is required which show a reliability 
   negative record.
   DFIG have brushes, which need regular inspection and replacement. 
   DFIG have brushes which need regular inspection and replacement
   They are a potential cause of machine failure and losses.
Electrical & Power Quality
   Stator directly connected to grid
           d     l           d       d
   According to  grid connection requirements for wind turbines, in case 
   of grid disturbances, a ride‐through capability of DFIG is required, so 
   that the corresponding control strategies may be complicated.
   Under grid fault conditions, on the one hand, large stator currents 
   result in large rotor currents, so that the power electronic converter 
                g                ,             p
   needs to be protected
   Need different gearboxes for different grid frequencies 50Hz /60 Hz


                                   www.elsewedyelectric.com                   22
Electrical Excited Synchronous
                                     Generator, Gearless (EESG)




No Gearbox is required
No Gearbox is required
No direct connection to the grid, 
Connected through a power converter
The amplitude and frequency of the 
supplied voltage can be fully controlled
The flux is fully controlled to minimize 
losses in different operating ranges
Operate in a wide range of speed even 
to a very low speed
to a very low speed

                                   www.elsewedyelectric.com        23
Advantages of Gearless EESG
Mechanical, Maintenance & Reliability                   The full power converter totally 
                                                        The full power converter totally
   No Gearbox so high reliability, less noise,          decouples the generator from the 
   less cost,                                           grid. Hence, grid disturbances have 
   DFIG have brushes, which need regular 
   DFIG have brushes which need regular                 no direct effect on the generator
                                                        no direct effect on the generator
   inspection and replacement. They are a             Control
   potential cause of machine failure and               The converter offers a wide range of 
   losses.
   losses                                                     d        l             l
                                                        speed control even at very low speed  d
Electrical & Power Quality                              therefore a higher energy yield
   The converter permits flexible full control          The amplitude and frequency of the 
   of active and reactive power in case of              voltage can be fully controlled by the 
   normal and disturbed grid conditions. this           converter
   allows the supply of voltage support                 EESG has the opportunities of 
                                                                         pp
   towards the grid.                                    controlling the flux for a minimized 
   The same generator suitable for different            loss in different power ranges
   grid frequencies 50Hz / 60 Hz

                                     www.elsewedyelectric.com                                     24
Disadvantages of Gearless EESG
Cost
   High specific mass (kg/kW) and Large outer diameter (high number 
   of poles) hence Higher cost and more weight. This weight is 
   partially balanced  by the elimination of the gearbox.
   partially balanced by the elimination of the gearbox
   The converter is 100% of rated power. it is more expensive than for 
   a DFIG. This extra cost is balanced by the elimination of the gearbox
   More complex structure than SCIG

Mechanical, Reliability & Maintenance
Mechanical, Reliability & Maintenance
  EESG have brushes, which need regular inspection and 
  replacement. They are a cause of machine failure and losses.




                                     www.elsewedyelectric.com              25
Permanent Magnet Synchronous
                                  Generator, Gearless (PMSG)




No Gearbox is required
No Gearbox is required
No direct connection to the grid, 
Connected through a power converter
The amplitude and frequency of the 
supplied voltage can be fully controlled
No flux control and no slip rings 
because of permanent magnets
Operate in a wide range of speed even 
to a very low speed
to a very low speed

                                  www.elsewedyelectric.com     26
Advantages of Gearless PMSG
Mechanical, Maintenance & Reliability
   No Gearbox and brushes so higher           The converter permits very flexible full 
   reliability, less noise, less cost,        control of the active and reactive power in 
   improvement in the thermal 
      p                                       case of normal and disturbed grid 
   characteristics of the PM machine due      conditions. this allows the supply of voltage 
   to the absence of the field losses,        support towards the grid.
Electrical & Power Quality
Electrical & Power Quality                  Control
   The full power converter totally           The converter offers a wide range of speed 
   decouples the generator from the grid.     control even at very low speed therefore a 
   Hence, grid disturbances have no direct 
   Hence grid disturbances have no direct     higher energy yield
                                              higher energy yield
   effect on the generator                    The amplitude and frequency of the voltage 
   The same generator suitable for            can be fully controlled by the converter
   different grid frequencies 50Hz / 60 Hz
                                       /      PMSG has the opportunities of controlling 
                                              PMSG h th             t iti     f     t lli
   No additional power supply for the         the flux for a minimized loss in different 
   magnet field excitation,                   power ranges


                                     www.elsewedyelectric.com                              27
Disadvantages of Gearless PMSG
Cost
   High cost of PM material and Large outer diameter (high number of 
   poles), however this is balanced through a lower specific mass 
   (kg/kW) and the elimination of the gearbox.
   (kg/kW) and the elimination of the gearbox
   The converter is 100% of rated power. it is more expensive than for 
   a DFIG. This extra cost is balanced by the elimination of the gearbox
Mechanical, Reliability & Maintenance
   Demagnetization of PM at high temp due to sever loading or short 
   circuit.
   Difficulties to handle in manufacture and in transportation,




                                     www.elsewedyelectric.com              28
Comparisons of Wind 
Turbines’ Drive Systems 
Turbines’ Drive Systems




   www.elsewedyelectric.com   29
Summary Comparison
                                                            Summary Comparison

         Comparison base               SCIG   DFIG        EESG           PMSG    If in the middle
Investment Cost, size and weight       (++)    (+)          (-)           (-)
                                                                                 of a desert with
Mechanical and structure Simplicity    (++)    (+)          (-)           (-)
                                                                                 hot sandy, and
Reliability d
R li bilit and maintenance t l
                  i t       to lower
                                                                                  dusty weather
maintenance cost and increase           (-)   (--)          (+)          (++)     or if offshore
availability(Gearbox and brushes)

Grid support and LVRT                   (-)    (+)         (++)          (++)

Suitability for 50HZ & 60 HZ            (-)    (-)          (+)           (+)
                                                                                  If the point of
Speed control to damp mechanical                                                     common
                                        (-)    (+)         (++)          (++)
stresses                                                                          connection in
Speed control to optimize
 p                p
aerodynamic efficiency to maximize      (-)    (+)         (++)          (++)    the middle of a
energy yield                                                                      complex grid
Sourcing of material and handling in
                                       (+)     (+)          (-)           (--)
manufacturing and transportation



Annual Energy Yield due to control ,
reliability and less down time          (-)    (+)         (++)          (++)

Cost of Kwh (Levelized Energy Cost)     (-)    (+)         (++)          (++)

                                              www.elsewedyelectric.com                              30
Wind turbine Top Ten manufacturers and their 
                 Wind turbine Top Ten manufacturers and their
                                             generator types
                                                       Current
                                                    manufacturers of
                                                     Direct Drives
                                                       Turbines

