SlideShare ist ein Scribd-Unternehmen logo
1 von 60
Downloaden Sie, um offline zu lesen
January 27, 2005 11:45    L24-ch06       Sheet number 1 Page number 230               black



                                                       CHAPTER 6
                                                     Integration

             EXERCISE SET 6.1
                                1 2      n−1
              1. Endpoints 0,    , ,...,     , 1; using right endpoints,
                                n n       n
                            1       2            n−1    1
                  An =        +       + ··· +        +1
                            n       n             n     n

                   n         2           5         10         50         100
                   An    0.853553    0.749739   0.710509   0.676095   0.671463

                          1 2      n−1
                           , ,...,
              2. Endpoints 0,           , 1; using right endpoints,
                          n n       n
                        n     n       n               n      1 1
                  An =    +      +         + ··· +         +
                       n+1 n+2 n+3                 2n − 1 2 n

                   n         2           5         10         50         100
                   An    0.583333    0.645635   0.668771   0.688172   0.690653

                                π 2π       (n − 1)π
              3. Endpoints 0,    ,   ,...,          , π; using right endpoints,
                                n n           n
                                                                                  π
                  An = [sin(π/n) + sin(2π/n) + · · · + sin(π(n − 1)/n) + sin π]
                                                                                  n

                   n        2          5       10      50          100
                   An    1.57080    1.93376 1.98352 1.99935      1.99984

                                π 2π        (n − 1)π π
              4. Endpoints 0,     ,   ,...,         , ; using right endpoints,
                                2n 2n          2n    2
                                                                                              π
                  An = [cos(π/2n) + cos(2π/2n) + · · · + cos((n − 1)π/2n) + cos(π/2)]
                                                                                              2n

                   n         2           5         10         50         100
                   An    0.555359    0.834683   0.919400   0.984204   0.992120

                          n+1 n+2         2n − 1
              5. Endpoints 1,  ,    ,...,        , 2; using right endpoints,
                            n    n          n
                        n     n            n        1 1
                  An =    +      + ··· +        +
                       n+1 n+2           2n − 1 2 n

                   n         2           5         10         50         100
                   An    0.583333    0.645635   0.668771   0.688172   0.690653

                            π π π π 2π             π (n − 1)π π
              6. Endpoints − , − + , − +     ,...,− +             , ; using right endpoints,
                            2   2  n    2  n       2          n    2
                             π π          π 2π                     π (n − 1)π            π         π
                 An = cos − +      + cos − +       + · · · + cos − +               + cos
                             2   n        2    n                   2       n              2        n

                   n        2          5       10      50          100
                   An    1.57080    1.93376 1.98352 1.99936      1.99985

                                                                230
January 27, 2005 11:45      L24-ch06           Sheet number 2 Page number 231                  black



              Exercise Set 6.1                                                                                                    231


                              1 2          n−1
               7. Endpoints 0, , , . . . ,     , 1; using right endpoints,
                              n n           n
                                                                                                 
                                   2                  2                                    2
                                1                 2                    n−1                             1
                  An =  1 −          + 1−              + ··· + 1 −                            + 0
                                n                 n                      n                             n

                     n         2              5         10       50                100
                     An    0.433013       0.659262   0.726130 0.774567          0.780106

                                    2      4               2(n − 1)
               8. Endpoints −1, −1 + , −1 + , . . . , −1 +          , 1; using right endpoints,
                                    n      n                  n
                                                                                          
                                      2                    2                          2
                                n−2                n−4                        n−2            2
                  An =  1 −            + 1−                 + ··· + 1 −                + 0
                                  n                   n                          n           n

                     n     2         5       10                50         100
                     An    1     1.423837 1.518524          1.566097   1.569136

                                              2       4             2
               9. Endpoints −1, −1 +            , −1 + , . . . , 1 − , 1; using right endpoints,
                                              n       n             n
                    An = e−1+ n + e−1+ n + e−1+ n + . . . + e1− n + e1
                                   2          4         6               2         2
                                                                                  n


                     n         2              5         10      50              100
                     An    3.718281       2.851738   2.59327 2.39772          2.35040

                                  1      2              1
              10. Endpoints 1, 1 +  , 1 + , . . . , 2 − , 2; using right endpoints,
                                  n      n              n
                                1                 2                     1        1
                    An = ln 1 +     + ln 1 +           + . . . + ln 2 −   + ln 2
                                n                n                      n        n

                     n       2     5    10    50    100
                     An    0.549 0.454 0.421 0.393 0.390

                                       1 2      n−1
              11. Endpoints 0,          , ,...,     , 1; using right endpoints,
                                       n n       n
                                        1           2                    n−1                1
                    An = sin−1             + sin−1       + . . . + sin−1        + sin−1 (1)
                                        n          n                      n                 n

                     n        2       5               10      50              100
                     An    1.04729 0.75089         0.65781 0.58730          0.57894

                               1 2      n−1
              12. Endpoints 0,  , ,...,     , 1; using right endpoints,
                               n n       n
                                 1           2                    n−1                                      1
                    An = tan−1     + tan−1        + . . . + tan−1                       + tan−1 (1)
                                n            n                     n                                       n

                     n        2       5               10      50              100
                     An    0.62452 0.51569         0.47768 0.44666          0.44274

                                                                                                                     3
              13. 3(x − 1)                   14. 5(x − 2)                   15. x(x + 2)                       16.     (x − 1)2
                                                                                                                     2
January 27, 2005 11:45     L24-ch06          Sheet number 3 Page number 232                  black



             232                                                                                                        Chapter 6


                                                                                3
             17. (x + 3)(x − 1)                                         18.       x(x − 2)
                                                                                2

             19. The area in Exercise 17 is always 3 less than the area in Exercise 15. The regions are identical
                 except that the area in Exercise 15 has the extra trapezoid with vertices at (0, 0), (1, 0), (0, 2), (1, 4)
                 (with area 3).

                                                                                                       1
             20. (a) The region in question is a trapezoid, and the area of a trapezoid is               (h1 + h2 )w.
                                                                                                       2
                                                 1                          1
                   (b) From Part (a), A (x) =      [f (a) + f (x)] + (x − a) f (x)
                                                 2                          2
                                                 1                          1 f (x) − f (a)
                                                = [f (a) + f (x)] + (x − a)                 = f (x)
                                                 2                          2     x−a

             21. A(6) represents the area between x = 0 and x = 6; A(3) represents the area between x = 0
                 and x = 3; their difference A(6) − A(3) represents the area between x = 3 and x = 6, and
                                1
                 A(6) − A(3) = (63 − 33 ) = 63.
                                3

             22. A(9) = 93 /3, A(−3) = (−3)3 /3, and the area between x = −3 and x = 9 is given by A(9)−A(−3) =
                 (93 − (−3)3 )/3 = 252.

             23. f (x) = A (x) = 2x; 0 = A(a) = a2 − 4, so take a = 2 (or a = −2), A(x) = x2 − 4,
                 A (x) = 2x = f (x), so a = ±2, f (x) = 2x

             24. f (x) = A (x) = 2x − 1, 0 = A(a) = a2 − a, so take a = 0 (or a = 1).
                                                                          √
             25. B is also the area between the graph of f (x) =              x and the interval [0, 1] on the y−axis, so A + B
                 is the area of the square.

             26. If the plane is rotated about the line y = x then A becomes B and vice versa.



             EXERCISE SET 6.2
                                 x
              1. (a)       √          dx =    1 + x2 + C                        (b)     (x + 1)ex dx = xex + C
                               1 + x2

                        d
              2. (a)      (sin x − x cos x + C) = cos x − cos x + x sin x = x sin x
                       dx
                                               √               √
                        d        x               1 − x2 + x2 / 1 − x2            1
                   (b)       √        +C =                               =
                       dx      1 − x2                   1 − x2             (1 − x2 )3/2

                    d               3x2                          3x2
              5.          x3 + 5 = √                 so         √       dx =       x3 + 5 + C
                   dx             2 x3 + 5                     2 x3 + 5

                    d   x      3 − x2                          3 − x2          x
              6.             = 2                    so                  dx = 2   +C
                   dx x2 + 3  (x + 3)2                        (x2 + 3)2     x +3
                                              √                       √
                    d      √            cos (2 x)               cos (2 x)           √
              7.      sin 2 x       =      √             so        √      dx = sin 2 x + C
                   dx                         x                       x

                    d
              8.      [sin x − x cos x] = x sin x    so        x sin x dx = sin x − x cos x + C
                   dx
January 27, 2005 11:45       L24-ch06         Sheet number 4 Page number 233                 black



              Exercise Set 6.2                                                                                                   233


                                                                      7 12/7                               2 9/2
               9. (a) x9 /9 + C                              (b)         x   +C                      (c)     x +C
                                                                      12                                   9
                           3 5/3                                  1            1
              10. (a)        x +C                            (b) − x−5 + C = − 5 + C                 (c) 8x1/8 + C
                           5                                      5           5x
                                  2                      2      1      5     2          −1    1     5     1
              11.        5x +          dx =    5x dx +             dx = x2 +                     C = x2 − 4 + C
                                 3x5                     3      x5     2     3          4     x4    2    6x

                                              1                                              1               5       1
              12.        x−1/2 − 3x7/5 +        dx =      x−1/2 dx − 3        x7/5 dx +        dx = 2x1/2 − 3 x12/5 + x + C
                                              9                                              9               12      9

                                                                                                      1     12     8
              13.        x−3 − 3x1/4 + 8x2 dx =          x−3 dx − 3         x1/4 dx + 8      x2 dx = − x−2 − x5/4 + x3 + C
                                                                                                      2      5     3

                           10     √    4                      1              √                1
              14.           3/4
                                − 3y+ √        dy = 10               dy −    3
                                                                                 y dy + 4    √ dy
                          y             y                    y 3/4                             y
                                  3                                 3         √
                    = 10(4)y 1/4 − y 4/3 + 4(2)y 1/2 + C = 40y 1/4 − y 4/3 + 8 y + C
                                  4                                 4
                                                                                                                4     1
              15.     (x + x4 )dx = x2 /2 + x5 /5 + C                       16.       (4 + 4y 2 + y 4 )dy = 4y + y 3 + y 5 + C
                                                                                                                3     5
                                                                                                12 7/3  3
              17.      x1/3 (4 − 4x + x2 )dx =      (4x1/3 − 4x4/3 + x7/3 )dx = 3x4/3 −            x + x10/3 + C
                                                                                                 7     10

                                                  1    2    1
              18.     (2 − x + 2x2 − x3 )dx = 2x − x2 + x3 − x4 + C
                                                  2    3    4

              19.     (x + 2x−2 − x−4 )dx = x2 /2 − 2/x + 1/(3x3 ) + C

                                     1                                                  2
              20.     (t−3 − 2)dt = − t−2 − 2t + C                          21.           + 3ex dx = 2 ln |x| + 3ex + C
                                     2                                                  x
                          1 −1 √ t     1        √
              22.           t − 2e dt = ln |t| − 2et + C
                          2            2

              23.     [3 sin x − 2 sec2 x] dx = −3 cos x − 2 tan x + C


              24.     [csc2 t − sec t tan t] dt = − cot t − sec t + C


              25.     (sec2 x + sec x tan x)dx = tan x + sec x + C


              26.      csc x(sin x + cot x) dx =       (1 + csc x cot x) dx = x − csc x + C

                         sec θ
              27.              dθ =    sec2 θ dθ = tan θ + C                28.       sin y dy = − cos y + C
                         cos θ


              29.      sec x tan x dx = sec x + C                           30.       (φ + 2 csc2 φ)dφ = φ2 /2 − 2 cot φ + C
January 27, 2005 11:45        L24-ch06                Sheet number 5 Page number 234                    black



             234                                                                                                              Chapter 6


                                                                                                  1          1     1       1
             31.     (1 + sin θ)dθ = θ − cos θ + C                             32.                  sec2 x +   dx = tan x + x + C
                                                                                                  2          2     2       2

                            1        3                           1
             33.          √     −                         dx =     sin−1 x − 3 tan−1 x + C
                         2 1−x2   1 + x2                         2

                            4       1 + x + x3                                                     1                    1
             34.          √       +                          dx = 4 sec−1 x+         x+                  dx = 4 sec−1 x+ x2 +tan−1 x+C
                         x x2 − 1     1 + x2                                                  x2   +1                   2

                     1 − sin x                    1 − sin x
             35.                dx =                        dx =         sec2 x − sec x tan x dx = tan x − sec x + C
                     1 − sin2 x                    cos2 x

                         1                           1                 1            1
             36.                dx =                       dx =          sec2 x dx = tan x + C
                     1 + cos 2x                   2 cos2 x             2            2

             37.                   y                                           38.            y
                               5

                                                                                         2
                                                      x                                                         x
                                       c/4      c/2                                                 1     2
                                                                                         –4

                              –5



             39. f (x) = m = − sin x so f (x) =                    (− sin x)dx = cos x + C; f (0) = 2 = 1 + C
                   so C = 1, f (x) = cos x + 1

                                                              1
             40. f (x) = m = (x + 1)2 , so f (x) =                   (x + 1)2 dx =
                                                                (x + 1)3 + C;
                                                              3
                               1                 1          1     25          1           25
                   f (−2) = 8 = (−2 + 1)3 + C = − + C, = 8 + =       , f (x) = (x + 1)3 +
                               3                 3          3      3          3            3
                                                          3 4/3          3            5        3       5
             41. (a) y(x) =                  x1/3 dx =      x + C, y(1) = + C = 2, C = ; y(x) = x4/3 +
                                                          4              4            4        4       4
                                                                                     π       1 π                  π
                   (b) y(t) =            (sin t + 1) dt = − cos t + t + C, y              = − + + C = 1/2, C = 1 − ;
                                                                                     3       2 3                  3
                                                             π
                          y(t) = − cos t + t + 1 −
                                                             3
                                                                     2 3/2                      8          8
                   (c) y(x) =            (x1/2 + x−1/2 )dx =           x + 2x1/2 + C, y(1) = 0 = + C, C = − ,
                                                                     3                          3          3
                                       2 3/2         8
                          y(x) =         x + 2x1/2 −
                                       3             3

                                    1 −3             1                       1         1            1       1
             42. (a) y(x) =           x     dx = − x−2 + C, y(1) = 0 = − + C, C =         ; y(x) = − x−2 +
                                    8               16                      16         16           16     16
                                                                                          √              √
                                                                            π               2              2
                   (b) y(t) =    (sec2 t − sin t) dt = tan t + cos t + C, y( ) = 1 = 1 +      + C, C = −     ;
                                              √                             4              2              2
                                                2
                       y(t) = tan t + cos t −
                                               2
                                                          2 9/2                               2
                   (c) y(x) =                x7/2 dx =      x + C, y(0) = 0 = C, C = 0; y(x) = x9/2
                                                          9                                   9
January 27, 2005 11:45        L24-ch06                 Sheet number 6 Page number 235                    black



              Exercise Set 6.2                                                                                                            235


              43. (a) y =               4ex dx = 4ex + C, 1 = y(0) = 4 + C, C = −3, y = 4ex − 3

                    (b) y(t) =            t−1 dt = ln |t| + C, y(−1) = C = 5, C = 5; y(t) = ln |t| + 5

                                                                                  √
                                           3                                       3
              44. (a) y =               √        dt = 3 sin−1 t + C, y                        = 0 = π + C, C = −π, y = 3 sin−1 t − π
                                          1 − t2                                  2

                          dy       2                                    2
                    (b)      =1− 2   ,y =                       1−          dx = x − 2 tan−1 x + C,
                          dx    x +1                                 x2 + 1
                                        π        π
                          y(1) =          = 1 − 2 + C, C = π − 1, y = x − 2 tan−1 x + π − 1
                                        2        4
                                  2 3/2              4 5/2
              45. f (x) =           x + C1 ; f (x) =    x + C1 x + C2
                                  3                  15

              46. f (x) = x2 /2 + sin x + C1 , use f (0) = 2 to get C1 = 2 so f (x) = x2 /2 + sin x + 2,
                  f (x) = x3 /6 − cos x + 2x + C2 , use f (0) = 1 to get C2 = 2 so f (x) = x3 /6 − cos x + 2x + 2

              47. dy/dx = 2x + 1, y =                   (2x + 1)dx = x2 + x + C; y = 0 when x = −3
                    so (−3)2 + (−3) + C = 0, C = −6 thus y = x2 + x − 6

              48. dy/dx = x2 , y =                   x2 dx = x3 /3 + C; y = 2 when x = −1 so (−1)3 /3 + C = 2, C = 7/3

                    thus y = x3 /3 + 7/3

              49. dy/dx =            6xdx = 3x2 + C1 . The slope of the tangent line is −3 so dy/dx = −3 when x = 1.

