SlideShare ist ein Scribd-Unternehmen logo
1 von 8
Downloaden Sie, um offline zu lesen
ELSEVIER Journal of Electroanalytical Chemistry 420 (1997) 127-134
aoun~Ai, or
Electrochemical study of catechol and some 3-substituted catechols in
the presence of 4-hydroxy coumarin: application to the electro-organic
synthesis of new coumestan derivatives
S.M. Golabi *, D. Nematollahi
ElectroanalyticalChemistryLaboratory, Faculty of ChemistryUniversityof Tabriz, Tabriz,lran
Received 26 February 1996; revised 3 June 1996
Abstract
Electrochemical oxidation of catechol (ld), 3-methylcatechol (la), 3-methoxycatechol (lb) and 2,3-dihydroxybenzoic acid (lc) in the
presence of 4-hydroxycoumarin as nucleophile in aqueous solution has been studied using cyclic voltammetry and controlled-potential
coulometry. The results indicate that (la-ld) participating in a 1,4 (Michael) addition reaction convert to coumestan derivatives (Sa-5d).
The electrochemical synthesis of 5a-5d has been successfully performed in an undivided cell in good yield and purity.
Keywords: Electro-organic synthesis; Catechol; 3-Methylcatechol; 3-Methoxycatechol; 2,3-Dihydroxybenzoic acid; Coumestan derivatives
1. Introduction
Many workers have shown that o- and p-diphenols can
be oxidized electrochemically to o- and p-quinones re-
spectively. The quinones formed are quite reactive and can
be attacked by a variety of nucleophiles. Adams and
co-workers [1-3] have shown that o-benzoquinone can
react with nucleophiles such as ammonia, chloride and
sulfhydryl compounds to form the addition products.
Moreover, Adams and co-workers [4,5] have reported that
p-benzoquinone, with electron-withdrawing substituents,
can be attacked nucleophilically by water to yield a trihy-
droxy compound which can be oxidized further to the
hydroxyquinone. Several other workers [6-9] have investi-
gated the reactions of o-quinones from dopa, catechol and
4-methylcatechoi in aqueous solutions, but the emphasis
has been mostly on acidic solutions at low concentrations
which significantly suppress the coupling reactions studied
by Stum and Suslov [10] and Ryan et al. [11] in some
detail. In this direction, we have recently investigated the
electrochemical oxidation of catechol and 4-methyl-
catechol in methanol and have synthesized electrochemi-
cally 4,5-dimethoxy-o-benzoquinone and 4-methoxy-5-
methyl-o-benzoquinone in high yield [12]. Moreover, we
have studied the electrochemical oxidation of catechol in
the presence of some nucleophiles such as acetylacetone,
benzoylacetone, thienoyltrifluoroacetone, diethylmalonate
and dimethylmalonate and have suggested that the product
of initial oxidation of catechol reacts with these nucle-
ophiles yielding benzofuran derivatives [13]. The impor-
tance of compounds known as coumestant [14], 6H-benzo-
furo[3,2-c][1]benzopyran-6-one, that have the basic struc-
ture of many natural products with interesting physio-
logical activities [15-17], has caused many workers to
synthesize a number of coumestan derivatives by chemical
[18-20] and electrochemical [21-23] routes, using cate-
chol as a Michael acceptor and a variety of coumarin
derivatives as nucleophiles. However, no report has been
published until now about the synthesis of coumestans
using catechol derivatives. Therefore, we have investigated
the electro-oxidation of catechol and some of 3-substituted
catechols such as 3-methylcatechol, 3-methoxycatechol,
and 2,3-dihydroxybenzoic acid in the presence of 4-hy-
roxycoumarin as nucleophile and have described a facile
electrochemical method for synthesis of some new
coumestant derivatives.
2. Experimental
* Corresponding author.
Cyclic voltammograms were obtained using a function
generator (VA Scanner E 612 from Metrohm) connected to
0022-0728/97/$17.00 Copyright © 1997 Elsevier Science S.A. All rights reserved.
PIIS0022-0728(96)04804-8
128 S.M.Golabi.D.Nematollahi/ JournalofElectroanalyticalChemistry420(1997)127-134
a potentiostat (Polarecord E 626, from Metrohm) and were
recorded by a Hewlett-Packard 3310 A X-Y recorder.
Controlled-potential coulometry and preparative electroly-
sis were performed using an EG&G PAR model 173
potentiostat-galvanostat. The working electrode used in
voltammetry was a glassy carbon disc (3 mm diameter)
from Metrohm and a platinum wire (from Metrohm) was
used as the counter electrode. The working electrode used
in controlled-potential macroscale electrolysis was an as-
sembly of five carbon rods (6mm diameter and 4cm
length, spectrographically pure grade graphite from John-
son Matthey Chemicals Limited) and a large platinum
gauze constituted the counter electrode. The working elec-
trode potentials were measured and adjusted vs. a saturated
calomel electrode (SCE). All experiments were carried out
at a thermostated temperature of 26 + l°C by using a
jacketed ceil. All chemicals (catechols and 4-hydroxy-
coumarin) were reagent-grade materials from Aldrich and
CH3COONA was of pro-analysis grade from Merck. These
chemicals were used without further purification.
2.1. Electro-organic synthesis of cournestan derivatives
(Sa-Sd)
In a typical procedure, 100mi of sodium acetate solu-
tion in water (0.15M) was pre-electrolysed at the chosen
potential (see Table 1), in an undivided cell, then 2mmol
of catechol (la-ld) and 4-hydroxycoumarin(2 mmol) were
added to the cell. The electrolysis was terminated when the
decay of the current became more than 95%. The process
was interrupted several times during the electrolysis and
the graphite anode was washed in acetone in order to
activate it. At the end of electrolysis, a few drops of acetic
acid were added to the solution and the cell was placed in
a refrigerator overnight. The precipitated solid was col-
lected by filtration and recrystallized from an appropriate
solvent (see Table 1). After recrystallization, products
were characterized by IR, ~H NMR, J3C NMR (with pulse
duration of 2 s), MS and elemental analysis (C,H,N).
2.2. Characteristics of the products
2.2.1. 3,4-Dihydroxy-2-methyl-6H-benzofuro[3,2,c] [1]ben-
zopyran-6-one (Sa)
M.p. 304-306°C (dec.). IR (KBr): l,'max 3464, 3260,
2920, 1705, 1629, 1465, 1319, 1288, 1205, 1097, 1032,
1007, 903, 754cm -1. 1H NMR, 6 ppm (DMSO-d6): 2.4
(s, 3H methyl protons); 7.2 (s, 1H, aromatic proton C-5);
7.35-8 (m, 4H, aromatic protons C8-C11); 9.4 (broad, 2H
hydroxy protons). '3C NMR, 6 ppm (DMSO-d6) (relative
intensity): 9(methyl carbon) (97.5); 102 (59.5), 105 (19),
108 (58.6), i12 (57), 113 (55), 116 (59.5), 121 (60.8), 124
(55), 131 (44), 144 (100), 144.2 (99), 149 (27.5), 152
(63.8), 158 (27.6). MS m/e (relative intensity): 282 (100),
281 (17.8), 268 (3), 208 (9.2), 207 (3.5), 152 (12.2), 151
(3), 141 (3.5), 121 (8.6), 115 (10.8), 114 (4.3), 100 (23.5),
Table 1
Electroanalyticaland preparativedata
Conver- Peakpotentials/ Applied Solventfor
sion V(vs.SCE)a potential/ crystallization
V(vs.SCE)
Ao A, A2
Product
yield/%
la-Sa 0.21 0.29 1.09 0.40 Ethanol+acetone96
lb-Sb 0.20 0.28 1.09 0.40 Ethanol+acetone98
1c-5c 0.24 0.46 1.07 0.50 Water+ethanol 90
ld-Nl 0.26 0.40 1.08 0.45 Ethanol+acetone94
a Peakpotentialsweremeasuredfroma cyclicvoltammogramof each
catechol(1mM)in the presenceof 4HC(I mM)recordedat 100mVs ~.
99 (17.8), 85 (28.6). Anal. Found: C, 68; 14, H; 3,52.
C.6H.005. Calc.: C, 68.09; H; 3.55%.
2,2.2. 3,4-Dihydroxy-2-methoxy-6H-benzofuro[3,2,c] [1]
benzopyran-6-one (Sb)
M.p. 260-261°C (dec.). IR(KBr): Umax 3371, 2950,
1737, 1630, 1611, 1519, 1369, 1283, 1234, 1092,
758cm -l. IH NMR, t~ppm (DMSO-d6): 4.14 (s, 3H
methoxy protons); 7.1 (s, IH, aromatic proton C-5); 7.35-
8.05 (m, 4H, aromatic protons C8-C11); 9.4 (broad, 2H,
hydroxy protons). 13C NMR, 6 ppm (DMSO-d6) (relative
intensity): 60 (methoxy carbon) (100); 99.3 (57), 105.5
(28.5), 112 (63.8), 114 (60), 117 (56), 121 (56.2), 124.8
(54.7), 131.6 (44), 133.7 (42.3), 138 (83.6), 142 (28.5),
146 (96.5), 152.3 (72.9), 158.2 (23.7), 159 (32). MS m/e
(relative intensity): 298 (100), 297 (76.8), 284 (7.4), 283
(40.2), 255 (13.4), 251 (8.6), 121 (22), 85 (6.2), 83 (12.2),
81 (4.8), 73 (14.6), 71 (13.4), 70 (9.8), 69 (48.7), 64
(48.7). Anal. Found: C, 64.20; H, 3.76. C16H1006. Calc.:
C, 64.43; H, 3.36%.
2.2.3. 3,4-Dihydroxy-6-oxo-6H-benzofuro[3,2,c][ l ]benzo-
pyran-5-carboxylic acid (5c)
M.p. 326-328°C (dec.). IR (KBr): Vmax 3500-2400
(broad), 1707, 1624, 1570, 1500, 1356, 1258, 1200, 1083,
754cm- i. IH NMR, 6 ppm (DMSO-d6): 7.2 (s, IH, aro-
matic proton C-2); 7.36-8.10 (m, 4H, aromatic protons,
C8-C 11): 9.25 (broad, 2H, hydroxy protons); 10.65 (broad,
IH, carboxylic proton). 13C NMR, 6 ppm (DMSO-d6)
(relative intensity): 98.5 (44.3), 111.6 (25.1), 112.2 (71.1),
113.4 (48), 116.4 (55.5), 121.3 (42), 124.5 (38.9), 125.2
(25.2), 131 (47.2), 146.3 (33.6), 147.2 (100), 148 (71), 149
(26.2), 152.1 (79.8), 157.5 (48), 168.2 (63). MS m/e
(relative intensity): 312 (15.6), 294 (100), 268 (86.3), 238
(17.3), 210 (59.0), 194 (9.6), 138 (13.3), 126 (13.8), 69
(14.3). Anal. Found: C, 61.67; H, 2.56. C16H807 . Caic.:
C, 61.54; H, 2.56%.
2.2.4. 3,4-Dihydroxy-6H-benofuro[3,2,c][1] benzopyran-
6-one (5d)
M.p. 307-309°C (dec.) (Ref. [23] 308-310°C). IR
(KBr): Vmax 3350, 3260, 1710, 1630, 1476, 1354, 1280,
1227, 1204, 1086, 1043, 754cm -~. ~H NMR 3ppm
S.M. Golabi, D. Nematollahi / Journal of Electroanalytical Chemistry 420 (1997) 127-134 129
(DMSO-d6): 7.2 (s, 1H, aromatic proton C-2); 7.3 (s, 1H,
aromatic proton C-5); 7.45-8.0 (m, 4H, aromatic proton
C8-Cll); 9.5 (broad, 2H, hydroxy protons). 13C NMR,
ppm (DMSO-d6) (relative intensity): 98.9 (97.4), 104.9
