SlideShare ist ein Scribd-Unternehmen logo
1 von 20
VECTORES
Prof. : Oscar Tang Cruz
REPRESENTACIÓN DE FUERZAS
Hay dos tipos de magnitudes: ESCALARES y VECTORIALES
Las magnitudes ESCALARES quedan determinadas mediante una
cantidad y su unidad correspondiente:
L (Longitud) = 12’35 m
m (Masa) = 5’678 kg
d (Densidad) = 3’4 g/cm3
Las magnitudes VECTORIALES necesitan de otras características
más:velocidad, aceleración, fuerzas, etc. Por ello, se representan
mediante VECTORES (segmentos de recta que están orientados).
Encima del símbolo de la magnitud dibujaremos una pequeña flecha
para indicar que se trata de una magnitud vectorial:
v

v

F
 a

CARACTERÍSTICAS DE UN VECTOR
Las características de un vector son cuatro:
 MÓDULO
 DIRECCIÓN
 SENTIDO
 PUNTO DE APLICACIÓN
MÓDULO
El MÓDULO viene dado por la longitud de la flecha. El módulo es
proporcional a la intensidad de la fuerza.
Al representar las fuerzas usaremos una escala similar a la
utilizada en los mapas, por ejemplo, 1 centímetro en el papel
equivaldrá a 1 Newton de fuerza (1 cm:1 N).
3 cm
Escala Þ 1 cm : 2 N
3 cm . 2 N = 6 N
1 cm
DIRECCIÓN
La DIRECCIÓN es la recta sobre la que se aplica la fuerza. Viene
expresada por el ángulo que forma la recta con la horizontal: 0º
(horizontal), 30º, 47º, 90º (vertical), 130º, 249º, etc.
45º
- 100º = 260º
120º
- 30º = 330º
!OJO! En el S.I. la unidad de ángulo es el RADIÁN:
2π rad = 360º; π rad = 180º; π/2 rad = 90º, etc.
SENTIDO
El SENTIDO indica hacia dónde se aplica la fuerza. En una misma
dirección existen dos sentidos posibles.
45º
Sentido hacia arriba, hacia la
derecha o ascendente
Sentido hacia abajo, hacia la
izquierda o descendente
PUNTO DE APLICACIÓN
El PUNTO DE APLICACIÓN es el punto del espacio en que se aplica
la fuerza. Esto es importante, pues los efectos que producen las
fuerzas dependen en muchos casos del punto de aplicación.
LunaTierra,F

TierraLuna,F

FLuna, Tierra = FTierra, Luna
Ambas fuerzas tienen el mismo módulo, pero
difieren en su PUNTO DE APLICACIÓN.
FUERZA RESULTANTE
A menudo ocurre que dos o más fuerzas actúan sobre un
cuerpo. Piensa, por ejemplo, en dos caballos que tiran de un carro. En
este caso, cuando dos o más fuerzas actúan a la vez, sus efectos se
suman.
En otras ocasiones, los efectos se restan, por ejemplo, dos
niños disputándose un paquete de chucherías.
El conjunto de las fuerzas se puede sustituir entonces por
una sola fuerza llamada FUERZA RESULTANTE.
1F

?
COMPOSICIÓN DE FUERZAS
A continuación estudiaremos la manera de calcular la fuerza
resultante para el caso de varias fuerzas aplicadas en la misma
dirección y para el caso de fuerzas aplicadas en direcciones
diferentes. Es lo que se denomina COMPOSICIÓN DE FUERZAS.
Vamos a distinguir varias situaciones:
a) Misma dirección
a.1) Mismo sentido
a.2) Sentidos contrarios
b) Distinta dirección
b.1) Perpendiculares
b.2) No perpendiculares
c) Paralelas
c.1) Igual sentido
c.2) Sentidos contrarios
Para componer dos o más fuerzas existen dos métodos, aunque no
siempre aplicaremos ambos. Son:
Gráfico
Se colocan las fuerzas una a continuación de la otra respetando sus
correspondientes direcciones y sentidos (“se transportan”). La resultante
será el vector determinado por el punto de aplicación inicial y el extremo
del último vector dibujado. Cuando se aplica a dos vectores se le suele
llamar también “método del paralelogramo”; para más de dos vectores,
“método del polígono”. Seguro que eres capaz de deducir el porqué…
COMPOSICIÓN DE FUERZAS
Resultante R

