SlideShare ist ein Scribd-Unternehmen logo
1 von 69
Exploiting Semantic Web Techniques for Representing and Utilising Folksonomies Owen Sacco
page 1 Presentation Map
page 2 Presentation Map Introduction Aim & Goals The Semantic Web Meta Formats, Vocabularies & Query Language Web 2.0 Web 2.0 Technologies & Applications Folksonomies Tags, Tagging, Representing Tags Semantically & Integrating Folksonomies with the Semantic Web
Presentation Map Graph Mining Techniques Fast Unfolding of Communities in Large Networks State of the Art Tool Examining the Edge List The Community Structure Ontology Jena & Corese Creating & Querying RDF Statements Analysis & Results Conclusion Enhancements & Future Work page 3
Introduction page 4
Introduction The research is about: Understanding various Semantic Web technologies for representing data semantically Understanding Folksonomies and how to semantically represent them To semantically represent tags retrieved from Bibsonomy (http://www.bibsonomy.org/)  The tags have been hierarchically structured using the algorithm “fast unfolding of communities in large networks” Use Semantic Web technologies to create and exploit such representation of tags page 5
The Semantic Web page 6
The Semantic Web page 7 What is the Semantic Web? Not a separate Web  An extension of the current Web Semantic = Meaning Semantic Web = Meaningful Data Meaning is data about data, i.e. Metadata Advantages of Semantic Web: Information is given well-defined meaning  Better enabling computers People to work in cooperation	               Source: W3C Semantic Web
The Semantic Web Resource Description Framework (RDF) A framework that describes resources on the WWW Suitable for merging data on the Web Resources are uniquely identified by URLs The RDF Model is made up of triple statements Triple Statements: Subject, Predicate & Object page 8 PREDICATE SUBJECT OBJECT
The Semantic Web An RDF Model can be serialised in RDF/XML An example of RDF document <?xml version="1.0"?>  <rdf:RDFxmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#">  <contact:Personrdf:about="http://www.w3.org/People/EM/contact#me"> <contact:fullName>Eric Miller</contact:fullName> <contact:mailboxrdf:resource="mailto:em@w3.org"/> <contact:personalTitle>Dr.</contact:personalTitle> </contact:Person>  </rdf:RDF>  Source: W3C RDF Primer page 9
The Semantic Web Ontology “A formal explicit specification of a shared conceptualisation” In other words: parties having a common concept of data agree and specify clearly as possible such concepts It is an enabling technology for information sharing and manipulation A vocabulary for RDF documents Ontologies are based on RDF models and are expressed by using the Web Ontology Language  page 10
The Semantic Web SPARQL – An RDF Query Language Query in the Semantic Web context means: “Technologies and protocols that programmatically retrieve information from the Web of Data”. Based on triple patterns similar to RDF triples A query returns resources for all RDF triples that match the query’s pattern Is used to return complex data for mash-ups or search engines containing semantic data Syntax is similar to SQL Source: W3C page 11
Web 2.0 page 12
Web 2.0 A “Read/Write” Web Web 2.0 has: Facilitated web design Provided attractive, rich, easy-to-use interfaces Assisted in reuse of data by merging information from various sources Created social networks of people According to Internet World Stats, between 2000 and 2003 users doubled thanks to Friendster (one of the first social network websites) Source: Internet World Stats - Internet Growth Statistics page 13
Web 2.0 Web 2.0 is considered a Social Web People are more involved by collaborating & sharing data One of the major Web 2.0 technologies for web development is AJAX A combination of several technologies: HTML or XHTML Cascading Style Sheets (CSS) Java Script XML page 14
Web 2.0 Web 2.0 created new application concepts: Blogs (Blogger, WordPress) Wikis (Wikipedia) Really Simple Syndication, RSS Mashups (MusicMesh, BBC Music) Social Networks (Facebook, LinkedIn, MySpace) Social Bookmarking (delicious, Bibsonomy) Photo Sharing (Flickr) Video Sharing (YouTube, Vimeo) In most of these concepts you find Tagging! page 15
Folksonomies page 16
Folksonomies Tag “A non-hierarchical keyword or term” Tagging “Assign a tag to a piece of information or resources” Tagger “The person that assigns the tag” Folksonomy “The result of personal free tagging of information and objects for one’s own retrieval. The tagging is done in a social environment.”  Thomas Vander Wal (2004) page 17
Folksonomies Tag Cloud a visualisation of popular tags  popular tags stem out from others by being in larger font or emphasised page 18
Folksonomies page 19 Where can we tag? Social Bookmarking websites
Folksonomies Picture sharing websites page 20
Folksonomies Video sharing websites page 21
Folksonomies Why tagging? It’s Popular Nowadays, practically anyone who uses a computer or the Internet is exposed to tagging in some way. It’s Social Through the most popular tags, we can see a kind of rough consensus on the subject of the resource. It’s Flexible Ad-hoc, free-form and does not adhere to any strict classification scheme or vocabulary. page 22
Folksonomies Basic Model Taggers create the tags, and sometimes they add resources. If we can identify something, then it can be tagged. Tagging is open-ended, tags can be any kind of term. page 23 Source: Smith G. 2008. Tagging People-Powered Metadata for the Social Web
Folksonomies How about: Collaborative sharing tags across multiple applications Collaborative filtering based on tagging Connecting people based on tagging All these can be achieved through Tag Ontologies Ontology is not a taxonomy Ontology makes semantic agreement Semantic agreement enables useful composition page 24
Folksonomies Richard Newman’s Tag Ontology page 25 Source: Haklae Kim et al., Review and Alignment of Tag Ontologies for Semantically-Linked Data in Collaborative Tagging Spaces
Folksonomies Tom Gruber’s Conceptual Model Tagging(object, tag, tagger, source, + or -) page 26 Source: Gruber T., Ontology for Folksonomy: A Mash-Up of Apples and Oranges.
Folksonomies Limitations of tagging: Ambiguity of tags (example: apple is it a fruit or the computer company?) Lack of synonymy (example: lorry or truck) Discrepancies in granularity (example: java vs programming language) Flat Organisation of Folksonomy How do we overcome these? Use: CommonTag, MOAT, SCOT page 27
Folksonomies CommonTag To add concepts to tags from databases such as Freebase and DPPedia   page 28 Source: CommonTag
Folksonomies Meaning Of A Tag (MOAT) An ontology to represent how different meanings (URIs of semantic Web resources) can be related to a tag Extends the Tag class from Richard Newman’s tag ontology Tagging (User, Resource, Tag, Meaning) Architecture of MOAT Framework: MOAT server stores different meanings that can be queried MOAT client interacts with the server to let users easily annotate their content page 29
Folksonomies Social Semantic Cloud of Tags (SCOT) An ontology aimed to represent set of tags Built on top of Richard Newman’s Tag Ontology page 30 Source: SCOT: Let's Share Tags!
Folksonomies Limitations of the previous ontologies: An extra step is being added to the tagging activity Isn’t it daunting for the user when presented with a list of meanings to choose from?  Which meaning shall the user choose? Will tagging remain popular with this additional step? If an automatic process is used to select a meaning of a tag, how accurate can this process be?  Can this process really understand the user at that instance?  page 31
Folksonomies With this additional meaning, isn’t tagging becoming another “strict” classification scheme? Can relationships of tags really be built on meanings? How about using some form of algorithm that can unfold new relationships of tags? page 32
Fast Unfolding of Communities in Large Networks  page 33
Fast Unfolding of Communities in Large Networks A recursive method to extract the community structure of large networks This method is based on modularity optimisation The modularity is a scalar value that measures the density of links inside communities as compared to links between communities It unfolds a complete hierarchical community structure for large networks in a short time Results have shown that on a network of 118 million nodes, the algorithm took 152 minutes page 34 Source: Blondel V.B. et al. 2008. Fast unfolding of communities in large networks