(100), 105.4 (21.4), 112.3 (56), 113.9 (50.8), 116.95 (97.4),
121 (90.3), 124.8 (98.7), 131.2 (80.7), 144.7 (78.1), 146.5
(81.9), 149.4 (40.3), 152.3 (52.3), 157.7 (15.8), 158.1 (22).
MS m/e (relative intensity): 268 (100), 240 (5.4), 222
(6.8), 212 (3), 194 (7.9), 166 (3), 149 (3), 134 (6.5), 120
(8.2), 97 (12.1), 69 (41.4).
3. Results and discussion
3.I. Electro-oxidation of 3-methylcatechol (la) in the pres-
ence of 4-hydroxycoumarin (4HC)
Cyclic voltammetry of 1mM of la in aqueous solution
containing 0.15M sodium acetate as supporting elec-
trolyte, shows one anodic and a corresponding cathodic
peak with a peak separation of about 300mV, which
corresponds to the transformation of 3-methylcatechol (la)
to 3-methyi-o-quinone (2a) and vice versa within a quasi-
reversible two-electron process (Fig. I, curve a). A peak
current ratio IpJlp~ of nearly unity, particularly during the
repetitive recycling of potential can be considered as a
criterion for the stability of o-quinone produced at the
surface of the electrode under the experimental conditions.
In other words, any hydroxylation [4-9] or dimerization
[10,11] reactions are too slow to be observed in the time
!2s~A j~
-6;o o ' e6o ' ~oo
~mV
Fig. I. Cyclic voltammograms of l mM 3-methylcatechol: (a) in the
absence,(b) and(d) in the presenceof ImM 4HCand,(c) 1mM4HCat
a glassy carbon electrodein aqueous solution.Supportingelectrolyte
0.15M CH3COONA;scanrate 100mVs-]; T= 26+_I°C.
'rl I-:: t
vlmVs-~
Scan rate/
7 /,,,
/ / 
/ /
1"7"
jso~JA
•. ~'
1
/ /'~ --,~,l t~......... '/
4- ~ 2 3a; "
.
E
Fig. 2. (a) Typical voltammograms of 1mM 3-methylcatechol in water m
the presence of l mM 4HC at a glassy carbon electrode and at various
scan rates. Supporting electrolyte 0.15 M CH3COONa; starting potential
-500mV vs. SCE; switching potential +900mV vs. SCE. (b) Variation
of peak current ratio Ipaj/lwl and (c) current function lpaj/0 I/2) vs.
scan rate in the presence and in the absence of 4HC. T = 26+ I°C.
scale of cyclic voltammetry. However, when the concen-
tration of la increases, the peak separation and the peak
current ratio Ipa/Ipc increase. This can be related to the
dimerization reaction and film formation at the surface of
the electrode, enhanced by the excess of la [11,13,24]. The
oxidation of la in the presence of 4HC as nucleophile was
studied in some detail. Fig. 1 (curve b) shows the cyclic
voltammogram obtained for a 1mM solution of la in the
presence of 1mM 4HC. The voltammogram exhibits two
anodic peaks at 0.29 and 1.10V vs. SCE, and the cathodic
counterpart of the anodic peak A j nearly disappears. The
shift of C 1 peak in a negative direction in the presence of
4HC (Fig. 1, curve b), is probably due to the formation of
a thin film of product at the surface of the electrode [23].
Comparison of the voltammograms b and c in Fig. 1
reveals that the peak A 2 (curve b) corresponds to the
oxidation of 4HC. This peak decreases dramatically in the
second scan of potential because of the consumption of
4HC during its reaction with o-quinone (2a). The multi-
cyclic voltammetry of la in the presence of 4HC shows
that in the second cycle, parallel to the shift of the A 1 peak
in a positive direction, a new peak A 0 appears with an Ep
130 S.M. Golubi, D. Nematollahi / Journal of Electroanalytical Chemistry 420 (1997) 127-134
!2sFA ? ~
-500 100 0
E/mY
Fig. 3. Cyclic voltammograms of t mM 3-methylcatechol in water in the
presence of l mM 4HC, at a glassy carbon electrode during controlled-
potential coulometry at 0.40V vs. SCE. (a) at the beginning of, (b) and
(c) in the course of, and (d) at the end of coulometry. Scan rate
100mVs-~; T= 26+_ I°C.
value of 0.21 V vs. SCE (Fig. 1, curve d). This new peak
A 0 is related to the electro-oxidation of intermediate 3a,
and the shift of peak A ~ is due to the deposition of product
on the surface of the electrode, inhibiting to a certain
extent the performance of the electrode process. Further-
more, a comparison of voltammograms b and d shows that
the peak current ratio lpa~/lpc ~ is dependent on the switch-
ing potential. In addition, it is seen that proportional to the
augmentation of potential sweep rate, the height of the C~
peak of la increases (Fig. 2 curves a). A similar situation
is observed when the 4HC to la concentration ratio is
decreased. A plot of peak current ratio vs. scan rate for a
mixture of la and 4HC confirms the reactivity of 2a
towards 4HC, appearing as an increase in the height of the
cathodic peak C~ at higher scan rates (Fig. 2, curve b). In
contrast, the current function for the A~ peak (IpaL/v t/2)
changes only slightly with increasing scan rate (Fig. 2,
curve c) and such behaviour is taken to be indicative of an
EC mechanism [25]. Controlled-potential coulometry was
performed in aqueous solution containing 1mM of la and
1mM of 4HC at 0.40V vs. SCE. The monitoring of
electrolysis progress was carried out by cyclic voltamme-
try (Fig. 3). It is shown that, proportional to the advance-
ment of coulometry, anodic peak AI (as well as A 2)
decreases and a new anodic peak A0 appears at less
positive potentials (Fig. 3 curves b and c) which is related
to the oxidation of the intermediate (3a). The cyclic
voltammogram reduces to curve d (Fig. 3) when the charge
consumption becomes about 4e- per molecule of la.
These observations allow us to propose the reaction scheme
pathway for the electro-oxidation of la in the presence of
4HC shown in Eqs. (1)-(5).
R1 R1
-2e, -2H
- (l)
R2 la- ld R22a- 2d
R2
3a -3(I
(2)
R1 R1
OH -2@.-2H~ll,. 0
4a- 4d
(3)
5a- 5d
(4)
R1 R1
_
1 OH
o.+~ ° ~ o..
~o~o R2 ~o ~-o~*o % oH
3a-3d R2 2a-2~ 5a-5~ R21a-ld
RI=--CH3 R2=-PI la, 2a, 3a, 4a, 5a
R~=-OCH 3 R2=-H lb, 2b, 3b, 4b, 5b
R~=-H R2=-COOH lc, 2c, 3c, 4c, 5c
R~= -H R2= °H ld, 2d, 3d, 4d, 5d
(5)
The existence of a methyl group with electron-donating
character at the C-3 position of the o-quinone ring (2a)
probably causes the Michael acceptor (2a) to be attacked
by enolate anion (2) from the C-4 and C-5 positions to
yield two types of product. However, tH NMR [26] and
~3C NMR results indicate that 3-methyl-o-quinone (2a)
formed from the oxidation of la is selectively attacked at
the C-5 position by enolate anion (2) leading to the
production of the selective product (Sa). According to our
results, it seems that the intermolecular (Eq. (2)) and
intramolecular (Eq. (4)) 1,4-(Michael) addition of anion
enolate of 4HC (2) to o-quinone (2a) is faster than other
secondary reactions, leading presumably to the intermedi-
ate (3a). The oxidation of this compound (3a) is easier
than the oxidation of parent starting molecule (la) by
S.M. Golabi, D. Nematollahi/Journal of Electroanalytical Chemistry 420 (1997) 127-134 131
virtue of the presence of the electron-donating group. It
can be seen from the mechanism of Eqs. (1)-(5), that as
the chemical reaction (Eq. (2)) occurs, la is regenerated
through homogeneous oxidation (Eq. (5)) and hence can be
reoxidized at the electrode surface. Thus, as the chemical
reaction takes place, the apparent number of electrons
transferred increases from the limit of n = 2 to n = 4
electrons per molecule. The reaction product (5a) can also
be oxidized at a lower potential than the starting la
compound. However, overoxidation of 5a was circum-
vented during the preparative reaction because of the
insolubility of the product in water + sodium acetate me-
dia.
3.2. Electro-oxidation of 3-methoxycatechol (lb) in the
presence of 4HC (2)
Cyclic voltammetry of 1mM lb in aqueous solution
containing 0.15 M sodium acetate as supporting electrolyte
exhibits an anodic and cathodic peak corresponding to the
quasi-reversible two-electron transformation of 3-methoxy-
catechol (lb) to 3-methoxy-o-benzoquinone (2b) and vice
versa. The peak current ratio lo,/Ipc is nearly unity,
particularly during the repetitive recycling of potential,
suggesting stability of the electrode oxidation product and
no occurrence of hydroxylation or dimerization reactions
[4-11] under the experimental conditions. The electro-
oxidation of 1mM of lb in the presence of 1mM of 4HC
proceeds in a way similar to that of la. However, in this
case, the presence of the methoxy group as an electron-
donating substituent on the molecular ring causes a
diminution in the activity of 3-methoxy-o-quinone (2b) as
a Michael acceptor towards the 1,4-(Michael) addition
reaction. Consequently, contrary to other catechol cases,
the peak current ratio increases moderately in the presence
of 4HC and the new anodic peak A 0 is not observed
during the repetitive scans, mainly because of the low
concentration of intermediate 3b at the surface of the
electrode. However, the plot of peak current ratio vs. scan
rate confirms the reaction between the oxidation product of
lb and 4HC, appearing as a decrease in the peak current
ratio lpa~/Ipc~ with increasing scan rate. The variation of
current function Ipa~/V ~/2 with scan rate also agrees with
the above-mentioned results. Controlled-potential coulome-
try was performed in aqueous solution containing 1mM of
lb and I mM of 4HC at 0.40V vs. SCE (Fig. 4). The
monitoring of the electrolysis progress by cyclic voitam-
metry shows that, parallel to the advancement of coulome-
try, both anodic peaks A~, and A 2 decrease and a new
anodic peak A 0 appears at less positive potentials (Fig. 4
curve b). On warming the electrolysed solution for some
time (at 35°C for 10min), the shape of the cyclic voltam-
mogram changes (Fig. 4, curve d) and a decrease in the