                                                             3.6 MW
3.5
3 5 MW

Companies who
    p
recognized the
DD concept and
 now Joiningg




                         www.elsewedyelectric.com                      31
Conclusions
The multiple stage geared drive DFIG systems is still 
The multiple‐stage geared drive DFIG systems is still
dominating the current market,
The market shows interest in the direct‐drive systems with a 
full‐scale power converter. New companies recognized their 
advantages and already started,
Weight, size and initial cost are higher in direct drive systems.
Weight size and initial cost are higher in direct drive systems
Overall efficiency, reliability and availability are higher in 
direct drive systems because of omitting the gearbox,
Maintenance cost is higher in geared drive systems specially in 
ruler area, desert, and offshore also in hot and dusty weather,
The cost of KWh is less in direct drive systems,
The cost of KWh is less in direct drive systems
In terms of grid support direct drive wind turbines with a full‐
scale power converter may be more effective and less 
complicated to deal with grid‐related problems,
                         www.elsewedyelectric.com                   32
Nacelle Front




                www.elsewedyelectric.com   33
Nacelle Rear




               www.elsewedyelectric.com   34
Thank
Th k you for your attention
         f         tt ti




        www.elsewedyelectric.com   35
Appendix




www.elsewedyelectric.com          36
Gearboxes and Reliability
• Gearboxes are one of the most expensive components of the wind turbine system, 

• The higher ‐ than‐expected failure rates are adding to the cost of wind energy.  

• The future uncertainty of gearbox life expectancy is contributing to wind turbine 
  price escalation.  

• Turbine manufacturers add large contingencies to the sales price to cover the 
  warranty risk due to the possibility of premature gearbox failures. 

• Owners and operators build contingency funds into the project financing and 
  income expectations for problems that may show up after the warranty expires. 
Improving Wind Turbine Gearbox Reliability , Conference Paper NREL/CP‐500‐41548, May 2007




• For example, replacing a gearbox in a 1.5‐MW turbine can cost a company more 
  than $500,000 when you add in the price of a new gearbox, labor, crane rental, and 
  lost  revenue from turbine downtime.
  lost revenue from turbine downtime.
http://www.windpowerengineering.com/maintenance/how-to-keep-them-worki... 3/17/2010


                                                                          www.elsewedyelectric.com           37
Electrical & Power Quality

• The ideal voltage source provides a 
                   g         p
  perfectly balanced voltage in the three 
  phases, a pure sine wave with a constant 
  frequency and magnitude. 
      q      y         g
• When these conditions are not met, it is 
  said that the ‘power quality’ of the grid is 
  deteriorated.
  deteriorated
• The requirements set by the Transmission 
  System Operators (TSOs), are being 
  constantly reviewed and expanded:
  constantly reviewed and expanded:
     •Power quality (Constant voltage, 
      harmonics, flickers)
     •reactive power control (power factor)
     •fault ride‐through  (voltage dips and 
      voltage swells)
            g        )

                                      www.elsewedyelectric.com   38
DFIG Control System
                            y




www.elsewedyelectric.com            39
EESG & PMSG Control System
                     y




  www.elsewedyelectric.com   40
TWT 1.65 Poles




www.elsewedyelectric.com    41
References
H. Polinder,,  Sjoerd W.H. de Haan, M. R. Dubois, Johannes G. Slootweg, “Basic Operation Principles and 
Electrical Conversion Systems of Wind Turbines“,
J. Soens, J. Driesen, R. Belmans, “Interaction between Electrical Grid Phenomena  and the Wind Turbine's 
Behaviour”, PROCEEDINGS OF ISMA 2004,
H.Li*Z.Chen, “Overview of different wind generator systems and their comparisons” Published in IET 
Renewable Power Generation Received on 24th January 2007 Revisedon 23rd August 2007 doi:10 1049/iet
Renewable Power Generation Received on 24 January 2007 Revisedon               August 2007 doi:10.1049/iet‐
rpg:20070044,
G Newman, S Perera, V Gosbell and V Smith,  “VOLTAGE SAG RIDE THROUGH IMPROVEMENT , OF MODERN 
AC DRIVES: REVIEW OF METHODS AND A CASE STUDY”, Integral Energy Power Quality Centre,
C. Rahmann, H. J. Haubrich, L. Vargas and M. B. C. Salles,  Investigation of DFIG with Fault Ride Through 
C. Rahmann, H.‐J. Haubrich, L. Vargas and M. B. C. Salles, “Investigation of DFIG with Fault Ride‐Through
Capability in Weak Power Systems”, International Conference on Power Systems Transients (IPST2009) in 
Kyoto, Japan June 3‐6, 2009,
 , K.S.Sandhu, D.K.Jain , “LVRT of Grid Interfaced Variable Speed Driven PMSG for WECS during Fault 
Rajveer Mittal”, International Journal of Computer and Electrical Engineering, Vol. 1, No. 4, October, 2009 
1793‐8163,
Anca D. Hansen*, Nicolaos A. Cutululis*, Poul Sørensen*,  Florin Iov+, Torben J. Larsen, *Simulation of a 
flexible wind turbine response to a grid fault”, Risø National Laboratory in cooperation with Aalborg 
University,
Marta Molinas, Bjarne N
M t M li          Bj     Naess, William Gullvik, Tore “Cage Induction Generators for Wind Turbines with 
                                Willi    G ll ik T    “C     I d ti G         t f Wi d T bi           ith
Power Electronics Converters in the Light of the New Grid Codes”, Undeland NORWEGIAN UNIVERSITY OF 
SCIENCE AND TECHNOLOGY, 




                                          www.elsewedyelectric.com                                             42

Weitere ähnliche Inhalte

Was ist angesagt?

Southewestern Indian Polytech Institute
Southewestern Indian Polytech InstituteSouthewestern Indian Polytech Institute
Southewestern Indian Polytech InstituteWindEnergyKen
 
Manual de construccion Sistema EOLICO
Manual de construccion Sistema EOLICOManual de construccion Sistema EOLICO
Manual de construccion Sistema EOLICOValerio Quintero
 
Chapter 2 transformer new
Chapter 2 transformer newChapter 2 transformer new
Chapter 2 transformer newmkazree
 
IRJET - Fabrication of Pendulum Machine for Generation of Electricity through...
IRJET - Fabrication of Pendulum Machine for Generation of Electricity through...IRJET - Fabrication of Pendulum Machine for Generation of Electricity through...
IRJET - Fabrication of Pendulum Machine for Generation of Electricity through...IRJET Journal
 

Was ist angesagt? (7)

Southewestern Indian Polytech Institute
Southewestern Indian Polytech InstituteSouthewestern Indian Polytech Institute
Southewestern Indian Polytech Institute
 
Final PPT
Final PPTFinal PPT
Final PPT
 
Maximum Energy Case Studies - EUPVSEC
Maximum Energy Case Studies - EUPVSECMaximum Energy Case Studies - EUPVSEC
Maximum Energy Case Studies - EUPVSEC
 
Manual de construccion Sistema EOLICO
Manual de construccion Sistema EOLICOManual de construccion Sistema EOLICO
Manual de construccion Sistema EOLICO
 
Chapter 2 transformer new
Chapter 2 transformer newChapter 2 transformer new
Chapter 2 transformer new
 
INTRODUCTION to Potential Difference Inc. Bi-Toroid Transformer (BiTT)
INTRODUCTION to Potential Difference Inc. Bi-Toroid Transformer (BiTT)INTRODUCTION to Potential Difference Inc. Bi-Toroid Transformer (BiTT)
INTRODUCTION to Potential Difference Inc. Bi-Toroid Transformer (BiTT)
 
IRJET - Fabrication of Pendulum Machine for Generation of Electricity through...
IRJET - Fabrication of Pendulum Machine for Generation of Electricity through...IRJET - Fabrication of Pendulum Machine for Generation of Electricity through...
IRJET - Fabrication of Pendulum Machine for Generation of Electricity through...
 