                    Thus 3(1)2 + C1 = −3, C1 = −6 so dy/dx = 3x2 − 6, y =                               (3x2 − 6)dx = x3 − 6x + C2 . If x = 1,
                    then y = 5 − 3(1) = 2 so (1)2 − 6(1) + C2 = 2, C2 = 7 thus y = x3 − 6x + 7.

                               1 2          2          2
              50. (a) f (x) =    x sin 3x −    sin 3x + x cos 3x − 0.251607
                               3            27         9
                                              4
                    (b) f (x) = 4 + x2 + √          −6
                                            4 + x2

              51. (a)                        y                     (b)                    y                      (c) f (x) = x2 /2 − 1

                                         2
                                                         x                            4
                                   –2            2

                                                                                                         x
                                                                         –1                       1


              52. (a)         y                                    (b)        y                                  (c) y = (ex + 1)/2
                          5
                                                                         1
                                                         x
                                             6                                                   x
                                                                                          1
January 27, 2005 11:45        L24-ch06                 Sheet number 7 Page number 236                    black



             236                                                                                                                        Chapter 6


             53. This slope field is zero along the y-axis,                     54. This slope field is independent of y, is near zero
                 and so corresponds to (b).                                        for large negative values of x, and is very large
                                       y                                           for large positive x. It must correspond to (d).
                               10                                                                            y
                                                                                                     10
                                   5
                                                       x                                                 5
                    –3        –1           1   3                                                                         x
                               –5                                                    –4        –2                2   4
                                                                                                     –5
                              –10
                                                                                                    –10




             55. This slope field has a negative value                          56. This slope field appears to be constant
                 along the y-axis, and thus corresponds                            (approximately 2), and thus corresponds
                 to (c).                                                           to differential equation (a).
                                       y                                                                     y
                                   9
                                                                                                     10

                                                                                                         5
                                   3
                                                       x                                                                 x
                         –2                1       3                                      –3        –1           2   4
                               –3


                               –9                                                                   –10




             57. (a) F (x) = G (x) = 3x + 4
                 (b) F (0) = 16/6 = 8/3, G(0) = 0, so F (0) − G(0) = 8/3
                 (c) F (x) = (9x2 + 24x + 16)/6 = 3x2 /2 + 4x + 8/3 = G(x) + 8/3

             58. (a) F (x) = G (x) = 10x/(x2 + 5)2
                 (b) F (0) = 0, G(0) = −1, so F (0) − G(0) = 1
                                x2     (x2 + 5) − 5          5
                 (c) F (x) = 2       =     2+5
                                                    =1− 2      = G(x) + 1
                             x +5         x               x +5
             59. (a) For x = 0, F (x) = G (x) = 1. But if I is an interval containing 0 then neither F nor G has
                     a derivative at 0, so neither F nor G is an antiderivative on I.
                 (b) Suppose G(x) = F (x) + C for some C. Then F (1) = 4 and G(1) = 4 + C, so C = 0, but
                     F (−1) = −2 and G(−1) = −1, a contradiction.
                 (c) No, because neither F nor G is an antiderivative on (−∞, +∞).

             60. (a) Neither F nor G is differentiable at x = 0. For x > 0, F (x) = 1/x, G (x) = 1/x, and for
                     x < 0, F (x) = 1/x, G (x) = 1/x.
                 (b) F (1) = 0, G(1) = 2; F (−1) = 0, G(−1) = 1, so F (x) = G(x) + C is impossible.
                 (c) The hypotheses of the Theorem are violated by any interval containing 0.

             61.    (sec2 x − 1)dx = tan x − x + C                             62.        (csc2 x − 1)dx = − cot x − x + C

                          1                                1                                   1                             1
             63. (a)               (1 − cos x)dx =           (x − sin x) + C         (b)             (1 + cos x) dx =          (x + sin x) + C
                          2                                2                                   2                             2
January 27, 2005 11:45        L24-ch06         Sheet number 8 Page number 237        black



              Exercise Set 6.3                                                                                 237


                                   d                  1
              64. For x > 0,         [sec−1 x] =    √       , and for x < 0,
                                  dx             |x| x2 − 1
                     d                d                        1        1
                       [sec−1 |x|] =    [sec−1 (−x)] = (−1) √       = √
                    dx               dx                    |x| x2−1  x x2 − 1
                    which yields formula (14) in both cases.

                      1087                       1087 1/2                                            1087 1/2
              65. v = √              T −1/2 dT = √     T + C, v(273) = 1087 = 1087 + C so C = 0, v = √     T  ft/s
                     2 273                         273                                                 273

              66. dT /dx = C1 , T = C1 x + C2 ; T = 25 when x = 0 so C2 = 25, T = C1 x + 25. T = 85 when x = 50
                  so 50C1 + 25 = 85, C1 = 1.2, T = 1.2x + 25


              EXERCISE SET 6.3

               1. (a)         u23 du = u24 /24 + C = (x2 + 1)24 /24 + C

                    (b) −        u3 du = −u4 /4 + C = −(cos4 x)/4 + C

                                                                    √
                    (c) 2        sin u du = −2 cos u + C = −2 cos       x+C

                          3                    3 1/2    3
                    (d)          u−1/2 du =      u +C =         4x2 + 5 + C
                          8                    4        4

                          1                    1            1
               2. (a)            sec2 u du =     tan u + C = tan(4x + 1) + C
                          4                    4            4
                          1                  1 3/2    1
                    (b)          u1/2 du =     u + C = (1 + 2y 2 )3/2 + C
                          4                  6        6
                          1                    2 3/2     2
                    (c)          u1/2 du =       u +C =    sin3/2 (πθ) + C
                          π                   3π        3π
                                          5 9/5    5
                    (d)       u4/5 du =     u + C = (x2 + 7x + 3)9/5 + C
                                          9        9

                                         1          1
               3. (a) −          u du = − u2 + C = − cot2 x + C
                                         2          2
                                        1 10       1
                    (b)       u9 du =      u +C =    (1 + sin t)10 + C
                                        10        10
                          1                    1            1
                    (c)          cos u du =      sin u + C = sin 2x + C
                          2                    2            2
                          1                    1            1
                    (d)          sec2 u du =     tan u + C = tan x2 + C
                          2                    2            2

                                                                                  2 7/2 4 5/2 2 3/2
               4. (a)         (u − 1)2 u1/2 du =     (u5/2 − 2u3/2 + u1/2 )du =     u − u + u +C
                                                                                  7     5     3
                                                    2             4            2
                                                =     (1 + x)7/2 − (1 + x)5/2 + (1 + x)3/2 + C
                                                    7             5            3

                    (b)       csc2 u du = − cot u + C = − cot(sin x) + C
January 27, 2005 11:45     L24-ch06                Sheet number 9 Page number 238         black



             238                                                                                  Chapter 6


                   (c)     sin u du = − cos u + C = − cos(x − π) + C

                           du    1        1
                   (d)       2
                               =− +C =− 5   +C
                           u     u     x +1

                           1
              5. (a)         du = ln |u| + C = ln | ln x| + C
                           u
                           1                1          1
                   (b) −           eu du = − eu + C = − e−5x + C
                           5                5          5
                           1       1       1              1
                   (c) −             du = − ln |u| + C = − ln |1 + cos 3θ| + C
                           3       u       3              3
                           du
                   (d)        = ln u + C = ln(1 + ex ) + C
                            u

                                    1         du    1
              6. (a) u = x3 ,                      = tan−1 (x3 ) + C
                                    3       1 + u2  3
                                                  1
                   (b) u = ln x,            √          du = sin−1 (ln x) + C
                                                1 − u2
                                              1
                   (c) u = 3x,              √       du = sec−1 (3x) + C
                                           u u2 − 1
                               √               du                              √
                   (d) u =         x, 2             = 2 tan−1 u + C = 2 tan−1 ( x) + C
                                             1 + u2

                                     1                    1 10      1
              9. u = 4x − 3,                 u9 du =         u +C =    (4x − 3)10 + C
                                     4                    40        40

                                     1       √            1 3/2    1
             10. u = 5 + x4 ,                    u du =     u + C = (5 + x4 )3/2 + C
                                     4                    6        6

                               1                    1             1
             11. u = 7x,                sin u du = − cos u + C = − cos 7x + C
                               7                    7             7

             12. u = x/3,      3          cos u du = 3 sin u + C = 3 sin(x/3) + C

                                             1                        1            1
             13. u = 4x, du = 4dx;                 sec u tan u du =     sec u + C = sec 4x + C
                                             4                        4            4

                                             1                   1            1
             14. u = 5x, du = 5dx;                 sec2 u du =     tan u + C = tan 5x + C
                                             5                   5            5

                                             1                1 u      1
             15. u = 2x, du = 2dx;                 eu du =      e + C = e2x + C
                                             2                2        2

                                             1      1     1            1
             16. u = 2x, du = 2dx;                    du = ln |u| + C = ln |2x| + C
                                             2      u     2            2

                           1              1        1
             17. u = 2x,            √          du = sin−1 (2x) + C
                           2            1 − u2     2

                           1           1       1
             18. u = 4x,                   du = tan−1 (4x) + C
                           4        1 + u2     4
January 27, 2005 11:45       L24-ch06         Sheet number 10 Page number 239                            black



              Exercise Set 6.3                                                                                                             239


                                                     1                             1 3/2    1
              19. u = 7t2 + 12, du = 14t dt;                      u1/2 du =          u +C =    (7t2 + 12)3/2 + C
                                                     14                           21        21

                                                              1                       1             1
              20. u = 4 − 5x2 , du = −10x dx; −                           u−1/2 du = − u1/2 + C = −              4 − 5x2 + C
                                                              10                      5             5

                                                              1              1             1       3     1
              21. u = 1 − 2x, du = −2dx, −3                      du = (−3) −                  +C =             +C
                                                              u3             2             u2      2 (1 − 2x)2

                                                                  1            1     2
              22. u = x3 + 3x, du = (3x2 + 3) dx,                             √ du =      x3 + 3x + C
                                                                  3             u    3

                                                      1               du         1 1             1
              23. u = 5x4 + 2, du = 20x3 dx,                             du = −       +C =−              +C
                                                      20              u3        40 u2       40(5x4 + 2)2

                         1          1       1                                  1            1            1
              24. u =      , du = − 2 dx, −              sin u du =              cos u + C = cos             +C
                         x         x        3                                  3            3            x

              25. u = sin x, du = cos x dx;          eu du = eu + C = esin x + C

                                           1                          1 u      1 4
              26. u = x4 , du = 4x3 dx;          eu du =                e + C = ex + C
                                           4                          4        4

                                                 1                 1          1
                                                          eu du = − eu + C = − e−2x + C
                                                                                   3
              27. u = −2x3 , du = −6x2 , −
                                                 6                 6          6

                                                                              1
              28. u = ex − e−x , du = (ex + e−x )dx,                            du = ln |u| + C = ln ex − e−x + C
                                                                              u

                                    1                                                                1          1       1
              29. u = ex ,              du = tan−1 (ex ) + C                          30. u = t2 ,                  du = tan−1 (t2 ) + C
                                 1 + u2                                                              2       u2 + 1     2

                                                          1                         1            1
              31. u = 5/x, du = −(5/x2 )dx; −                      sin u du =         cos u + C = cos(5/x) + C
                                                          5                         5            5

                         √           1                                               √
              32. u =        x, du = √ dx; 2          sec2 u du = 2 tan u + C = 2 tan x + C
                                    2 x

                                                              1                        1 5         1
              33. u = cos 3t, du = −3 sin 3t dt, −                        u4 du = −      u + C = − cos5 3t + C
                                                              3                       15          15

                                                     1                           1 6      1
              34. u = sin 2t, du = 2 cos 2t dt;                   u5 du =          u +C =    sin6 2t + C
                                                     2                          12        12

                                          1                                1            1
              35. u = x2 , du = 2x dx;          sec2 u du =                  tan u + C = tan x2 + C
                                          2                                2            2

                                                                      1        1          1 1         1        1
              36. u = 1 + 2 sin 4θ, du = 8 cos 4θ dθ;                             du = −       +C =−                    +C
                                                                      8        u4        24 u3       24 (1 + 2 sin 4θ)3

                                                                          1                1            1
              37. u = 2 − sin 4θ, du = −4 cos 4θ dθ; −                          u1/2 du = − u3/2 + C = − (2 − sin 4θ)3/2 + C
                                                                          4                6            6

                                                              1                     1 4       1
              38. u = tan 5x, du = 5 sec2 5x dx;                      u3 du =         u +C =    tan4 5x + C
                                                              5                    20        20
January 27, 2005 11:45          L24-ch06           Sheet number 11 Page number 240               black



             240                                                                                                        Chapter 6


                                              1
             39. u = tan x,             √          du = sin−1 (tan x) + C
                                            1 − u2

                                              1
             40. u = cos θ, −                    du = − tan−1 (cos θ) + C
                                        u2    +1

                                                                  1              1 3      1
             41. u = sec 2x, du = 2 sec 2x tan 2x dx;                  u2 du =     u + C = sec3 2x + C
                                                                  2              6        6