peak current of A 0 is observed together with the reappear-
ance of peak A l (Eq. (5)). This relates to the relative
stability of the intermediate 3b arising from the presence
A1
12s+
f
-sbo ' 1;o ' r;o
E/mV
Fig. 4. Cyclic voltammograms of 1mM 3-methoxycatechol in the pres-
ence of l mM 4HC in water at a glassy carbon electrode during con-
trolled-potential coulometry at 0.40V vs. SCE. (a) At the beginning of,
(b)-(e) in the course of, and (f) at the end of coulometry. Scan rate
100mVs ~; T=26+1°C.
of the electron-donating methoxy group in the molecule
and the occurrence of solution electron transfer (SET)
between 3b and 3-methoxy-o-benzoquinone. All anodic
and cathodic peaks disappear when the charge consump-
tion becomes about 4e- per molecule of lb (Fig. 4, curve
e). The reaction mechanism is similar to that of the
previous case and, according to these results, it seems that
the chemical reaction between 4HC and 3-methoxy-o-
benzoquinone is fast enough and leads presumably to the
formation of product (Sb).
OCH3
5b
Similar to la, ~H NMR [26] and 13C NMR results
indicate that 3-methoxy-o-benzoquinone (2b), produced
from the oxidation of lb, is selectively attacked from C-5
by enolate anion 2, to produce the product 5b.
t 32 S.M. Golabi, D. Nematollahi/Journal of Electroanalytical Chemistry 420 (1997) 127-134
3.3. Electro-oxidation of 2,3-dihydroxybenzoic acid (l c) in
the presence of 4HC
Fig. 5 (curve a) shows the cyclic voltammogram of a
1mM solution of lc in water, containing 0.15 M of sodium
acetate. In this condition, the cyclic voltammogram ex-
hibits a quasi-reversible two-electron process correspond-
ing to the 2,3-dihydroxy-benzoic acid (lc)/o-quinone-3-
carboxylic acid (2c) couple. The cathodic counterpart of
the anodic peak decreases when 1mM of 4HC is added,
and a second irreversible peak A 2 appears at more positive
potentials (Fig. 5, curve b). This peak A 2 is related to the
oxidation of 4HC. The multicyclic voltammogram of this
solution shows a new anodic peak A 0 at 0.24V vs. SCE,
which can be attributed to the oxidation of intermediate 3c,
followed by a decrease in the height of peak A 2 (Fig. 5,
curve c). Under these conditions, the peak current ratio
lpal//Ipcl and the current function Ipal/V I/2 decrease with
increasing scan rate. As in the previous cases, controlled-
potential coulometry for determination of the number of
transferred electrons was performed at 0.50 V vs. SCE, and
cyclic voltammetric analysis carried out during the elec-
trolysis in order to elucidate the formation of
intermediate(s) and other products, shows the formation of
the new anodic peak A 0. All anodic and cathodic peaks
disappear when the consumed charge reaches a limit of
4e- per molecule (Fig. 6). The presence of an electron-
- /~ tI
0 ~ " A1
° ~"Yc~~-300 300 go0
E/mY
Fig. 5. Cyclic voltammograms of I mM 2,3-dihydroxybenzoic acid, (a) in
the absence of, (b) in the presence of l mM 4HC at a glassy carbon
electrode and at a scan rate of 200mVs- ~; (c) as (b) at a scan rate of
100mVs -~ . Supporting electrolyte 0.15M CH3COONa; T = 26+ I°C.
A=
-,~o ' 260 ' 860 '
E/mY
Fig. 6. Cyclic voltammograms of ] mM 2,3-dihydroxybenzoic acid in the
presence of l mM 4HC in water at a glassy carbon electrode during
controlled-potential coulometry at 0.50V vs. SCE. (a) At the beginning
of, (b)-(d) in the course of, and (e) at the end of coulometry. Scan rate
100mVs =; T=26±1°C.
withdrawing group at the C-3 position of the o-quinone
ring (2c), causes a difference in the reactivity between the
C-4 and C-5 positions. However, IH NMR [26] and 13C
NMR results indicate that o-quinone-3-carboxylic acid
(2e) formed from the oxidation of le is selectively at-
tacked from the C-4 position by enolate anion 2 leading to
the formation of product (5c).
5c
According to the voltammetric results, it seems that the
chemical reaction between 4HC and o-quinone-3-car-
boxylic acid is fast enough and favours the progress of the
subsequent reactions.
3.4. Electro-oxidation of catechol (ld) in the presence of
4HC
The oxidation of catechol (la) in the presence of 4HC
as a nucleophile in water was studied by cyclic voltamme-
try. Fig. 7 (curve a) shows the cyclic voltammogram of
l mM catechol in aqueous solution containing 0.15M
S.M. Golabi, D. Nematollahi/ Journal of Electroanalytical Chemistry 420 (1997) 127-134 133
C1 A2~~
15 I
( '° d
v/mVs ~
-ff~O "260 1OO 4(~)0 "/60 16OO
E/mV
Fig. 7. Cyclic voltammogramsof l mM catechol in water, (a) in the
absence of, (b) and (c) in the presence of ImM 4HC at a glassy carbon
electrodeelectrode.(d) Variationof peakcurrentratio /pa~//pc ~) vs. scan
rate• Supportingelectrolyte0.15M CH3COONa;scan rate 100mVs-t;
T = 26__I°C.
sodium acetate. Similar to the previous cases, in the pres-
ence of 4HC, the peak current ratio Ipal/Ipcl increases
proportionally to the augmentation in 4HC concentration,
as well as by decreasing the potential sweep rate, and a
second irreversible peak appears at 1.10 V vs. SCE (Fig. 7,
curve b). Contrary to the report of Tabacovic et al. [23],
this peak A 2 can be attributed to the oxidation of 4HC (see
Fig. 1, curve c). Moreover, the multicyclic voltammogram
of catechol in the presence of 4HC shows a new anodic
peak A 0 at 0.26V vs. SCE (Fig. 7, curve c). For this
solution, the effect of increasing potential scan rate on the
peak current ratio is shown in Fig. 7, curve d. Controlled-
potential coulometry was performed at 0.45V vs. SCE,
and cyclic voltammetric analysis carried out during the
electrolysis shows the formation of a new anodic peak A 0
at less positive potentials. All anodic and cathodic peaks
decrease and disappear at a rate corresponding to the
consumption of 4e ~ per molecule. The reaction mecha-
nism is similar to that of previous cases, and according to
our results it seems that the chemical reaction between
4HC and o-quinone (2d) is fast enough and favours the
progress of the subsequent reactions leading to the forma-
tion of product (5d).
5d
4. Conclusions
The present results complete the previous report on the
anodic oxidation of some catechols in aqueous solutions.
The results of this work show that catechols are oxidized
in water to their respective quinones. The quinones are
then attacked by enolate anion of 4-hydroxycoumarin to
form coumestans. The overall reaction mechanism for
anodic oxidation of catechols in the presence of 4-hy-
droxycoumarin as nucleophile is presented in Eqs. (1)-(5).
According to our results, it seems that the intermolecular
and intramolecular 1,4-(Michael) addition of this nucle-
ophile to the o-quinones formed (Eqs. (2) and (4)) leads to
the formation of new coumestan derivatives as final prod-
ucts, in good yields and purity.
Acknowledgements
The authors are grateful to Dr. M.F. Moossavi and A.R.
Fakhari, University of Tarbiat Modarres, for FF NMR
spectra, and we would like to thank Dr. Jarrahpoor, Uni-
versity of Shiraz, for MS spectra. In addition, the authors
would like to thank Dr. S.A. Fakhri and M. Khosroshahi,
University of Tabriz, for FI" IR spectra. We also thank the
referee for his useful comments.
References
[1] R.N. Adams, M.D. Hawlay and S.W. Feldberg, J. Chem. Phys., 71
(1967) 85 I.
[2] M.D. Hawley, S.V. Tatawawadi, S. Piekarski and R.N. Adams, J.
Am. Chem. Soc., 89 (1967) 447.
[3] A.W. Sternson, R. McCreery, B. Feinberg and R.N. Adams, J.
Electroanal. Chem., 46 (1973) 313.
[4] L. Papouchado, G. Petrie and R.N. Adams, J. Electroanal. Chem., 38
(1972) 389.
[5] L. Papouchado, G. Petrie, J.H. Sharp and R.N. Adams, J. Am.
Chem. Soc., 90 (1968) 5620.
[6] T.E. Young, J.R. Griswold and M.H Hulbert, J. Org. Chem., 39
(1974) 1980.
[7] A. Brun and R. Rosset, J. Electroanal. Chem., 49 (1974) 287.
134 S.M. Golabi, D. Nematollahi /Journal of Electroanalytical Chemistry 420 (1997) 127-134
[8] J. Doskocil, Coll. Czech. Chem. Commun., 15 (1950) 780.
[9] G. Sivaramiah and V.R. Krishman, Ind. J. Chem., 4 (1966) 541.
[10] D.I. Stum and S.N. Suslov, Biofizika, 21 (1979) 40.
[11] M.D. Rayn, A. Yueh and C. Wen-Yu, J. Electrochem. Soc., 127
(1980) 1489.
[12] D. Nematollahi and S.M. Golabi, J. Electroanal. Chem., 405 (1996)
133.
[13] D. Nematollahi and S.M. Golabi, lran. J. Sci. Technol., in press.
[14] C. Deschamp-Vallet and C. Mentzer, C.R. Acad. Sci. Paris, 251
(1960) 736.
[15] L.L. Simonova, A.A. Shamshurin, P.N. Rajumovskii, G.S. Semanin,
B.R. Gotsulenka and V.G. Kholmetskaya, lzv. Akad. Nauk Mold.
SSR Ser. Biol. Khim. Nauk, 4 (1972) 77.
[16] E.M. Bickoff, A.L. Livingston, A.N. Booth, C.R. Thompson, E.A.
Hollwell and E.G. Beinhart J. Anita. Sci., 19 (1960) 4.
[17] M. Darbarwor, V. Sundaramurthy and N.N. Subba Rao, Ind. J.
Chem., 11 (1973) 115.
[t8] U.T. Bhalerao, C. Muralikristma and G. Pandey, Synth. Commun.,
19 (1989) 1303.
[19] R.R. Shah and K.N. Trivedi, J. Ind. Chem. Soc., 56 (1979) 995.
[20] R.R. Shah and K.N. Trivedi, J. Ind. Chem. Soc., 52 (1975) 224.
[21] Raju, K.V. Subba, Raju, P.V. Narasimha and Raju, G.J.V. Jagan-
nadha, Bull. Electrochem., 6 (1990) 877 (Chem. Abs., 115, 59449z).
[22] Z. Grujic, I. Tabakovic and M. Trkovnik, Tetrahedron Lett., (1976)
4823.
[23] I. Tabakovic, Z. Grujic and Z. Bejtovic, J. Heterocyclic Chem., 20
(1983) 635.
[24] J. Tsuji and H. Takayanagi, Tetrahedron, 34 (1978) 641.
[25] A.J. Bard and L.R. Faulkner, Electrochemical Methods, Wiley, New
York, 1980, pp. 452-453.
[26] F.M. Dean and M.V. Sargent, in A.R. Katritzky and C.W. Rees
(Eds.), Comprehensive Heterocyclic Chemistry, Vol. 4, Part 3,
Pergamon, New York, 1984, Chapter 10, p. 561.