Andere mochten auch

Full-scale converter for synchronous wind turbine generators
Full-scale converter for synchronous wind turbine generatorsFull-scale converter for synchronous wind turbine generators
Full-scale converter for synchronous wind turbine generatorsLong Thang Pham
 
Doubly fed-induction-generator
Doubly fed-induction-generatorDoubly fed-induction-generator
Doubly fed-induction-generatorHarshad Karmarkar
 
Power electronics in Wind Turbine Systems
Power electronics in Wind Turbine SystemsPower electronics in Wind Turbine Systems
Power electronics in Wind Turbine SystemsManasa K
 
Wind Energy Technology
Wind Energy TechnologyWind Energy Technology
Wind Energy TechnologyAjay Bhatnagar
 
Wind Energy Conversion System Using PMSG with T-Source Three Phase Matrix Con...
Wind Energy Conversion System Using PMSG with T-Source Three Phase Matrix Con...Wind Energy Conversion System Using PMSG with T-Source Three Phase Matrix Con...
Wind Energy Conversion System Using PMSG with T-Source Three Phase Matrix Con...IJTET Journal
 
Magnitude and frequency control of grid connected doubly fed IG based synchro...
Magnitude and frequency control of grid connected doubly fed IG based synchro...Magnitude and frequency control of grid connected doubly fed IG based synchro...
Magnitude and frequency control of grid connected doubly fed IG based synchro...nehakardam
 
vertical axis wind turbine
vertical axis wind turbinevertical axis wind turbine
vertical axis wind turbineiviral1992
 
Estimation of Synchronous Generator Parameters from On-line Measurements
Estimation of Synchronous Generator Parameters from On-line MeasurementsEstimation of Synchronous Generator Parameters from On-line Measurements
Estimation of Synchronous Generator Parameters from On-line MeasurementsMohammadHasanmosadde
 
Power control of a wind energy conversion system
Power control of a wind energy conversion systemPower control of a wind energy conversion system
Power control of a wind energy conversion system7597861730
 
Advance Power Electronic Converters for Renewable Energy Systems
Advance Power Electronic Converters for Renewable Energy SystemsAdvance Power Electronic Converters for Renewable Energy Systems
Advance Power Electronic Converters for Renewable Energy SystemsTexas A&M University
 
Dynamic response of grid connected wind turbine with dfig
Dynamic response of grid connected wind turbine with dfigDynamic response of grid connected wind turbine with dfig
Dynamic response of grid connected wind turbine with dfigJose SanLeandro
 
TRANSIENT STABILITY ENHANCEMENT OF WIND FARMS USING POWER ELECTRONICS AND FAC...
TRANSIENT STABILITY ENHANCEMENT OF WIND FARMS USING POWER ELECTRONICS AND FAC...TRANSIENT STABILITY ENHANCEMENT OF WIND FARMS USING POWER ELECTRONICS AND FAC...
TRANSIENT STABILITY ENHANCEMENT OF WIND FARMS USING POWER ELECTRONICS AND FAC...University of South Carolina
 
Electrical Power Systems Synchronous Generator
Electrical Power Systems Synchronous GeneratorElectrical Power Systems Synchronous Generator
Electrical Power Systems Synchronous GeneratorMubarek Kurt
 
Power electronics technology in wind turbine system
Power electronics technology in wind turbine systemPower electronics technology in wind turbine system
Power electronics technology in wind turbine systempranavi kasina
 
Synchronous generators
Synchronous generatorsSynchronous generators
Synchronous generatorstes4
 
Open-End-Winding Permanent Magnet Synchonous Generator for Wind Energy Conver...
Open-End-Winding Permanent Magnet Synchonous Generator for Wind Energy Conver...Open-End-Winding Permanent Magnet Synchonous Generator for Wind Energy Conver...
Open-End-Winding Permanent Magnet Synchonous Generator for Wind Energy Conver...Naila Syed
 

Andere mochten auch (20)

DFIG_report
DFIG_reportDFIG_report
DFIG_report
 
Full-scale converter for synchronous wind turbine generators
Full-scale converter for synchronous wind turbine generatorsFull-scale converter for synchronous wind turbine generators
Full-scale converter for synchronous wind turbine generators
 
Doubly fed-induction-generator
Doubly fed-induction-generatorDoubly fed-induction-generator
Doubly fed-induction-generator
 
Power electronics in Wind Turbine Systems
Power electronics in Wind Turbine SystemsPower electronics in Wind Turbine Systems
Power electronics in Wind Turbine Systems
 
Wind Energy Technology
Wind Energy TechnologyWind Energy Technology
Wind Energy Technology
 
Power from wind in india
Power from wind in indiaPower from wind in india
Power from wind in india
 
Present_PhD_ Naveed_2015
Present_PhD_ Naveed_2015Present_PhD_ Naveed_2015
Present_PhD_ Naveed_2015
 
Wind Energy Conversion System Using PMSG with T-Source Three Phase Matrix Con...
Wind Energy Conversion System Using PMSG with T-Source Three Phase Matrix Con...Wind Energy Conversion System Using PMSG with T-Source Three Phase Matrix Con...
Wind Energy Conversion System Using PMSG with T-Source Three Phase Matrix Con...
 
254 ishwri
254 ishwri254 ishwri
254 ishwri
 
Magnitude and frequency control of grid connected doubly fed IG based synchro...
Magnitude and frequency control of grid connected doubly fed IG based synchro...Magnitude and frequency control of grid connected doubly fed IG based synchro...
Magnitude and frequency control of grid connected doubly fed IG based synchro...
 
vertical axis wind turbine
vertical axis wind turbinevertical axis wind turbine
vertical axis wind turbine
 
Estimation of Synchronous Generator Parameters from On-line Measurements
Estimation of Synchronous Generator Parameters from On-line MeasurementsEstimation of Synchronous Generator Parameters from On-line Measurements
Estimation of Synchronous Generator Parameters from On-line Measurements
 
Power control of a wind energy conversion system
Power control of a wind energy conversion systemPower control of a wind energy conversion system
Power control of a wind energy conversion system
 
Advance Power Electronic Converters for Renewable Energy Systems
Advance Power Electronic Converters for Renewable Energy SystemsAdvance Power Electronic Converters for Renewable Energy Systems
Advance Power Electronic Converters for Renewable Energy Systems
 
Dynamic response of grid connected wind turbine with dfig
Dynamic response of grid connected wind turbine with dfigDynamic response of grid connected wind turbine with dfig
Dynamic response of grid connected wind turbine with dfig
 
TRANSIENT STABILITY ENHANCEMENT OF WIND FARMS USING POWER ELECTRONICS AND FAC...
TRANSIENT STABILITY ENHANCEMENT OF WIND FARMS USING POWER ELECTRONICS AND FAC...TRANSIENT STABILITY ENHANCEMENT OF WIND FARMS USING POWER ELECTRONICS AND FAC...
TRANSIENT STABILITY ENHANCEMENT OF WIND FARMS USING POWER ELECTRONICS AND FAC...
 