             42. u = sin θ, du = cos θ dθ;             sin u du = − cos u + C = − cos(sin θ) + C


             43.       e−x dx; u = −x, du = −dx; −                eu du = −eu + C = −e−x + C

                                                                                                  √
             44.       ex/2 dx; u = x/2, du = dx/2; 2              eu du = 2eu + C = 2ex/2 + C = 2 ex + C

                      √         1                        1                     √
             45. u = 2 x, du = √ dx; ,                     du = −e−u + C = −e−2 x + C
                                 x                      eu

                                                   1                                    √
             46. u =        2y + 1, du = √               dy;     eu du = eu + C = e      2y+1
                                                                                                +C
                                                  2y + 1

             47. u = 2y + 1, du = 2dy;
                    1          1      1     1√        1              1
                      (u − 1) √ du = u3/2 −    u + C = (2y + 1)3/2 −                            2y + 1 + C
                    4           u     6     2         6              2

             48. u = 4 − x, du = −dx;
                            √         8   2          2            8
                 − (4 − u) u du = − u3/2 + u5/2 + C = (4 − x)5/2 − (4 − x)3/2 + C
                                      3   5          5            3

             49.       sin2 2θ sin 2θ dθ =         (1 − cos2 2θ) sin 2θ dθ; u = cos 2θ, du = −2 sin 2θ dθ,

                       1                   1   1          1        1
                   −        (1 − u2 )du = − u + u3 + C = − cos 2θ + cos3 2θ + C
                       2                   2   6          2        6

             50. sec2 3θ = tan2 3θ + 1, u = 3θ, du = 3dθ
                                 1                           1        1           1         1
                    sec4 3θ dθ =     (tan2 u + 1) sec2 u du = tan3 u + tan u + C = tan3 3θ + tan 3θ + C
                                 3                           9        3           9         3

                                1
             51.           1+       dt = t + ln |t| + C
                                t

                                    2                                                   1 3
             52. e2 ln x = eln x = x2 , x > 0, so              e2 ln x dx =   x2 dx =     x +C
                                                                                        3

             53. ln(ex ) + ln(e−x ) = ln(ex e−x ) = ln 1 = 0 so               [ln(ex ) + ln(e−x )]dx = C

                       cos x                                           1
             54.             dx; u = sin x, du = cos xdx;                du = ln |u| + C = ln | sin x| + C
                       sin x                                           u
                                                             √            √                             √            √
             55. (a) sin−1 (x/3) + C                  (b) (1/ 5) tan−1 (x/ 5) + C                (c) (1/ π) sec−1 (x/ π) + C
January 27, 2005 11:45      L24-ch06           Sheet number 12 Page number 241              black



              Exercise Set 6.3                                                                                              241


                                   1          1
              56. (a) u = ex ,        2
                                        du = tan−1 (ex /2) + C
                                  4+u         2
                                1      1          1
                    (b) u = 2x,    √         du = sin−1 (2x/3) + C,
                                2    9−u   2      2
                            √           1           1       √    √
                    (c) u = 5y,     √         du = √ sec−1 ( 5y/ 3) + C
                                   u u  2−3          3

              57. u = a + bx, du = b dx,
                                           1             (a + bx)n+1
                        (a + bx)n dx =         un du =               +C
                                           b               b(n + 1)
                                                      1
              58. u = a + bx, du = b dx, dx =           du
                                                      b
                    1                      n                       n
                          u1/n du =              u(n+1)/n + C =          (a + bx)(n+1)/n + C
                    b                   b(n + 1)                b(n + 1)

              59. u = sin(a + bx), du = b cos(a + bx)dx
                  1                1                    1
                      un du =           un+1 + C =            sinn+1 (a + bx) + C
                  b            b(n + 1)              b(n + 1)
                                                                         1 2       1
              61. (a) with u = sin x, du = cos x dx;              u du =   u + C1 = sin2 x + C1 ;
                                                                         2         2
                                                                              1 2          1
                           with u = cos x, du = − sin x dx; −         u du = − u + C2 = − cos2 x + C2
                                                                              2            2
                    (b) because they differ by a constant:
                                  1                   1                         1
                                    sin2 x + C1    − − cos2 x + C2          =     (sin2 x + cos2 x) + C1 − C2 = 1/2 + C1 − C2
                                  2                   2                         2
                                                                           25 3
              62. (a) First method:             (25x2 − 10x + 1)dx =         x − 5x2 + x + C1 ;
                                                                           3
                                               1                1 3         1
                           second method:            u2 du =      u + C2 =    (5x − 1)3 + C2
                                               5               15          15
                            1                   1                                 25 3            1
                    (b)       (5x − 1)3 + C2 =    (125x3 − 75x2 + 15x − 1) + C2 =   x − 5x2 + x −    + C2 ;
                           15                  15                                 3               15
                           the answers differ by a constant.
                            √                   2                              2
              63. y =            5x + 1 dx =      (5x + 1)3/2 + C; −2 = y(3) =    64 + C,
                                               15                              15
                                        2        158           2                158
                    so C = −2 −           64 = −     , and y =    (5x + 1)3/2 −
                                       15         15           15                15
                                                       1
              64. y =       (2 + sin 3x) dx = 2x −       cos 3x + C and
                                                       3
                            π          2π 1            2π + 1           1         2π + 1
                    0=y            =      + + C, C = −        , y = 2x − cos 3x −
                            3           3  3             3              3           3
                                           1                     1          1      13
              65. y = −          e2t dt = − e2t + C, 6 = y(0) = − + C, y = − e2t +
                                           2                     2          2       2
                               1           1              3        π       5                 1 π
              66. y =                dt =    tan−1          t + C,    =y −             =−        + C,
                            25 + 9t2      15              5        30      3                15 4
                          π        1               3     π
                    C=       ,y =    tan−1           t +
                          60      15               5     60
January 27, 2005 11:45         L24-ch06         Sheet number 13 Page number 242             black



             242                                                                                                  Chapter 6


                                                         1        1    √
             67. (a) u = x2 + 1, du = 2x dx;                     √ du = u + C =       x2 + 1 + C
                                                         2         u
                   (b)                      5




                         –5                                   5
                                            0


                                                         1       1     1          1
             68. (a) u = x2 + 1, du = 2x dx;                       du = ln u + C = ln(x2 + 1) + C
                                                         2       u     2          2
                   (b)                  y

                                    4




                                                    x
                          –4                    4



                                   √                           2
             69. f (x) = m =           3x + 1, f (x) =       (3x + 1)1/2 dx =
                                                                 (3x + 1)3/2 + C
                                                               9
                              2        7            2              7
                   f (0) = 1 = + C, C = , so f (x) = (3x + 1)3/2 +
                              9        9            9              9
                                                        10
             70. p(t) =        (3 + 0.12t)3/2 dt =         (3 + 0.12t)5/2 + C;
                                                        3
                                   10 5/2
                   100 = p(0) =      3 + C, C = 100 − 10 · 33/2 ≈ 48.038 so that
                                   3
                          10
                   p(5) =    (3 + 5 · (0.12))5/2 + 100 − 10 ∗ 33/2 ≈ 130.005 so that the population at the beginning of
                           3
                   the year 2010 is approximately 130,005.
                                                                  du                     u
             71. u = a sin θ, du = a cos θ dθ;               √           = aθ + C = sin−1 + C
                                                                 a2 − u2                 a

                                                                                   du      1   1     u
             72. If u > 0 then u = a sec θ, du = a sec θ tan θ dθ,               √        = θ = sec−1 + C
                                                                                u u2 − a2  a   a     a


             EXERCISE SET 6.4
              1. (a) 1 + 8 + 27 = 36                                             (b) 5 + 8 + 11 + 14 + 17 = 55
                 (c) 20 + 12 + 6 + 2 + 0 + 0 = 40                                (d) 1 + 1 + 1 + 1 + 1 + 1 = 6
                 (e) 1 − 2 + 4 − 8 + 16 = 11                                     (f ) 0 + 0 + 0 + 0 + 0 + 0 = 0

              2. (a) 1 + 0 − 3 + 0 = −2                             (b) 1 − 1 + 1 − 1 + 1 − 1 = 0
                 (c) π + π + · · · + π = 14π
                       2     2          2      2
                                                                    (d) 24 + 25 + 26 = 112
                          (14 terms)
                      √     √     √     √    √      √
                 (e)    1+ 2+ 3+ 4+ 5+ 6
                 (f ) 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + 1 = 1
January 27, 2005 11:45         L24-ch06                 Sheet number 14 Page number 243                                    black



              Exercise Set 6.4                                                                                                                                           243

                     10                                                         20                                                   10
               3.         k                                           4.              3k                                        5.         2k
                    k=1                                                         k=1                                                  k=1

                     8                                                           6                                                    5
                                                                                                                                                     1
               6.         (2k − 1)                                    7.              (−1)k+1 (2k − 1)                          8.         (−1)k+1
                                                                                                                                                     k
                    k=1                                                         k=1                                                  k=1

                              50                                                                                    50
               9. (a)               2k                                                                      (b)           (2k − 1)
                              k=1                                                                                   k=1

                               5                                           5                                        n                                     5
              10. (a)               (−1)k+1 ak                 (b)              (−1)k+1 bk                  (c)           ak xk                 (d)            a5−k bk
                              k=1                                     k=0                                           k=0                                  k=0

                                                                                                              100         100
                    1                                                                                                                7
              11.     (100)(100 + 1) = 5050                                                          12. 7          k+          1=     (100)(101) + 100 = 35,450
                    2                                                                                                                2
                                                                                                             k=1          k=1
                                                                                                            20             3
                    1
              13.     (20)(21)(41) = 2870                                                            14.          k2 −          k 2 = 2870 − 14 = 2856
                    6
                                                                                                            k=1           k=1
                     30                         30                         30                  30
                                                                                                           1                  1
              15.         k(k 2 − 4) =               (k 3 − 4k) =               k3 − 4               k=      (30)2 (31)2 − 4 · (30)(31) = 214,365
                                                                                                           4                  2
                    k=1                        k=1                     k=1                     k=1

                     6              6
                                                1         1
              16.         k−             k3 =     (6)(7) − (6)2 (7)2 = −420
                                                2         4
                    k=1            k=1

                     n                    n
                          3k   3                       3 1          3
              17.            =                 k=       · n(n + 1) = (n + 1)
                          n    n                       n 2          2
                    k=1                  k=1

                    n−1                  n−1
                          k2   1                        1 1                    1
              18.            =                 k2 =      · (n − 1)(n)(2n − 1) = (n − 1)(2n − 1)
                          n    n                        n 6                    6
                    k=1                  k=1

                    n−1                   n−1
                          k3   1                           1 1              1
              19.            = 2                k3 =         · (n − 1)2 n2 = (n − 1)2
                          n2  n                            n2 4             4
                    k=1                   k=1

                     n                                 n              n
                              5   2k               5              2                   5      2 1
              20.               −              =             1−                k=       (n) − · n(n + 1) = 4 − n
                              n   n                n              n                   n      n 2
                    k=1                                k=1            k=1

                    n(n + 1)
              22.            = 465, n2 + n − 930 = 0, (n + 31)(n − 30) = 0, n = 30.
                       2
                                                           n                     n
                    1 + 2 + 3 + ··· + n                        k    1                           1 1            n+1       n+1   1
              23.                       =                         = 2                  k=         · n(n + 1) =     ; lim     =
                            n2                                 n2  n                            n2 2            2n n→+∞ 2n     2
                                                        k=1                     k=1

                                                                  n                        n
                    12 + 22 + 32 + · · · + n2                         k2    1                          1 1                     (n + 1)(2n + 1)
              24.                             =                           = 3                   k2 =      · n(n + 1)(2n + 1) =                 ;
                              n3                                      n 3  n                           n 3 6                         6n2
                                                               k=1                     k=1

                         (n + 1)(2n + 1)       1                      1
                     lim          2
                                         = lim   (1 + 1/n)(2 + 1/n) =
                    n→+∞       6n         n→+∞ 6                      3
                     n                     n
                          5k   5                        5 1            5(n + 1)       5(n + 1)   5
              25.            = 2                k=        · n(n + 1) =          ; lim          =
                          n2  n                         n2 2              2n     n→+∞    2n      2
                    k=1                   k=1
January 27, 2005 11:45         L24-ch06                Sheet number 15 Page number 244                       black



             244                                                                                                                         Chapter 6

                   n−1                   n−1
                         2k 2   2                      2 1                       (n − 1)(2n − 1)
             26.           3
                              = 3              k2 =       · (n − 1)(n)(2n − 1) =
                                                         3 6
                                                                                                 ;
                         n     n                       n                               3n2
                   k=1                   k=1

                           (n − 1)(2n − 1)       1                      2
                    lim                    = lim   (1 − 1/n)(2 − 1/n) =
                   n→+∞          3n2        n→+∞ 3                      3
                           5                                                    6                                            7
             27. (a)            2j                                      (b)             2j−1                          (c)         2j−2
                          j=0                                                 j=1                                           j=2

                           5                                                                          13
             28. (a)            (k + 4)2     k+8
                                                                                               (b)         (k − 4)2k
                          k=1                                                                        k=9

                                         4                       4                  4                             4
                                     3       3      6                3      9           3    3      3(n − 1)
                                                                                                          3
             29. (a)       2+                  , 2+                    , 2+                    , (2 + 3)4
                                                                                          ,..., 2 +
                                     n       n      n                n      n           n    n         n  n
                                                                                                          3      3
                          When [2, 5] is subdivided into n equal intervals, the endpoints are 2, 2 + , 2 + 2 · , 2 + 3 ·
                                                                                                          n      n
                          3                      3
                            , . . . , 2 + (n − 1) , 2 + 3 = 5, and the right endpoint approximation to the area under the
                          n                      n
                          curve y = x4 is given by the summands above.
                          n−1                      4
                                               3       3
                   (b)               2+k·                gives the left endpoint approximation.
                                               n       n
                          k=0

             30. n is the number of elements of the partition, x∗ is an arbitrary point in the k-th interval,
                                                                      k
                 k = 0, 1, 2, . . . , n − 1, n, and ∆x is the width of an interval in the partition.
                 In the usual definition of area, the parts above the curve are given a + sign, and the parts below
                 the curve are given a − sign. These numbers are then replaced with their absolute values and
                 summed.
                 In the definition of net signed area, the parts given above are summed without considering absolute
                 values. In this case there could be lots of cancellation of ’positive’ areas with ’negative’ areas.