Weitere ähnliche Inhalte

Was ist angesagt?

Synthesis of 3-methoxy-6-phenyl-6, 6a-dihydro-[1] benzopyrano-[3, 4-b] [1] be...
Synthesis of 3-methoxy-6-phenyl-6, 6a-dihydro-[1] benzopyrano-[3, 4-b] [1] be...Synthesis of 3-methoxy-6-phenyl-6, 6a-dihydro-[1] benzopyrano-[3, 4-b] [1] be...
Synthesis of 3-methoxy-6-phenyl-6, 6a-dihydro-[1] benzopyrano-[3, 4-b] [1] be...IOSR Journals
 
Spectroscopic and Thermal Characterization of Charge-Transfer Complexes Forme...
Spectroscopic and Thermal Characterization of Charge-Transfer Complexes Forme...Spectroscopic and Thermal Characterization of Charge-Transfer Complexes Forme...
Spectroscopic and Thermal Characterization of Charge-Transfer Complexes Forme...IJMER
 
Synthesis of 1,2,3-Triazole 5-Chloroisatin Derivatives via Copper-Catalyzed 1...
Synthesis of 1,2,3-Triazole 5-Chloroisatin Derivatives via Copper-Catalyzed 1...Synthesis of 1,2,3-Triazole 5-Chloroisatin Derivatives via Copper-Catalyzed 1...
Synthesis of 1,2,3-Triazole 5-Chloroisatin Derivatives via Copper-Catalyzed 1...IJAEMSJORNAL
 
Molecules 22-00357
Molecules 22-00357Molecules 22-00357
Molecules 22-00357elshimaa eid
 
A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...
A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...
A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...Alexander Decker
 
Mechanistic Aspects of Oxidation of P-Bromoacetophen one by Hexacyanoferrate ...
Mechanistic Aspects of Oxidation of P-Bromoacetophen one by Hexacyanoferrate ...Mechanistic Aspects of Oxidation of P-Bromoacetophen one by Hexacyanoferrate ...
Mechanistic Aspects of Oxidation of P-Bromoacetophen one by Hexacyanoferrate ...IJERA Editor
 
Synthesis of new 2 h pyrano[3,2-h]quinolines with potential biological activity
Synthesis of new 2 h pyrano[3,2-h]quinolines with potential biological activitySynthesis of new 2 h pyrano[3,2-h]quinolines with potential biological activity
Synthesis of new 2 h pyrano[3,2-h]quinolines with potential biological activityAlexander Decker
 
A ruthenium-carbamato-complex derived from a siloxylated amine and carbon dio...
A ruthenium-carbamato-complex derived from a siloxylated amine and carbon dio...A ruthenium-carbamato-complex derived from a siloxylated amine and carbon dio...
A ruthenium-carbamato-complex derived from a siloxylated amine and carbon dio...Pawan Kumar
 
Visible Spectrophotometric Determination of Gemigliptin Using Charge Transfer...
Visible Spectrophotometric Determination of Gemigliptin Using Charge Transfer...Visible Spectrophotometric Determination of Gemigliptin Using Charge Transfer...
Visible Spectrophotometric Determination of Gemigliptin Using Charge Transfer...Ratnakaram Venkata Nadh
 
Effects of heat treatment on the catalytic activity and methanol tolerance of...
Effects of heat treatment on the catalytic activity and methanol tolerance of...Effects of heat treatment on the catalytic activity and methanol tolerance of...
Effects of heat treatment on the catalytic activity and methanol tolerance of...sunidevi
 
Experimental and theoretical studies on the photodegradation of 2-ethylhexyl ...
Experimental and theoretical studies on the photodegradation of 2-ethylhexyl ...Experimental and theoretical studies on the photodegradation of 2-ethylhexyl ...
Experimental and theoretical studies on the photodegradation of 2-ethylhexyl ...Maciej Przybyłek
 
Physicochemical Properties and Proposed Mechanism in the Obtainment of 4-Hidr...
Physicochemical Properties and Proposed Mechanism in the Obtainment of 4-Hidr...Physicochemical Properties and Proposed Mechanism in the Obtainment of 4-Hidr...
Physicochemical Properties and Proposed Mechanism in the Obtainment of 4-Hidr...IJERA Editor
 
PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52Dinesh Barawkar
 
A new road for the synthesis and characterization of new enamino benzodiazepines
A new road for the synthesis and characterization of new enamino benzodiazepinesA new road for the synthesis and characterization of new enamino benzodiazepines
A new road for the synthesis and characterization of new enamino benzodiazepinesAlexander Decker
 
Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...
Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...
Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...Maciej Przybyłek
 

Was ist angesagt? (18)

Synthesis of 3-methoxy-6-phenyl-6, 6a-dihydro-[1] benzopyrano-[3, 4-b] [1] be...
Synthesis of 3-methoxy-6-phenyl-6, 6a-dihydro-[1] benzopyrano-[3, 4-b] [1] be...Synthesis of 3-methoxy-6-phenyl-6, 6a-dihydro-[1] benzopyrano-[3, 4-b] [1] be...
Synthesis of 3-methoxy-6-phenyl-6, 6a-dihydro-[1] benzopyrano-[3, 4-b] [1] be...
 
RSC
RSCRSC
RSC
 
Spectroscopic and Thermal Characterization of Charge-Transfer Complexes Forme...
Spectroscopic and Thermal Characterization of Charge-Transfer Complexes Forme...Spectroscopic and Thermal Characterization of Charge-Transfer Complexes Forme...
Spectroscopic and Thermal Characterization of Charge-Transfer Complexes Forme...
 
Synthesis of 1,2,3-Triazole 5-Chloroisatin Derivatives via Copper-Catalyzed 1...
Synthesis of 1,2,3-Triazole 5-Chloroisatin Derivatives via Copper-Catalyzed 1...Synthesis of 1,2,3-Triazole 5-Chloroisatin Derivatives via Copper-Catalyzed 1...
Synthesis of 1,2,3-Triazole 5-Chloroisatin Derivatives via Copper-Catalyzed 1...
 
Molecules 22-00357
Molecules 22-00357Molecules 22-00357
Molecules 22-00357
 
A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...
A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...
A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...
 
Mechanistic Aspects of Oxidation of P-Bromoacetophen one by Hexacyanoferrate ...
Mechanistic Aspects of Oxidation of P-Bromoacetophen one by Hexacyanoferrate ...Mechanistic Aspects of Oxidation of P-Bromoacetophen one by Hexacyanoferrate ...
Mechanistic Aspects of Oxidation of P-Bromoacetophen one by Hexacyanoferrate ...
 
Synthesis of new 2 h pyrano[3,2-h]quinolines with potential biological activity
Synthesis of new 2 h pyrano[3,2-h]quinolines with potential biological activitySynthesis of new 2 h pyrano[3,2-h]quinolines with potential biological activity
Synthesis of new 2 h pyrano[3,2-h]quinolines with potential biological activity
 
A ruthenium-carbamato-complex derived from a siloxylated amine and carbon dio...
A ruthenium-carbamato-complex derived from a siloxylated amine and carbon dio...A ruthenium-carbamato-complex derived from a siloxylated amine and carbon dio...
A ruthenium-carbamato-complex derived from a siloxylated amine and carbon dio...
 
Visible Spectrophotometric Determination of Gemigliptin Using Charge Transfer...
Visible Spectrophotometric Determination of Gemigliptin Using Charge Transfer...Visible Spectrophotometric Determination of Gemigliptin Using Charge Transfer...
Visible Spectrophotometric Determination of Gemigliptin Using Charge Transfer...
 
Effects of heat treatment on the catalytic activity and methanol tolerance of...
Effects of heat treatment on the catalytic activity and methanol tolerance of...Effects of heat treatment on the catalytic activity and methanol tolerance of...
Effects of heat treatment on the catalytic activity and methanol tolerance of...
 
Experimental and theoretical studies on the photodegradation of 2-ethylhexyl ...
Experimental and theoretical studies on the photodegradation of 2-ethylhexyl ...Experimental and theoretical studies on the photodegradation of 2-ethylhexyl ...
Experimental and theoretical studies on the photodegradation of 2-ethylhexyl ...
 
Physicochemical Properties and Proposed Mechanism in the Obtainment of 4-Hidr...
Physicochemical Properties and Proposed Mechanism in the Obtainment of 4-Hidr...Physicochemical Properties and Proposed Mechanism in the Obtainment of 4-Hidr...
Physicochemical Properties and Proposed Mechanism in the Obtainment of 4-Hidr...
 
Forgrad 2103
Forgrad 2103Forgrad 2103
Forgrad 2103
 
PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52
 
A new road for the synthesis and characterization of new enamino benzodiazepines
A new road for the synthesis and characterization of new enamino benzodiazepinesA new road for the synthesis and characterization of new enamino benzodiazepines
A new road for the synthesis and characterization of new enamino benzodiazepines
 
JOC '96 OH-Ester HPI
JOC '96 OH-Ester HPIJOC '96 OH-Ester HPI
JOC '96 OH-Ester HPI
 
Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...
Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...
Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...
 

Andere mochten auch

Follow-up a 11 anni delle lesione post-traumatiche dell'aorta toracica: effic...
Follow-up a 11 anni delle lesione post-traumatiche dell'aorta toracica: effic...Follow-up a 11 anni delle lesione post-traumatiche dell'aorta toracica: effic...
Follow-up a 11 anni delle lesione post-traumatiche dell'aorta toracica: effic...Benedetto Gesmundo
 
elective determination of L-dopa in the presence of uric acid and ascorbic ac...
elective determination of L-dopa in the presence of uric acid and ascorbic ac...elective determination of L-dopa in the presence of uric acid and ascorbic ac...
elective determination of L-dopa in the presence of uric acid and ascorbic ac...Narayana Reddy Palakollu
 
Digital marketing trends
Digital marketing trendsDigital marketing trends
Digital marketing trendsK Sumedha
 
慈濟大學97 學年度 畢業生流向調查(畢業後一年)
慈濟大學97 學年度 畢業生流向調查(畢業後一年)慈濟大學97 學年度 畢業生流向調查(畢業後一年)
慈濟大學97 學年度 畢業生流向調查(畢業後一年)tcucfdir
 
R 13 regulations b tech ist year syllabi of all branches 12 sept 13
R 13 regulations b tech ist year syllabi of all branches 12 sept 13R 13 regulations b tech ist year syllabi of all branches 12 sept 13
R 13 regulations b tech ist year syllabi of all branches 12 sept 13Narayana Reddy Palakollu
 
Mashable - an overview
Mashable - an overviewMashable - an overview
Mashable - an overviewK Sumedha
 

Andere mochten auch (17)

Follow-up a 11 anni delle lesione post-traumatiche dell'aorta toracica: effic...
Follow-up a 11 anni delle lesione post-traumatiche dell'aorta toracica: effic...Follow-up a 11 anni delle lesione post-traumatiche dell'aorta toracica: effic...
Follow-up a 11 anni delle lesione post-traumatiche dell'aorta toracica: effic...
 
1 s2.0-s0039914097002452-main
1 s2.0-s0039914097002452-main1 s2.0-s0039914097002452-main
1 s2.0-s0039914097002452-main
 
elective determination of L-dopa in the presence of uric acid and ascorbic ac...
elective determination of L-dopa in the presence of uric acid and ascorbic ac...elective determination of L-dopa in the presence of uric acid and ascorbic ac...
elective determination of L-dopa in the presence of uric acid and ascorbic ac...
 