Electrical Power Systems Synchronous Generator
Electrical Power Systems Synchronous GeneratorElectrical Power Systems Synchronous Generator
Electrical Power Systems Synchronous Generator
 
Power electronics technology in wind turbine system
Power electronics technology in wind turbine systemPower electronics technology in wind turbine system
Power electronics technology in wind turbine system
 
Synchronous generators
Synchronous generatorsSynchronous generators
Synchronous generators
 
Open-End-Winding Permanent Magnet Synchonous Generator for Wind Energy Conver...
Open-End-Winding Permanent Magnet Synchonous Generator for Wind Energy Conver...Open-End-Winding Permanent Magnet Synchonous Generator for Wind Energy Conver...
Open-End-Winding Permanent Magnet Synchonous Generator for Wind Energy Conver...
 

Ähnlich wie Capacity building 2010 day 2 yehia shankir sweg

Wind Turbine Generators
Wind Turbine GeneratorsWind Turbine Generators
Wind Turbine GeneratorsJasjot Singh
 
#6 DATA FINAL Potential Difference Innovations Test Program WITH INTERNATIONA...
#6 DATA FINAL Potential Difference Innovations Test Program WITH INTERNATIONA...#6 DATA FINAL Potential Difference Innovations Test Program WITH INTERNATIONA...
#6 DATA FINAL Potential Difference Innovations Test Program WITH INTERNATIONA...Thane Heins
 
FINAL Potential Difference inc. Innovations Test Program with 13 Internationa...
FINAL Potential Difference inc. Innovations Test Program with 13 Internationa...FINAL Potential Difference inc. Innovations Test Program with 13 Internationa...
FINAL Potential Difference inc. Innovations Test Program with 13 Internationa...Thane Heins
 
Discussion Document RE: Complete Potential Difference Innovations Test Program
Discussion Document RE: Complete Potential Difference Innovations Test ProgramDiscussion Document RE: Complete Potential Difference Innovations Test Program
Discussion Document RE: Complete Potential Difference Innovations Test ProgramThane Heins
 
Loss of excitation
Loss of excitationLoss of excitation
Loss of excitationNTPC
 
Wind energy - wind generator types
Wind energy - wind generator typesWind energy - wind generator types
Wind energy - wind generator typesStalin Kesavan
 
Electric Generators in Wind Power Plants.pptx
Electric Generators in Wind  Power Plants.pptxElectric Generators in Wind  Power Plants.pptx
Electric Generators in Wind Power Plants.pptxutkalpatil2
 
IRJET- Application of Small Wind Turbine in Small Grid using Permanent Magnet...
IRJET- Application of Small Wind Turbine in Small Grid using Permanent Magnet...IRJET- Application of Small Wind Turbine in Small Grid using Permanent Magnet...
IRJET- Application of Small Wind Turbine in Small Grid using Permanent Magnet...IRJET Journal
 
Wind Power Generation Schemes
Wind Power Generation SchemesWind Power Generation Schemes
Wind Power Generation SchemesVignesh Sekar
 
Modeling and simulation of dfig to grid connected wind power generation using...
Modeling and simulation of dfig to grid connected wind power generation using...Modeling and simulation of dfig to grid connected wind power generation using...
Modeling and simulation of dfig to grid connected wind power generation using...IAEME Publication
 
IRJET - Wind Energy Conversion System with DGIF
IRJET - Wind Energy Conversion System with DGIFIRJET - Wind Energy Conversion System with DGIF
IRJET - Wind Energy Conversion System with DGIFIRJET Journal
 

Ähnlich wie Capacity building 2010 day 2 yehia shankir sweg (20)

Wind Turbine Generators
Wind Turbine GeneratorsWind Turbine Generators
Wind Turbine Generators
 
#6 DATA FINAL Potential Difference Innovations Test Program WITH INTERNATIONA...
#6 DATA FINAL Potential Difference Innovations Test Program WITH INTERNATIONA...#6 DATA FINAL Potential Difference Innovations Test Program WITH INTERNATIONA...
#6 DATA FINAL Potential Difference Innovations Test Program WITH INTERNATIONA...
 
FINAL Potential Difference inc. Innovations Test Program with 13 Internationa...
FINAL Potential Difference inc. Innovations Test Program with 13 Internationa...FINAL Potential Difference inc. Innovations Test Program with 13 Internationa...
FINAL Potential Difference inc. Innovations Test Program with 13 Internationa...
 
Discussion Document RE: Complete Potential Difference Innovations Test Program
Discussion Document RE: Complete Potential Difference Innovations Test ProgramDiscussion Document RE: Complete Potential Difference Innovations Test Program
Discussion Document RE: Complete Potential Difference Innovations Test Program
 
Infinite Efficiency HILLCREST PETROLEUM AND DESIGN 1ST Potential Difference I...
Infinite Efficiency HILLCREST PETROLEUM AND DESIGN 1ST Potential Difference I...Infinite Efficiency HILLCREST PETROLEUM AND DESIGN 1ST Potential Difference I...
Infinite Efficiency HILLCREST PETROLEUM AND DESIGN 1ST Potential Difference I...
 
Loss of excitation
Loss of excitationLoss of excitation
Loss of excitation
 
Wind energy - wind generator types
Wind energy - wind generator typesWind energy - wind generator types
Wind energy - wind generator types
 
Electric Generators in Wind Power Plants.pptx
Electric Generators in Wind  Power Plants.pptxElectric Generators in Wind  Power Plants.pptx
Electric Generators in Wind Power Plants.pptx
 
Pmdc motors
Pmdc motorsPmdc motors
Pmdc motors
 
IRJET- Application of Small Wind Turbine in Small Grid using Permanent Magnet...
IRJET- Application of Small Wind Turbine in Small Grid using Permanent Magnet...IRJET- Application of Small Wind Turbine in Small Grid using Permanent Magnet...
IRJET- Application of Small Wind Turbine in Small Grid using Permanent Magnet...
 
INFINITE EFFICIENCY Design 1st Performance Confirmation Testing 2021 09-21 RE...
INFINITE EFFICIENCY Design 1st Performance Confirmation Testing 2021 09-21 RE...INFINITE EFFICIENCY Design 1st Performance Confirmation Testing 2021 09-21 RE...
INFINITE EFFICIENCY Design 1st Performance Confirmation Testing 2021 09-21 RE...
 
Design 1st Performance Confirmation Testing 2021 09-21 RE: Potential +/- Diff...
Design 1st Performance Confirmation Testing 2021 09-21 RE: Potential +/- Diff...Design 1st Performance Confirmation Testing 2021 09-21 RE: Potential +/- Diff...
Design 1st Performance Confirmation Testing 2021 09-21 RE: Potential +/- Diff...
 