Fast Unfolding of Communities in Large Networks The algorithm consists of two phases which are iterated until a maximum modularity is attained. First, all nodes are assigned to different communities. Then each node is compared with its neighbours. The node is placed in the community which yields a maximum gain in modularity. This process is repeated for all nodes until no further movement can be attained. The second phase consists of building a network whose nodes are now the communities found during the first phase. page 35
Fast Unfolding of Communities in Large Networks After the second phase, the process starts again with the first phase A “pass” denotes a combination of both passes The “passes” are iterated until there are no more changes and the maximum modularity is reached for the whole network The height of the network denotes in the number of passes At the end, a hierarchical structure is attained that consists of communities of communities. page 36
Fast Unfolding of Communities in Large Networks page 37
State of the Art Tool page 38
State of the Art Tool The Data It is provided beforehand Consists of a hierarchical structure made up of communities of communities of related tags  This hierarchical structure is constructed using the “Fast Unfolding of Communities in Large Networks” algorithm The tags are from the Social Bookmarking Website Bibsonomy (http://www.bibsonomy.org/) The aim for using the community structure algorithm is to unfold new relationships amongst tags page 39
State of the Art Tool A visualisation of tagging graph that depicts the relationships amongst tags page 40
State of the Art Tool The Input to the system will consist of Edge Lists Each Edge List file consists of a pass 4 Edge List files were used for this system:  The first list is a plain list of related tags queried from Bibsonomy The other three lists denote communities or communities of communities computed from the community structure algorithm Each relation (line) in each of the Edge List file consists as follows: The first edge list: <tagi, tagj, weight> page 41
State of the Art Tool The other three edge lists: <communityi, tagj, weight> or  <communityi, communityj, weight> The Edge List files contain: The first (lower level): 13126 nodes with 264718 edges The second (first pass): 529 nodes with 6337 edges The third (second pass): 65 nodes with 374 edges The fourth (third pass): 50 nodes with 207 edges page 42
State of the Art Tool A sample from one of the edge lists (the lower level file) caching,offlinebrowser,2.0 caching,archiving,2.0 institutions,activity,1.0 malian,senegal,2.0 malian,northern,2.0 malian,guinea,2.0 malian,drummers,2.0 cdf,c,1.0 cdf,library,1.0 page 43
State of the Art Tool First Task: To semantically represent all edge lists that represent the hierarchical structure Since the lower level edge list is made up of a set of tags, then the tags will be described using the SCOT ontology But to represent the hierarchical structure of communities, a new ontology must be designed that needs to be built on top of SCOT and also, the new ontology must  be linked to SCOT page 44
State of the Art Tool The Community Structure Ontology page 45 CommunityStructure UnfoldedCommunity UnfoldingActivity Community CommunityAggregation linkedIn associatedCommunity linkedWith Linkage name sioc:Resource modularity pass linkedTag communityOf Community linkWeight scot:Tag
State of the Art Tool Ontology was designed with a tool called Protege – A Java application for designing Ontolotgies Ontology built on OWL2 Classes: CommunityStructure, Community, CommunityAggregation, Linkage Object properties: associatedCommunity, communityOf, linkedIn, linkedTag, linkedWith, unfoldedCommunity, unfoldingActivity Data properties: communityName, linkWeight, modularity, pass page 46
State of the Art Tool Second Task: To create an application that will transform the edge lists to RDF/XML statements and store the documents on physical storage.  Also, a query engine will be included into the application to query the RDF/XML statements. The application is developed using the Java programming language. For the creation of RDF/XML statements and to write such statements to physical storage, a widely used API is embedded in the system.  This API is called the JENA API page 47
State of the Art Tool Jena – A Semantic Web Framework Developed by HP An RDF API for reading and writing RDF models in RDF/XML An OWL API for reading and writing OWL ontologies In-memory and persistent storage for writing RDF/XML statements to memory or physical storage such as text files or even relational databases SPARQL query engine page 48
State of the Art Tool The Tool page 49
State of the Art Tool The tool provides the following features: Properties to setup: The Edge List Directory The Edge List File Structure page 50
State of the Art Tool Settings to setup the type of storage required RDF/XML documents page 51
State of the Art Tool Relational database persistent storage A TDB storage, a custom fast persistent storage page 52
State of the Art Tool Properties to setup the Ontologies page 53
State of the Art Tool The Method to transform the edge list to RDF Statements: First, the edge lists are merged together and ordered according to their hierarchical structure Second, the RDF Model consisting of RDF statements are created according to the Community Structure and SCOT Ontologies Third, RDF statements are written according to the settings setup. page 54
State of the Art Tool Writing of RDF Statements RDF Documents: For whole documents: the whole document is written after the whole model is created For split documents: documents are written after the model for each community is created. Two index lists are created, one A-Z and an other to indicate where each community document is located page 55
State of the Art Tool Writing of RDF Statements RDF Persistent Storage RDB Method: MySQL is used as a persistent relational databases and RDF statements are written on-the-fly, i.e. After each statement is created, these are written in the database TDB Method: each statement is written on-the-fly as well page 56
State of the Art Tool Writing of RDF Statements (Results) page 57
State of the Art Tool Querying Statements For RDF Documents Corese SPARQL Engine was used  Corese SPARQL Engine is developed by Edelweiss Built on top of Jena with some added enhancements such as Approximated Searches, Select Expressions Queries only RDF documents and does not have the capability of querying directly to relational databases page 58
State of the Art Tool Querying Statements For Persistent Storage, the Jena SPARQL Engine is used since Jena allows for direct querying Querying Methods RDF Documents (Split Documents): First query index lists Get community document Query community document and get linked communities Query index list and query contents for each community page 59
State of the Art Tool Querying Methods RDF Documents (Whole Documents) Query whole model and query for community Retrieve linked communities Query linked communities for their content Persistent Storage Query whole model and query for community Retrieve linked communities Query linked communities for their content page 60
State of the Art Tool Querying Statements (Results) Results are based on a community called malian This community has 57 linked communities and 15 linked tags page 61
State of the Art Tool Other features RDF Document Viewer page 62
Conclusion page 63
Conclusion In this research we have seen the importance of Semantic Web and to describe semantically Web data We have seen the importance of using folksonomies for search and exploration  Additionally, we have also seen various ontologies of how such folksonomies can be semantically represented From community structure algorithms and graph mining techniques, new relationships amongst other tags can be unfolded page 64
Conclusion An ontology was designed and developed for the fast unfolding of communities in large networks From this ontology, RDF/XML statements can be created and are linked to the SCOT ontology We have seen that by using Triple Stores, persistent storage for triple statements is much faster for querying page 65
Future Enhancements page 66
Future Enhancements To try this model on larger tag models from different websites To include the tagger and links to the actual resource To analyse these links that contribute to the linked data initiative Optimise writing and querying based on larger models page 67
page 68