MIR Medicina del trabajo
MIR Medicina del trabajoMIR Medicina del trabajo
MIR Medicina del trabajo
 
Syllabus
SyllabusSyllabus
Syllabus
 
Digital marketing trends
Digital marketing trendsDigital marketing trends
Digital marketing trends
 
慈濟大學97 學年度 畢業生流向調查(畢業後一年)
慈濟大學97 學年度 畢業生流向調查(畢業後一年)慈濟大學97 學年度 畢業生流向調查(畢業後一年)
慈濟大學97 學年度 畢業生流向調查(畢業後一年)
 
I b.tech -main exams time tables
I b.tech -main exams time tablesI b.tech -main exams time tables
I b.tech -main exams time tables
 
Vimeo
VimeoVimeo
Vimeo
 
1 s2.0-s0731708505002189-main
1 s2.0-s0731708505002189-main1 s2.0-s0731708505002189-main
1 s2.0-s0731708505002189-main
 
Linkedin
LinkedinLinkedin
Linkedin
 
Twitter
TwitterTwitter
Twitter
 
Google+
Google+Google+
Google+
 
R 13 regulations b tech ist year syllabi of all branches 12 sept 13
R 13 regulations b tech ist year syllabi of all branches 12 sept 13R 13 regulations b tech ist year syllabi of all branches 12 sept 13
R 13 regulations b tech ist year syllabi of all branches 12 sept 13
 
Mashable - an overview
Mashable - an overviewMashable - an overview
Mashable - an overview
 
Loss of Consciousness
Loss of ConsciousnessLoss of Consciousness
Loss of Consciousness
 
Kienbock disease
Kienbock diseaseKienbock disease
Kienbock disease
 

Ähnlich wie 1 s2.0-s0022072896048048-main

A new road for the synthesis and characterization of new enamino benzodiazepines
A new road for the synthesis and characterization of new enamino benzodiazepinesA new road for the synthesis and characterization of new enamino benzodiazepines
A new road for the synthesis and characterization of new enamino benzodiazepinesAlexander Decker
 
Synthesis, characterization and antimicrobial evaluation of novel diethyl (2-...
Synthesis, characterization and antimicrobial evaluation of novel diethyl (2-...Synthesis, characterization and antimicrobial evaluation of novel diethyl (2-...
Synthesis, characterization and antimicrobial evaluation of novel diethyl (2-...iosrphr_editor
 
Study of the Electric Properties of Azo/Hydrazone Tautomeric Mixture of the ...
Study of the Electric Properties of Azo/Hydrazone Tautomeric  Mixture of the ...Study of the Electric Properties of Azo/Hydrazone Tautomeric  Mixture of the ...
Study of the Electric Properties of Azo/Hydrazone Tautomeric Mixture of the ...Scientific Review SR
 
Oxidation of 7-Methyl Sulfanyl-5-Oxo-5H-Benzothiazolo-[3, 2-A]-Pyrimidine-6-...
	Oxidation of 7-Methyl Sulfanyl-5-Oxo-5H-Benzothiazolo-[3, 2-A]-Pyrimidine-6-...	Oxidation of 7-Methyl Sulfanyl-5-Oxo-5H-Benzothiazolo-[3, 2-A]-Pyrimidine-6-...
Oxidation of 7-Methyl Sulfanyl-5-Oxo-5H-Benzothiazolo-[3, 2-A]-Pyrimidine-6-...inventionjournals
 
Synthesis, Characterization and Study of Antioxidant Activities of Some New P...
Synthesis, Characterization and Study of Antioxidant Activities of Some New P...Synthesis, Characterization and Study of Antioxidant Activities of Some New P...
Synthesis, Characterization and Study of Antioxidant Activities of Some New P...IJRES Journal
 
Synthesis of 3-Substituted Coumarins by the Knoevenagel Condensation Reaction
Synthesis of 3-Substituted Coumarins by the Knoevenagel Condensation ReactionSynthesis of 3-Substituted Coumarins by the Knoevenagel Condensation Reaction
Synthesis of 3-Substituted Coumarins by the Knoevenagel Condensation Reactionmariam1020
 
Syntheses and Characterizations of Some New N-alkyl, Isoxazole and Dioxazole ...
Syntheses and Characterizations of Some New N-alkyl, Isoxazole and Dioxazole ...Syntheses and Characterizations of Some New N-alkyl, Isoxazole and Dioxazole ...
Syntheses and Characterizations of Some New N-alkyl, Isoxazole and Dioxazole ...IJAEMSJORNAL
 
البحث المنشور امريكا 2013
البحث المنشور امريكا 2013البحث المنشور امريكا 2013
البحث المنشور امريكا 2013Muna AL-rawi
 
Project report.pdf
Project report.pdfProject report.pdf
Project report.pdfanik49
 
Synthesis, Characterization, and Antibacterial Activity of Some Novel 5-Chlor...
Synthesis, Characterization, and Antibacterial Activity of Some Novel 5-Chlor...Synthesis, Characterization, and Antibacterial Activity of Some Novel 5-Chlor...
Synthesis, Characterization, and Antibacterial Activity of Some Novel 5-Chlor...IJERA Editor
 
Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...
Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...
Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...Pawan Kumar
 
N-alkylation methods, Characterization and Evaluation of antibacterial activi...
N-alkylation methods, Characterization and Evaluation of antibacterial activi...N-alkylation methods, Characterization and Evaluation of antibacterial activi...
N-alkylation methods, Characterization and Evaluation of antibacterial activi...IJERA Editor
 
Unusual Electronic Properties of Cellulose Nanocrystals Conjugated to Cobalt ...
Unusual Electronic Properties of Cellulose Nanocrystals Conjugated to Cobalt ...Unusual Electronic Properties of Cellulose Nanocrystals Conjugated to Cobalt ...
Unusual Electronic Properties of Cellulose Nanocrystals Conjugated to Cobalt ...Pawan Kumar
 

Ähnlich wie 1 s2.0-s0022072896048048-main (20)

1
11
1
 
A new road for the synthesis and characterization of new enamino benzodiazepines
A new road for the synthesis and characterization of new enamino benzodiazepinesA new road for the synthesis and characterization of new enamino benzodiazepines
A new road for the synthesis and characterization of new enamino benzodiazepines
 
Synthesis, characterization and antimicrobial evaluation of novel diethyl (2-...
Synthesis, characterization and antimicrobial evaluation of novel diethyl (2-...Synthesis, characterization and antimicrobial evaluation of novel diethyl (2-...
Synthesis, characterization and antimicrobial evaluation of novel diethyl (2-...
 
Study of the Electric Properties of Azo/Hydrazone Tautomeric Mixture of the ...
Study of the Electric Properties of Azo/Hydrazone Tautomeric  Mixture of the ...Study of the Electric Properties of Azo/Hydrazone Tautomeric  Mixture of the ...
Study of the Electric Properties of Azo/Hydrazone Tautomeric Mixture of the ...
 
Oxidation of 7-Methyl Sulfanyl-5-Oxo-5H-Benzothiazolo-[3, 2-A]-Pyrimidine-6-...
	Oxidation of 7-Methyl Sulfanyl-5-Oxo-5H-Benzothiazolo-[3, 2-A]-Pyrimidine-6-...	Oxidation of 7-Methyl Sulfanyl-5-Oxo-5H-Benzothiazolo-[3, 2-A]-Pyrimidine-6-...
Oxidation of 7-Methyl Sulfanyl-5-Oxo-5H-Benzothiazolo-[3, 2-A]-Pyrimidine-6-...
 
AN INVESTIGATION LEADING TO THE DESIGN AND SYNTHESIS OF BENZIMIDAZOLO/ TETRAZ...
AN INVESTIGATION LEADING TO THE DESIGN AND SYNTHESIS OF BENZIMIDAZOLO/ TETRAZ...AN INVESTIGATION LEADING TO THE DESIGN AND SYNTHESIS OF BENZIMIDAZOLO/ TETRAZ...
AN INVESTIGATION LEADING TO THE DESIGN AND SYNTHESIS OF BENZIMIDAZOLO/ TETRAZ...
 
Synthesis, Characterization and Study of Antioxidant Activities of Some New P...
Synthesis, Characterization and Study of Antioxidant Activities of Some New P...Synthesis, Characterization and Study of Antioxidant Activities of Some New P...
Synthesis, Characterization and Study of Antioxidant Activities of Some New P...
 
Synthesis of 3-Substituted Coumarins by the Knoevenagel Condensation Reaction
Synthesis of 3-Substituted Coumarins by the Knoevenagel Condensation ReactionSynthesis of 3-Substituted Coumarins by the Knoevenagel Condensation Reaction
Synthesis of 3-Substituted Coumarins by the Knoevenagel Condensation Reaction
 
Syntheses and Characterizations of Some New N-alkyl, Isoxazole and Dioxazole ...
Syntheses and Characterizations of Some New N-alkyl, Isoxazole and Dioxazole ...Syntheses and Characterizations of Some New N-alkyl, Isoxazole and Dioxazole ...
Syntheses and Characterizations of Some New N-alkyl, Isoxazole and Dioxazole ...
 
البحث المنشور امريكا 2013
البحث المنشور امريكا 2013البحث المنشور امريكا 2013
البحث المنشور امريكا 2013
 
Project report.pdf
Project report.pdfProject report.pdf
Project report.pdf
 
Synthesis, Characterization, and Antibacterial Activity of Some Novel 5-Chlor...
Synthesis, Characterization, and Antibacterial Activity of Some Novel 5-Chlor...Synthesis, Characterization, and Antibacterial Activity of Some Novel 5-Chlor...
Synthesis, Characterization, and Antibacterial Activity of Some Novel 5-Chlor...
 
Ed35736740
Ed35736740Ed35736740
Ed35736740
 
Thermal
ThermalThermal
Thermal
 
Thermal polysaccharide
Thermal polysaccharideThermal polysaccharide
Thermal polysaccharide
 
SYNTHESIS, PHYSICO-CHEMICAL AND ANTIMICROBIAL PROPERTIES OF SOME METAL (II) -...
SYNTHESIS, PHYSICO-CHEMICAL AND ANTIMICROBIAL PROPERTIES OF SOME METAL (II) -...SYNTHESIS, PHYSICO-CHEMICAL AND ANTIMICROBIAL PROPERTIES OF SOME METAL (II) -...
SYNTHESIS, PHYSICO-CHEMICAL AND ANTIMICROBIAL PROPERTIES OF SOME METAL (II) -...
 
Synthesis of 2,3 o,o-dibenzyl-6-o-tosyl-l-ascorbic acid
Synthesis of 2,3 o,o-dibenzyl-6-o-tosyl-l-ascorbic acidSynthesis of 2,3 o,o-dibenzyl-6-o-tosyl-l-ascorbic acid
Synthesis of 2,3 o,o-dibenzyl-6-o-tosyl-l-ascorbic acid
 
Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...
Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...
Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...
 
N-alkylation methods, Characterization and Evaluation of antibacterial activi...
N-alkylation methods, Characterization and Evaluation of antibacterial activi...N-alkylation methods, Characterization and Evaluation of antibacterial activi...
N-alkylation methods, Characterization and Evaluation of antibacterial activi...
 
Unusual Electronic Properties of Cellulose Nanocrystals Conjugated to Cobalt ...
Unusual Electronic Properties of Cellulose Nanocrystals Conjugated to Cobalt ...Unusual Electronic Properties of Cellulose Nanocrystals Conjugated to Cobalt ...
Unusual Electronic Properties of Cellulose Nanocrystals Conjugated to Cobalt ...
 