Thor power, technical summary, 1210
Thor power, technical summary, 1210Thor power, technical summary, 1210
Thor power, technical summary, 1210
 
Ijetcas14 360
Ijetcas14 360Ijetcas14 360
Ijetcas14 360
 
Wind Power Generation Schemes
Wind Power Generation SchemesWind Power Generation Schemes
Wind Power Generation Schemes
 
Modeling and simulation of dfig to grid connected wind power generation using...
Modeling and simulation of dfig to grid connected wind power generation using...Modeling and simulation of dfig to grid connected wind power generation using...
Modeling and simulation of dfig to grid connected wind power generation using...
 
Direct torque control method
Direct torque control methodDirect torque control method
Direct torque control method
 
Potential Difference inc. Innovations RE: Design 1st Performance Testing Plan...
Potential Difference inc. Innovations RE: Design 1st Performance Testing Plan...Potential Difference inc. Innovations RE: Design 1st Performance Testing Plan...
Potential Difference inc. Innovations RE: Design 1st Performance Testing Plan...
 
Hillcrest Petroleum & Design 1st ReGenX Performance Testing Plan 2021-00-21
Hillcrest Petroleum & Design 1st ReGenX Performance Testing Plan 2021-00-21Hillcrest Petroleum & Design 1st ReGenX Performance Testing Plan 2021-00-21
Hillcrest Petroleum & Design 1st ReGenX Performance Testing Plan 2021-00-21
 
IRJET - Wind Energy Conversion System with DGIF
IRJET - Wind Energy Conversion System with DGIFIRJET - Wind Energy Conversion System with DGIF
IRJET - Wind Energy Conversion System with DGIF
 

Mehr von RCREEE

Gender challenges in clean energy sector can network
Gender challenges in clean energy sector can networkGender challenges in clean energy sector can network
Gender challenges in clean energy sector can networkRCREEE
 
Climate and energy policies advocacy of youth in the arab world
Climate and energy policies advocacy of youth in the arab worldClimate and energy policies advocacy of youth in the arab world
Climate and energy policies advocacy of youth in the arab worldRCREEE
 
Women in energy a world full of opportunities lcec
Women in energy a world full of opportunities  lcecWomen in energy a world full of opportunities  lcec
Women in energy a world full of opportunities lcecRCREEE
 
Women and sustainability in green mind
Women and sustainability in green mindWomen and sustainability in green mind
Women and sustainability in green mindRCREEE
 
Energy entrepreneurship artik energy
Energy entrepreneurship  artik energyEnergy entrepreneurship  artik energy
Energy entrepreneurship artik energyRCREEE
 
The women behind ewb kuwait
The women behind ewb kuwaitThe women behind ewb kuwait
The women behind ewb kuwaitRCREEE
 
Women in Energy in Jordan Challenges, Opportunities and the Way Forward JREEE...
Women in Energy in Jordan Challenges, Opportunities and the Way Forward JREEE...Women in Energy in Jordan Challenges, Opportunities and the Way Forward JREEE...
Women in Energy in Jordan Challenges, Opportunities and the Way Forward JREEE...RCREEE
 
Women in energy sector in the mena region rcreee
Women in energy sector in the mena region rcreeeWomen in energy sector in the mena region rcreee
Women in energy sector in the mena region rcreeeRCREEE
 
Awakening diversity in the clean energy sector a key point to achieve sustai...
Awakening diversity in the clean energy sector  a key point to achieve sustai...Awakening diversity in the clean energy sector  a key point to achieve sustai...
Awakening diversity in the clean energy sector a key point to achieve sustai...RCREEE
 
Mitigating environmental impact in non renewable energy the role of women
Mitigating environmental impact in non renewable energy the role of womenMitigating environmental impact in non renewable energy the role of women
Mitigating environmental impact in non renewable energy the role of womenRCREEE
 
HLPD in Vienna_Key Messages
HLPD in Vienna_Key MessagesHLPD in Vienna_Key Messages
HLPD in Vienna_Key MessagesRCREEE
 
HLPD_Setting the scene
HLPD_Setting the sceneHLPD_Setting the scene
HLPD_Setting the sceneRCREEE
 
EU-Egypt Energy Cooperation: A successful model
EU-Egypt Energy Cooperation: A successful modelEU-Egypt Energy Cooperation: A successful model
EU-Egypt Energy Cooperation: A successful modelRCREEE
 
EU sustainable development policies& cooperation
EU sustainable development policies& cooperationEU sustainable development policies& cooperation
EU sustainable development policies& cooperationRCREEE
 
EU support to the Energy sector in Jordan
EU support to the Energy sector in JordanEU support to the Energy sector in Jordan
EU support to the Energy sector in JordanRCREEE
 
Global Energy Interconnection Enhances Renewable Energy Development & Regiona...
Global Energy Interconnection Enhances Renewable Energy Development & Regiona...Global Energy Interconnection Enhances Renewable Energy Development & Regiona...
Global Energy Interconnection Enhances Renewable Energy Development & Regiona...RCREEE
 
Netherlands Support to Sustainable Arab Development
Netherlands Support to Sustainable Arab DevelopmentNetherlands Support to Sustainable Arab Development
Netherlands Support to Sustainable Arab DevelopmentRCREEE
 
Report summary on Intended Nationnally determined contributions -Comprehensiv...
Report summary on Intended Nationnally determined contributions -Comprehensiv...Report summary on Intended Nationnally determined contributions -Comprehensiv...
Report summary on Intended Nationnally determined contributions -Comprehensiv...RCREEE
 
Energy productivity as a new paradigm for sustainable energy transitions
Energy productivity as a new paradigm for sustainable energy transitionsEnergy productivity as a new paradigm for sustainable energy transitions
Energy productivity as a new paradigm for sustainable energy transitionsRCREEE
 
Arab Region Progress in Sustainable Energy Challenges and Opportunities
Arab Region Progress in Sustainable Energy Challenges and OpportunitiesArab Region Progress in Sustainable Energy Challenges and Opportunities
Arab Region Progress in Sustainable Energy Challenges and OpportunitiesRCREEE
 

Mehr von RCREEE (20)

Gender challenges in clean energy sector can network
Gender challenges in clean energy sector can networkGender challenges in clean energy sector can network
Gender challenges in clean energy sector can network
 
Climate and energy policies advocacy of youth in the arab world
Climate and energy policies advocacy of youth in the arab worldClimate and energy policies advocacy of youth in the arab world
Climate and energy policies advocacy of youth in the arab world
 
Women in energy a world full of opportunities lcec
Women in energy a world full of opportunities  lcecWomen in energy a world full of opportunities  lcec
Women in energy a world full of opportunities lcec
 
Women and sustainability in green mind
Women and sustainability in green mindWomen and sustainability in green mind
Women and sustainability in green mind
 
Energy entrepreneurship artik energy
Energy entrepreneurship  artik energyEnergy entrepreneurship  artik energy
Energy entrepreneurship artik energy
 
The women behind ewb kuwait
The women behind ewb kuwaitThe women behind ewb kuwait
The women behind ewb kuwait
 
Women in Energy in Jordan Challenges, Opportunities and the Way Forward JREEE...
Women in Energy in Jordan Challenges, Opportunities and the Way Forward JREEE...Women in Energy in Jordan Challenges, Opportunities and the Way Forward JREEE...
Women in Energy in Jordan Challenges, Opportunities and the Way Forward JREEE...
 