Numérico
Dependiendo de las direcciones y sentidos de las fuerzas a componer
tendremos que sumar los módulos, restarlos o realizar operaciones más
complejas.
a) Misma dirección
a.1) Mismo sentido: se suman los módulos de los vectores a
componer.
1F

2F

1F

2F

+F1

2F

R =

Numéricamente:
R = F1 + F2
a) Misma dirección
a.2) Sentidos contrarios: se restan los módulos de los vectores a
componer.
1F

2F

1F

2F

Numéricamente:
R = F1 - F2
+F1

2F

R =

b) Distinta dirección
1F

2
2
2
1
2
FFR +=
b.1) Perpendiculares: se aplica el método gráfico y usamos el
teorema de Pitágoras sobre el triángulo que determinan los dos
vectores y su resultante. Obviamente, el triángulo es rectángulo
(para los despistados).
2F

1F

2F
R

R
F
sen 2
=α
F1
R
F2
α R
F
cos 1
=α
1
2
1
2
F
F
R/F
R/F
cos
sen
tg ===
α
α
α
1
2
F
F
arctg=α
b) Distinta dirección
1F

b.2) No perpendiculares: se aplica el método gráfico exclusivamente.
El método numérico se dejará para cursos más
avanzados.
2F

R

1F

2F

En caso que hubiera que componer más de un vector, lo haríamos
sucesivamente, uno a uno:
Resultante R

c) Paralelas
c.1) Igual sentido (paralelas)
d
Punto de
aplicación de la
resultante
xd -x
1F

2F

1F

2F

1F

2F

1F

2F

R

Numéricamente se debe cumplir la llamada “Ley de la palanca” según la cual Los productos
de cada fuerza por la distancia a la resultante son iguales:
F1 · (d – x) = F2 · x
Por otro lado, el módulo de la resultante es la suma de los módulos de las dos fuerzas:
R = F1 + F2
c) Paralelas
c.2) Sentidos contrarios (antiparalelas)
d
Punto de
aplicación de la
resultante 1F

2F

Numéricamente se debe cumplir la llamada
“Ley de la palanca” según la cual Los
productos de cada fuerza por la distancia
a la resultante son iguales:
F1 · (d + x) = F2 · x
Por otro lado, el módulo de la resultante es
la diferencia de los módulos de las dos
fuerzas:
R = F2 - F1
Siempre se restará la menor a la mayor.
1F
2F

2F

1F

R

2F

1F

xd
DESCOMPOSICIÓN DE FUERZAS
Descomponer un vector consiste en encontrar otros vectores (normalmente dos) cuya
composición nos de el vector inicial. Esencialmente, es el proceso contrario al de la
composición. Veamos algunos ejemplos:
1F

2F

F

Aunque hay otras posibilidades:
F

F

1F

2F

Y otra más:
F

F

1F

2F

DESCOMPOSICIÓN DE FUERZAS
Entonces, ¿cuál es la forma correcta de descomponer un vector? Pues todas. En
realidad hay infinitas maneras de descomponer un vector y todas son correctas pues
cumplen la definición de descomposición vectorial.
Nosotros vamos a estudiar una llamada DESCOMPOSICIÓN NORMAL, en la que los
vectores obtenidos (componentes), son perpendiculares entre sí.
2
y
2
x
2
FFF +=
F
F
αsen
y
=
Fx
F
Fy
α
F

x
y
F

yF

xF
 x
F

yF

xF

y
Fx = componente x
De forma que…
αF·senFy =
F
F
cos x
=α αF·cosFx =
Fy = componente y
DESCOMPOSICIÓN DE FUERZAS
α
Vamos a ver ahora una aplicación práctica de la descomposición de vectores: el
desplazamiento sobre un plano inclinado.
Nos centraremos, concretamente, en la descomposición de la fuerza-peso. Esta fuerza
tiene dos efectos sobre el cuerpo que se desplaza: lo mantiene en contacto con la
superficie del plano inclinado y lo empuja hacia abajo.
Cada uno de estos dos efectos es debido a las dos componentes de la fuerza-peso:
x
y
xP

yP

P

α
P
P
sen X
=α αP·senPx =
P
P
cos
y
=α αP·cosPy =
Py = componente normal del peso
Px = componente tangencial del peso
yP