             31. Endpoints 2, 3, 4, 5, 6; ∆x = 1;
                                                       4
                   (a) Left endpoints:                         f (x∗ )∆x = 7 + 10 + 13 + 16 = 46
                                                                   k
                                                   k=1
                                               4
                   (b) Midpoints:                  f (x∗ )∆x = 8.5 + 11.5 + 14.5 + 17.5 = 52
                                                       k
                                             k=1
                                                           4
                   (c) Right endpoints:                         f (x∗ )∆x = 10 + 13 + 16 + 19 = 58
                                                                    k
                                                       k=1

             32. Endpoints 1, 3, 5, 7, 9, ∆x = 2;
                                                       4
                                                                                        1 1 1              352
                   (a) Left endpoints:                         f (x∗ )∆x =
                                                                   k          1+         + +         2=
                                                                                        3 5 7              105
                                                   k=1
                                               4
                                                                        1 1 1 1                      25
                   (b) Midpoints:                  f (x∗ )∆x =
                                                       k                 + + +                 2=
                                                                        2 4 6 8                      12
                                             k=1
                                                           4
                                                                                1 1 1 1                     496
                   (c) Right endpoints:                         f (x∗ )∆x =
                                                                    k            + + +                2=
                                                                                3 5 7 9                     315
                                                       k=1
January 27, 2005 11:45       L24-ch06                 Sheet number 16 Page number 245                            black



              Exercise Set 6.4                                                                                                         245


              33. Endpoints: 0, π/4, π/2, 3π/4, π; ∆x = π/4
                                                       4
                                                                                    √                 √
                    (a) Left endpoints:                        f (x∗ )∆x = 1 +
                                                                   k                    2/2 + 0 −         2/2 (π/4) = π/4
                                                      k=1
                                              4
                    (b) Midpoints:                f (x∗ )∆x = [cos(π/8) + cos(3π/8) + cos(5π/8) + cos(7π/8)] (π/4)
                                                      k
                                            k=1
                                                                     = [cos(π/8) + cos(3π/8) − cos(3π/8) − cos(π/8)] (π/4) = 0
                                                           4
                                                                                √                 √
                    (c) Right endpoints:                        f (x∗ )∆x =
                                                                    k               2/2 + 0 −         2/2 − 1 (π/4) = −π/4
                                                       k=1

              34. Endpoints −1, 0, 1, 2, 3; ∆x = 1
                            4                                                                              4
                                                                                                                             5 3 3 15
                    (a)          f (x∗ )∆x = −3 + 0 + 1 + 0 = −2
                                     k                                                            (b)           f (x∗ )∆x = − + + +
                                                                                                                    k                 =4
                                                                                                                             4 4 4  4
                           k=1                                                                            k=1
                            4
                    (c)          f (x∗ )∆x = 0 + 1 + 0 − 3 = −2
                                     k
                           k=1


              35. (a) 0.718771403, 0.705803382, 0.698172179
                  (b) 0.668771403, 0.680803382, 0.688172179
                  (c) 0.692835360, 0.693069098, 0.693134682

              36. (a) 0.761923639, 0.712712753, 0.684701150
                  (b) 0.584145862, 0.623823864, 0.649145594
                  (c) 0.663501867, 0.665867079, 0.666538346

              37. (a) 4.884074734, 5.115572731, 5.248762738
                  (b) 5.684074734, 5.515572731, 5.408762738
                  (c) 5.34707029, 5.338362719, 5.334644416

              38. (a) 0.919403170, 0.960215997, 0.984209789
                  (b) 1.076482803, 1.038755813, 1.015625715
                  (c) 1.001028824, 1.000257067, 1.000041125

                            3 ∗       3              1        1                                     3          3   3 1   3
              39. ∆x =       , x = 1 + k; f (x∗ )∆x = x∗ ∆x =                                1+       k          =     +   k
                            n k       n       k
                                                     2 k      2                                     n          n   2 n n2
                     n                            n              n
                                        3              1              3      3     3 1            3    3n+1
                          f (x∗ )∆x
                              k       =                  +               k =   1 + 2 · n(n + 1) =   1+
                                        2              n              n2     2    n 2             2    2 n
                    k=1                         k=1             k=1
                            3    3                       1                 3        3        15
                    A = lim   1+                      1+               =       1+        =
                       n→+∞ 2    2                       n                 2        2        4

                            5 ∗           5                                                             5       5   25 25
              40. ∆x =        , xk = 0 + k ; f (x∗ )∆x = (5 − x∗ )∆x =
                                                 k             k                                  5−      k       =   − 2k
                            n             n                                                             n       n   n  n
                     n                    n                       n
                                                  25 25                             25 1                25               n+1
                          f (x∗ )∆x
                              k       =             − 2                k = 25 −       · n(n + 1) = 25 −
                                                  n  n                              n2 2                 2                n
                    k=1                   k=1                    k=1
                                           25            1                      25   25
                    A = lim           25 −            1+               = 25 −      =
                           n→+∞             2            n                       2   2
January 27, 2005 11:45       L24-ch06                Sheet number 17 Page number 246                                      black



             246                                                                                                                                   Chapter 6


                           3 ∗           3                                                k2    3
             41. ∆x =        , xk = 0 + k ; f (x∗ )∆x =
                                                k                            9−9
                           n             n                                                n2    n
                    n                   n                                             n                                           n
                                                          k2       3   27                           k2                   27
                         f (x∗ )∆x =
                             k                   9−9                 =                         1−             = 27 −                  k2
                                                          n2       n   n                            n2                   n3
                   k=1                 k=1                                        k=1                                         k=1
                                                     n
                                            27                                        1
                   A = lim       27 −                    k 2 = 27 − 27                         = 18
                          n→+∞              n3                                        3
                                                 k=1


                           3 ∗    3
             42. ∆x =       ,x =k
                           n k    n
                                  1                1 9k 2 3   12 27k 2
                   f (x∗ )∆x = 4 − (x∗ )2 ∆x = 4 −
                       k             k                      =   −
                                  4                4 n2 n     n   4n3
                    n                  n                          n
                                                12   27
                         f (x∗ )∆x =
                             k                     − 3                  k2
                                                n   4n
                   k=1                 k=1                        k=1
                                         27 1                        9 (n + 1)(2n + 1)
                                  = 12 − 3 · n(n + 1)(2n + 1) = 12 −
                                        4n 6                         8       n2
                                            9             1                  1              9
                   A = lim       12 −            1+                2+                 = 12 − (1)(2) = 39/4
                          n→+∞              8             n                  n              8

                           4 ∗            4
             43. ∆x =        , xk = 2 + k
                           n              n
                                                                        3                                 3
                                                               4            4   32   2                              32    6   12      8
                   f (x∗ )∆x = (x∗ )3 ∆x = 2 +
                       k         k                               k            =    1+ k                       =        1 + k + 2 k2 + 3 k3
                                                               n            n   n    n                              n     n   n      n
                    n                            n                 n                      n                   n
                                       32                     6                  12                   8
                         f (x∗ )∆x =
                             k                           1+             k+                     k2 +                 k3
                                       n                      n                  n2                   n3
                   k=1                          k=1               k=1                 k=1                     k=1

                                       32    6 1          12 1                    8 1
                                  =       n + · n(n + 1) + 2 · n(n + 1)(2n + 1) + 3 · n2 (n + 1)2
                                       n     n 2          n 6                    n 4

                                                         n+1    (n + 1)(2n + 1)    (n + 1)2
                                  = 32 1 + 3                 +2         2
                                                                                +2
                                                          n           n               n2
                                                                                                                                  2
                                                          1                       1                   1                   1
                   A = lim 32 1 + 3 1 +                            +2 1+                       2+             +2 1+
                         n→+∞                             n                       n                   n                   n
                     = 32[1 + 3(1) + 2(1)(2) + 2(1)2 ] = 320

                                                                                                                                           3
                           2 ∗          2                                        2                                                             2
             44. ∆x =       , x = −3 + k ; f (x∗ )∆x = [1 − (x∗ )3 ]∆x = 1 − −3 + k
                           n k          n      k              k
                                                                                 n                                                             n

                                                                                                              2     54  36       8
                                                                                                          =     28 − k + 2 k 2 − 3 k 3
                                                                                                              n     n   n       n
                    n
                                       2                     (n + 1)(2n + 1)    (n + 1)2
                         f (x∗ )∆x =
                             k           28n − 27(n + 1) + 6                 −2
                                       n                            n              n
                   k=1
                                                                                                                                      2
                                                              1                       1               1                       1
                   A = lim 2 28 − 27 1 +                              +6 1+                     2+             −2 1+
                         n→+∞                                 n                       n               n                       n
                     = 2(28 − 27 + 12 − 2) = 22
January 27, 2005 11:45       L24-ch06                  Sheet number 18 Page number 247                             black



              Exercise Set 6.4                                                                                                                           247


                            3 ∗                3
              45. ∆x =       , x = 1 + (k − 1)
                            n k                n
                                 1        1              3 3   1 3           9
                    f (x∗ )∆x = x∗ ∆x =
                        k          k         1 + (k − 1)     =     + (k − 1) 2
                                 2        2              n n   2 n          n
                     n                             n                  n
                                          1             3   9                               1     9 1           3 9n−1
                          f (x∗ )∆x =
                              k                           +                   (k − 1) =       3 + 2 · (n − 1)n = +
                                          2             n n2                                2    n 2            2 4 n
                    k=1                         k=1                k=1

                                      3 9                   1             3 9  15
                    A = lim            +            1−            =        + =
                           n→+∞       2 4                   n             2 4  4

                            5 ∗   5
              46. ∆x =       , x = (k − 1)
                            n k   n
                                                                      5         5   25 25
                    f (x∗ )∆x = (5 − x∗ )∆x = 5 −
                        k             k                                 (k − 1)   =   − 2 (k − 1)
                                                                      n         n   n  n
                     n                             n                  n
                                        25               25                                     25 n − 1
                          f (x∗ )∆x
                              k       =                1− 2               (k − 1) = 25 −
                                        n                n                                      2 n
                    k=1                         k=1               k=1

                                           25             1                        25   25
                    A = lim           25 −             1−             = 25 −          =
                           n→+∞             2             n                         2   2

                            3 ∗                 3                     (k − 1)2 3
              47. ∆x =        , xk = 0 + (k − 1) ; f (x∗ )∆x = (9 − 9
                                                       k                      )
                            n                   n                        n2     n
                     n                     n                                                n                                   n             n
                                                       (k − 1)2 3   27                             (k − 1)2                27            54              27
                          f (x∗ )∆x
                              k       =            9−9            =                             1−                   = 27 − 3         2
                                                                                                                                      k + 3         k−
                                                          n2    n   n                                 n2                   n             n               n2
                    k=1                   k=1                                            k=1                                    k=1           k=1

                                                        1
                    A = lim = 27 − 27                           + 0 + 0 = 18
                           n→+∞                         3

                            3 ∗            3
              48. ∆x =       , x = (k − 1)
                            n k            n
                                   1                1 9(k − 1)2 3   12 27k 2  27k  27
                    f (x∗ )∆x = 4 − (x∗ )2 ∆x = 4 −
                        k             k                           =   −      + 3− 3
                                   4                4    n2     n   n   4n3   2n  4n
                     n                    n                       n                     n                n
                                                   12   27                         27               27
                          f (x∗ )∆x =
                              k                       − 3                 k2 +                k−               1
                                                   n   4n                         2n3              4n3
                    k=1                   k=1                    k=1                    k=1              k=1

                                                     27 1                    27 n(n + 1)   27
                                      = 12 −            · n(n + 1)(2n + 1) + 3
                                                       3 6
                                                                                         − 2
                                                    4n                      2n     2      4n
                                                    9 (n + 1)(2n + 1)   27   27   27
                                      = 12 −                          +    +    − 2
                                                    8       n2          4n 4n2   4n
                                               9            1                 1                      9
                    A = lim           12 −             1+             2+           + 0 + 0 − 0 = 12 − (1)(2) = 39/4
                           n→+∞                8            n                 n                      8

                                      4 8      4(n − 1) 4n                   2 6 10         4n − 6 4n − 2
              49. Endpoints 0,         , ,...,         ,   = 4, and midpoints , , , . . . ,       ,       . Approxi-
                                      n n         n      n                   n n n            n      n
                                                                  n
                                                                               4k − 2       4  16 n(n + 1)
                    mate the area with the sum                            2                   = 2 2        − n → 16 as n → +∞.
                                                                                 n          n  n     2
                                                                 k=1
January 27, 2005 11:45       L24-ch06             Sheet number 19 Page number 248                   black



             248                                                                                                          Chapter 6


                                4     8         4(n − 1)
             50. Endpoints 1, 1 + ,1 + ,...,1 +          , 1 + 4 = 5, and midpoints
                                n     n             n
                      2    6    10         4(n − 1) − 2 4n − 2
                   1 + ,1 + ,1 + ,...,1 +              ,         . Approximate the area with the sum
                      n    n     n              n            n
                    n                                            n
                                 4k − 2    4                               4   16    8              16 n(n + 1)   8
                        6− 1+                 =                        5     −    k+ 2     = 20 −               +   = 20 − 8 = 12,
                                   n       n                               n n2     n               n2    2       n
                   k=1                                          k=1
                   which happens to be exact.

                           1 ∗   2k − 1
             51. ∆x =       ,x =
                           n k     2n
                                 (2k − 1)2 1  k2  k  1
                   f (x∗ )∆x =
                       k                     = 3− 3+ 3
                                   (2n)2 n    n  n  4n
                    n                       n                   n                n
                                       1                   1                1
                         f (x∗ )∆x =
                             k                    k2 −                k+               1
                                       n3                  n3              4n3
                   k=1                      k=1                 k=1              k=1

                   Using Theorem 6.4.4,
                                 n
                                                         1       1
                   A = lim             f (x∗ )∆x =
                                           k               +0+0=
                          n→+∞                           3       3
                                 k=1


                           2 ∗           2k − 1
             52. ∆x =        , xk = −1 +
                           n               n
                                                         2
                                            2k − 1           2  8k 2 8k 2  2
                   f (x∗ )∆x =
                       k          −1 +                         = 3 − 3+ 3−
                                              n              n   n   n  n  n
                    n                       n                   n
                                       8                   8               2
                         f (x∗ )∆x =
                             k                    k2 −                k+      −2
                                       n3                  n3              n2
                   k=1                      k=1                 k=1
                                 n
                                                         8         2
                   A = lim             f (x∗ )∆x =
                                           k               +0+0−2=
                          n→+∞                           3         3
                                 k=1


                           2 ∗         2k
             53. ∆x =       , x = −1 +
                           n k          n
                                      2k 2   2   k
                   f (x∗ )∆x = −1 +
                       k                   =− +4 2
                                       n n   n  n
                    n                                n
                                                4                          4 n(n + 1)            2
                         f (x∗ )∆x = −2 +
                             k                             k = −2 +                   = −2 + 2 +
                                                n2                         n 2  2                n
                   k=1                               k=1
                                 n
                   A = lim             f (x∗ )∆x = 0
                                           k
                          n→+∞
                                 k=1

                   The area below the x-axis cancels the area above the x-axis.