Weitere ähnliche Inhalte

Was ist angesagt?

Freddy Limpens: From folksonomies to ontologies: a socio-technical solution.
Freddy Limpens: From folksonomies to ontologies: a socio-technical solution.Freddy Limpens: From folksonomies to ontologies: a socio-technical solution.
Freddy Limpens: From folksonomies to ontologies: a socio-technical solution.PhiloWeb
 
The Social Semantic Web: An Introduction
The Social Semantic Web: An IntroductionThe Social Semantic Web: An Introduction
The Social Semantic Web: An IntroductionJohn Breslin
 
Tutorial: Social Semantics
Tutorial: Social SemanticsTutorial: Social Semantics
Tutorial: Social SemanticsMatthew Rowe
 
Michalis Vafopoulos: Initial thoughts about existence in the Web
Michalis Vafopoulos: Initial thoughts about existence in the WebMichalis Vafopoulos: Initial thoughts about existence in the Web
Michalis Vafopoulos: Initial thoughts about existence in the WebPhiloWeb
 
On the Navigability of Social Tagging Systems
On the Navigability of Social Tagging SystemsOn the Navigability of Social Tagging Systems
On the Navigability of Social Tagging SystemsMarkus Strohmaier
 
Applications of xml, semantic web or linked data in Library/Information Servi...
Applications of xml, semantic web or linked data in Library/Information Servi...Applications of xml, semantic web or linked data in Library/Information Servi...
Applications of xml, semantic web or linked data in Library/Information Servi...Nurhazman Abdul Aziz
 
Graph Structure In The Web
Graph Structure In The WebGraph Structure In The Web
Graph Structure In The Webdailyye
 
Exploring Social Media with NodeXL
Exploring Social Media with NodeXL Exploring Social Media with NodeXL
Exploring Social Media with NodeXL Shalin Hai-Jew
 
Searching for patterns in crowdsourced information
Searching for patterns in crowdsourced informationSearching for patterns in crowdsourced information
Searching for patterns in crowdsourced informationSilvia Puglisi
 
NE7012- SOCIAL NETWORK ANALYSIS
NE7012- SOCIAL NETWORK ANALYSISNE7012- SOCIAL NETWORK ANALYSIS
NE7012- SOCIAL NETWORK ANALYSISrathnaarul
 
IT6701 Information Management - Unit I
IT6701 Information Management - Unit I  IT6701 Information Management - Unit I
IT6701 Information Management - Unit I pkaviya
 
From Linked Documentary Resources to Linked Computational Resources
From Linked Documentary Resources to Linked Computational ResourcesFrom Linked Documentary Resources to Linked Computational Resources
From Linked Documentary Resources to Linked Computational ResourcesPhiloWeb
 
CS6010 Social Network Analysis Unit II
CS6010 Social Network Analysis   Unit IICS6010 Social Network Analysis   Unit II
CS6010 Social Network Analysis Unit IIpkaviya
 