P

xP

yP

P

xP

α α
yP
P
xPα
DESCOMPOSICIÓN DE FUERZAS
F

N3.61332FFF 222
y
2
x ≈=+=+=
En Matemáticas podemos también identificar vectores, componerlos y descomponerlos
usando coordenadas cartesianas:
y
x1 2 3 4 5 6
5
4
3
2
1
(2,3)F =

α
1F

y
x1 2 3 4 5 6
5
4
3
2
1
2F

(2,3)F1 =

(4,1)F2 =

α
1.5
2
3
F
F
tg
x
y
===α
)F,F(F yx

=
xF

yF

(2,0)Fx =

(0,3)Fy =

56.3º1.5arctg ==α
Para componer dos vectores a partir de sus cordenadas cartesianas:
R

(4,1)(2,3)R +=

21 FFR

+= (6,4)R =

0.67
6
4
tg ≈=α 33.7º0.67arctg ≈=α
N7.25246FFF 222
y
2
x ≈=+=+=

Weitere ähnliche Inhalte

Was ist angesagt?

Componentes de una fuerza
Componentes de una fuerzaComponentes de una fuerza
Componentes de una fuerzaDaniel
 
Resultante de fuerzas coplanares-Componentes rectangulares
Resultante de fuerzas coplanares-Componentes rectangularesResultante de fuerzas coplanares-Componentes rectangulares
Resultante de fuerzas coplanares-Componentes rectangularesADRIANPEREZMARTINEZ3
 
Fuerzas Paralelas no Concurrentes
Fuerzas Paralelas no ConcurrentesFuerzas Paralelas no Concurrentes
Fuerzas Paralelas no ConcurrentesDaniel
 
Tema2 estática de partículas.teoría
Tema2 estática de partículas.teoríaTema2 estática de partículas.teoría
Tema2 estática de partículas.teoríajrubio802
 
7 fuerzas en el espacio 1
7 fuerzas en el espacio 17 fuerzas en el espacio 1
7 fuerzas en el espacio 1Leandro ___
 
Practica no 5: Metodo del poligono.
Practica no 5: Metodo del poligono.Practica no 5: Metodo del poligono.
Practica no 5: Metodo del poligono.20_masambriento
 
Practica no 3 ESTATICA. Ley del paralelogramo.
Practica no 3 ESTATICA. Ley del paralelogramo.Practica no 3 ESTATICA. Ley del paralelogramo.
Practica no 3 ESTATICA. Ley del paralelogramo.20_masambriento
 
Sistemas de fuerzas coplanares y tridimensionales
Sistemas de fuerzas coplanares y tridimensionalesSistemas de fuerzas coplanares y tridimensionales
Sistemas de fuerzas coplanares y tridimensionalesLuisRios222
 
Arq utfsm fisica-103-victor-slusarenko
Arq utfsm fisica-103-victor-slusarenkoArq utfsm fisica-103-victor-slusarenko
Arq utfsm fisica-103-victor-slusarenkoArquitecto Zapallar
 
Métodos de armaduras rafael
Métodos de armaduras rafaelMétodos de armaduras rafael
Métodos de armaduras rafaelRafael Bermudez
 

Was ist angesagt? (18)

Sistema de fuerzas equivalentes
Sistema de fuerzas equivalentesSistema de fuerzas equivalentes
Sistema de fuerzas equivalentes
 
Componentes de una fuerza
Componentes de una fuerzaComponentes de una fuerza
Componentes de una fuerza
 
Resultante de fuerzas coplanares-Componentes rectangulares
Resultante de fuerzas coplanares-Componentes rectangularesResultante de fuerzas coplanares-Componentes rectangulares
Resultante de fuerzas coplanares-Componentes rectangulares
 