                           3 ∗           3k
             54. ∆x =        , xk = −1 +
                           n              n
                                        3k 3    3  9
                   f (x∗ )∆x = −1 +
                       k                     = − + 2k
                                         n n    n n
                    n
                                                9 n(n + 1)
                         f (x∗ )∆x = −3 +
                             k
                                                n2   2
                   k=1
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06
Chapter 06

Weitere ähnliche Inhalte

Was ist angesagt?

Prediction of Financial Processes
Prediction of Financial ProcessesPrediction of Financial Processes
Prediction of Financial ProcessesSSA KPI
 
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton TensorDual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton TensorSebastian De Haro
 
Ch 04 Arithmetic Coding (Ppt)
Ch 04 Arithmetic Coding (Ppt)Ch 04 Arithmetic Coding (Ppt)
Ch 04 Arithmetic Coding (Ppt)anithabalaprabhu
 
One way to see higher dimensional surface
One way to see higher dimensional surfaceOne way to see higher dimensional surface
One way to see higher dimensional surfaceKenta Oono
 
S101-52國立新化高中(代理)
S101-52國立新化高中(代理)S101-52國立新化高中(代理)
S101-52國立新化高中(代理)yustar1026
 
5 marks scheme for add maths paper 2 trial spm
5 marks scheme for add maths paper 2 trial spm5 marks scheme for add maths paper 2 trial spm
5 marks scheme for add maths paper 2 trial spmzabidah awang
 
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheoryL. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheorySEENET-MTP
 
Assnt Answers Linear M
Assnt Answers   Linear MAssnt Answers   Linear M
Assnt Answers Linear Mgueste5efd8
 
Datamining 4th Adaboost
Datamining 4th AdaboostDatamining 4th Adaboost
Datamining 4th Adaboostsesejun
 

Was ist angesagt? (15)

Prediction of Financial Processes
Prediction of Financial ProcessesPrediction of Financial Processes
Prediction of Financial Processes
 
Ism et chapter_2
Ism et chapter_2Ism et chapter_2
Ism et chapter_2
 
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton TensorDual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
 
Fdtd
FdtdFdtd
Fdtd
 
06 Arithmetic 1
06 Arithmetic 106 Arithmetic 1
06 Arithmetic 1
 
Ch 04 Arithmetic Coding (Ppt)
Ch 04 Arithmetic Coding (Ppt)Ch 04 Arithmetic Coding (Ppt)
Ch 04 Arithmetic Coding (Ppt)
 
Presentation
PresentationPresentation
Presentation
 
One way to see higher dimensional surface
One way to see higher dimensional surfaceOne way to see higher dimensional surface
One way to see higher dimensional surface
 
S101-52國立新化高中(代理)
S101-52國立新化高中(代理)S101-52國立新化高中(代理)
S101-52國立新化高中(代理)
 
5 marks scheme for add maths paper 2 trial spm
5 marks scheme for add maths paper 2 trial spm5 marks scheme for add maths paper 2 trial spm
5 marks scheme for add maths paper 2 trial spm
 
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheoryL. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
 
Chapter 08
Chapter 08Chapter 08
Chapter 08
 
Assnt Answers Linear M
Assnt Answers   Linear MAssnt Answers   Linear M
Assnt Answers Linear M
 
Ism et chapter_12
Ism et chapter_12Ism et chapter_12
Ism et chapter_12
 
Datamining 4th Adaboost
Datamining 4th AdaboostDatamining 4th Adaboost
Datamining 4th Adaboost
 

Andere mochten auch

Diagnostico cultural integral
Diagnostico cultural integralDiagnostico cultural integral
Diagnostico cultural integralVisi Serrano
 
Guias De Aprendizaje
Guias De AprendizajeGuias De Aprendizaje
Guias De Aprendizajeiejcg
 
Teorías de aprendizaje tic
Teorías de aprendizaje ticTeorías de aprendizaje tic
Teorías de aprendizaje ticnilzuhu
 
La Deuda Argentina: Historia, Default y Reestructuracion
La Deuda Argentina: Historia, Default y ReestructuracionLa Deuda Argentina: Historia, Default y Reestructuracion
La Deuda Argentina: Historia, Default y ReestructuracionClaudio de Vita
 
Derivada implícita
Derivada implícitaDerivada implícita
Derivada implícitaniedlinger
 
Conférence habilitation inphb côte d'ivoire
Conférence habilitation inphb côte d'ivoireConférence habilitation inphb côte d'ivoire
Conférence habilitation inphb côte d'ivoireSimon Koutoua
 
Guia#4
Guia#4Guia#4
Guia#4iejcg
 

Andere mochten auch (20)

Progr.2012
Progr.2012Progr.2012
Progr.2012
 
Capitulo 3
Capitulo 3Capitulo 3
Capitulo 3
 
Brochure
BrochureBrochure
Brochure
 
Cine y salud
Cine y saludCine y salud
Cine y salud
 
Diagnostico cultural integral
Diagnostico cultural integralDiagnostico cultural integral
Diagnostico cultural integral
 
Guias De Aprendizaje
Guias De AprendizajeGuias De Aprendizaje
Guias De Aprendizaje
 
Portada
PortadaPortada
Portada
 
Teorías de aprendizaje tic
Teorías de aprendizaje ticTeorías de aprendizaje tic
Teorías de aprendizaje tic
 
La Deuda Argentina: Historia, Default y Reestructuracion
La Deuda Argentina: Historia, Default y ReestructuracionLa Deuda Argentina: Historia, Default y Reestructuracion
La Deuda Argentina: Historia, Default y Reestructuracion
 
Derivada implícita
Derivada implícitaDerivada implícita
Derivada implícita
 
amelia vera
amelia veraamelia vera
amelia vera
 
Manual voz claro f
Manual voz claro fManual voz claro f
Manual voz claro f
 
Benjamin
BenjaminBenjamin
Benjamin
 
Historia Lenguajes y sus Tipos
Historia Lenguajes y sus TiposHistoria Lenguajes y sus Tipos
Historia Lenguajes y sus Tipos
 
Listas primer periodo2014 2015 cursos
Listas primer periodo2014 2015 cursosListas primer periodo2014 2015 cursos
Listas primer periodo2014 2015 cursos
 
Conférence habilitation inphb côte d'ivoire
Conférence habilitation inphb côte d'ivoireConférence habilitation inphb côte d'ivoire
Conférence habilitation inphb côte d'ivoire
 
Anexo evidencias del proyecto 131 b
Anexo  evidencias del proyecto 131 bAnexo  evidencias del proyecto 131 b
Anexo evidencias del proyecto 131 b
 
Planificación de recursos empresariales
Planificación de recursos empresarialesPlanificación de recursos empresariales
Planificación de recursos empresariales
 
Caract. seres vivos
Caract. seres vivosCaract. seres vivos
Caract. seres vivos
 
Guia#4
Guia#4Guia#4
Guia#4
 

Ähnlich wie Chapter 06

Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation StudiesStatistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation StudiesInstitute of Validation Technology
 
Formulario de matematicas
Formulario de matematicasFormulario de matematicas
Formulario de matematicasCarlos
 
Mth3101 Advanced Calculus Chapter 2
Mth3101 Advanced Calculus Chapter 2Mth3101 Advanced Calculus Chapter 2
Mth3101 Advanced Calculus Chapter 2saya efan
 
Dr hasany 2467_16649_1_lec-2-zabist
Dr hasany 2467_16649_1_lec-2-zabistDr hasany 2467_16649_1_lec-2-zabist
Dr hasany 2467_16649_1_lec-2-zabistGatewayggg Testeru
 
Presentation 3
Presentation 3Presentation 3
Presentation 3KeatonTech
 
Formulas optica
Formulas opticaFormulas optica
Formulas opticaFranklinz
 
5 marks scheme for add maths paper 2 trial spm
5 marks scheme for add maths paper 2 trial spm5 marks scheme for add maths paper 2 trial spm
5 marks scheme for add maths paper 2 trial spmzabidah awang
 
Gli Infiniti Valori Derivanti dalla Frazione 1 su 9 - Quattro Formule - Numer...
Gli Infiniti Valori Derivanti dalla Frazione 1 su 9 - Quattro Formule - Numer...Gli Infiniti Valori Derivanti dalla Frazione 1 su 9 - Quattro Formule - Numer...
Gli Infiniti Valori Derivanti dalla Frazione 1 su 9 - Quattro Formule - Numer...Ist. Superiore Marini-Gioia - Enzo Exposyto
 
Quantum numbers
Quantum numbersQuantum numbers
Quantum numbersDominic T
 
X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)Nigel Simmons
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010zabidah awang
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010zabidah awang
 

Ähnlich wie Chapter 06 (20)

Statistical controls for qc
Statistical controls for qcStatistical controls for qc
Statistical controls for qc
 
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation StudiesStatistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
 
Time complexity
Time complexityTime complexity
Time complexity
 
Formulario de matematicas
Formulario de matematicasFormulario de matematicas
Formulario de matematicas
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
BDPA IT Showcase: Production Planning Tools
BDPA IT Showcase: Production Planning ToolsBDPA IT Showcase: Production Planning Tools
BDPA IT Showcase: Production Planning Tools
 
Mth3101 Advanced Calculus Chapter 2
Mth3101 Advanced Calculus Chapter 2Mth3101 Advanced Calculus Chapter 2
Mth3101 Advanced Calculus Chapter 2
 
Dr hasany 2467_16649_1_lec-2-zabist
Dr hasany 2467_16649_1_lec-2-zabistDr hasany 2467_16649_1_lec-2-zabist
Dr hasany 2467_16649_1_lec-2-zabist
 
Presentation 3
Presentation 3Presentation 3
Presentation 3
 
Formulas optica
Formulas opticaFormulas optica
Formulas optica
 
Computer science-formulas
Computer science-formulasComputer science-formulas
Computer science-formulas
 
S 7
S 7S 7
S 7
 
5 marks scheme for add maths paper 2 trial spm
5 marks scheme for add maths paper 2 trial spm5 marks scheme for add maths paper 2 trial spm
5 marks scheme for add maths paper 2 trial spm
 
Gli Infiniti Valori Derivanti dalla Frazione 1 su 9 - Quattro Formule - Numer...
Gli Infiniti Valori Derivanti dalla Frazione 1 su 9 - Quattro Formule - Numer...Gli Infiniti Valori Derivanti dalla Frazione 1 su 9 - Quattro Formule - Numer...
Gli Infiniti Valori Derivanti dalla Frazione 1 su 9 - Quattro Formule - Numer...
 
Semi-Magic Squares From Snake-Shaped Matrices
Semi-Magic Squares From Snake-Shaped MatricesSemi-Magic Squares From Snake-Shaped Matrices
Semi-Magic Squares From Snake-Shaped Matrices
 
Quantum numbers
Quantum numbersQuantum numbers
Quantum numbers
 
X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
 
Sol58
Sol58Sol58
Sol58
 

Mehr von ramiz100111

Mehr von ramiz100111 (9)

Chapter 14
Chapter 14Chapter 14
Chapter 14
 
Chapter 15
Chapter 15Chapter 15
Chapter 15
 
Chapter 16
Chapter 16Chapter 16
Chapter 16
 
Chapter 12
Chapter 12Chapter 12
Chapter 12
 
Chapter 09
Chapter 09Chapter 09
Chapter 09
 
Chapter 07
Chapter 07Chapter 07
Chapter 07
 
Chapter 04
Chapter 04Chapter 04
Chapter 04
 
Chapter 01
Chapter 01Chapter 01
Chapter 01
 
Appendix a page_524
Appendix a page_524Appendix a page_524
Appendix a page_524
 

Kürzlich hochgeladen

BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...anjaliyadav012327
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxShobhayan Kirtania
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...Pooja Nehwal
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 

Kürzlich hochgeladen (20)

BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptx
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 

