SlideShare a Scribd company logo
1 of 90
Download to read offline
The Conical Pendulum
The Conical Pendulum
  A




      
      P
The Conical Pendulum
  A
      
  h

              
 O        r   P
The Conical Pendulum
  A               Force Diagram
      
  h

              
 O        r   P
The Conical Pendulum
  A               Force Diagram
      
  h

              
 O        r   P
The Conical Pendulum
  A               Force Diagram
                                 T= tension in the string
                          T         (always away from object)
  h

              
 O        r   P
The Conical Pendulum
  A               Force Diagram
                                  T= tension in the string
                          T          (always away from object)
  h

                             mg
 O        r   P
The Conical Pendulum
  A               Force Diagram
                                  T= tension in the string
                          T          (always away from object)
  h                                   string makes with vertical
                             mg
 O        r   P
The Conical Pendulum
  A               Force Diagram
                                  T= tension in the string
                          T          (always away from object)
  h                                   string makes with vertical
                             mg     angular velocity of pendulum
 O        r   P
The Conical Pendulum
     A               Force Diagram
                                     T= tension in the string
                             T          (always away from object)
    h                                    string makes with vertical
                                mg     angular velocity of pendulum
   O       r     P
Resultant Forces
The Conical Pendulum
     A               Force Diagram
                                     T= tension in the string
                             T          (always away from object)
    h                                    string makes with vertical
                                mg     angular velocity of pendulum
   O       r     P
Resultant Forces
        mv 2
  m 
   x
         r
The Conical Pendulum
     A               Force Diagram
                                     T= tension in the string
                             T          (always away from object)
    h                                    string makes with vertical
                                mg     angular velocity of pendulum
   O       r     P
Resultant Forces
        mv 2
  m 
   x                                           m  0
                                                y
         r
The Conical Pendulum
       A              Force Diagram
                                      T= tension in the string
                              T          (always away from object)
      h                                   string makes with vertical
                                 mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                         m  0
                                                 y
            r
                    mv 2
horizontal forces 
                     r
The Conical Pendulum
       A              Force Diagram
                                       T= tension in the string
                              T           (always away from object)
      h                                    string makes with vertical
                                 mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                           m  0
                                                   y
            r
                    mv 2
horizontal forces                     vertical forces  0
                     r
The Conical Pendulum
       A              Force Diagram
                                      T= tension in the string
                            T           (always away from object)
      h                                   string makes with vertical
                                mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                          m  0
                                                  y
            r
                    mv 2
horizontal forces                    vertical forces  0
                     r
The Conical Pendulum
       A              Force Diagram
                                      T= tension in the string
                            T           (always away from object)
      h                                   string makes with vertical
                                mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                          m  0
                                                  y
            r
                    mv 2
horizontal forces                    vertical forces  0
                     r
The Conical Pendulum
       A              Force Diagram
                                      T= tension in the string
                            T           (always away from object)
      h                                   string makes with vertical
                                mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                          m  0
                                                  y
            r
                    mv 2
horizontal forces                    vertical forces  0
                     r

   T sin 
The Conical Pendulum
       A              Force Diagram
                                      T= tension in the string
                            T           (always away from object)
      h                                   string makes with vertical
                                mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                          m  0
                                                  y
            r
                    mv 2
horizontal forces                    vertical forces  0
                     r

   T sin  2
           mv
 T sin  
            r
The Conical Pendulum
       A              Force Diagram
                                          T= tension in the string
                                T           (always away from object)
      h                                       string makes with vertical
                                    mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                              m  0
                                                      y
            r
                    mv 2
horizontal forces                        vertical forces  0
                     r

   T sin  2
 T sin  
           mv       mr 2

            r
The Conical Pendulum
       A              Force Diagram
                                          T= tension in the string
                                T           (always away from object)
      h                                       string makes with vertical
                                    mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                              m  0
                                                      y
            r
                    mv 2
horizontal forces                        vertical forces  0
                     r