Mehr von Narayana Reddy Palakollu

Mehr von Narayana Reddy Palakollu (7)

1 s2.0-s1570023203002794-main
1 s2.0-s1570023203002794-main1 s2.0-s1570023203002794-main
1 s2.0-s1570023203002794-main
 
1 s2.0-s0731708500002375-main
1 s2.0-s0731708500002375-main1 s2.0-s0731708500002375-main
1 s2.0-s0731708500002375-main
 
Engineering Chemistry syllabus
Engineering Chemistry syllabusEngineering Chemistry syllabus
Engineering Chemistry syllabus
 
Science of corrosion
Science of corrosionScience of corrosion
Science of corrosion
 
WATER
WATERWATER
WATER
 
Appscj unior lecturerspreviouspaperswithexplanations
Appscj unior lecturerspreviouspaperswithexplanationsAppscj unior lecturerspreviouspaperswithexplanations
Appscj unior lecturerspreviouspaperswithexplanations
 
I b.tech -main exams time tables
I b.tech -main exams time tablesI b.tech -main exams time tables
I b.tech -main exams time tables
 

Kürzlich hochgeladen

Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embeddingZilliz
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersRaghuram Pandurangan
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxLoriGlavin3
 
Sample pptx for embedding into website for demo
Sample pptx for embedding into website for demoSample pptx for embedding into website for demo
Sample pptx for embedding into website for demoHarshalMandlekar2
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
What is Artificial Intelligence?????????
What is Artificial Intelligence?????????What is Artificial Intelligence?????????
What is Artificial Intelligence?????????blackmambaettijean
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxBkGupta21
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 

Kürzlich hochgeladen (20)

Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embedding
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information Developers
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptx
 
Sample pptx for embedding into website for demo
Sample pptx for embedding into website for demoSample pptx for embedding into website for demo
Sample pptx for embedding into website for demo
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
What is Artificial Intelligence?????????
What is Artificial Intelligence?????????What is Artificial Intelligence?????????
What is Artificial Intelligence?????????
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptx
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 