Chapter 06

  • 1. January 27, 2005 11:45 L24-ch06 Sheet number 1 Page number 230 black CHAPTER 6 Integration EXERCISE SET 6.1 1 2 n−1 1. Endpoints 0, , ,..., , 1; using right endpoints, n n n 1 2 n−1 1 An = + + ··· + +1 n n n n n 2 5 10 50 100 An 0.853553 0.749739 0.710509 0.676095 0.671463 1 2 n−1 , ,..., 2. Endpoints 0, , 1; using right endpoints, n n n n n n n 1 1 An = + + + ··· + + n+1 n+2 n+3 2n − 1 2 n n 2 5 10 50 100 An 0.583333 0.645635 0.668771 0.688172 0.690653 π 2π (n − 1)π 3. Endpoints 0, , ,..., , π; using right endpoints, n n n π An = [sin(π/n) + sin(2π/n) + · · · + sin(π(n − 1)/n) + sin π] n n 2 5 10 50 100 An 1.57080 1.93376 1.98352 1.99935 1.99984 π 2π (n − 1)π π 4. Endpoints 0, , ,..., , ; using right endpoints, 2n 2n 2n 2 π An = [cos(π/2n) + cos(2π/2n) + · · · + cos((n − 1)π/2n) + cos(π/2)] 2n n 2 5 10 50 100 An 0.555359 0.834683 0.919400 0.984204 0.992120 n+1 n+2 2n − 1 5. Endpoints 1, , ,..., , 2; using right endpoints, n n n n n n 1 1 An = + + ··· + + n+1 n+2 2n − 1 2 n n 2 5 10 50 100 An 0.583333 0.645635 0.668771 0.688172 0.690653 π π π π 2π π (n − 1)π π 6. Endpoints − , − + , − + ,...,− + , ; using right endpoints, 2 2 n 2 n 2 n 2 π π π 2π π (n − 1)π π π An = cos − + + cos − + + · · · + cos − + + cos 2 n 2 n 2 n 2 n n 2 5 10 50 100 An 1.57080 1.93376 1.98352 1.99936 1.99985 230
  • 2. January 27, 2005 11:45 L24-ch06 Sheet number 2 Page number 231 black Exercise Set 6.1 231 1 2 n−1 7. Endpoints 0, , , . . . , , 1; using right endpoints, n n n   2 2 2 1 2 n−1 1 An =  1 − + 1− + ··· + 1 − + 0 n n n n n 2 5 10 50 100 An 0.433013 0.659262 0.726130 0.774567 0.780106 2 4 2(n − 1) 8. Endpoints −1, −1 + , −1 + , . . . , −1 + , 1; using right endpoints, n n n   2 2 2 n−2 n−4 n−2 2 An =  1 − + 1− + ··· + 1 − + 0 n n n n n 2 5 10 50 100 An 1 1.423837 1.518524 1.566097 1.569136 2 4 2 9. Endpoints −1, −1 + , −1 + , . . . , 1 − , 1; using right endpoints, n n n An = e−1+ n + e−1+ n + e−1+ n + . . . + e1− n + e1 2 4 6 2 2 n n 2 5 10 50 100 An 3.718281 2.851738 2.59327 2.39772 2.35040 1 2 1 10. Endpoints 1, 1 + , 1 + , . . . , 2 − , 2; using right endpoints, n n n 1 2 1 1 An = ln 1 + + ln 1 + + . . . + ln 2 − + ln 2 n n n n n 2 5 10 50 100 An 0.549 0.454 0.421 0.393 0.390 1 2 n−1 11. Endpoints 0, , ,..., , 1; using right endpoints, n n n 1 2 n−1 1 An = sin−1 + sin−1 + . . . + sin−1 + sin−1 (1) n n n n n 2 5 10 50 100 An 1.04729 0.75089 0.65781 0.58730 0.57894 1 2 n−1 12. Endpoints 0, , ,..., , 1; using right endpoints, n n n 1 2 n−1 1 An = tan−1 + tan−1 + . . . + tan−1 + tan−1 (1) n n n n n 2 5 10 50 100 An 0.62452 0.51569 0.47768 0.44666 0.44274 3 13. 3(x − 1) 14. 5(x − 2) 15. x(x + 2) 16. (x − 1)2 2
  • 3. January 27, 2005 11:45 L24-ch06 Sheet number 3 Page number 232 black 232 Chapter 6 3 17. (x + 3)(x − 1) 18. x(x − 2) 2 19. The area in Exercise 17 is always 3 less than the area in Exercise 15. The regions are identical except that the area in Exercise 15 has the extra trapezoid with vertices at (0, 0), (1, 0), (0, 2), (1, 4) (with area 3). 1 20. (a) The region in question is a trapezoid, and the area of a trapezoid is (h1 + h2 )w. 2 1 1 (b) From Part (a), A (x) = [f (a) + f (x)] + (x − a) f (x) 2 2 1 1 f (x) − f (a) = [f (a) + f (x)] + (x − a) = f (x) 2 2 x−a 21. A(6) represents the area between x = 0 and x = 6; A(3) represents the area between x = 0 and x = 3; their difference A(6) − A(3) represents the area between x = 3 and x = 6, and 1 A(6) − A(3) = (63 − 33 ) = 63. 3 22. A(9) = 93 /3, A(−3) = (−3)3 /3, and the area between x = −3 and x = 9 is given by A(9)−A(−3) = (93 − (−3)3 )/3 = 252. 23. f (x) = A (x) = 2x; 0 = A(a) = a2 − 4, so take a = 2 (or a = −2), A(x) = x2 − 4, A (x) = 2x = f (x), so a = ±2, f (x) = 2x 24. f (x) = A (x) = 2x − 1, 0 = A(a) = a2 − a, so take a = 0 (or a = 1). √ 25. B is also the area between the graph of f (x) = x and the interval [0, 1] on the y−axis, so A + B is the area of the square. 26. If the plane is rotated about the line y = x then A becomes B and vice versa. EXERCISE SET 6.2 x 1. (a) √ dx = 1 + x2 + C (b) (x + 1)ex dx = xex + C 1 + x2 d 2. (a) (sin x − x cos x + C) = cos x − cos x + x sin x = x sin x dx √ √ d x 1 − x2 + x2 / 1 − x2 1 (b) √ +C = = dx 1 − x2 1 − x2 (1 − x2 )3/2 d 3x2 3x2 5. x3 + 5 = √ so √ dx = x3 + 5 + C dx 2 x3 + 5 2 x3 + 5 d x 3 − x2 3 − x2 x 6. = 2 so dx = 2 +C dx x2 + 3 (x + 3)2 (x2 + 3)2 x +3 √ √ d √ cos (2 x) cos (2 x) √ 7. sin 2 x = √ so √ dx = sin 2 x + C dx x x d 8. [sin x − x cos x] = x sin x so x sin x dx = sin x − x cos x + C dx
  • 4. January 27, 2005 11:45 L24-ch06 Sheet number 4 Page number 233 black Exercise Set 6.2 233 7 12/7 2 9/2 9. (a) x9 /9 + C (b) x +C (c) x +C 12 9 3 5/3 1 1 10. (a) x +C (b) − x−5 + C = − 5 + C (c) 8x1/8 + C 5 5 5x 2 2 1 5 2 −1 1 5 1 11. 5x + dx = 5x dx + dx = x2 + C = x2 − 4 + C 3x5 3 x5 2 3 4 x4 2 6x 1 1 5 1 12. x−1/2 − 3x7/5 + dx = x−1/2 dx − 3 x7/5 dx + dx = 2x1/2 − 3 x12/5 + x + C 9 9 12 9 1 12 8 13. x−3 − 3x1/4 + 8x2 dx = x−3 dx − 3 x1/4 dx + 8 x2 dx = − x−2 − x5/4 + x3 + C 2 5 3 10 √ 4 1 √ 1 14. 3/4 − 3y+ √ dy = 10 dy − 3 y dy + 4 √ dy y y y 3/4 y 3 3 √ = 10(4)y 1/4 − y 4/3 + 4(2)y 1/2 + C = 40y 1/4 − y 4/3 + 8 y + C 4 4 4 1 15. (x + x4 )dx = x2 /2 + x5 /5 + C 16. (4 + 4y 2 + y 4 )dy = 4y + y 3 + y 5 + C 3 5 12 7/3 3 17. x1/3 (4 − 4x + x2 )dx = (4x1/3 − 4x4/3 + x7/3 )dx = 3x4/3 − x + x10/3 + C 7 10 1 2 1 18. (2 − x + 2x2 − x3 )dx = 2x − x2 + x3 − x4 + C 2 3 4 19. (x + 2x−2 − x−4 )dx = x2 /2 − 2/x + 1/(3x3 ) + C 1 2 20. (t−3 − 2)dt = − t−2 − 2t + C 21. + 3ex dx = 2 ln |x| + 3ex + C 2 x 1 −1 √ t 1 √ 22. t − 2e dt = ln |t| − 2et + C 2 2 23. [3 sin x − 2 sec2 x] dx = −3 cos x − 2 tan x + C 24. [csc2 t − sec t tan t] dt = − cot t − sec t + C 25. (sec2 x + sec x tan x)dx = tan x + sec x + C 26. csc x(sin x + cot x) dx = (1 + csc x cot x) dx = x − csc x + C sec θ 27. dθ = sec2 θ dθ = tan θ + C 28. sin y dy = − cos y + C cos θ 29. sec x tan x dx = sec x + C 30. (φ + 2 csc2 φ)dφ = φ2 /2 − 2 cot φ + C
  • 5. January 27, 2005 11:45 L24-ch06 Sheet number 5 Page number 234 black 234 Chapter 6 1 1 1 1 31. (1 + sin θ)dθ = θ − cos θ + C 32. sec2 x + dx = tan x + x + C 2 2 2 2 1 3 1 33. √ − dx = sin−1 x − 3 tan−1 x + C 2 1−x2 1 + x2 2 4 1 + x + x3 1 1 34. √ + dx = 4 sec−1 x+ x+ dx = 4 sec−1 x+ x2 +tan−1 x+C x x2 − 1 1 + x2 x2 +1 2 1 − sin x 1 − sin x 35. dx = dx = sec2 x − sec x tan x dx = tan x − sec x + C 1 − sin2 x cos2 x 1 1 1 1 36. dx = dx = sec2 x dx = tan x + C 1 + cos 2x 2 cos2 x 2 2 37. y 38. y 5 2 x x c/4 c/2 1 2 –4 –5 39. f (x) = m = − sin x so f (x) = (− sin x)dx = cos x + C; f (0) = 2 = 1 + C so C = 1, f (x) = cos x + 1 1 40. f (x) = m = (x + 1)2 , so f (x) = (x + 1)2 dx = (x + 1)3 + C; 3 1 1 1 25 1 25 f (−2) = 8 = (−2 + 1)3 + C = − + C, = 8 + = , f (x) = (x + 1)3 + 3 3 3 3 3 3 3 4/3 3 5 3 5 41. (a) y(x) = x1/3 dx = x + C, y(1) = + C = 2, C = ; y(x) = x4/3 + 4 4 4 4 4 π 1 π π (b) y(t) = (sin t + 1) dt = − cos t + t + C, y = − + + C = 1/2, C = 1 − ; 3 2 3 3 π y(t) = − cos t + t + 1 − 3 2 3/2 8 8 (c) y(x) = (x1/2 + x−1/2 )dx = x + 2x1/2 + C, y(1) = 0 = + C, C = − , 3 3 3 2 3/2 8 y(x) = x + 2x1/2 − 3 3 1 −3 1 1 1 1 1 42. (a) y(x) = x dx = − x−2 + C, y(1) = 0 = − + C, C = ; y(x) = − x−2 + 8 16 16 16 16 16 √ √ π 2 2 (b) y(t) = (sec2 t − sin t) dt = tan t + cos t + C, y( ) = 1 = 1 + + C, C = − ; √ 4 2 2 2 y(t) = tan t + cos t − 2 2 9/2 2 (c) y(x) = x7/2 dx = x + C, y(0) = 0 = C, C = 0; y(x) = x9/2 9 9
  • 6. January 27, 2005 11:45 L24-ch06 Sheet number 6 Page number 235 black Exercise Set 6.2 235 43. (a) y = 4ex dx = 4ex + C, 1 = y(0) = 4 + C, C = −3, y = 4ex − 3 (b) y(t) = t−1 dt = ln |t| + C, y(−1) = C = 5, C = 5; y(t) = ln |t| + 5 √ 3 3 44. (a) y = √ dt = 3 sin−1 t + C, y = 0 = π + C, C = −π, y = 3 sin−1 t − π 1 − t2 2 dy 2 2 (b) =1− 2 ,y = 1− dx = x − 2 tan−1 x + C, dx x +1 x2 + 1 π π y(1) = = 1 − 2 + C, C = π − 1, y = x − 2 tan−1 x + π − 1 2 4 2 3/2 4 5/2 45. f (x) = x + C1 ; f (x) = x + C1 x + C2 3 15 46. f (x) = x2 /2 + sin x + C1 , use f (0) = 2 to get C1 = 2 so f (x) = x2 /2 + sin x + 2, f (x) = x3 /6 − cos x + 2x + C2 , use f (0) = 1 to get C2 = 2 so f (x) = x3 /6 − cos x + 2x + 2 47. dy/dx = 2x + 1, y = (2x + 1)dx = x2 + x + C; y = 0 when x = −3 so (−3)2 + (−3) + C = 0, C = −6 thus y = x2 + x − 6 48. dy/dx = x2 , y = x2 dx = x3 /3 + C; y = 2 when x = −1 so (−1)3 /3 + C = 2, C = 7/3 thus y = x3 /3 + 7/3 49. dy/dx = 6xdx = 3x2 + C1 . The slope of the tangent line is −3 so dy/dx = −3 when x = 1. Thus 3(1)2 + C1 = −3, C1 = −6 so dy/dx = 3x2 − 6, y = (3x2 − 6)dx = x3 − 6x + C2 . If x = 1, then y = 5 − 3(1) = 2 so (1)2 − 6(1) + C2 = 2, C2 = 7 thus y = x3 − 6x + 7. 1 2 2 2 50. (a) f (x) = x sin 3x − sin 3x + x cos 3x − 0.251607 3 27 9 4 (b) f (x) = 4 + x2 + √ −6 4 + x2 51. (a) y (b) y (c) f (x) = x2 /2 − 1 2 x 4 –2 2 x –1 1 52. (a) y (b) y (c) y = (ex + 1)/2 5 1 x 6 x 1