   T sin  2
 T sin  
           mv       mr 2

            r
The Conical Pendulum
       A              Force Diagram
                                          T= tension in the string
                                T           (always away from object)
      h                                       string makes with vertical
                                    mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                              m  0
                                                      y
            r
                    mv 2
horizontal forces                        vertical forces  0
                     r
                                          T cos
   T sin  2
 T sin  
           mv       mr 2              mg
            r
The Conical Pendulum
       A              Force Diagram
                                          T= tension in the string
                                T           (always away from object)
      h                                       string makes with vertical
                                    mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                              m  0
                                                      y
            r
                    mv 2
horizontal forces                        vertical forces  0
                     r
                                          T cos       T cos  mg  0
   T sin  2
 T sin  
           mv       mr 2              mg                    T cos  mg
            r
T sin  mv 2 1
           
T cos   r    mg
T sin  mv 2 1
            
T cos     r   mg
          v2
  tan  
          rg
T sin  mv 2 1
            
T cos     r   mg
          v2         r 2 
  tan                  
          rg         g 
T sin  mv 2 1
                          
              T cos     r   mg
                        v2         r 2 
                tan                  
                        rg         g 
                        r
But in AOP     tan  
                        h
T sin  mv 2 1
                          
              T cos     r   mg
                        v2         r 2 
                tan                  
                        rg         g 
                        r
But in AOP     tan  
                        h
                  v2 r
                 
                  rg h
T sin  mv 2 1
                          
              T cos     r   mg
                        v2         r 2 
                tan                  
                        rg         g 
                        r
But in AOP     tan  
                        h
                  v2 r
                 
                  rg h
                     r2g
                   h 2
                      v
T sin  mv 2 1
                          
              T cos     r   mg
                        v2         r 2 
                tan                  
                        rg         g 
                        r
But in AOP     tan  
                        h
                  v2 r
                 
                  rg h
                     r2g           g 
                   h 2               
                      v            2 
T sin  mv 2 1
                           
               T cos     r   mg
                         v2         r 2 
                 tan                  
                         rg         g 
                         r
But in AOP      tan  
                         h
                   v2 r
                  
                   rg h
                      r2g           g 
                    h 2               
                       v            2 
Implications
T sin  mv 2 1
                            
                T cos     r   mg
                          v2                      r 2 
                  tan                               
                          rg                      g 
                          r
But in AOP       tan  
                          h
                    v2 r
                   
                    rg h
                        r2g                       g 
                      h 2                           
                         v                        2 
Implications
•depth of the pendulum below A is independent of the length of the
 string.
T sin  mv 2 1
                            
                T cos     r   mg
                          v2                      r 2 
                  tan                               
                          rg                      g 
                          r
But in AOP       tan  
                          h
                    v2 r
                   
                    rg h
                        r2g                       g 
                      h 2                           
                         v                        2 
Implications
•depth of the pendulum below A is independent of the length of the
 string.
•as the speed increases, the particle (bob) rises.
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                            T
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                            T



                                mg
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                             T
                      h


                              r
                                  mg
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces 
                     r
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r

    T sin 
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r

    T sin 

   T sin   mr 2
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r

    T sin 

   T sin   mr 2
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r

    T sin                              T cos

   T sin   mr 2                      mg
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r

    T sin                              T cos T cos  mg  0

   T sin   mr 2                      mg          T cos  mg
1
 tan   mr 2 
                    mg
         r 2
       
          g
1
 tan   mr 2 
                    mg
         r 2
       
          g
              r
  But tan  
              h
1
 tan   mr 2 
                    mg
         r 2
       
          g
              r
  But tan  
              h
       r 2 r
           
        g     h
               g
          h 2
                
1
 tan   mr 2         when   60rev/min
                    mg
                                  120
         r 2                         rad/s
                                  60
          g
                                 2rad/s
              r
  But tan  
              h
       r 2 r
           
        g     h
               g
          h 2
                
1
 tan   mr 2         when   60rev/min    h
                                                      g
                    mg
                                  120
                                                    2 2
         r 2                         rad/s         g
                                  60                       m
          g
                                 2rad/s           4   2


              r
  But tan  
              h
       r 2 r
           
        g     h
               g
          h 2
                
1
 tan   mr 2         when   60rev/min    h
                                                      g
                    mg
                                  120
                                                    2 2
         r 2                         rad/s         g
                                  60                       m
          g
                                 2rad/s           4   2


              r
  But tan  
              h          when   90rev/min
       r 2 r
                                180
        g     h                       rad/s
                                   60
          h 2
               g                 3rad/s
                