Social Networks and the Semantic Web: a retrospective of the past 10 years
Social Networks and the Semantic Web: a retrospective of the past 10 yearsSocial Networks and the Semantic Web: a retrospective of the past 10 years
Social Networks and the Semantic Web: a retrospective of the past 10 yearsPeter Mika
 
Predicting Communication Intention in Social Media
Predicting Communication Intention in Social MediaPredicting Communication Intention in Social Media
Predicting Communication Intention in Social MediaCharalampos Chelmis
 
The significance of linking
The significance of linkingThe significance of linking
The significance of linkingunyil96
 
The Semantic Web
The Semantic WebThe Semantic Web
The Semantic Webostephens
 
PragmaticWeb 4.0 - Towards an active and interactive Semantic Media Web
PragmaticWeb 4.0 - Towards an active and interactive Semantic Media WebPragmaticWeb 4.0 - Towards an active and interactive Semantic Media Web
PragmaticWeb 4.0 - Towards an active and interactive Semantic Media WebAdrian Paschke
 

Was ist angesagt? (20)

Semantic web Santhosh N Basavarajappa
Semantic web   Santhosh N BasavarajappaSemantic web   Santhosh N Basavarajappa
Semantic web Santhosh N Basavarajappa
 
Freddy Limpens: From folksonomies to ontologies: a socio-technical solution.
Freddy Limpens: From folksonomies to ontologies: a socio-technical solution.Freddy Limpens: From folksonomies to ontologies: a socio-technical solution.
Freddy Limpens: From folksonomies to ontologies: a socio-technical solution.
 
The Social Semantic Web: An Introduction
The Social Semantic Web: An IntroductionThe Social Semantic Web: An Introduction
The Social Semantic Web: An Introduction
 
Tutorial: Social Semantics
Tutorial: Social SemanticsTutorial: Social Semantics
Tutorial: Social Semantics
 
SIOC
SIOCSIOC
SIOC
 
Michalis Vafopoulos: Initial thoughts about existence in the Web
Michalis Vafopoulos: Initial thoughts about existence in the WebMichalis Vafopoulos: Initial thoughts about existence in the Web
Michalis Vafopoulos: Initial thoughts about existence in the Web
 
On the Navigability of Social Tagging Systems
On the Navigability of Social Tagging SystemsOn the Navigability of Social Tagging Systems
On the Navigability of Social Tagging Systems
 
Applications of xml, semantic web or linked data in Library/Information Servi...
Applications of xml, semantic web or linked data in Library/Information Servi...Applications of xml, semantic web or linked data in Library/Information Servi...
Applications of xml, semantic web or linked data in Library/Information Servi...
 
Graph Structure In The Web
Graph Structure In The WebGraph Structure In The Web
Graph Structure In The Web
 
Exploring Social Media with NodeXL
Exploring Social Media with NodeXL Exploring Social Media with NodeXL
Exploring Social Media with NodeXL
 
Searching for patterns in crowdsourced information
Searching for patterns in crowdsourced informationSearching for patterns in crowdsourced information
Searching for patterns in crowdsourced information
 
NE7012- SOCIAL NETWORK ANALYSIS
NE7012- SOCIAL NETWORK ANALYSISNE7012- SOCIAL NETWORK ANALYSIS
NE7012- SOCIAL NETWORK ANALYSIS
 
IT6701 Information Management - Unit I
IT6701 Information Management - Unit I  IT6701 Information Management - Unit I
IT6701 Information Management - Unit I
 
From Linked Documentary Resources to Linked Computational Resources
From Linked Documentary Resources to Linked Computational ResourcesFrom Linked Documentary Resources to Linked Computational Resources
From Linked Documentary Resources to Linked Computational Resources
 
CS6010 Social Network Analysis Unit II
CS6010 Social Network Analysis   Unit IICS6010 Social Network Analysis   Unit II
CS6010 Social Network Analysis Unit II
 
Social Networks and the Semantic Web: a retrospective of the past 10 years
Social Networks and the Semantic Web: a retrospective of the past 10 yearsSocial Networks and the Semantic Web: a retrospective of the past 10 years
Social Networks and the Semantic Web: a retrospective of the past 10 years
 
Predicting Communication Intention in Social Media
Predicting Communication Intention in Social MediaPredicting Communication Intention in Social Media
Predicting Communication Intention in Social Media
 
The significance of linking
The significance of linkingThe significance of linking
The significance of linking
 
The Semantic Web
The Semantic WebThe Semantic Web
The Semantic Web
 
PragmaticWeb 4.0 - Towards an active and interactive Semantic Media Web
PragmaticWeb 4.0 - Towards an active and interactive Semantic Media WebPragmaticWeb 4.0 - Towards an active and interactive Semantic Media Web
PragmaticWeb 4.0 - Towards an active and interactive Semantic Media Web
 

Ähnlich wie Exploiting Semantic Web Techniques For Representing And Utilising

Semantic Web & Information Brokering: Opportunities, Commercialization and Ch...
Semantic Web & Information Brokering: Opportunities, Commercialization and Ch...Semantic Web & Information Brokering: Opportunities, Commercialization and Ch...
Semantic Web & Information Brokering: Opportunities, Commercialization and Ch...Amit Sheth
 
int.ere.st: SCOT-based Tag Sharing Services
int.ere.st: SCOT-based Tag Sharing Servicesint.ere.st: SCOT-based Tag Sharing Services
int.ere.st: SCOT-based Tag Sharing ServicesHaklae Kim
 
Semantic Web 2.0: Creating Social Semantic Information Spaces
Semantic Web 2.0: Creating Social Semantic Information SpacesSemantic Web 2.0: Creating Social Semantic Information Spaces
Semantic Web 2.0: Creating Social Semantic Information SpacesJohn Breslin
 