1 s2.0-s0022072896048048-main

  • 1. ELSEVIER Journal of Electroanalytical Chemistry 420 (1997) 127-134 aoun~Ai, or Electrochemical study of catechol and some 3-substituted catechols in the presence of 4-hydroxy coumarin: application to the electro-organic synthesis of new coumestan derivatives S.M. Golabi *, D. Nematollahi ElectroanalyticalChemistryLaboratory, Faculty of ChemistryUniversityof Tabriz, Tabriz,lran Received 26 February 1996; revised 3 June 1996 Abstract Electrochemical oxidation of catechol (ld), 3-methylcatechol (la), 3-methoxycatechol (lb) and 2,3-dihydroxybenzoic acid (lc) in the presence of 4-hydroxycoumarin as nucleophile in aqueous solution has been studied using cyclic voltammetry and controlled-potential coulometry. The results indicate that (la-ld) participating in a 1,4 (Michael) addition reaction convert to coumestan derivatives (Sa-5d). The electrochemical synthesis of 5a-5d has been successfully performed in an undivided cell in good yield and purity. Keywords: Electro-organic synthesis; Catechol; 3-Methylcatechol; 3-Methoxycatechol; 2,3-Dihydroxybenzoic acid; Coumestan derivatives 1. Introduction Many workers have shown that o- and p-diphenols can be oxidized electrochemically to o- and p-quinones re- spectively. The quinones formed are quite reactive and can be attacked by a variety of nucleophiles. Adams and co-workers [1-3] have shown that o-benzoquinone can react with nucleophiles such as ammonia, chloride and sulfhydryl compounds to form the addition products. Moreover, Adams and co-workers [4,5] have reported that p-benzoquinone, with electron-withdrawing substituents, can be attacked nucleophilically by water to yield a trihy- droxy compound which can be oxidized further to the hydroxyquinone. Several other workers [6-9] have investi- gated the reactions of o-quinones from dopa, catechol and 4-methylcatechoi in aqueous solutions, but the emphasis has been mostly on acidic solutions at low concentrations which significantly suppress the coupling reactions studied by Stum and Suslov [10] and Ryan et al. [11] in some detail. In this direction, we have recently investigated the electrochemical oxidation of catechol and 4-methyl- catechol in methanol and have synthesized electrochemi- cally 4,5-dimethoxy-o-benzoquinone and 4-methoxy-5- methyl-o-benzoquinone in high yield [12]. Moreover, we have studied the electrochemical oxidation of catechol in the presence of some nucleophiles such as acetylacetone, benzoylacetone, thienoyltrifluoroacetone, diethylmalonate and dimethylmalonate and have suggested that the product of initial oxidation of catechol reacts with these nucle- ophiles yielding benzofuran derivatives [13]. The impor- tance of compounds known as coumestant [14], 6H-benzo- furo[3,2-c][1]benzopyran-6-one, that have the basic struc- ture of many natural products with interesting physio- logical activities [15-17], has caused many workers to synthesize a number of coumestan derivatives by chemical [18-20] and electrochemical [21-23] routes, using cate- chol as a Michael acceptor and a variety of coumarin derivatives as nucleophiles. However, no report has been published until now about the synthesis of coumestans using catechol derivatives. Therefore, we have investigated the electro-oxidation of catechol and some of 3-substituted catechols such as 3-methylcatechol, 3-methoxycatechol, and 2,3-dihydroxybenzoic acid in the presence of 4-hy- roxycoumarin as nucleophile and have described a facile electrochemical method for synthesis of some new coumestant derivatives. 2. Experimental * Corresponding author. Cyclic voltammograms were obtained using a function generator (VA Scanner E 612 from Metrohm) connected to 0022-0728/97/$17.00 Copyright © 1997 Elsevier Science S.A. All rights reserved. PIIS0022-0728(96)04804-8
  • 2. 128 S.M.Golabi.D.Nematollahi/ JournalofElectroanalyticalChemistry420(1997)127-134 a potentiostat (Polarecord E 626, from Metrohm) and were recorded by a Hewlett-Packard 3310 A X-Y recorder. Controlled-potential coulometry and preparative electroly- sis were performed using an EG&G PAR model 173 potentiostat-galvanostat. The working electrode used in voltammetry was a glassy carbon disc (3 mm diameter) from Metrohm and a platinum wire (from Metrohm) was used as the counter electrode. The working electrode used in controlled-potential macroscale electrolysis was an as- sembly of five carbon rods (6mm diameter and 4cm length, spectrographically pure grade graphite from John- son Matthey Chemicals Limited) and a large platinum gauze constituted the counter electrode. The working elec- trode potentials were measured and adjusted vs. a saturated calomel electrode (SCE). All experiments were carried out at a thermostated temperature of 26 + l°C by using a jacketed ceil. All chemicals (catechols and 4-hydroxy- coumarin) were reagent-grade materials from Aldrich and CH3COONA was of pro-analysis grade from Merck. These chemicals were used without further purification. 2.1. Electro-organic synthesis of cournestan derivatives (Sa-Sd) In a typical procedure, 100mi of sodium acetate solu- tion in water (0.15M) was pre-electrolysed at the chosen potential (see Table 1), in an undivided cell, then 2mmol of catechol (la-ld) and 4-hydroxycoumarin(2 mmol) were added to the cell. The electrolysis was terminated when the decay of the current became more than 95%. The process was interrupted several times during the electrolysis and the graphite anode was washed in acetone in order to activate it. At the end of electrolysis, a few drops of acetic acid were added to the solution and the cell was placed in a refrigerator overnight. The precipitated solid was col- lected by filtration and recrystallized from an appropriate solvent (see Table 1). After recrystallization, products were characterized by IR, ~H NMR, J3C NMR (with pulse duration of 2 s), MS and elemental analysis (C,H,N). 2.2. Characteristics of the products 2.2.1. 3,4-Dihydroxy-2-methyl-6H-benzofuro[3,2,c] [1]ben- zopyran-6-one (Sa) M.p. 304-306°C (dec.). IR (KBr): l,'max 3464, 3260, 2920, 1705, 1629, 1465, 1319, 1288, 1205, 1097, 1032, 1007, 903, 754cm -1. 1H NMR, 6 ppm (DMSO-d6): 2.4 (s, 3H methyl protons); 7.2 (s, 1H, aromatic proton C-5); 7.35-8 (m, 4H, aromatic protons C8-C11); 9.4 (broad, 2H hydroxy protons). '3C NMR, 6 ppm (DMSO-d6) (relative intensity): 9(methyl carbon) (97.5); 102 (59.5), 105 (19), 108 (58.6), i12 (57), 113 (55), 116 (59.5), 121 (60.8), 124 (55), 131 (44), 144 (100), 144.2 (99), 149 (27.5), 152 (63.8), 158 (27.6). MS m/e (relative intensity): 282 (100), 281 (17.8), 268 (3), 208 (9.2), 207 (3.5), 152 (12.2), 151 (3), 141 (3.5), 121 (8.6), 115 (10.8), 114 (4.3), 100 (23.5), Table 1 Electroanalyticaland preparativedata Conver- Peakpotentials/ Applied Solventfor sion V(vs.SCE)a potential/ crystallization V(vs.SCE) Ao A, A2 Product yield/% la-Sa 0.21 0.29 1.09 0.40 Ethanol+acetone96 lb-Sb 0.20 0.28 1.09 0.40 Ethanol+acetone98 1c-5c 0.24 0.46 1.07 0.50 Water+ethanol 90 ld-Nl 0.26 0.40 1.08 0.45 Ethanol+acetone94 a Peakpotentialsweremeasuredfroma cyclicvoltammogramof each catechol(1mM)in the presenceof 4HC(I mM)recordedat 100mVs ~. 99 (17.8), 85 (28.6). Anal. Found: C, 68; 14, H; 3,52. C.6H.005. Calc.: C, 68.09; H; 3.55%. 2,2.2. 3,4-Dihydroxy-2-methoxy-6H-benzofuro[3,2,c] [1] benzopyran-6-one (Sb) M.p. 260-261°C (dec.). IR(KBr): Umax 3371, 2950, 1737, 1630, 1611, 1519, 1369, 1283, 1234, 1092, 758cm -l. IH NMR, t~ppm (DMSO-d6): 4.14 (s, 3H methoxy protons); 7.1 (s, IH, aromatic proton C-5); 7.35- 8.05 (m, 4H, aromatic protons C8-C11); 9.4 (broad, 2H, hydroxy protons). 13C NMR, 6 ppm (DMSO-d6) (relative intensity): 60 (methoxy carbon) (100); 99.3 (57), 105.5 (28.5), 112 (63.8), 114 (60), 117 (56), 121 (56.2), 124.8 (54.7), 131.6 (44), 133.7 (42.3), 138 (83.6), 142 (28.5), 146 (96.5), 152.3 (72.9), 158.2 (23.7), 159 (32). MS m/e (relative intensity): 298 (100), 297 (76.8), 284 (7.4), 283 (40.2), 255 (13.4), 251 (8.6), 121 (22), 85 (6.2), 83 (12.2), 81 (4.8), 73 (14.6), 71 (13.4), 70 (9.8), 69 (48.7), 64 (48.7). Anal. Found: C, 64.20; H, 3.76. C16H1006. Calc.: C, 64.43; H, 3.36%. 2.2.3. 3,4-Dihydroxy-6-oxo-6H-benzofuro[3,2,c][ l ]benzo- pyran-5-carboxylic acid (5c) M.p. 326-328°C (dec.). IR (KBr): Vmax 3500-2400 (broad), 1707, 1624, 1570, 1500, 1356, 1258, 1200, 1083, 754cm- i. IH NMR, 6 ppm (DMSO-d6): 7.2 (s, IH, aro- matic proton C-2); 7.36-8.10 (m, 4H, aromatic protons, C8-C 11): 9.25 (broad, 2H, hydroxy protons); 10.65 (broad, IH, carboxylic proton). 13C NMR, 6 ppm (DMSO-d6) (relative intensity): 98.5 (44.3), 111.6 (25.1), 112.2 (71.1), 113.4 (48), 116.4 (55.5), 121.3 (42), 124.5 (38.9), 125.2 (25.2), 131 (47.2), 146.3 (33.6), 147.2 (100), 148 (71), 149 (26.2), 152.1 (79.8), 157.5 (48), 168.2 (63). MS m/e (relative intensity): 312 (15.6), 294 (100), 268 (86.3), 238 (17.3), 210 (59.0), 194 (9.6), 138 (13.3), 126 (13.8), 69 (14.3). Anal. Found: C, 61.67; H, 2.56. C16H807 . Caic.: C, 61.54; H, 2.56%. 2.2.4. 3,4-Dihydroxy-6H-benofuro[3,2,c][1] benzopyran- 6-one (5d) M.p. 307-309°C (dec.) (Ref. [23] 308-310°C). IR (KBr): Vmax 3350, 3260, 1710, 1630, 1476, 1354, 1280, 1227, 1204, 1086, 1043, 754cm -~. ~H NMR 3ppm
  • 3. S.M. Golabi, D. Nematollahi / Journal of Electroanalytical Chemistry 420 (1997) 127-134 129 (DMSO-d6): 7.2 (s, 1H, aromatic proton C-2); 7.3 (s, 1H, aromatic proton C-5); 7.45-8.0 (m, 4H, aromatic proton C8-Cll); 9.5 (broad, 2H, hydroxy protons). 13C NMR, ppm (DMSO-d6) (relative intensity): 98.9 (97.4), 104.9 (100), 105.4 (21.4), 112.3 (56), 113.9 (50.8), 116.95 (97.4), 121 (90.3), 124.8 (98.7), 131.2 (80.7), 144.7 (78.1), 146.5 (81.9), 149.4 (40.3), 152.3 (52.3), 157.7 (15.8), 158.1 (22). MS m/e (relative intensity): 268 (100), 240 (5.4), 222 (6.8), 212 (3), 194 (7.9), 166 (3), 149 (3), 134 (6.5), 120 (8.2), 97 (12.1), 69 (41.4). 3. Results and discussion 3.I. Electro-oxidation of 3-methylcatechol (la) in the pres- ence of 4-hydroxycoumarin (4HC) Cyclic voltammetry of 1mM of la in aqueous solution containing 0.15M sodium acetate as supporting elec- trolyte, shows one anodic and a corresponding cathodic peak with a peak separation of about 300mV, which corresponds to the transformation of 3-methylcatechol (la) to 3-methyi-o-quinone (2a) and vice versa within a quasi- reversible two-electron process (Fig. I, curve a). A peak current ratio IpJlp~ of nearly unity, particularly during the repetitive recycling of potential can be considered as a criterion for the stability of o-quinone produced at the surface of the electrode under the experimental conditions. In other words, any hydroxylation [4-9] or dimerization [10,11] reactions are too slow to be observed in the time !2s~A j~ -6;o o ' e6o ' ~oo ~mV Fig. I. Cyclic voltammograms of l mM 3-methylcatechol: (a) in the absence,(b) and(d) in the presenceof ImM 4HCand,(c) 1mM4HCat a glassy carbon electrodein aqueous solution.Supportingelectrolyte 0.15M CH3COONA;scanrate 100mVs-]; T= 26+_I°C. 'rl I-:: t vlmVs-~ Scan rate/ 7 /,,, / / / / 1"7" jso~JA •. ~' 1 / /'~ --,~,l t~......... '/ 4- ~ 2 3a; " . E Fig. 2. (a) Typical voltammograms of 1mM 3-methylcatechol in water m the presence of l mM 4HC at a glassy carbon electrode and at various scan rates. Supporting electrolyte 0.15 M CH3COONa; starting potential -500mV vs. SCE; switching potential +900mV vs. SCE. (b) Variation of peak current ratio Ipaj/lwl and (c) current function lpaj/0 I/2) vs. scan rate in the presence and in the absence of 4HC. T = 26+ I°C. scale of cyclic voltammetry. However, when the concen- tration of la increases, the peak separation and the peak current ratio Ipa/Ipc increase. This can be related to the dimerization reaction and film formation at the surface of the electrode, enhanced by the excess of la [11,13,24]. The oxidation of la in the presence of 4HC as nucleophile was studied in some detail. Fig. 1 (curve b) shows the cyclic voltammogram obtained for a 1mM solution of la in the presence of 1mM 4HC. The voltammogram exhibits two anodic peaks at 0.29 and 1.10V vs. SCE, and the cathodic counterpart of the anodic peak A j nearly disappears. The shift of C 1 peak in a negative direction in the presence of 4HC (Fig. 1, curve b), is probably due to the formation of a thin film of product at the surface of the electrode [23]. Comparison of the voltammograms b and c in Fig. 1 reveals that the peak A 2 (curve b) corresponds to the oxidation of 4HC. This peak decreases dramatically in the second scan of potential because of the consumption of 4HC during its reaction with o-quinone (2a). The multi- cyclic voltammetry of la in the presence of 4HC shows that in the second cycle, parallel to the shift of the A 1 peak in a positive direction, a new peak A 0 appears with an Ep