Women in energy sector in the mena region rcreee
Women in energy sector in the mena region rcreeeWomen in energy sector in the mena region rcreee
Women in energy sector in the mena region rcreee
 
Awakening diversity in the clean energy sector a key point to achieve sustai...
Awakening diversity in the clean energy sector  a key point to achieve sustai...Awakening diversity in the clean energy sector  a key point to achieve sustai...
Awakening diversity in the clean energy sector a key point to achieve sustai...
 
Mitigating environmental impact in non renewable energy the role of women
Mitigating environmental impact in non renewable energy the role of womenMitigating environmental impact in non renewable energy the role of women
Mitigating environmental impact in non renewable energy the role of women
 
HLPD in Vienna_Key Messages
HLPD in Vienna_Key MessagesHLPD in Vienna_Key Messages
HLPD in Vienna_Key Messages
 
HLPD_Setting the scene
HLPD_Setting the sceneHLPD_Setting the scene
HLPD_Setting the scene
 
EU-Egypt Energy Cooperation: A successful model
EU-Egypt Energy Cooperation: A successful modelEU-Egypt Energy Cooperation: A successful model
EU-Egypt Energy Cooperation: A successful model
 
EU sustainable development policies& cooperation
EU sustainable development policies& cooperationEU sustainable development policies& cooperation
EU sustainable development policies& cooperation
 
EU support to the Energy sector in Jordan
EU support to the Energy sector in JordanEU support to the Energy sector in Jordan
EU support to the Energy sector in Jordan
 
Global Energy Interconnection Enhances Renewable Energy Development & Regiona...
Global Energy Interconnection Enhances Renewable Energy Development & Regiona...Global Energy Interconnection Enhances Renewable Energy Development & Regiona...
Global Energy Interconnection Enhances Renewable Energy Development & Regiona...
 
Netherlands Support to Sustainable Arab Development
Netherlands Support to Sustainable Arab DevelopmentNetherlands Support to Sustainable Arab Development
Netherlands Support to Sustainable Arab Development
 
Report summary on Intended Nationnally determined contributions -Comprehensiv...
Report summary on Intended Nationnally determined contributions -Comprehensiv...Report summary on Intended Nationnally determined contributions -Comprehensiv...
Report summary on Intended Nationnally determined contributions -Comprehensiv...
 
Energy productivity as a new paradigm for sustainable energy transitions
Energy productivity as a new paradigm for sustainable energy transitionsEnergy productivity as a new paradigm for sustainable energy transitions
Energy productivity as a new paradigm for sustainable energy transitions
 
Arab Region Progress in Sustainable Energy Challenges and Opportunities
Arab Region Progress in Sustainable Energy Challenges and OpportunitiesArab Region Progress in Sustainable Energy Challenges and Opportunities
Arab Region Progress in Sustainable Energy Challenges and Opportunities
 