ADLUG 2008 Web 2.0 - Library 2.0 presentation
ADLUG 2008 Web 2.0 - Library 2.0 presentationADLUG 2008 Web 2.0 - Library 2.0 presentation
ADLUG 2008 Web 2.0 - Library 2.0 presentation@CULT Srl
 
03. revised paper edit iq
03. revised paper edit iq03. revised paper edit iq
03. revised paper edit iqIAESIJEECS
 
Geo-annotations in Semantic Digital Libraries
Geo-annotations in Semantic Digital Libraries Geo-annotations in Semantic Digital Libraries
Geo-annotations in Semantic Digital Libraries mdabrowski
 
Corrib.org - OpenSource and Research
Corrib.org - OpenSource and ResearchCorrib.org - OpenSource and Research
Corrib.org - OpenSource and Researchadameq
 
Web 3.0? A look at the future of the World Wide Web
Web 3.0?  A look at the future of the World Wide WebWeb 3.0?  A look at the future of the World Wide Web
Web 3.0? A look at the future of the World Wide Webrgkwml
 
The Revolution Of Cloud Computing
The Revolution Of Cloud ComputingThe Revolution Of Cloud Computing
The Revolution Of Cloud ComputingCarmen Sanborn
 
Maximum Spanning Tree Model on Personalized Web Based Collaborative Learning ...
Maximum Spanning Tree Model on Personalized Web Based Collaborative Learning ...Maximum Spanning Tree Model on Personalized Web Based Collaborative Learning ...
Maximum Spanning Tree Model on Personalized Web Based Collaborative Learning ...ijcseit
 
Maximum Spanning Tree Model on Personalized Web Based Collaborative Learning ...
Maximum Spanning Tree Model on Personalized Web Based Collaborative Learning ...Maximum Spanning Tree Model on Personalized Web Based Collaborative Learning ...
Maximum Spanning Tree Model on Personalized Web Based Collaborative Learning ...ijcseit
 
How To Make Linked Data More than Data
How To Make Linked Data More than DataHow To Make Linked Data More than Data
How To Make Linked Data More than DataAmit Sheth
 
Digital Libraries of the Future: Use of Semantic Web and Social Bookmarking t...
Digital Libraries of the Future: Use of Semantic Web and Social Bookmarking t...Digital Libraries of the Future: Use of Semantic Web and Social Bookmarking t...
Digital Libraries of the Future: Use of Semantic Web and Social Bookmarking t...Sebastian Ryszard Kruk
 
Web 3 Mark Greaves
Web 3 Mark GreavesWeb 3 Mark Greaves
Web 3 Mark GreavesMediabistro
 
Linked Data Generation for the University Data From Legacy Database
Linked Data Generation for the University Data From Legacy Database  Linked Data Generation for the University Data From Legacy Database
Linked Data Generation for the University Data From Legacy Database dannyijwest
 

Ähnlich wie Exploiting Semantic Web Techniques For Representing And Utilising (20)

Semantic Web & Information Brokering: Opportunities, Commercialization and Ch...
Semantic Web & Information Brokering: Opportunities, Commercialization and Ch...Semantic Web & Information Brokering: Opportunities, Commercialization and Ch...
Semantic Web & Information Brokering: Opportunities, Commercialization and Ch...
 
int.ere.st: SCOT-based Tag Sharing Services
int.ere.st: SCOT-based Tag Sharing Servicesint.ere.st: SCOT-based Tag Sharing Services
int.ere.st: SCOT-based Tag Sharing Services
 
Semantic Web 2.0: Creating Social Semantic Information Spaces
Semantic Web 2.0: Creating Social Semantic Information SpacesSemantic Web 2.0: Creating Social Semantic Information Spaces
Semantic Web 2.0: Creating Social Semantic Information Spaces
 
ADLUG 2008 Web 2.0 - Library 2.0 presentation
ADLUG 2008 Web 2.0 - Library 2.0 presentationADLUG 2008 Web 2.0 - Library 2.0 presentation
ADLUG 2008 Web 2.0 - Library 2.0 presentation
 
03. revised paper edit iq
03. revised paper edit iq03. revised paper edit iq
03. revised paper edit iq
 
Geo-annotations in Semantic Digital Libraries
Geo-annotations in Semantic Digital Libraries Geo-annotations in Semantic Digital Libraries
Geo-annotations in Semantic Digital Libraries
 
Digital Libraries of the Future
Digital Libraries of the Future
Digital Libraries of the Future
Digital Libraries of the Future
 
Corrib.org - OpenSource and Research
Corrib.org - OpenSource and ResearchCorrib.org - OpenSource and Research
Corrib.org - OpenSource and Research
 
Web 3.0? A look at the future of the World Wide Web
Web 3.0?  A look at the future of the World Wide WebWeb 3.0?  A look at the future of the World Wide Web
Web 3.0? A look at the future of the World Wide Web
 
The Revolution Of Cloud Computing
The Revolution Of Cloud ComputingThe Revolution Of Cloud Computing
The Revolution Of Cloud Computing
 
Maximum Spanning Tree Model on Personalized Web Based Collaborative Learning ...
Maximum Spanning Tree Model on Personalized Web Based Collaborative Learning ...Maximum Spanning Tree Model on Personalized Web Based Collaborative Learning ...
Maximum Spanning Tree Model on Personalized Web Based Collaborative Learning ...
 
Maximum Spanning Tree Model on Personalized Web Based Collaborative Learning ...
Maximum Spanning Tree Model on Personalized Web Based Collaborative Learning ...Maximum Spanning Tree Model on Personalized Web Based Collaborative Learning ...
Maximum Spanning Tree Model on Personalized Web Based Collaborative Learning ...
 