1
 tan   mr 2         when   60rev/min    h
                                                      g
                    mg
                                  120
                                                    2 2
         r 2                         rad/s         g
                                  60                        m
          g
                                 2rad/s           4   2


              r
  But tan  
              h          when   90rev/min              g
                                               h
   
       r 2 r
                                 180
                                                    3 2
        g     h                       rad/s          g
                                   60                        m
               g                 3rad/s           9    2
          h 2
                
1
 tan   mr 2              when   60rev/min     h
                                                            g
                    mg
                                       120
                                                          2 2
         r 2                              rad/s          g
                                       60                         m
          g
                                      2rad/s            4   2


              r
  But tan  
              h               when   90rev/min               g
                                                     h
   
       r 2 r
                                      180
                                                          3 2
        g     h                            rad/s           g
                                        60                         m
               g                      3rad/s            9    2
          h 2
                

                                        g  g m
                     rise in height   2
                                        4 9 2 
                                                 
                                     0.14m
(ii) (2002)
     A particle of mass m is suspended by a string of length l from a point
     directly above the vertex of a smooth cone, which has a vertical axis.
     The particle remains in contact with the cone and rotates as a conical
     pendulum with angular velocity .
                               The angle of the cone at its vertex is 2
                                           
                               where         , and the string makes an
                                            4
                               angle of  with the horizontal as shown in
                               the diagram. The forces acting on the
                               particle are the tension in the string T, the
                               normal reaction N and the gravitational
                               force mg.
(ii) (2002)
     A particle of mass m is suspended by a string of length l from a point
     directly above the vertex of a smooth cone, which has a vertical axis.
     The particle remains in contact with the cone and rotates as a conical
     pendulum with angular velocity .
                               The angle of the cone at its vertex is 2
                                           
                               where         , and the string makes an
                                            4
                               angle of  with the horizontal as shown in
                               the diagram. The forces acting on the
                               particle are the tension in the string T, the
                               normal reaction N and the gravitational
                               force mg.
 Note: whenever a particle makes contact with a surface there will be
 a normal force perpendicular to the surface.
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T

        
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T
                 N
        
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T
                  N
        
             mg
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T
                 N
                                                 
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T
                 N
                                                     
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                 
        T                                                   
                 N
                                                     
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                  
        T                                                   
                  N
                                                     
             mg
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                   
        T c                                                 
                   N
                                                     
              mg
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                         c
        T c                   sin 
                          N                                 
                   N
                           c  N sin 
                                                     
              mg
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                          c
        T c                    sin 
                           N                                
                   N
                            c  N sin 
                                                 
                        the vertical component        
              mg
                        of N isN sin 
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                          c
        T c                    sin 
                           N                                   
                  N
                            c  N sin 
                                                  
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                 
                  N
                              c  N sin 
                                                  
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                 
                  N
                              c  N sin 
                                                  
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                 
                  N
                              c  N sin 
                                                  
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2

   T cos  N cos 
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                 
                  N
                              c  N sin 
                                                  
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2

   T cos  N cos 
T cos   N cos   mr 2
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                    
                  N
                              c  N sin 
                                                      
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2                  vertical forces  0

   T cos  N cos 
T cos   N cos   mr 2
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                    
                  N
                              c  N sin 
                                                      
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2                  vertical forces  0

   T cos  N cos 
T cos   N cos   mr 2
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                    
                  N
                              c  N sin 
                                                      
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2                  vertical forces  0

   T cos  N cos                 T sin     N sin 
T cos   N cos   mr 2                   mg
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                    
                  N
                              c  N sin 
                                                      
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2                  vertical forces  0