Capacity building 2010 day 2 yehia shankir sweg

  • 1. RCREEE Wind Energy Building Capacity Program – Stage 2 Rabat, Tangier 29  March – 2nd April 2010 p Review of Wind Turbines’ Drive Systems and why  Gearless Direct Drive  Gearless Direct Drive DR Yehia Shankir www.elsewedyelectric.com 1
  • 2. Contents 1. EL Sewedy Electric & SWEG 1 EL Sewedy Electric & SWEG 2. Wind Turbines’ components and generator types 3. Wind Turbines’ drive systems advantages and  3 Wi d T bi ’ d i d d disadvantages 4. Comparisons of Wind Turbines’ drive systems 5. Conclusions 6. Appendix 7. References www.elsewedyelectric.com 2
  • 6. EL Sewedy Electric Wind  EL Sewedy Electric Wind Sector www.elsewedyelectric.com 6
  • 7. I‐ TOWERS SIAG Company Overview • The leading tubular steel tower supplier in  Germany and Europe • Market share more than 30%   • Leading technology in steel industry • Nearly 1000 employees • Proven track‐record of growth in Europe f th i E www.elsewedyelectric.com 7
  • 8. II‐ TURBINES M‐Torres Company Overview  One of the most Innovative  Engineering companies in Spain  Started in the paper industries &  now one of the leaders in  supplying machines for the  aerospace industry A total of 500 high skilled  employees  M‐Torres Wind Division MT Wi d Di i i 2001 the first innovative 1.5 MW prototype MTOI engineering,  MTOI engineering manufacturing,  development, O&M www.elsewedyelectric.com 8
  • 9. III  BLADES Wind Rotor Blades Factory in Egypt State of the art  production   State of the art production technology transfer from a  leading German manufacturer. State of the art  Blades Design  licensed by leading Dutch and  licensed by leading Dutch and German Designers The factory will be equipped  with the most advanced  Fiberglass moulds and  Fib l ld d equipment to produce 200 sets  of blades in stage 1 expandable  to 500 sets Nearly 500 employees and  technicians will be employed in  the first stage 9 www.elsewedyelectric.com 9
  • 10. SWEG EL Sewedy for Wind Energy Generation  EL S d f Wi d E G ti the Wind Sector Arm www.elsewedyelectric.com 10
  • 11. Wind Turbines’ components and g generator types yp www.elsewedyelectric.com 11
  • 12. Wind Turbine System Main  Wind Turbine System Main Components Mechanical P M h i l Power Electrical P El t i l Power Wind Power  Gearbox Power Converter  Transformer Grid Rotor (Optional) Generator (Optional) Gearless Systems Gearless Systems Geared Systems Geared Systems Electrical Excited  Squirrel Cage  Synchronous  Induction Generator  Generator (EESG) Generator (EESG) Types of ( (SCIG) ) Generators Permanent Magnet  (AC Machines) Double Feed  Synchronous  Induction Generator  Generator (PMSG) Generator (PMSG) (DFIG) www.elsewedyelectric.com 12
  • 13. Wound Rotor  IM Squirrel Cage IM Induction Machine +ve  T Grid Motor Generator Generator Sub Synch (+ve slip) Super synch (‐ve slip) ‐ve T ‐ve T Motor Operating Torque T Synch   Speed =  120 f/ p /p www.elsewedyelectric.com 13
  • 14. Synchronous Generator Synchronous Generator Wound Rotor Permanent Magnet Generator Freq = P x n  / /120 Vdc www.elsewedyelectric.com 14
  • 15. Wind Turbines’ Drive Systems, advantages and disadvantages g g www.elsewedyelectric.com 15
  • 16. The Typical Types of Drive Systems for Large  The Typical Types of Drive Systems for Large Wind Turbines Fixed Speed Squirrel C S i l Cage Induction Generator (SCIG) Variable Speed Double Feed Induction Generator (DFIG) Variable Speed Electrical Excited Synch Generator (EESG) Variable Speed Permanent Magnet Synch Generator (PMSG) www.elsewedyelectric.com 16
  • 17. Squirrel C S i l Cage Induction G I d ti Generatort Geared, (SCIG) Directly connected to grid ‐ve  A gearbox is required in the drive train Torque Almost a Fixed speed. Operates in narrow  Al Fi d d O i P=4 P=2 range of speed The only speed control is through pole  changing which leads two rotation speeds. % of Synch Speed www.elsewedyelectric.com 17
  • 18. Advantages of Geared SCIG Cost (SCIG) is a very popular machine, it has Low  specific mass (kg/kW) and smaller outer  diameter (low number of poles)hence lower  di t (l b f l )h l cost. Mechanical, Maintenance & Reliability  h i l i & li bili Mechanical simplicity, robust structure www.elsewedyelectric.com 18
  • 19. Disadvantages of Geared SCIG Mechanical, Reliability & Maintenance Control A gearbox in the drive train is required: No possibility of speed control, only a pole‐ Electrical & Power Quality changeable can be  used ,which leads two  Directly connected to the grid Directly connected to the grid rotation speeds.  p SCIG would disconnect from the grid  The turbine speed cannot be adjusted to the  even during quite small disturbances.  wind speed to optimize the aerodynamic  They did not have any fault ride‐ Th did t h f lt id efficiency. efficiency.` through capability,  Wind speed fluctuations are directly  The machine always requires reactive  translated into electromechanical torque  power, and its value cannot be  variations (no damping control), This causes  variations (no damping control) This causes controlled. This makes it impossible to  high mechanical and fatigue stresses on the  support grid voltage control therefore  system (P = T .  W) no grid support, Need different gearboxes for different  grid frequencies 50Hz / 60 Hz www.elsewedyelectric.com 19
  • 20. Double Fed Induction Generator, Geared, (DFIG) Power flow in Power flow in O Operating  i +ve  Speed T Power flow out N3 N1 N2 Directly connected to grid Motor ‐ve  Generator Rotor Connected to grid via power  T converter Operating  Torque T A gearbox is required in the drive train Variable speed, Speed can be controlled  Variable speed, Speed can be controlled within a +/‐ 30% around synchronous  speed (The converter is Feeding or  Absorbing power from/to the grid) Absorbing power from/to the grid) www.elsewedyelectric.com 20
  • 21. Advantages of Geared DFIG Cost Low specific mass (kg/kW) and smaller outer diameter (low number of  Low specific mass (kg/kW) and smaller outer diameter (low number of poles) hence lower cost. The converter for a DFIG is small (30% of rated power). Therefore it is  cheaper than for a direct‐drive generator. h th f di t d i t More complex structure than SCIG Electrical & Power Quality The reactive power can be controlled by controlling the rotor currents with  the converter, this allows the supply of voltage support towards the grid.  However reactive power is limited by the converter 30% rating. However reactive power is limited by the converter 30% rating. Control DFIG supports a wide speed range operation, depending on the size of the  frequency converter. Typically Variable speed range is +30% around the  f t T i ll V i bl d i +30% d th synchronous speed In DFIG, wind gusts lead to variations in the speed without large torque  variations. www.elsewedyelectric.com 21
  • 22. Disadvantages of Geared DFIG Mechanical, Reliability & Maintenance A gearbox in the drive train is required which show a reliability  negative record. DFIG have brushes, which need regular inspection and replacement.  DFIG have brushes which need regular inspection and replacement They are a potential cause of machine failure and losses. Electrical & Power Quality Stator directly connected to grid d l d d According to  grid connection requirements for wind turbines, in case  of grid disturbances, a ride‐through capability of DFIG is required, so  that the corresponding control strategies may be complicated. Under grid fault conditions, on the one hand, large stator currents  result in large rotor currents, so that the power electronic converter  g , p needs to be protected Need different gearboxes for different grid frequencies 50Hz /60 Hz www.elsewedyelectric.com 22
  • 23. Electrical Excited Synchronous Generator, Gearless (EESG) No Gearbox is required No Gearbox is required No direct connection to the grid,  Connected through a power converter The amplitude and frequency of the  supplied voltage can be fully controlled The flux is fully controlled to minimize  losses in different operating ranges Operate in a wide range of speed even  to a very low speed to a very low speed www.elsewedyelectric.com 23
  • 24. Advantages of Gearless EESG Mechanical, Maintenance & Reliability The full power converter totally  The full power converter totally No Gearbox so high reliability, less noise,  decouples the generator from the  less cost, grid. Hence, grid disturbances have  DFIG have brushes, which need regular  DFIG have brushes which need regular no direct effect on the generator no direct effect on the generator inspection and replacement. They are a  Control potential cause of machine failure and  The converter offers a wide range of  losses. losses d l l speed control even at very low speed  d Electrical & Power Quality therefore a higher energy yield The converter permits flexible full control  The amplitude and frequency of the  of active and reactive power in case of  voltage can be fully controlled by the  normal and disturbed grid conditions. this  converter allows the supply of voltage support  EESG has the opportunities of  pp towards the grid. controlling the flux for a minimized  The same generator suitable for different  loss in different power ranges grid frequencies 50Hz / 60 Hz www.elsewedyelectric.com 24