How To Make Linked Data More than Data
How To Make Linked Data More than DataHow To Make Linked Data More than Data
How To Make Linked Data More than Data
 
How To Make Linked Data More than Data
How To Make Linked Data More than DataHow To Make Linked Data More than Data
How To Make Linked Data More than Data
 
Digital Libraries of the Future: Use of Semantic Web and Social Bookmarking t...
Digital Libraries of the Future: Use of Semantic Web and Social Bookmarking t...Digital Libraries of the Future: Use of Semantic Web and Social Bookmarking t...
Digital Libraries of the Future: Use of Semantic Web and Social Bookmarking t...
 
Web 3 Mark Greaves
Web 3 Mark GreavesWeb 3 Mark Greaves
Web 3 Mark Greaves
 
Gic2011 aula10-ingles
Gic2011 aula10-inglesGic2011 aula10-ingles
Gic2011 aula10-ingles
 
Semantic Web Nature
Semantic Web NatureSemantic Web Nature
Semantic Web Nature
 
Webware Webinar
Webware WebinarWebware Webinar
Webware Webinar
 
Linked Data Generation for the University Data From Legacy Database
Linked Data Generation for the University Data From Legacy Database  Linked Data Generation for the University Data From Legacy Database
Linked Data Generation for the University Data From Legacy Database
 

Kürzlich hochgeladen

Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessPixlogix Infotech
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 

Kürzlich hochgeladen (20)

Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 

Exploiting Semantic Web Techniques For Representing And Utilising

  • 1. Exploiting Semantic Web Techniques for Representing and Utilising Folksonomies Owen Sacco
  • 3. page 2 Presentation Map Introduction Aim & Goals The Semantic Web Meta Formats, Vocabularies & Query Language Web 2.0 Web 2.0 Technologies & Applications Folksonomies Tags, Tagging, Representing Tags Semantically & Integrating Folksonomies with the Semantic Web
  • 4. Presentation Map Graph Mining Techniques Fast Unfolding of Communities in Large Networks State of the Art Tool Examining the Edge List The Community Structure Ontology Jena & Corese Creating & Querying RDF Statements Analysis & Results Conclusion Enhancements & Future Work page 3
  • 6. Introduction The research is about: Understanding various Semantic Web technologies for representing data semantically Understanding Folksonomies and how to semantically represent them To semantically represent tags retrieved from Bibsonomy (http://www.bibsonomy.org/) The tags have been hierarchically structured using the algorithm “fast unfolding of communities in large networks” Use Semantic Web technologies to create and exploit such representation of tags page 5
  • 8. The Semantic Web page 7 What is the Semantic Web? Not a separate Web An extension of the current Web Semantic = Meaning Semantic Web = Meaningful Data Meaning is data about data, i.e. Metadata Advantages of Semantic Web: Information is given well-defined meaning Better enabling computers People to work in cooperation Source: W3C Semantic Web
  • 9. The Semantic Web Resource Description Framework (RDF) A framework that describes resources on the WWW Suitable for merging data on the Web Resources are uniquely identified by URLs The RDF Model is made up of triple statements Triple Statements: Subject, Predicate & Object page 8 PREDICATE SUBJECT OBJECT
  • 10. The Semantic Web An RDF Model can be serialised in RDF/XML An example of RDF document <?xml version="1.0"?> <rdf:RDFxmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#"> <contact:Personrdf:about="http://www.w3.org/People/EM/contact#me"> <contact:fullName>Eric Miller</contact:fullName> <contact:mailboxrdf:resource="mailto:em@w3.org"/> <contact:personalTitle>Dr.</contact:personalTitle> </contact:Person> </rdf:RDF> Source: W3C RDF Primer page 9
  • 11. The Semantic Web Ontology “A formal explicit specification of a shared conceptualisation” In other words: parties having a common concept of data agree and specify clearly as possible such concepts It is an enabling technology for information sharing and manipulation A vocabulary for RDF documents Ontologies are based on RDF models and are expressed by using the Web Ontology Language page 10
  • 12. The Semantic Web SPARQL – An RDF Query Language Query in the Semantic Web context means: “Technologies and protocols that programmatically retrieve information from the Web of Data”. Based on triple patterns similar to RDF triples A query returns resources for all RDF triples that match the query’s pattern Is used to return complex data for mash-ups or search engines containing semantic data Syntax is similar to SQL Source: W3C page 11
  • 14. Web 2.0 A “Read/Write” Web Web 2.0 has: Facilitated web design Provided attractive, rich, easy-to-use interfaces Assisted in reuse of data by merging information from various sources Created social networks of people According to Internet World Stats, between 2000 and 2003 users doubled thanks to Friendster (one of the first social network websites) Source: Internet World Stats - Internet Growth Statistics page 13
  • 15. Web 2.0 Web 2.0 is considered a Social Web People are more involved by collaborating & sharing data One of the major Web 2.0 technologies for web development is AJAX A combination of several technologies: HTML or XHTML Cascading Style Sheets (CSS) Java Script XML page 14
  • 16. Web 2.0 Web 2.0 created new application concepts: Blogs (Blogger, WordPress) Wikis (Wikipedia) Really Simple Syndication, RSS Mashups (MusicMesh, BBC Music) Social Networks (Facebook, LinkedIn, MySpace) Social Bookmarking (delicious, Bibsonomy) Photo Sharing (Flickr) Video Sharing (YouTube, Vimeo) In most of these concepts you find Tagging! page 15
  • 18. Folksonomies Tag “A non-hierarchical keyword or term” Tagging “Assign a tag to a piece of information or resources” Tagger “The person that assigns the tag” Folksonomy “The result of personal free tagging of information and objects for one’s own retrieval. The tagging is done in a social environment.” Thomas Vander Wal (2004) page 17
  • 19. Folksonomies Tag Cloud a visualisation of popular tags popular tags stem out from others by being in larger font or emphasised page 18
  • 20. Folksonomies page 19 Where can we tag? Social Bookmarking websites
  • 21. Folksonomies Picture sharing websites page 20
  • 22. Folksonomies Video sharing websites page 21
  • 23. Folksonomies Why tagging? It’s Popular Nowadays, practically anyone who uses a computer or the Internet is exposed to tagging in some way. It’s Social Through the most popular tags, we can see a kind of rough consensus on the subject of the resource. It’s Flexible Ad-hoc, free-form and does not adhere to any strict classification scheme or vocabulary. page 22
  • 24. Folksonomies Basic Model Taggers create the tags, and sometimes they add resources. If we can identify something, then it can be tagged. Tagging is open-ended, tags can be any kind of term. page 23 Source: Smith G. 2008. Tagging People-Powered Metadata for the Social Web
  • 25. Folksonomies How about: Collaborative sharing tags across multiple applications Collaborative filtering based on tagging Connecting people based on tagging All these can be achieved through Tag Ontologies Ontology is not a taxonomy Ontology makes semantic agreement Semantic agreement enables useful composition page 24
  • 26. Folksonomies Richard Newman’s Tag Ontology page 25 Source: Haklae Kim et al., Review and Alignment of Tag Ontologies for Semantically-Linked Data in Collaborative Tagging Spaces
  • 27. Folksonomies Tom Gruber’s Conceptual Model Tagging(object, tag, tagger, source, + or -) page 26 Source: Gruber T., Ontology for Folksonomy: A Mash-Up of Apples and Oranges.
  • 28. Folksonomies Limitations of tagging: Ambiguity of tags (example: apple is it a fruit or the computer company?) Lack of synonymy (example: lorry or truck) Discrepancies in granularity (example: java vs programming language) Flat Organisation of Folksonomy How do we overcome these? Use: CommonTag, MOAT, SCOT page 27
  • 29. Folksonomies CommonTag To add concepts to tags from databases such as Freebase and DPPedia page 28 Source: CommonTag
  • 30. Folksonomies Meaning Of A Tag (MOAT) An ontology to represent how different meanings (URIs of semantic Web resources) can be related to a tag Extends the Tag class from Richard Newman’s tag ontology Tagging (User, Resource, Tag, Meaning) Architecture of MOAT Framework: MOAT server stores different meanings that can be queried MOAT client interacts with the server to let users easily annotate their content page 29
  • 31. Folksonomies Social Semantic Cloud of Tags (SCOT) An ontology aimed to represent set of tags Built on top of Richard Newman’s Tag Ontology page 30 Source: SCOT: Let's Share Tags!
  • 32. Folksonomies Limitations of the previous ontologies: An extra step is being added to the tagging activity Isn’t it daunting for the user when presented with a list of meanings to choose from? Which meaning shall the user choose? Will tagging remain popular with this additional step? If an automatic process is used to select a meaning of a tag, how accurate can this process be? Can this process really understand the user at that instance? page 31
  • 33. Folksonomies With this additional meaning, isn’t tagging becoming another “strict” classification scheme? Can relationships of tags really be built on meanings? How about using some form of algorithm that can unfold new relationships of tags? page 32
  • 34. Fast Unfolding of Communities in Large Networks page 33
  • 35. Fast Unfolding of Communities in Large Networks A recursive method to extract the community structure of large networks This method is based on modularity optimisation The modularity is a scalar value that measures the density of links inside communities as compared to links between communities It unfolds a complete hierarchical community structure for large networks in a short time Results have shown that on a network of 118 million nodes, the algorithm took 152 minutes page 34 Source: Blondel V.B. et al. 2008. Fast unfolding of communities in large networks
  • 36. Fast Unfolding of Communities in Large Networks The algorithm consists of two phases which are iterated until a maximum modularity is attained. First, all nodes are assigned to different communities. Then each node is compared with its neighbours. The node is placed in the community which yields a maximum gain in modularity. This process is repeated for all nodes until no further movement can be attained. The second phase consists of building a network whose nodes are now the communities found during the first phase. page 35