   T cos  N cos                 T sin    N sin 
                                                 T sin   N sin   mg  0
T cos   N cos   mr 2                   mg
                                                       T sin   N sin   mg
T sin   N sin   mg
T sin   N sin   mg
   T  N  sin   mg
                 mg
          TN 
                sin 
T sin   N sin   mg   T cos   N cos   mr 2
   T  N  sin   mg
                 mg
          TN 
                sin 
T sin   N sin   mg   T cos   N cos   mr 2
   T  N  sin   mg       T  N  cos   mr 2
                 mg                        mr 2
          TN                      T N 
                sin                       cos 
T sin   N sin   mg    T cos   N cos   mr 2
   T  N  sin   mg        T  N  cos   mr 2
                 mg                           mr 2
          TN                         T N 
                sin                          cos 
                            r
                         But  cos 
                            l
T sin   N sin   mg    T cos   N cos   mr 2
   T  N  sin   mg        T  N  cos   mr 2
                 mg                         mr 2
          TN                       T N 
                sin                        cos 
                            r
                         But  cos  T  N  ml 2
                            l
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                    mg                                      mr 2
             TN                                    T N 
                   sin                                     cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                    mg                                      mr 2
             TN                                    T N 
                   sin                                     cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
  When N  0;
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                     mg                                     mr 2
              TN                                   T N 
                    sin                                    cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
  When N  0;
       mg
   T
      sin 
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                    mg                                      mr 2
             TN                                    T N 
                   sin                                     cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
  When N  0;
       mg
   T       and T  ml 2
      sin 
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                    mg                                      mr 2
             TN                                    T N 
                   sin                                     cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
   When N  0;                              
                                               mg
                                                     ml 2
                                              sin 
         mg
    T          and T  ml 2
        sin 
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                    mg                                      mr 2
             TN                                    T N 
                   sin                                     cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
   When N  0;                              
                                               mg
                                                      ml 2
                                              sin 
         mg                                                g
    T          and T  ml  2
                                                 2

        sin                                           l sin 
                                                             g
                                                 
                                                          l sin 
Exercise 9C; all

More Related Content

What's hot

Forces & Eqm
Forces & EqmForces & Eqm
Forces & Eqmmatcol
 
Engineering science lesson 1
Engineering science lesson 1Engineering science lesson 1
Engineering science lesson 1Shahid Aaqil
 
Logics of the laplace transform
Logics of the laplace transformLogics of the laplace transform
Logics of the laplace transformTarun Gehlot
 
12X1 T07 03 projectile motion (2010)
12X1 T07 03 projectile motion (2010)12X1 T07 03 projectile motion (2010)
12X1 T07 03 projectile motion (2010)Nigel Simmons
 
Ja Garzon Tim Trackfor Trasgos
Ja Garzon Tim Trackfor TrasgosJa Garzon Tim Trackfor Trasgos
Ja Garzon Tim Trackfor TrasgosMiguel Morales
 
PHYSICS (CLASSS XII) - Chapter 5 : Oscillations
PHYSICS (CLASSS XII)  - Chapter 5 : OscillationsPHYSICS (CLASSS XII)  - Chapter 5 : Oscillations
PHYSICS (CLASSS XII) - Chapter 5 : OscillationsPooja M
 
Chapter 5 formulation and solution strategies
Chapter 5 formulation and solution strategiesChapter 5 formulation and solution strategies
Chapter 5 formulation and solution strategiesNishant Prabhakar
 
Robust 3D gravity gradient inversion by planting anomalous densities
Robust 3D gravity gradient inversion by planting anomalous densitiesRobust 3D gravity gradient inversion by planting anomalous densities
Robust 3D gravity gradient inversion by planting anomalous densitiesLeonardo Uieda
 

What's hot (12)

Forces & Eqm
Forces & EqmForces & Eqm
Forces & Eqm
 
Engineering science lesson 1
Engineering science lesson 1Engineering science lesson 1
Engineering science lesson 1
 
Simple harmonic motion
Simple harmonic motionSimple harmonic motion
Simple harmonic motion
 
Lecture 10
Lecture 10Lecture 10
Lecture 10
 
Projekt
ProjektProjekt
Projekt
 
Lec10
Lec10Lec10
Lec10
 
Logics of the laplace transform
Logics of the laplace transformLogics of the laplace transform
Logics of the laplace transform
 