  • 7. January 27, 2005 11:45 L24-ch06 Sheet number 7 Page number 236 black 236 Chapter 6 53. This slope field is zero along the y-axis, 54. This slope field is independent of y, is near zero and so corresponds to (b). for large negative values of x, and is very large y for large positive x. It must correspond to (d). 10 y 10 5 x 5 –3 –1 1 3 x –5 –4 –2 2 4 –5 –10 –10 55. This slope field has a negative value 56. This slope field appears to be constant along the y-axis, and thus corresponds (approximately 2), and thus corresponds to (c). to differential equation (a). y y 9 10 5 3 x x –2 1 3 –3 –1 2 4 –3 –9 –10 57. (a) F (x) = G (x) = 3x + 4 (b) F (0) = 16/6 = 8/3, G(0) = 0, so F (0) − G(0) = 8/3 (c) F (x) = (9x2 + 24x + 16)/6 = 3x2 /2 + 4x + 8/3 = G(x) + 8/3 58. (a) F (x) = G (x) = 10x/(x2 + 5)2 (b) F (0) = 0, G(0) = −1, so F (0) − G(0) = 1 x2 (x2 + 5) − 5 5 (c) F (x) = 2 = 2+5 =1− 2 = G(x) + 1 x +5 x x +5 59. (a) For x = 0, F (x) = G (x) = 1. But if I is an interval containing 0 then neither F nor G has a derivative at 0, so neither F nor G is an antiderivative on I. (b) Suppose G(x) = F (x) + C for some C. Then F (1) = 4 and G(1) = 4 + C, so C = 0, but F (−1) = −2 and G(−1) = −1, a contradiction. (c) No, because neither F nor G is an antiderivative on (−∞, +∞). 60. (a) Neither F nor G is differentiable at x = 0. For x > 0, F (x) = 1/x, G (x) = 1/x, and for x < 0, F (x) = 1/x, G (x) = 1/x. (b) F (1) = 0, G(1) = 2; F (−1) = 0, G(−1) = 1, so F (x) = G(x) + C is impossible. (c) The hypotheses of the Theorem are violated by any interval containing 0. 61. (sec2 x − 1)dx = tan x − x + C 62. (csc2 x − 1)dx = − cot x − x + C 1 1 1 1 63. (a) (1 − cos x)dx = (x − sin x) + C (b) (1 + cos x) dx = (x + sin x) + C 2 2 2 2
  • 8. January 27, 2005 11:45 L24-ch06 Sheet number 8 Page number 237 black Exercise Set 6.3 237 d 1 64. For x > 0, [sec−1 x] = √ , and for x < 0, dx |x| x2 − 1 d d 1 1 [sec−1 |x|] = [sec−1 (−x)] = (−1) √ = √ dx dx |x| x2−1 x x2 − 1 which yields formula (14) in both cases. 1087 1087 1/2 1087 1/2 65. v = √ T −1/2 dT = √ T + C, v(273) = 1087 = 1087 + C so C = 0, v = √ T ft/s 2 273 273 273 66. dT /dx = C1 , T = C1 x + C2 ; T = 25 when x = 0 so C2 = 25, T = C1 x + 25. T = 85 when x = 50 so 50C1 + 25 = 85, C1 = 1.2, T = 1.2x + 25 EXERCISE SET 6.3 1. (a) u23 du = u24 /24 + C = (x2 + 1)24 /24 + C (b) − u3 du = −u4 /4 + C = −(cos4 x)/4 + C √ (c) 2 sin u du = −2 cos u + C = −2 cos x+C 3 3 1/2 3 (d) u−1/2 du = u +C = 4x2 + 5 + C 8 4 4 1 1 1 2. (a) sec2 u du = tan u + C = tan(4x + 1) + C 4 4 4 1 1 3/2 1 (b) u1/2 du = u + C = (1 + 2y 2 )3/2 + C 4 6 6 1 2 3/2 2 (c) u1/2 du = u +C = sin3/2 (πθ) + C π 3π 3π 5 9/5 5 (d) u4/5 du = u + C = (x2 + 7x + 3)9/5 + C 9 9 1 1 3. (a) − u du = − u2 + C = − cot2 x + C 2 2 1 10 1 (b) u9 du = u +C = (1 + sin t)10 + C 10 10 1 1 1 (c) cos u du = sin u + C = sin 2x + C 2 2 2 1 1 1 (d) sec2 u du = tan u + C = tan x2 + C 2 2 2 2 7/2 4 5/2 2 3/2 4. (a) (u − 1)2 u1/2 du = (u5/2 − 2u3/2 + u1/2 )du = u − u + u +C 7 5 3 2 4 2 = (1 + x)7/2 − (1 + x)5/2 + (1 + x)3/2 + C 7 5 3 (b) csc2 u du = − cot u + C = − cot(sin x) + C
  • 9. January 27, 2005 11:45 L24-ch06 Sheet number 9 Page number 238 black 238 Chapter 6 (c) sin u du = − cos u + C = − cos(x − π) + C du 1 1 (d) 2 =− +C =− 5 +C u u x +1 1 5. (a) du = ln |u| + C = ln | ln x| + C u 1 1 1 (b) − eu du = − eu + C = − e−5x + C 5 5 5 1 1 1 1 (c) − du = − ln |u| + C = − ln |1 + cos 3θ| + C 3 u 3 3 du (d) = ln u + C = ln(1 + ex ) + C u 1 du 1 6. (a) u = x3 , = tan−1 (x3 ) + C 3 1 + u2 3 1 (b) u = ln x, √ du = sin−1 (ln x) + C 1 − u2 1 (c) u = 3x, √ du = sec−1 (3x) + C u u2 − 1 √ du √ (d) u = x, 2 = 2 tan−1 u + C = 2 tan−1 ( x) + C 1 + u2 1 1 10 1 9. u = 4x − 3, u9 du = u +C = (4x − 3)10 + C 4 40 40 1 √ 1 3/2 1 10. u = 5 + x4 , u du = u + C = (5 + x4 )3/2 + C 4 6 6 1 1 1 11. u = 7x, sin u du = − cos u + C = − cos 7x + C 7 7 7 12. u = x/3, 3 cos u du = 3 sin u + C = 3 sin(x/3) + C 1 1 1 13. u = 4x, du = 4dx; sec u tan u du = sec u + C = sec 4x + C 4 4 4 1 1 1 14. u = 5x, du = 5dx; sec2 u du = tan u + C = tan 5x + C 5 5 5 1 1 u 1 15. u = 2x, du = 2dx; eu du = e + C = e2x + C 2 2 2 1 1 1 1 16. u = 2x, du = 2dx; du = ln |u| + C = ln |2x| + C 2 u 2 2 1 1 1 17. u = 2x, √ du = sin−1 (2x) + C 2 1 − u2 2 1 1 1 18. u = 4x, du = tan−1 (4x) + C 4 1 + u2 4
  • 10. January 27, 2005 11:45 L24-ch06 Sheet number 10 Page number 239 black Exercise Set 6.3 239 1 1 3/2 1 19. u = 7t2 + 12, du = 14t dt; u1/2 du = u +C = (7t2 + 12)3/2 + C 14 21 21 1 1 1 20. u = 4 − 5x2 , du = −10x dx; − u−1/2 du = − u1/2 + C = − 4 − 5x2 + C 10 5 5 1 1 1 3 1 21. u = 1 − 2x, du = −2dx, −3 du = (−3) − +C = +C u3 2 u2 2 (1 − 2x)2 1 1 2 22. u = x3 + 3x, du = (3x2 + 3) dx, √ du = x3 + 3x + C 3 u 3 1 du 1 1 1 23. u = 5x4 + 2, du = 20x3 dx, du = − +C =− +C 20 u3 40 u2 40(5x4 + 2)2 1 1 1 1 1 1 24. u = , du = − 2 dx, − sin u du = cos u + C = cos +C x x 3 3 3 x 25. u = sin x, du = cos x dx; eu du = eu + C = esin x + C 1 1 u 1 4 26. u = x4 , du = 4x3 dx; eu du = e + C = ex + C 4 4 4 1 1 1 eu du = − eu + C = − e−2x + C 3 27. u = −2x3 , du = −6x2 , − 6 6 6 1 28. u = ex − e−x , du = (ex + e−x )dx, du = ln |u| + C = ln ex − e−x + C u 1 1 1 1 29. u = ex , du = tan−1 (ex ) + C 30. u = t2 , du = tan−1 (t2 ) + C 1 + u2 2 u2 + 1 2 1 1 1 31. u = 5/x, du = −(5/x2 )dx; − sin u du = cos u + C = cos(5/x) + C 5 5 5 √ 1 √ 32. u = x, du = √ dx; 2 sec2 u du = 2 tan u + C = 2 tan x + C 2 x 1 1 5 1 33. u = cos 3t, du = −3 sin 3t dt, − u4 du = − u + C = − cos5 3t + C 3 15 15 1 1 6 1 34. u = sin 2t, du = 2 cos 2t dt; u5 du = u +C = sin6 2t + C 2 12 12 1 1 1 35. u = x2 , du = 2x dx; sec2 u du = tan u + C = tan x2 + C 2 2 2 1 1 1 1 1 1 36. u = 1 + 2 sin 4θ, du = 8 cos 4θ dθ; du = − +C =− +C 8 u4 24 u3 24 (1 + 2 sin 4θ)3 1 1 1 37. u = 2 − sin 4θ, du = −4 cos 4θ dθ; − u1/2 du = − u3/2 + C = − (2 − sin 4θ)3/2 + C 4 6 6 1 1 4 1 38. u = tan 5x, du = 5 sec2 5x dx; u3 du = u +C = tan4 5x + C 5 20 20
  • 11. January 27, 2005 11:45 L24-ch06 Sheet number 11 Page number 240 black 240 Chapter 6 1 39. u = tan x, √ du = sin−1 (tan x) + C 1 − u2 1 40. u = cos θ, − du = − tan−1 (cos θ) + C u2 +1 1 1 3 1 41. u = sec 2x, du = 2 sec 2x tan 2x dx; u2 du = u + C = sec3 2x + C 2 6 6 42. u = sin θ, du = cos θ dθ; sin u du = − cos u + C = − cos(sin θ) + C 43. e−x dx; u = −x, du = −dx; − eu du = −eu + C = −e−x + C √ 44. ex/2 dx; u = x/2, du = dx/2; 2 eu du = 2eu + C = 2ex/2 + C = 2 ex + C √ 1 1 √ 45. u = 2 x, du = √ dx; , du = −e−u + C = −e−2 x + C x eu 1 √ 46. u = 2y + 1, du = √ dy; eu du = eu + C = e 2y+1 +C 2y + 1 47. u = 2y + 1, du = 2dy; 1 1 1 1√ 1 1 (u − 1) √ du = u3/2 − u + C = (2y + 1)3/2 − 2y + 1 + C 4 u 6 2 6 2 48. u = 4 − x, du = −dx; √ 8 2 2 8 − (4 − u) u du = − u3/2 + u5/2 + C = (4 − x)5/2 − (4 − x)3/2 + C 3 5 5 3 49. sin2 2θ sin 2θ dθ = (1 − cos2 2θ) sin 2θ dθ; u = cos 2θ, du = −2 sin 2θ dθ, 1 1 1 1 1 − (1 − u2 )du = − u + u3 + C = − cos 2θ + cos3 2θ + C 2 2 6 2 6 50. sec2 3θ = tan2 3θ + 1, u = 3θ, du = 3dθ 1 1 1 1 1 sec4 3θ dθ = (tan2 u + 1) sec2 u du = tan3 u + tan u + C = tan3 3θ + tan 3θ + C 3 9 3 9 3 1 51. 1+ dt = t + ln |t| + C t 2 1 3 52. e2 ln x = eln x = x2 , x > 0, so e2 ln x dx = x2 dx = x +C 3 53. ln(ex ) + ln(e−x ) = ln(ex e−x ) = ln 1 = 0 so [ln(ex ) + ln(e−x )]dx = C cos x 1 54. dx; u = sin x, du = cos xdx; du = ln |u| + C = ln | sin x| + C sin x u √ √ √ √ 55. (a) sin−1 (x/3) + C (b) (1/ 5) tan−1 (x/ 5) + C (c) (1/ π) sec−1 (x/ π) + C
  • 12. January 27, 2005 11:45 L24-ch06 Sheet number 12 Page number 241 black Exercise Set 6.3 241 1 1 56. (a) u = ex , 2 du = tan−1 (ex /2) + C 4+u 2 1 1 1 (b) u = 2x, √ du = sin−1 (2x/3) + C, 2 9−u 2 2 √ 1 1 √ √ (c) u = 5y, √ du = √ sec−1 ( 5y/ 3) + C u u 2−3 3 57. u = a + bx, du = b dx, 1 (a + bx)n+1 (a + bx)n dx = un du = +C b b(n + 1) 1 58. u = a + bx, du = b dx, dx = du b 1 n n u1/n du = u(n+1)/n + C = (a + bx)(n+1)/n + C b b(n + 1) b(n + 1) 59. u = sin(a + bx), du = b cos(a + bx)dx 1 1 1 un du = un+1 + C = sinn+1 (a + bx) + C b b(n + 1) b(n + 1) 1 2 1 61. (a) with u = sin x, du = cos x dx; u du = u + C1 = sin2 x + C1 ; 2 2 1 2 1 with u = cos x, du = − sin x dx; − u du = − u + C2 = − cos2 x + C2 2 2 (b) because they differ by a constant: 1 1 1 sin2 x + C1 − − cos2 x + C2 = (sin2 x + cos2 x) + C1 − C2 = 1/2 + C1 − C2 2 2 2 25 3 62. (a) First method: (25x2 − 10x + 1)dx = x − 5x2 + x + C1 ; 3 1 1 3 1 second method: u2 du = u + C2 = (5x − 1)3 + C2 5 15 15 1 1 25 3 1 (b) (5x − 1)3 + C2 = (125x3 − 75x2 + 15x − 1) + C2 = x − 5x2 + x − + C2 ; 15 15 3 15 the answers differ by a constant. √ 2 2 63. y = 5x + 1 dx = (5x + 1)3/2 + C; −2 = y(3) = 64 + C, 15 15 2 158 2 158 so C = −2 − 64 = − , and y = (5x + 1)3/2 − 15 15 15 15 1 64. y = (2 + sin 3x) dx = 2x − cos 3x + C and 3 π 2π 1 2π + 1 1 2π + 1 0=y = + + C, C = − , y = 2x − cos 3x − 3 3 3 3 3 3 1 1 1 13 65. y = − e2t dt = − e2t + C, 6 = y(0) = − + C, y = − e2t + 2 2 2 2 1 1 3 π 5 1 π 66. y = dt = tan−1 t + C, =y − =− + C, 25 + 9t2 15 5 30 3 15 4 π 1 3 π C= ,y = tan−1 t + 60 15 5 60
  • 13. January 27, 2005 11:45 L24-ch06 Sheet number 13 Page number 242 black 242 Chapter 6 1 1 √ 67. (a) u = x2 + 1, du = 2x dx; √ du = u + C = x2 + 1 + C 2 u (b) 5 –5 5 0 1 1 1 1 68. (a) u = x2 + 1, du = 2x dx; du = ln u + C = ln(x2 + 1) + C 2 u 2 2 (b) y 4 x –4 4 √ 2 69. f (x) = m = 3x + 1, f (x) = (3x + 1)1/2 dx = (3x + 1)3/2 + C 9 2 7 2 7 f (0) = 1 = + C, C = , so f (x) = (3x + 1)3/2 + 9 9 9 9 10 70. p(t) = (3 + 0.12t)3/2 dt = (3 + 0.12t)5/2 + C; 3 10 5/2 100 = p(0) = 3 + C, C = 100 − 10 · 33/2 ≈ 48.038 so that 3 10 p(5) = (3 + 5 · (0.12))5/2 + 100 − 10 ∗ 33/2 ≈ 130.005 so that the population at the beginning of 3 the year 2010 is approximately 130,005. du u 71. u = a sin θ, du = a cos θ dθ; √ = aθ + C = sin−1 + C a2 − u2 a du 1 1 u 72. If u > 0 then u = a sec θ, du = a sec θ tan θ dθ, √ = θ = sec−1 + C u u2 − a2 a a a EXERCISE SET 6.4 1. (a) 1 + 8 + 27 = 36 (b) 5 + 8 + 11 + 14 + 17 = 55 (c) 20 + 12 + 6 + 2 + 0 + 0 = 40 (d) 1 + 1 + 1 + 1 + 1 + 1 = 6 (e) 1 − 2 + 4 − 8 + 16 = 11 (f ) 0 + 0 + 0 + 0 + 0 + 0 = 0 2. (a) 1 + 0 − 3 + 0 = −2 (b) 1 − 1 + 1 − 1 + 1 − 1 = 0 (c) π + π + · · · + π = 14π 2 2 2 2 (d) 24 + 25 + 26 = 112 (14 terms) √ √ √ √ √ √ (e) 1+ 2+ 3+ 4+ 5+ 6 (f ) 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + 1 = 1