  • 25. Disadvantages of Gearless EESG Cost High specific mass (kg/kW) and Large outer diameter (high number  of poles) hence Higher cost and more weight. This weight is  partially balanced  by the elimination of the gearbox. partially balanced by the elimination of the gearbox The converter is 100% of rated power. it is more expensive than for  a DFIG. This extra cost is balanced by the elimination of the gearbox More complex structure than SCIG Mechanical, Reliability & Maintenance Mechanical, Reliability & Maintenance EESG have brushes, which need regular inspection and  replacement. They are a cause of machine failure and losses. www.elsewedyelectric.com 25
  • 26. Permanent Magnet Synchronous Generator, Gearless (PMSG) No Gearbox is required No Gearbox is required No direct connection to the grid,  Connected through a power converter The amplitude and frequency of the  supplied voltage can be fully controlled No flux control and no slip rings  because of permanent magnets Operate in a wide range of speed even  to a very low speed to a very low speed www.elsewedyelectric.com 26
  • 27. Advantages of Gearless PMSG Mechanical, Maintenance & Reliability No Gearbox and brushes so higher  The converter permits very flexible full  reliability, less noise, less cost, control of the active and reactive power in  improvement in the thermal  p case of normal and disturbed grid  characteristics of the PM machine due  conditions. this allows the supply of voltage  to the absence of the field losses,  support towards the grid. Electrical & Power Quality Electrical & Power Quality Control The full power converter totally  The converter offers a wide range of speed  decouples the generator from the grid.  control even at very low speed therefore a  Hence, grid disturbances have no direct  Hence grid disturbances have no direct higher energy yield higher energy yield effect on the generator The amplitude and frequency of the voltage  The same generator suitable for  can be fully controlled by the converter different grid frequencies 50Hz / 60 Hz / PMSG has the opportunities of controlling  PMSG h th t iti f t lli No additional power supply for the  the flux for a minimized loss in different  magnet field excitation, power ranges www.elsewedyelectric.com 27
  • 28. Disadvantages of Gearless PMSG Cost High cost of PM material and Large outer diameter (high number of  poles), however this is balanced through a lower specific mass  (kg/kW) and the elimination of the gearbox. (kg/kW) and the elimination of the gearbox The converter is 100% of rated power. it is more expensive than for  a DFIG. This extra cost is balanced by the elimination of the gearbox Mechanical, Reliability & Maintenance Demagnetization of PM at high temp due to sever loading or short  circuit. Difficulties to handle in manufacture and in transportation, www.elsewedyelectric.com 28
  • 30. Summary Comparison Summary Comparison Comparison base SCIG DFIG EESG PMSG If in the middle Investment Cost, size and weight (++) (+) (-) (-) of a desert with Mechanical and structure Simplicity (++) (+) (-) (-) hot sandy, and Reliability d R li bilit and maintenance t l i t to lower dusty weather maintenance cost and increase (-) (--) (+) (++) or if offshore availability(Gearbox and brushes) Grid support and LVRT (-) (+) (++) (++) Suitability for 50HZ & 60 HZ (-) (-) (+) (+) If the point of Speed control to damp mechanical common (-) (+) (++) (++) stresses connection in Speed control to optimize p p aerodynamic efficiency to maximize (-) (+) (++) (++) the middle of a energy yield complex grid Sourcing of material and handling in (+) (+) (-) (--) manufacturing and transportation Annual Energy Yield due to control , reliability and less down time (-) (+) (++) (++) Cost of Kwh (Levelized Energy Cost) (-) (+) (++) (++) www.elsewedyelectric.com 30
  • 31. Wind turbine Top Ten manufacturers and their  Wind turbine Top Ten manufacturers and their generator types Current manufacturers of Direct Drives Turbines 3.6 MW 3.5 3 5 MW Companies who p recognized the DD concept and now Joiningg www.elsewedyelectric.com 31
  • 32. Conclusions The multiple stage geared drive DFIG systems is still  The multiple‐stage geared drive DFIG systems is still dominating the current market, The market shows interest in the direct‐drive systems with a  full‐scale power converter. New companies recognized their  advantages and already started, Weight, size and initial cost are higher in direct drive systems. Weight size and initial cost are higher in direct drive systems Overall efficiency, reliability and availability are higher in  direct drive systems because of omitting the gearbox, Maintenance cost is higher in geared drive systems specially in  ruler area, desert, and offshore also in hot and dusty weather, The cost of KWh is less in direct drive systems, The cost of KWh is less in direct drive systems In terms of grid support direct drive wind turbines with a full‐ scale power converter may be more effective and less  complicated to deal with grid‐related problems, www.elsewedyelectric.com 32
  • 33. Nacelle Front www.elsewedyelectric.com 33
  • 34. Nacelle Rear www.elsewedyelectric.com 34
  • 35. Thank Th k you for your attention f tt ti www.elsewedyelectric.com 35
  • 37. Gearboxes and Reliability • Gearboxes are one of the most expensive components of the wind turbine system,  • The higher ‐ than‐expected failure rates are adding to the cost of wind energy.   • The future uncertainty of gearbox life expectancy is contributing to wind turbine  price escalation.   • Turbine manufacturers add large contingencies to the sales price to cover the  warranty risk due to the possibility of premature gearbox failures.  • Owners and operators build contingency funds into the project financing and  income expectations for problems that may show up after the warranty expires.  Improving Wind Turbine Gearbox Reliability , Conference Paper NREL/CP‐500‐41548, May 2007 • For example, replacing a gearbox in a 1.5‐MW turbine can cost a company more  than $500,000 when you add in the price of a new gearbox, labor, crane rental, and  lost  revenue from turbine downtime. lost revenue from turbine downtime. http://www.windpowerengineering.com/maintenance/how-to-keep-them-worki... 3/17/2010 www.elsewedyelectric.com 37
  • 38. Electrical & Power Quality • The ideal voltage source provides a  g p perfectly balanced voltage in the three  phases, a pure sine wave with a constant  frequency and magnitude.  q y g • When these conditions are not met, it is  said that the ‘power quality’ of the grid is  deteriorated. deteriorated • The requirements set by the Transmission  System Operators (TSOs), are being  constantly reviewed and expanded: constantly reviewed and expanded: •Power quality (Constant voltage,  harmonics, flickers) •reactive power control (power factor) •fault ride‐through  (voltage dips and  voltage swells) g ) www.elsewedyelectric.com 38
  • 39. DFIG Control System y www.elsewedyelectric.com 39
  • 40. EESG & PMSG Control System y www.elsewedyelectric.com 40
  • 42. References H. Polinder,,  Sjoerd W.H. de Haan, M. R. Dubois, Johannes G. Slootweg, “Basic Operation Principles and  Electrical Conversion Systems of Wind Turbines“, J. Soens, J. Driesen, R. Belmans, “Interaction between Electrical Grid Phenomena  and the Wind Turbine's  Behaviour”, PROCEEDINGS OF ISMA 2004, H.Li*Z.Chen, “Overview of different wind generator systems and their comparisons” Published in IET  Renewable Power Generation Received on 24th January 2007 Revisedon 23rd August 2007 doi:10 1049/iet Renewable Power Generation Received on 24 January 2007 Revisedon August 2007 doi:10.1049/iet‐ rpg:20070044, G Newman, S Perera, V Gosbell and V Smith,  “VOLTAGE SAG RIDE THROUGH IMPROVEMENT , OF MODERN  AC DRIVES: REVIEW OF METHODS AND A CASE STUDY”, Integral Energy Power Quality Centre, C. Rahmann, H. J. Haubrich, L. Vargas and M. B. C. Salles,  Investigation of DFIG with Fault Ride Through  C. Rahmann, H.‐J. Haubrich, L. Vargas and M. B. C. Salles, “Investigation of DFIG with Fault Ride‐Through Capability in Weak Power Systems”, International Conference on Power Systems Transients (IPST2009) in  Kyoto, Japan June 3‐6, 2009, , K.S.Sandhu, D.K.Jain , “LVRT of Grid Interfaced Variable Speed Driven PMSG for WECS during Fault  Rajveer Mittal”, International Journal of Computer and Electrical Engineering, Vol. 1, No. 4, October, 2009  1793‐8163, Anca D. Hansen*, Nicolaos A. Cutululis*, Poul Sørensen*,  Florin Iov+, Torben J. Larsen, *Simulation of a  flexible wind turbine response to a grid fault”, Risø National Laboratory in cooperation with Aalborg  University, Marta Molinas, Bjarne N M t M li Bj Naess, William Gullvik, Tore “Cage Induction Generators for Wind Turbines with  Willi G ll ik T “C I d ti G t f Wi d T bi ith Power Electronics Converters in the Light of the New Grid Codes”, Undeland NORWEGIAN UNIVERSITY OF  SCIENCE AND TECHNOLOGY,  www.elsewedyelectric.com 42