Cap3r
Cap3rCap3r
Cap3r
 
734exam
734exam734exam
734exam
 
Fuerzas Paralelas no Concurrentes
Fuerzas Paralelas no ConcurrentesFuerzas Paralelas no Concurrentes
Fuerzas Paralelas no Concurrentes
 
Tema2 estática de partículas.teoría
Tema2 estática de partículas.teoríaTema2 estática de partículas.teoría
Tema2 estática de partículas.teoría
 
Fuerza en el espacio estatica
Fuerza en el espacio estaticaFuerza en el espacio estatica
Fuerza en el espacio estatica
 
Expocicion
ExpocicionExpocicion
Expocicion
 
7 fuerzas en el espacio 1
7 fuerzas en el espacio 17 fuerzas en el espacio 1
7 fuerzas en el espacio 1
 
Estática 02 momento-2014
Estática 02  momento-2014Estática 02  momento-2014
Estática 02 momento-2014
 
FUERZAS EN EL ESPACIO
FUERZAS EN EL ESPACIOFUERZAS EN EL ESPACIO
FUERZAS EN EL ESPACIO
 
Practica no 5: Metodo del poligono.
Practica no 5: Metodo del poligono.Practica no 5: Metodo del poligono.
Practica no 5: Metodo del poligono.
 
Practica no 3 ESTATICA. Ley del paralelogramo.
Practica no 3 ESTATICA. Ley del paralelogramo.Practica no 3 ESTATICA. Ley del paralelogramo.
Practica no 3 ESTATICA. Ley del paralelogramo.
 
Vigas
VigasVigas
Vigas
 
Sistemas de fuerzas coplanares y tridimensionales
Sistemas de fuerzas coplanares y tridimensionalesSistemas de fuerzas coplanares y tridimensionales
Sistemas de fuerzas coplanares y tridimensionales
 
Arq utfsm fisica-103-victor-slusarenko
Arq utfsm fisica-103-victor-slusarenkoArq utfsm fisica-103-victor-slusarenko
Arq utfsm fisica-103-victor-slusarenko
 
Métodos de armaduras rafael
Métodos de armaduras rafaelMétodos de armaduras rafael
Métodos de armaduras rafael
 

Ähnlich wie Representación y cálculo de vectores

Ähnlich wie Representación y cálculo de vectores (20)

Vectores
VectoresVectores
Vectores
 
Vectores
VectoresVectores
Vectores
 
Vectores
VectoresVectores
Vectores
 
FUERZAS UNIDAD 2 2021.docx
FUERZAS UNIDAD 2 2021.docxFUERZAS UNIDAD 2 2021.docx
FUERZAS UNIDAD 2 2021.docx
 
Principios de estatica
Principios de estaticaPrincipios de estatica
Principios de estatica
 
Fisica fuerzas - quincena3
Fisica   fuerzas - quincena3Fisica   fuerzas - quincena3
Fisica fuerzas - quincena3
 
Proyecto dinamica
Proyecto dinamicaProyecto dinamica
Proyecto dinamica
 
Las fuerzas y el movimiento
Las fuerzas y el movimientoLas fuerzas y el movimiento
Las fuerzas y el movimiento
 
Pp.estatica fuerzas
Pp.estatica fuerzasPp.estatica fuerzas
Pp.estatica fuerzas
 
Estatica
EstaticaEstatica
Estatica
 
Modulo iv
Modulo ivModulo iv
Modulo iv
 
Cinematica1
Cinematica1Cinematica1
Cinematica1
 
07 sistemas-de-fuerzas-clase-23
07   sistemas-de-fuerzas-clase-2307   sistemas-de-fuerzas-clase-23
07 sistemas-de-fuerzas-clase-23
 
TPFisFuerzas
TPFisFuerzasTPFisFuerzas
TPFisFuerzas
 
Gravitación
GravitaciónGravitación
Gravitación
 
ANÁLISIS VECTORIAL
ANÁLISIS VECTORIALANÁLISIS VECTORIAL
ANÁLISIS VECTORIAL
 
(1) vectores
(1) vectores(1) vectores
(1) vectores
 
Cinematica4
Cinematica4Cinematica4
Cinematica4
 
RESUMEN UNIDAD 2.pdf
RESUMEN UNIDAD 2.pdfRESUMEN UNIDAD 2.pdf
RESUMEN UNIDAD 2.pdf
 
Vectores.pdf
Vectores.pdfVectores.pdf
Vectores.pdf
 

Kürzlich hochgeladen

9egb-lengua y Literatura.pdf_texto del estudiante
9egb-lengua y Literatura.pdf_texto del estudiante9egb-lengua y Literatura.pdf_texto del estudiante
9egb-lengua y Literatura.pdf_texto del estudianteAndreaHuertas24
 
Presentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptxPresentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptxLolaBunny11
 
guía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Josephguía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan JosephBRAYANJOSEPHPEREZGOM
 
EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveFagnerLisboa3
 
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...silviayucra2
 
CLASE DE TECNOLOGIA E INFORMATICA PRIMARIA
CLASE  DE TECNOLOGIA E INFORMATICA PRIMARIACLASE  DE TECNOLOGIA E INFORMATICA PRIMARIA
CLASE DE TECNOLOGIA E INFORMATICA PRIMARIAWilbisVega
 
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricGlobal Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricKeyla Dolores Méndez
 
Trabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíaTrabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíassuserf18419
 
Proyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptxProyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptx241521559
 
Redes direccionamiento y subredes ipv4 2024 .pdf
Redes direccionamiento y subredes ipv4 2024 .pdfRedes direccionamiento y subredes ipv4 2024 .pdf
Redes direccionamiento y subredes ipv4 2024 .pdfsoporteupcology
 
pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITMaricarmen Sánchez Ruiz
 
International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)GDGSucre
 
Desarrollo Web Moderno con Svelte 2024.pdf
Desarrollo Web Moderno con Svelte 2024.pdfDesarrollo Web Moderno con Svelte 2024.pdf
Desarrollo Web Moderno con Svelte 2024.pdfJulian Lamprea
 

Kürzlich hochgeladen (13)

9egb-lengua y Literatura.pdf_texto del estudiante
9egb-lengua y Literatura.pdf_texto del estudiante9egb-lengua y Literatura.pdf_texto del estudiante
9egb-lengua y Literatura.pdf_texto del estudiante
 
Presentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptxPresentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptx
 
guía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Josephguía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Joseph
 
EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial Uninove
 
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
 
CLASE DE TECNOLOGIA E INFORMATICA PRIMARIA
CLASE  DE TECNOLOGIA E INFORMATICA PRIMARIACLASE  DE TECNOLOGIA E INFORMATICA PRIMARIA
CLASE DE TECNOLOGIA E INFORMATICA PRIMARIA
 
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricGlobal Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
 
Trabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíaTrabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnología
 
Proyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptxProyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptx
 
Redes direccionamiento y subredes ipv4 2024 .pdf
Redes direccionamiento y subredes ipv4 2024 .pdfRedes direccionamiento y subredes ipv4 2024 .pdf
Redes direccionamiento y subredes ipv4 2024 .pdf
 
pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNIT
 
International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)
 
Desarrollo Web Moderno con Svelte 2024.pdf
Desarrollo Web Moderno con Svelte 2024.pdfDesarrollo Web Moderno con Svelte 2024.pdf
Desarrollo Web Moderno con Svelte 2024.pdf
 