  • 37. Fast Unfolding of Communities in Large Networks After the second phase, the process starts again with the first phase A “pass” denotes a combination of both passes The “passes” are iterated until there are no more changes and the maximum modularity is reached for the whole network The height of the network denotes in the number of passes At the end, a hierarchical structure is attained that consists of communities of communities. page 36
  • 38. Fast Unfolding of Communities in Large Networks page 37
  • 39. State of the Art Tool page 38
  • 40. State of the Art Tool The Data It is provided beforehand Consists of a hierarchical structure made up of communities of communities of related tags This hierarchical structure is constructed using the “Fast Unfolding of Communities in Large Networks” algorithm The tags are from the Social Bookmarking Website Bibsonomy (http://www.bibsonomy.org/) The aim for using the community structure algorithm is to unfold new relationships amongst tags page 39
  • 41. State of the Art Tool A visualisation of tagging graph that depicts the relationships amongst tags page 40
  • 42. State of the Art Tool The Input to the system will consist of Edge Lists Each Edge List file consists of a pass 4 Edge List files were used for this system: The first list is a plain list of related tags queried from Bibsonomy The other three lists denote communities or communities of communities computed from the community structure algorithm Each relation (line) in each of the Edge List file consists as follows: The first edge list: <tagi, tagj, weight> page 41
  • 43. State of the Art Tool The other three edge lists: <communityi, tagj, weight> or <communityi, communityj, weight> The Edge List files contain: The first (lower level): 13126 nodes with 264718 edges The second (first pass): 529 nodes with 6337 edges The third (second pass): 65 nodes with 374 edges The fourth (third pass): 50 nodes with 207 edges page 42
  • 44. State of the Art Tool A sample from one of the edge lists (the lower level file) caching,offlinebrowser,2.0 caching,archiving,2.0 institutions,activity,1.0 malian,senegal,2.0 malian,northern,2.0 malian,guinea,2.0 malian,drummers,2.0 cdf,c,1.0 cdf,library,1.0 page 43
  • 45. State of the Art Tool First Task: To semantically represent all edge lists that represent the hierarchical structure Since the lower level edge list is made up of a set of tags, then the tags will be described using the SCOT ontology But to represent the hierarchical structure of communities, a new ontology must be designed that needs to be built on top of SCOT and also, the new ontology must be linked to SCOT page 44
  • 46. State of the Art Tool The Community Structure Ontology page 45 CommunityStructure UnfoldedCommunity UnfoldingActivity Community CommunityAggregation linkedIn associatedCommunity linkedWith Linkage name sioc:Resource modularity pass linkedTag communityOf Community linkWeight scot:Tag
  • 47. State of the Art Tool Ontology was designed with a tool called Protege – A Java application for designing Ontolotgies Ontology built on OWL2 Classes: CommunityStructure, Community, CommunityAggregation, Linkage Object properties: associatedCommunity, communityOf, linkedIn, linkedTag, linkedWith, unfoldedCommunity, unfoldingActivity Data properties: communityName, linkWeight, modularity, pass page 46
  • 48. State of the Art Tool Second Task: To create an application that will transform the edge lists to RDF/XML statements and store the documents on physical storage. Also, a query engine will be included into the application to query the RDF/XML statements. The application is developed using the Java programming language. For the creation of RDF/XML statements and to write such statements to physical storage, a widely used API is embedded in the system. This API is called the JENA API page 47
  • 49. State of the Art Tool Jena – A Semantic Web Framework Developed by HP An RDF API for reading and writing RDF models in RDF/XML An OWL API for reading and writing OWL ontologies In-memory and persistent storage for writing RDF/XML statements to memory or physical storage such as text files or even relational databases SPARQL query engine page 48
  • 50. State of the Art Tool The Tool page 49
  • 51. State of the Art Tool The tool provides the following features: Properties to setup: The Edge List Directory The Edge List File Structure page 50
  • 52. State of the Art Tool Settings to setup the type of storage required RDF/XML documents page 51
  • 53. State of the Art Tool Relational database persistent storage A TDB storage, a custom fast persistent storage page 52
  • 54. State of the Art Tool Properties to setup the Ontologies page 53
  • 55. State of the Art Tool The Method to transform the edge list to RDF Statements: First, the edge lists are merged together and ordered according to their hierarchical structure Second, the RDF Model consisting of RDF statements are created according to the Community Structure and SCOT Ontologies Third, RDF statements are written according to the settings setup. page 54
  • 56. State of the Art Tool Writing of RDF Statements RDF Documents: For whole documents: the whole document is written after the whole model is created For split documents: documents are written after the model for each community is created. Two index lists are created, one A-Z and an other to indicate where each community document is located page 55
  • 57. State of the Art Tool Writing of RDF Statements RDF Persistent Storage RDB Method: MySQL is used as a persistent relational databases and RDF statements are written on-the-fly, i.e. After each statement is created, these are written in the database TDB Method: each statement is written on-the-fly as well page 56
  • 58. State of the Art Tool Writing of RDF Statements (Results) page 57
  • 59. State of the Art Tool Querying Statements For RDF Documents Corese SPARQL Engine was used Corese SPARQL Engine is developed by Edelweiss Built on top of Jena with some added enhancements such as Approximated Searches, Select Expressions Queries only RDF documents and does not have the capability of querying directly to relational databases page 58
  • 60. State of the Art Tool Querying Statements For Persistent Storage, the Jena SPARQL Engine is used since Jena allows for direct querying Querying Methods RDF Documents (Split Documents): First query index lists Get community document Query community document and get linked communities Query index list and query contents for each community page 59
  • 61. State of the Art Tool Querying Methods RDF Documents (Whole Documents) Query whole model and query for community Retrieve linked communities Query linked communities for their content Persistent Storage Query whole model and query for community Retrieve linked communities Query linked communities for their content page 60
  • 62. State of the Art Tool Querying Statements (Results) Results are based on a community called malian This community has 57 linked communities and 15 linked tags page 61
  • 63. State of the Art Tool Other features RDF Document Viewer page 62
  • 65. Conclusion In this research we have seen the importance of Semantic Web and to describe semantically Web data We have seen the importance of using folksonomies for search and exploration Additionally, we have also seen various ontologies of how such folksonomies can be semantically represented From community structure algorithms and graph mining techniques, new relationships amongst other tags can be unfolded page 64
  • 66. Conclusion An ontology was designed and developed for the fast unfolding of communities in large networks From this ontology, RDF/XML statements can be created and are linked to the SCOT ontology We have seen that by using Triple Stores, persistent storage for triple statements is much faster for querying page 65
  • 68. Future Enhancements To try this model on larger tag models from different websites To include the tagger and links to the actual resource To analyse these links that contribute to the linked data initiative Optimise writing and querying based on larger models page 67

Hinweis der Redaktion

  1. Web 2.0 is the second generation of the web that evolved from Web 1.0Web 1.0 was a read only web with static content and lacked user involvementWeb 1.0 site under construction and Web 2.0 is beta
  2. Taggers are foaf:Agents Taggings reify the n-ary relationship between a tagger, a tag, a resource, and a date.Tags are members of a Tag classTags have names
  3. Notably, Gruber defines the source as the scope of namespaces or universe of quantification for objects.The object in this model represents the content which is being tagged; the tag is the label or word used to tag with; the tagger represents who tagged the object; the source is the system where the actual tagging model is stored; the polarity represents a + or –, which is “a vote” of the tagging fact, that is to assert that the tagging fact is true or not.
  4. Limitations of tagging due to its independence and free-form structureDiscrepancies: java is to specific for some users but programming language is to generic for others
  5. Freebase provides datasets built by communities that are freely accessible. Freebase offers tools that help developers access and control the content contained within these datasetsDBPedia extracts information from the online encyclopaedia Wikipedia and provides such information in a semantic format that can be processed by machines.
  6. The nodes contain numbers that are connected to tags