  • 14. January 27, 2005 11:45 L24-ch06 Sheet number 14 Page number 243 black Exercise Set 6.4 243 10 20 10 3. k 4. 3k 5. 2k k=1 k=1 k=1 8 6 5 1 6. (2k − 1) 7. (−1)k+1 (2k − 1) 8. (−1)k+1 k k=1 k=1 k=1 50 50 9. (a) 2k (b) (2k − 1) k=1 k=1 5 5 n 5 10. (a) (−1)k+1 ak (b) (−1)k+1 bk (c) ak xk (d) a5−k bk k=1 k=0 k=0 k=0 100 100 1 7 11. (100)(100 + 1) = 5050 12. 7 k+ 1= (100)(101) + 100 = 35,450 2 2 k=1 k=1 20 3 1 13. (20)(21)(41) = 2870 14. k2 − k 2 = 2870 − 14 = 2856 6 k=1 k=1 30 30 30 30 1 1 15. k(k 2 − 4) = (k 3 − 4k) = k3 − 4 k= (30)2 (31)2 − 4 · (30)(31) = 214,365 4 2 k=1 k=1 k=1 k=1 6 6 1 1 16. k− k3 = (6)(7) − (6)2 (7)2 = −420 2 4 k=1 k=1 n n 3k 3 3 1 3 17. = k= · n(n + 1) = (n + 1) n n n 2 2 k=1 k=1 n−1 n−1 k2 1 1 1 1 18. = k2 = · (n − 1)(n)(2n − 1) = (n − 1)(2n − 1) n n n 6 6 k=1 k=1 n−1 n−1 k3 1 1 1 1 19. = 2 k3 = · (n − 1)2 n2 = (n − 1)2 n2 n n2 4 4 k=1 k=1 n n n 5 2k 5 2 5 2 1 20. − = 1− k= (n) − · n(n + 1) = 4 − n n n n n n n 2 k=1 k=1 k=1 n(n + 1) 22. = 465, n2 + n − 930 = 0, (n + 31)(n − 30) = 0, n = 30. 2 n n 1 + 2 + 3 + ··· + n k 1 1 1 n+1 n+1 1 23. = = 2 k= · n(n + 1) = ; lim = n2 n2 n n2 2 2n n→+∞ 2n 2 k=1 k=1 n n 12 + 22 + 32 + · · · + n2 k2 1 1 1 (n + 1)(2n + 1) 24. = = 3 k2 = · n(n + 1)(2n + 1) = ; n3 n 3 n n 3 6 6n2 k=1 k=1 (n + 1)(2n + 1) 1 1 lim 2 = lim (1 + 1/n)(2 + 1/n) = n→+∞ 6n n→+∞ 6 3 n n 5k 5 5 1 5(n + 1) 5(n + 1) 5 25. = 2 k= · n(n + 1) = ; lim = n2 n n2 2 2n n→+∞ 2n 2 k=1 k=1
  • 15. January 27, 2005 11:45 L24-ch06 Sheet number 15 Page number 244 black 244 Chapter 6 n−1 n−1 2k 2 2 2 1 (n − 1)(2n − 1) 26. 3 = 3 k2 = · (n − 1)(n)(2n − 1) = 3 6 ; n n n 3n2 k=1 k=1 (n − 1)(2n − 1) 1 2 lim = lim (1 − 1/n)(2 − 1/n) = n→+∞ 3n2 n→+∞ 3 3 5 6 7 27. (a) 2j (b) 2j−1 (c) 2j−2 j=0 j=1 j=2 5 13 28. (a) (k + 4)2 k+8 (b) (k − 4)2k k=1 k=9 4 4 4 4 3 3 6 3 9 3 3 3(n − 1) 3 29. (a) 2+ , 2+ , 2+ , (2 + 3)4 ,..., 2 + n n n n n n n n n 3 3 When [2, 5] is subdivided into n equal intervals, the endpoints are 2, 2 + , 2 + 2 · , 2 + 3 · n n 3 3 , . . . , 2 + (n − 1) , 2 + 3 = 5, and the right endpoint approximation to the area under the n n curve y = x4 is given by the summands above. n−1 4 3 3 (b) 2+k· gives the left endpoint approximation. n n k=0 30. n is the number of elements of the partition, x∗ is an arbitrary point in the k-th interval, k k = 0, 1, 2, . . . , n − 1, n, and ∆x is the width of an interval in the partition. In the usual definition of area, the parts above the curve are given a + sign, and the parts below the curve are given a − sign. These numbers are then replaced with their absolute values and summed. In the definition of net signed area, the parts given above are summed without considering absolute values. In this case there could be lots of cancellation of ’positive’ areas with ’negative’ areas. 31. Endpoints 2, 3, 4, 5, 6; ∆x = 1; 4 (a) Left endpoints: f (x∗ )∆x = 7 + 10 + 13 + 16 = 46 k k=1 4 (b) Midpoints: f (x∗ )∆x = 8.5 + 11.5 + 14.5 + 17.5 = 52 k k=1 4 (c) Right endpoints: f (x∗ )∆x = 10 + 13 + 16 + 19 = 58 k k=1 32. Endpoints 1, 3, 5, 7, 9, ∆x = 2; 4 1 1 1 352 (a) Left endpoints: f (x∗ )∆x = k 1+ + + 2= 3 5 7 105 k=1 4 1 1 1 1 25 (b) Midpoints: f (x∗ )∆x = k + + + 2= 2 4 6 8 12 k=1 4 1 1 1 1 496 (c) Right endpoints: f (x∗ )∆x = k + + + 2= 3 5 7 9 315 k=1
  • 16. January 27, 2005 11:45 L24-ch06 Sheet number 16 Page number 245 black Exercise Set 6.4 245 33. Endpoints: 0, π/4, π/2, 3π/4, π; ∆x = π/4 4 √ √ (a) Left endpoints: f (x∗ )∆x = 1 + k 2/2 + 0 − 2/2 (π/4) = π/4 k=1 4 (b) Midpoints: f (x∗ )∆x = [cos(π/8) + cos(3π/8) + cos(5π/8) + cos(7π/8)] (π/4) k k=1 = [cos(π/8) + cos(3π/8) − cos(3π/8) − cos(π/8)] (π/4) = 0 4 √ √ (c) Right endpoints: f (x∗ )∆x = k 2/2 + 0 − 2/2 − 1 (π/4) = −π/4 k=1 34. Endpoints −1, 0, 1, 2, 3; ∆x = 1 4 4 5 3 3 15 (a) f (x∗ )∆x = −3 + 0 + 1 + 0 = −2 k (b) f (x∗ )∆x = − + + + k =4 4 4 4 4 k=1 k=1 4 (c) f (x∗ )∆x = 0 + 1 + 0 − 3 = −2 k k=1 35. (a) 0.718771403, 0.705803382, 0.698172179 (b) 0.668771403, 0.680803382, 0.688172179 (c) 0.692835360, 0.693069098, 0.693134682 36. (a) 0.761923639, 0.712712753, 0.684701150 (b) 0.584145862, 0.623823864, 0.649145594 (c) 0.663501867, 0.665867079, 0.666538346 37. (a) 4.884074734, 5.115572731, 5.248762738 (b) 5.684074734, 5.515572731, 5.408762738 (c) 5.34707029, 5.338362719, 5.334644416 38. (a) 0.919403170, 0.960215997, 0.984209789 (b) 1.076482803, 1.038755813, 1.015625715 (c) 1.001028824, 1.000257067, 1.000041125 3 ∗ 3 1 1 3 3 3 1 3 39. ∆x = , x = 1 + k; f (x∗ )∆x = x∗ ∆x = 1+ k = + k n k n k 2 k 2 n n 2 n n2 n n n 3 1 3 3 3 1 3 3n+1 f (x∗ )∆x k = + k = 1 + 2 · n(n + 1) = 1+ 2 n n2 2 n 2 2 2 n k=1 k=1 k=1 3 3 1 3 3 15 A = lim 1+ 1+ = 1+ = n→+∞ 2 2 n 2 2 4 5 ∗ 5 5 5 25 25 40. ∆x = , xk = 0 + k ; f (x∗ )∆x = (5 − x∗ )∆x = k k 5− k = − 2k n n n n n n n n n 25 25 25 1 25 n+1 f (x∗ )∆x k = − 2 k = 25 − · n(n + 1) = 25 − n n n2 2 2 n k=1 k=1 k=1 25 1 25 25 A = lim 25 − 1+ = 25 − = n→+∞ 2 n 2 2
  • 17. January 27, 2005 11:45 L24-ch06 Sheet number 17 Page number 246 black 246 Chapter 6 3 ∗ 3 k2 3 41. ∆x = , xk = 0 + k ; f (x∗ )∆x = k 9−9 n n n2 n n n n n k2 3 27 k2 27 f (x∗ )∆x = k 9−9 = 1− = 27 − k2 n2 n n n2 n3 k=1 k=1 k=1 k=1 n 27 1 A = lim 27 − k 2 = 27 − 27 = 18 n→+∞ n3 3 k=1 3 ∗ 3 42. ∆x = ,x =k n k n 1 1 9k 2 3 12 27k 2 f (x∗ )∆x = 4 − (x∗ )2 ∆x = 4 − k k = − 4 4 n2 n n 4n3 n n n 12 27 f (x∗ )∆x = k − 3 k2 n 4n k=1 k=1 k=1 27 1 9 (n + 1)(2n + 1) = 12 − 3 · n(n + 1)(2n + 1) = 12 − 4n 6 8 n2 9 1 1 9 A = lim 12 − 1+ 2+ = 12 − (1)(2) = 39/4 n→+∞ 8 n n 8 4 ∗ 4 43. ∆x = , xk = 2 + k n n 3 3 4 4 32 2 32 6 12 8 f (x∗ )∆x = (x∗ )3 ∆x = 2 + k k k = 1+ k = 1 + k + 2 k2 + 3 k3 n n n n n n n n n n n n n 32 6 12 8 f (x∗ )∆x = k 1+ k+ k2 + k3 n n n2 n3 k=1 k=1 k=1 k=1 k=1 32 6 1 12 1 8 1 = n + · n(n + 1) + 2 · n(n + 1)(2n + 1) + 3 · n2 (n + 1)2 n n 2 n 6 n 4 n+1 (n + 1)(2n + 1) (n + 1)2 = 32 1 + 3 +2 2 +2 n n n2 2 1 1 1 1 A = lim 32 1 + 3 1 + +2 1+ 2+ +2 1+ n→+∞ n n n n = 32[1 + 3(1) + 2(1)(2) + 2(1)2 ] = 320 3 2 ∗ 2 2 2 44. ∆x = , x = −3 + k ; f (x∗ )∆x = [1 − (x∗ )3 ]∆x = 1 − −3 + k n k n k k n n 2 54 36 8 = 28 − k + 2 k 2 − 3 k 3 n n n n n 2 (n + 1)(2n + 1) (n + 1)2 f (x∗ )∆x = k 28n − 27(n + 1) + 6 −2 n n n k=1 2 1 1 1 1 A = lim 2 28 − 27 1 + +6 1+ 2+ −2 1+ n→+∞ n n n n = 2(28 − 27 + 12 − 2) = 22
  • 18. January 27, 2005 11:45 L24-ch06 Sheet number 18 Page number 247 black Exercise Set 6.4 247 3 ∗ 3 45. ∆x = , x = 1 + (k − 1) n k n 1 1 3 3 1 3 9 f (x∗ )∆x = x∗ ∆x = k k 1 + (k − 1) = + (k − 1) 2 2 2 n n 2 n n n n n 1 3 9 1 9 1 3 9n−1 f (x∗ )∆x = k + (k − 1) = 3 + 2 · (n − 1)n = + 2 n n2 2 n 2 2 4 n k=1 k=1 k=1 3 9 1 3 9 15 A = lim + 1− = + = n→+∞ 2 4 n 2 4 4 5 ∗ 5 46. ∆x = , x = (k − 1) n k n 5 5 25 25 f (x∗ )∆x = (5 − x∗ )∆x = 5 − k k (k − 1) = − 2 (k − 1) n n n n n n n 25 25 25 n − 1 f (x∗ )∆x k = 1− 2 (k − 1) = 25 − n n 2 n k=1 k=1 k=1 25 1 25 25 A = lim 25 − 1− = 25 − = n→+∞ 2 n 2 2 3 ∗ 3 (k − 1)2 3 47. ∆x = , xk = 0 + (k − 1) ; f (x∗ )∆x = (9 − 9 k ) n n n2 n n n n n n (k − 1)2 3 27 (k − 1)2 27 54 27 f (x∗ )∆x k = 9−9 = 1− = 27 − 3 2 k + 3 k− n2 n n n2 n n n2 k=1 k=1 k=1 k=1 k=1 1 A = lim = 27 − 27 + 0 + 0 = 18 n→+∞ 3 3 ∗ 3 48. ∆x = , x = (k − 1) n k n 1 1 9(k − 1)2 3 12 27k 2 27k 27 f (x∗ )∆x = 4 − (x∗ )2 ∆x = 4 − k k = − + 3− 3 4 4 n2 n n 4n3 2n 4n n n n n n 12 27 27 27 f (x∗ )∆x = k − 3 k2 + k− 1 n 4n 2n3 4n3 k=1 k=1 k=1 k=1 k=1 27 1 27 n(n + 1) 27 = 12 − · n(n + 1)(2n + 1) + 3 3 6 − 2 4n 2n 2 4n 9 (n + 1)(2n + 1) 27 27 27 = 12 − + + − 2 8 n2 4n 4n2 4n 9 1 1 9 A = lim 12 − 1+ 2+ + 0 + 0 − 0 = 12 − (1)(2) = 39/4 n→+∞ 8 n n 8 4 8 4(n − 1) 4n 2 6 10 4n − 6 4n − 2 49. Endpoints 0, , ,..., , = 4, and midpoints , , , . . . , , . Approxi- n n n n n n n n n n 4k − 2 4 16 n(n + 1) mate the area with the sum 2 = 2 2 − n → 16 as n → +∞. n n n 2 k=1
  • 19. January 27, 2005 11:45 L24-ch06 Sheet number 19 Page number 248 black 248 Chapter 6 4 8 4(n − 1) 50. Endpoints 1, 1 + ,1 + ,...,1 + , 1 + 4 = 5, and midpoints n n n 2 6 10 4(n − 1) − 2 4n − 2 1 + ,1 + ,1 + ,...,1 + , . Approximate the area with the sum n n n n n n n 4k − 2 4 4 16 8 16 n(n + 1) 8 6− 1+ = 5 − k+ 2 = 20 − + = 20 − 8 = 12, n n n n2 n n2 2 n k=1 k=1 which happens to be exact. 1 ∗ 2k − 1 51. ∆x = ,x = n k 2n (2k − 1)2 1 k2 k 1 f (x∗ )∆x = k = 3− 3+ 3 (2n)2 n n n 4n n n n n 1 1 1 f (x∗ )∆x = k k2 − k+ 1 n3 n3 4n3 k=1 k=1 k=1 k=1 Using Theorem 6.4.4, n 1 1 A = lim f (x∗ )∆x = k +0+0= n→+∞ 3 3 k=1 2 ∗ 2k − 1 52. ∆x = , xk = −1 + n n 2 2k − 1 2 8k 2 8k 2 2 f (x∗ )∆x = k −1 + = 3 − 3+ 3− n n n n n n n n n 8 8 2 f (x∗ )∆x = k k2 − k+ −2 n3 n3 n2 k=1 k=1 k=1 n 8 2 A = lim f (x∗ )∆x = k +0+0−2= n→+∞ 3 3 k=1 2 ∗ 2k 53. ∆x = , x = −1 + n k n 2k 2 2 k f (x∗ )∆x = −1 + k =− +4 2 n n n n n n 4 4 n(n + 1) 2 f (x∗ )∆x = −2 + k k = −2 + = −2 + 2 + n2 n 2 2 n k=1 k=1 n A = lim f (x∗ )∆x = 0 k n→+∞ k=1 The area below the x-axis cancels the area above the x-axis. 3 ∗ 3k 54. ∆x = , xk = −1 + n n 3k 3 3 9 f (x∗ )∆x = −1 + k = − + 2k n n n n n 9 n(n + 1) f (x∗ )∆x = −3 + k n2 2 k=1