Representación y cálculo de vectores

  • 2. REPRESENTACIÓN DE FUERZAS Hay dos tipos de magnitudes: ESCALARES y VECTORIALES Las magnitudes ESCALARES quedan determinadas mediante una cantidad y su unidad correspondiente: L (Longitud) = 12’35 m m (Masa) = 5’678 kg d (Densidad) = 3’4 g/cm3 Las magnitudes VECTORIALES necesitan de otras características más:velocidad, aceleración, fuerzas, etc. Por ello, se representan mediante VECTORES (segmentos de recta que están orientados). Encima del símbolo de la magnitud dibujaremos una pequeña flecha para indicar que se trata de una magnitud vectorial: v  v  F  a 
  • 3. CARACTERÍSTICAS DE UN VECTOR Las características de un vector son cuatro:  MÓDULO  DIRECCIÓN  SENTIDO  PUNTO DE APLICACIÓN
  • 4. MÓDULO El MÓDULO viene dado por la longitud de la flecha. El módulo es proporcional a la intensidad de la fuerza. Al representar las fuerzas usaremos una escala similar a la utilizada en los mapas, por ejemplo, 1 centímetro en el papel equivaldrá a 1 Newton de fuerza (1 cm:1 N). 3 cm Escala Þ 1 cm : 2 N 3 cm . 2 N = 6 N 1 cm
  • 5. DIRECCIÓN La DIRECCIÓN es la recta sobre la que se aplica la fuerza. Viene expresada por el ángulo que forma la recta con la horizontal: 0º (horizontal), 30º, 47º, 90º (vertical), 130º, 249º, etc. 45º - 100º = 260º 120º - 30º = 330º !OJO! En el S.I. la unidad de ángulo es el RADIÁN: 2π rad = 360º; π rad = 180º; π/2 rad = 90º, etc.
  • 6. SENTIDO El SENTIDO indica hacia dónde se aplica la fuerza. En una misma dirección existen dos sentidos posibles. 45º Sentido hacia arriba, hacia la derecha o ascendente Sentido hacia abajo, hacia la izquierda o descendente
  • 7. PUNTO DE APLICACIÓN El PUNTO DE APLICACIÓN es el punto del espacio en que se aplica la fuerza. Esto es importante, pues los efectos que producen las fuerzas dependen en muchos casos del punto de aplicación. LunaTierra,F  TierraLuna,F  FLuna, Tierra = FTierra, Luna Ambas fuerzas tienen el mismo módulo, pero difieren en su PUNTO DE APLICACIÓN.
  • 8. FUERZA RESULTANTE A menudo ocurre que dos o más fuerzas actúan sobre un cuerpo. Piensa, por ejemplo, en dos caballos que tiran de un carro. En este caso, cuando dos o más fuerzas actúan a la vez, sus efectos se suman. En otras ocasiones, los efectos se restan, por ejemplo, dos niños disputándose un paquete de chucherías. El conjunto de las fuerzas se puede sustituir entonces por una sola fuerza llamada FUERZA RESULTANTE. 1F  ?
  • 9. COMPOSICIÓN DE FUERZAS A continuación estudiaremos la manera de calcular la fuerza resultante para el caso de varias fuerzas aplicadas en la misma dirección y para el caso de fuerzas aplicadas en direcciones diferentes. Es lo que se denomina COMPOSICIÓN DE FUERZAS. Vamos a distinguir varias situaciones: a) Misma dirección a.1) Mismo sentido a.2) Sentidos contrarios b) Distinta dirección b.1) Perpendiculares b.2) No perpendiculares c) Paralelas c.1) Igual sentido c.2) Sentidos contrarios
  • 10. Para componer dos o más fuerzas existen dos métodos, aunque no siempre aplicaremos ambos. Son: Gráfico Se colocan las fuerzas una a continuación de la otra respetando sus correspondientes direcciones y sentidos (“se transportan”). La resultante será el vector determinado por el punto de aplicación inicial y el extremo del último vector dibujado. Cuando se aplica a dos vectores se le suele llamar también “método del paralelogramo”; para más de dos vectores, “método del polígono”. Seguro que eres capaz de deducir el porqué… COMPOSICIÓN DE FUERZAS Resultante R  Numérico Dependiendo de las direcciones y sentidos de las fuerzas a componer tendremos que sumar los módulos, restarlos o realizar operaciones más complejas.
  • 11. a) Misma dirección a.1) Mismo sentido: se suman los módulos de los vectores a componer. 1F  2F  1F  2F  +F1  2F  R =  Numéricamente: R = F1 + F2