  • 4. 130 S.M. Golubi, D. Nematollahi / Journal of Electroanalytical Chemistry 420 (1997) 127-134 !2sFA ? ~ -500 100 0 E/mY Fig. 3. Cyclic voltammograms of t mM 3-methylcatechol in water in the presence of l mM 4HC, at a glassy carbon electrode during controlled- potential coulometry at 0.40V vs. SCE. (a) at the beginning of, (b) and (c) in the course of, and (d) at the end of coulometry. Scan rate 100mVs-~; T= 26+_ I°C. value of 0.21 V vs. SCE (Fig. 1, curve d). This new peak A 0 is related to the electro-oxidation of intermediate 3a, and the shift of peak A ~ is due to the deposition of product on the surface of the electrode, inhibiting to a certain extent the performance of the electrode process. Further- more, a comparison of voltammograms b and d shows that the peak current ratio lpa~/lpc ~ is dependent on the switch- ing potential. In addition, it is seen that proportional to the augmentation of potential sweep rate, the height of the C~ peak of la increases (Fig. 2 curves a). A similar situation is observed when the 4HC to la concentration ratio is decreased. A plot of peak current ratio vs. scan rate for a mixture of la and 4HC confirms the reactivity of 2a towards 4HC, appearing as an increase in the height of the cathodic peak C~ at higher scan rates (Fig. 2, curve b). In contrast, the current function for the A~ peak (IpaL/v t/2) changes only slightly with increasing scan rate (Fig. 2, curve c) and such behaviour is taken to be indicative of an EC mechanism [25]. Controlled-potential coulometry was performed in aqueous solution containing 1mM of la and 1mM of 4HC at 0.40V vs. SCE. The monitoring of electrolysis progress was carried out by cyclic voltamme- try (Fig. 3). It is shown that, proportional to the advance- ment of coulometry, anodic peak AI (as well as A 2) decreases and a new anodic peak A0 appears at less positive potentials (Fig. 3 curves b and c) which is related to the oxidation of the intermediate (3a). The cyclic voltammogram reduces to curve d (Fig. 3) when the charge consumption becomes about 4e- per molecule of la. These observations allow us to propose the reaction scheme pathway for the electro-oxidation of la in the presence of 4HC shown in Eqs. (1)-(5). R1 R1 -2e, -2H - (l) R2 la- ld R22a- 2d R2 3a -3(I (2) R1 R1 OH -2@.-2H~ll,. 0 4a- 4d (3) 5a- 5d (4) R1 R1 _ 1 OH o.+~ ° ~ o.. ~o~o R2 ~o ~-o~*o % oH 3a-3d R2 2a-2~ 5a-5~ R21a-ld RI=--CH3 R2=-PI la, 2a, 3a, 4a, 5a R~=-OCH 3 R2=-H lb, 2b, 3b, 4b, 5b R~=-H R2=-COOH lc, 2c, 3c, 4c, 5c R~= -H R2= °H ld, 2d, 3d, 4d, 5d (5) The existence of a methyl group with electron-donating character at the C-3 position of the o-quinone ring (2a) probably causes the Michael acceptor (2a) to be attacked by enolate anion (2) from the C-4 and C-5 positions to yield two types of product. However, tH NMR [26] and ~3C NMR results indicate that 3-methyl-o-quinone (2a) formed from the oxidation of la is selectively attacked at the C-5 position by enolate anion (2) leading to the production of the selective product (Sa). According to our results, it seems that the intermolecular (Eq. (2)) and intramolecular (Eq. (4)) 1,4-(Michael) addition of anion enolate of 4HC (2) to o-quinone (2a) is faster than other secondary reactions, leading presumably to the intermedi- ate (3a). The oxidation of this compound (3a) is easier than the oxidation of parent starting molecule (la) by
  • 5. S.M. Golabi, D. Nematollahi/Journal of Electroanalytical Chemistry 420 (1997) 127-134 131 virtue of the presence of the electron-donating group. It can be seen from the mechanism of Eqs. (1)-(5), that as the chemical reaction (Eq. (2)) occurs, la is regenerated through homogeneous oxidation (Eq. (5)) and hence can be reoxidized at the electrode surface. Thus, as the chemical reaction takes place, the apparent number of electrons transferred increases from the limit of n = 2 to n = 4 electrons per molecule. The reaction product (5a) can also be oxidized at a lower potential than the starting la compound. However, overoxidation of 5a was circum- vented during the preparative reaction because of the insolubility of the product in water + sodium acetate me- dia. 3.2. Electro-oxidation of 3-methoxycatechol (lb) in the presence of 4HC (2) Cyclic voltammetry of 1mM lb in aqueous solution containing 0.15 M sodium acetate as supporting electrolyte exhibits an anodic and cathodic peak corresponding to the quasi-reversible two-electron transformation of 3-methoxy- catechol (lb) to 3-methoxy-o-benzoquinone (2b) and vice versa. The peak current ratio lo,/Ipc is nearly unity, particularly during the repetitive recycling of potential, suggesting stability of the electrode oxidation product and no occurrence of hydroxylation or dimerization reactions [4-11] under the experimental conditions. The electro- oxidation of 1mM of lb in the presence of 1mM of 4HC proceeds in a way similar to that of la. However, in this case, the presence of the methoxy group as an electron- donating substituent on the molecular ring causes a diminution in the activity of 3-methoxy-o-quinone (2b) as a Michael acceptor towards the 1,4-(Michael) addition reaction. Consequently, contrary to other catechol cases, the peak current ratio increases moderately in the presence of 4HC and the new anodic peak A 0 is not observed during the repetitive scans, mainly because of the low concentration of intermediate 3b at the surface of the electrode. However, the plot of peak current ratio vs. scan rate confirms the reaction between the oxidation product of lb and 4HC, appearing as a decrease in the peak current ratio lpa~/Ipc~ with increasing scan rate. The variation of current function Ipa~/V ~/2 with scan rate also agrees with the above-mentioned results. Controlled-potential coulome- try was performed in aqueous solution containing 1mM of lb and I mM of 4HC at 0.40V vs. SCE (Fig. 4). The monitoring of the electrolysis progress by cyclic voitam- metry shows that, parallel to the advancement of coulome- try, both anodic peaks A~, and A 2 decrease and a new anodic peak A 0 appears at less positive potentials (Fig. 4 curve b). On warming the electrolysed solution for some time (at 35°C for 10min), the shape of the cyclic voltam- mogram changes (Fig. 4, curve d) and a decrease in the peak current of A 0 is observed together with the reappear- ance of peak A l (Eq. (5)). This relates to the relative stability of the intermediate 3b arising from the presence A1 12s+ f -sbo ' 1;o ' r;o E/mV Fig. 4. Cyclic voltammograms of 1mM 3-methoxycatechol in the pres- ence of l mM 4HC in water at a glassy carbon electrode during con- trolled-potential coulometry at 0.40V vs. SCE. (a) At the beginning of, (b)-(e) in the course of, and (f) at the end of coulometry. Scan rate 100mVs ~; T=26+1°C. of the electron-donating methoxy group in the molecule and the occurrence of solution electron transfer (SET) between 3b and 3-methoxy-o-benzoquinone. All anodic and cathodic peaks disappear when the charge consump- tion becomes about 4e- per molecule of lb (Fig. 4, curve e). The reaction mechanism is similar to that of the previous case and, according to these results, it seems that the chemical reaction between 4HC and 3-methoxy-o- benzoquinone is fast enough and leads presumably to the formation of product (Sb). OCH3 5b Similar to la, ~H NMR [26] and 13C NMR results indicate that 3-methoxy-o-benzoquinone (2b), produced from the oxidation of lb, is selectively attacked from C-5 by enolate anion 2, to produce the product 5b.
  • 6. t 32 S.M. Golabi, D. Nematollahi/Journal of Electroanalytical Chemistry 420 (1997) 127-134 3.3. Electro-oxidation of 2,3-dihydroxybenzoic acid (l c) in the presence of 4HC Fig. 5 (curve a) shows the cyclic voltammogram of a 1mM solution of lc in water, containing 0.15 M of sodium acetate. In this condition, the cyclic voltammogram ex- hibits a quasi-reversible two-electron process correspond- ing to the 2,3-dihydroxy-benzoic acid (lc)/o-quinone-3- carboxylic acid (2c) couple. The cathodic counterpart of the anodic peak decreases when 1mM of 4HC is added, and a second irreversible peak A 2 appears at more positive potentials (Fig. 5, curve b). This peak A 2 is related to the oxidation of 4HC. The multicyclic voltammogram of this solution shows a new anodic peak A 0 at 0.24V vs. SCE, which can be attributed to the oxidation of intermediate 3c, followed by a decrease in the height of peak A 2 (Fig. 5, curve c). Under these conditions, the peak current ratio lpal//Ipcl and the current function Ipal/V I/2 decrease with increasing scan rate. As in the previous cases, controlled- potential coulometry for determination of the number of transferred electrons was performed at 0.50 V vs. SCE, and cyclic voltammetric analysis carried out during the elec- trolysis in order to elucidate the formation of intermediate(s) and other products, shows the formation of the new anodic peak A 0. All anodic and cathodic peaks disappear when the consumed charge reaches a limit of 4e- per molecule (Fig. 6). The presence of an electron- - /~ tI 0 ~ " A1 ° ~"Yc~~-300 300 go0 E/mY Fig. 5. Cyclic voltammograms of I mM 2,3-dihydroxybenzoic acid, (a) in the absence of, (b) in the presence of l mM 4HC at a glassy carbon electrode and at a scan rate of 200mVs- ~; (c) as (b) at a scan rate of 100mVs -~ . Supporting electrolyte 0.15M CH3COONa; T = 26+ I°C. A= -,~o ' 260 ' 860 ' E/mY Fig. 6. Cyclic voltammograms of ] mM 2,3-dihydroxybenzoic acid in the presence of l mM 4HC in water at a glassy carbon electrode during controlled-potential coulometry at 0.50V vs. SCE. (a) At the beginning of, (b)-(d) in the course of, and (e) at the end of coulometry. Scan rate 100mVs =; T=26±1°C. withdrawing group at the C-3 position of the o-quinone ring (2c), causes a difference in the reactivity between the C-4 and C-5 positions. However, IH NMR [26] and 13C NMR results indicate that o-quinone-3-carboxylic acid (2e) formed from the oxidation of le is selectively at- tacked from the C-4 position by enolate anion 2 leading to the formation of product (5c). 5c According to the voltammetric results, it seems that the chemical reaction between 4HC and o-quinone-3-car- boxylic acid is fast enough and favours the progress of the subsequent reactions. 3.4. Electro-oxidation of catechol (ld) in the presence of 4HC The oxidation of catechol (la) in the presence of 4HC as a nucleophile in water was studied by cyclic voltamme- try. Fig. 7 (curve a) shows the cyclic voltammogram of l mM catechol in aqueous solution containing 0.15M
  • 7. S.M. Golabi, D. Nematollahi/ Journal of Electroanalytical Chemistry 420 (1997) 127-134 133 C1 A2~~ 15 I ( '° d v/mVs ~ -ff~O "260 1OO 4(~)0 "/60 16OO E/mV Fig. 7. Cyclic voltammogramsof l mM catechol in water, (a) in the absence of, (b) and (c) in the presence of ImM 4HC at a glassy carbon electrodeelectrode.(d) Variationof peakcurrentratio /pa~//pc ~) vs. scan rate• Supportingelectrolyte0.15M CH3COONa;scan rate 100mVs-t; T = 26__I°C. sodium acetate. Similar to the previous cases, in the pres- ence of 4HC, the peak current ratio Ipal/Ipcl increases proportionally to the augmentation in 4HC concentration, as well as by decreasing the potential sweep rate, and a second irreversible peak appears at 1.10 V vs. SCE (Fig. 7, curve b). Contrary to the report of Tabacovic et al. [23], this peak A 2 can be attributed to the oxidation of 4HC (see Fig. 1, curve c). Moreover, the multicyclic voltammogram of catechol in the presence of 4HC shows a new anodic peak A 0 at 0.26V vs. SCE (Fig. 7, curve c). For this solution, the effect of increasing potential scan rate on the peak current ratio is shown in Fig. 7, curve d. Controlled- potential coulometry was performed at 0.45V vs. SCE, and cyclic voltammetric analysis carried out during the electrolysis shows the formation of a new anodic peak A 0 at less positive potentials. All anodic and cathodic peaks decrease and disappear at a rate corresponding to the consumption of 4e ~ per molecule. The reaction mecha- nism is similar to that of previous cases, and according to our results it seems that the chemical reaction between 4HC and o-quinone (2d) is fast enough and favours the progress of the subsequent reactions leading to the forma- tion of product (5d). 5d 4. Conclusions The present results complete the previous report on the anodic oxidation of some catechols in aqueous solutions. The results of this work show that catechols are oxidized in water to their respective quinones. The quinones are then attacked by enolate anion of 4-hydroxycoumarin to form coumestans. The overall reaction mechanism for anodic oxidation of catechols in the presence of 4-hy- droxycoumarin as nucleophile is presented in Eqs. (1)-(5). According to our results, it seems that the intermolecular and intramolecular 1,4-(Michael) addition of this nucle- ophile to the o-quinones formed (Eqs. (2) and (4)) leads to the formation of new coumestan derivatives as final prod- ucts, in good yields and purity. Acknowledgements The authors are grateful to Dr. M.F. Moossavi and A.R. Fakhari, University of Tarbiat Modarres, for FF NMR spectra, and we would like to thank Dr. Jarrahpoor, Uni- versity of Shiraz, for MS spectra. In addition, the authors would like to thank Dr. S.A. Fakhri and M. Khosroshahi, University of Tabriz, for FI" IR spectra. We also thank the referee for his useful comments. References [1] R.N. Adams, M.D. Hawlay and S.W. Feldberg, J. Chem. Phys., 71 (1967) 85 I. [2] M.D. Hawley, S.V. Tatawawadi, S. Piekarski and R.N. Adams, J. Am. Chem. Soc., 89 (1967) 447. [3] A.W. Sternson, R. McCreery, B. Feinberg and R.N. Adams, J. Electroanal. Chem., 46 (1973) 313. [4] L. Papouchado, G. Petrie and R.N. Adams, J. Electroanal. Chem., 38 (1972) 389. [5] L. Papouchado, G. Petrie, J.H. Sharp and R.N. Adams, J. Am. Chem. Soc., 90 (1968) 5620. [6] T.E. Young, J.R. Griswold and M.H Hulbert, J. Org. Chem., 39 (1974) 1980. [7] A. Brun and R. Rosset, J. Electroanal. Chem., 49 (1974) 287.
  • 8. 134 S.M. Golabi, D. Nematollahi /Journal of Electroanalytical Chemistry 420 (1997) 127-134 [8] J. Doskocil, Coll. Czech. Chem. Commun., 15 (1950) 780. [9] G. Sivaramiah and V.R. Krishman, Ind. J. Chem., 4 (1966) 541. [10] D.I. Stum and S.N. Suslov, Biofizika, 21 (1979) 40. [11] M.D. Rayn, A. Yueh and C. Wen-Yu, J. Electrochem. Soc., 127 (1980) 1489. [12] D. Nematollahi and S.M. Golabi, J. Electroanal. Chem., 405 (1996) 133. [13] D. Nematollahi and S.M. Golabi, lran. J. Sci. Technol., in press. [14] C. Deschamp-Vallet and C. Mentzer, C.R. Acad. Sci. Paris, 251 (1960) 736. [15] L.L. Simonova, A.A. Shamshurin, P.N. Rajumovskii, G.S. Semanin, B.R. Gotsulenka and V.G. Kholmetskaya, lzv. Akad. Nauk Mold. SSR Ser. Biol. Khim. Nauk, 4 (1972) 77. [16] E.M. Bickoff, A.L. Livingston, A.N. Booth, C.R. Thompson, E.A. Hollwell and E.G. Beinhart J. Anita. Sci., 19 (1960) 4. [17] M. Darbarwor, V. Sundaramurthy and N.N. Subba Rao, Ind. J. Chem., 11 (1973) 115. [t8] U.T. Bhalerao, C. Muralikristma and G. Pandey, Synth. Commun., 19 (1989) 1303. [19] R.R. Shah and K.N. Trivedi, J. Ind. Chem. Soc., 56 (1979) 995. [20] R.R. Shah and K.N. Trivedi, J. Ind. Chem. Soc., 52 (1975) 224. [21] Raju, K.V. Subba, Raju, P.V. Narasimha and Raju, G.J.V. Jagan- nadha, Bull. Electrochem., 6 (1990) 877 (Chem. Abs., 115, 59449z). [22] Z. Grujic, I. Tabakovic and M. Trkovnik, Tetrahedron Lett., (1976) 4823. [23] I. Tabakovic, Z. Grujic and Z. Bejtovic, J. Heterocyclic Chem., 20 (1983) 635. [24] J. Tsuji and H. Takayanagi, Tetrahedron, 34 (1978) 641. [25] A.J. Bard and L.R. Faulkner, Electrochemical Methods, Wiley, New York, 1980, pp. 452-453. [26] F.M. Dean and M.V. Sargent, in A.R. Katritzky and C.W. Rees (Eds.), Comprehensive Heterocyclic Chemistry, Vol. 4, Part 3, Pergamon, New York, 1984, Chapter 10, p. 561.