  • 12. a) Misma dirección a.2) Sentidos contrarios: se restan los módulos de los vectores a componer. 1F  2F  1F  2F  Numéricamente: R = F1 - F2 +F1  2F  R = 
  • 13. b) Distinta dirección 1F  2 2 2 1 2 FFR += b.1) Perpendiculares: se aplica el método gráfico y usamos el teorema de Pitágoras sobre el triángulo que determinan los dos vectores y su resultante. Obviamente, el triángulo es rectángulo (para los despistados). 2F  1F  2F R  R F sen 2 =α F1 R F2 α R F cos 1 =α 1 2 1 2 F F R/F R/F cos sen tg === α α α 1 2 F F arctg=α
  • 14. b) Distinta dirección 1F  b.2) No perpendiculares: se aplica el método gráfico exclusivamente. El método numérico se dejará para cursos más avanzados. 2F  R  1F  2F  En caso que hubiera que componer más de un vector, lo haríamos sucesivamente, uno a uno: Resultante R 
  • 15. c) Paralelas c.1) Igual sentido (paralelas) d Punto de aplicación de la resultante xd -x 1F  2F  1F  2F  1F  2F  1F  2F  R  Numéricamente se debe cumplir la llamada “Ley de la palanca” según la cual Los productos de cada fuerza por la distancia a la resultante son iguales: F1 · (d – x) = F2 · x Por otro lado, el módulo de la resultante es la suma de los módulos de las dos fuerzas: R = F1 + F2
  • 16. c) Paralelas c.2) Sentidos contrarios (antiparalelas) d Punto de aplicación de la resultante 1F  2F  Numéricamente se debe cumplir la llamada “Ley de la palanca” según la cual Los productos de cada fuerza por la distancia a la resultante son iguales: F1 · (d + x) = F2 · x Por otro lado, el módulo de la resultante es la diferencia de los módulos de las dos fuerzas: R = F2 - F1 Siempre se restará la menor a la mayor. 1F 2F  2F  1F  R  2F  1F  xd
  • 17. DESCOMPOSICIÓN DE FUERZAS Descomponer un vector consiste en encontrar otros vectores (normalmente dos) cuya composición nos de el vector inicial. Esencialmente, es el proceso contrario al de la composición. Veamos algunos ejemplos: 1F  2F  F  Aunque hay otras posibilidades: F  F  1F  2F  Y otra más: F  F  1F  2F 
  • 18. DESCOMPOSICIÓN DE FUERZAS Entonces, ¿cuál es la forma correcta de descomponer un vector? Pues todas. En realidad hay infinitas maneras de descomponer un vector y todas son correctas pues cumplen la definición de descomposición vectorial. Nosotros vamos a estudiar una llamada DESCOMPOSICIÓN NORMAL, en la que los vectores obtenidos (componentes), son perpendiculares entre sí. 2 y 2 x 2 FFF += F F αsen y = Fx F Fy α F  x y F  yF  xF  x F  yF  xF  y Fx = componente x De forma que… αF·senFy = F F cos x =α αF·cosFx = Fy = componente y
  • 19. DESCOMPOSICIÓN DE FUERZAS α Vamos a ver ahora una aplicación práctica de la descomposición de vectores: el desplazamiento sobre un plano inclinado. Nos centraremos, concretamente, en la descomposición de la fuerza-peso. Esta fuerza tiene dos efectos sobre el cuerpo que se desplaza: lo mantiene en contacto con la superficie del plano inclinado y lo empuja hacia abajo. Cada uno de estos dos efectos es debido a las dos componentes de la fuerza-peso: x y xP  yP  P  α P P sen X =α αP·senPx = P P cos y =α αP·cosPy = Py = componente normal del peso Px = componente tangencial del peso yP  P  xP  yP  P  xP  α α yP P xPα
  • 20. DESCOMPOSICIÓN DE FUERZAS F  N3.61332FFF 222 y 2 x ≈=+=+= En Matemáticas podemos también identificar vectores, componerlos y descomponerlos usando coordenadas cartesianas: y x1 2 3 4 5 6 5 4 3 2 1 (2,3)F =  α 1F  y x1 2 3 4 5 6 5 4 3 2 1 2F  (2,3)F1 =  (4,1)F2 =  α 1.5 2 3 F F tg x y ===α )F,F(F yx  = xF  yF  (2,0)Fx =  (0,3)Fy =  56.3º1.5arctg ==α Para componer dos vectores a partir de sus cordenadas cartesianas: R  (4,1)(2,3)R +=  21 FFR  += (6,4)R =  0.67 6 4 tg ≈=α 33.7º0.67arctg ≈=α N7.25246FFF 222 y 2 x ≈=+=+=