12X1 T07 03 projectile motion (2010)
12X1 T07 03 projectile motion (2010)12X1 T07 03 projectile motion (2010)
12X1 T07 03 projectile motion (2010)
 
Ja Garzon Tim Trackfor Trasgos
Ja Garzon Tim Trackfor TrasgosJa Garzon Tim Trackfor Trasgos
Ja Garzon Tim Trackfor Trasgos
 
PHYSICS (CLASSS XII) - Chapter 5 : Oscillations
PHYSICS (CLASSS XII)  - Chapter 5 : OscillationsPHYSICS (CLASSS XII)  - Chapter 5 : Oscillations
PHYSICS (CLASSS XII) - Chapter 5 : Oscillations
 
Chapter 5 formulation and solution strategies
Chapter 5 formulation and solution strategiesChapter 5 formulation and solution strategies
Chapter 5 formulation and solution strategies
 
Robust 3D gravity gradient inversion by planting anomalous densities
Robust 3D gravity gradient inversion by planting anomalous densitiesRobust 3D gravity gradient inversion by planting anomalous densities
Robust 3D gravity gradient inversion by planting anomalous densities
 

Viewers also liked

Rainwater Harvest Garden - Albuquerque, Bernalillo County, New Mexico
Rainwater Harvest Garden - Albuquerque, Bernalillo County, New MexicoRainwater Harvest Garden - Albuquerque, Bernalillo County, New Mexico
Rainwater Harvest Garden - Albuquerque, Bernalillo County, New MexicoFiona9864
 
Xarxes de informatica
Xarxes de informaticaXarxes de informatica
Xarxes de informaticaOsamaHamadi
 
Xado spain distribucion -end-esp publicidad & marketing rev03
Xado spain distribucion -end-esp publicidad & marketing rev03Xado spain distribucion -end-esp publicidad & marketing rev03
Xado spain distribucion -end-esp publicidad & marketing rev03XADO ESPAÑA
 
XandXII.com (tenth and twelfth dot com)
XandXII.com (tenth and twelfth dot com)XandXII.com (tenth and twelfth dot com)
XandXII.com (tenth and twelfth dot com)Jaspal Singh
 
XAML と C# を使った Windows ストアアプリ(LOB)構築のためのtips Prism 4.5 & Kona project 等のご紹介
XAML と C# を使った Windows ストアアプリ(LOB)構築のためのtips   Prism 4.5 & Kona project 等のご紹介XAML と C# を使った Windows ストアアプリ(LOB)構築のためのtips   Prism 4.5 & Kona project 等のご紹介
XAML と C# を使った Windows ストアアプリ(LOB)構築のためのtips Prism 4.5 & Kona project 等のご紹介Shotaro Suzuki
 
XANGO-Королева фруктов
XANGO-Королева фруктовXANGO-Королева фруктов
XANGO-Королева фруктовSergey Karassov
 
Xarxes i cablatge IV serv-transmissions i arquitectures
Xarxes i cablatge IV serv-transmissions i arquitecturesXarxes i cablatge IV serv-transmissions i arquitectures
Xarxes i cablatge IV serv-transmissions i arquitecturesCarlos Cardelo
 
Coupled Inductor Based High Step-Up DC-DC Converter for Multi Input PV System
Coupled Inductor Based High Step-Up DC-DC Converter for Multi Input PV SystemCoupled Inductor Based High Step-Up DC-DC Converter for Multi Input PV System
Coupled Inductor Based High Step-Up DC-DC Converter for Multi Input PV SystemIJERA Editor
 
Xarxes informàtiquesss
Xarxes informàtiquesssXarxes informàtiquesss
Xarxes informàtiquesssImane18
 
X6 syadza adila putri
X6 syadza adila putriX6 syadza adila putri
X6 syadza adila putrisyadzaadila
 

Viewers also liked (18)

x6 certification 11
x6 certification 11x6 certification 11
x6 certification 11
 
Rainwater Harvest Garden - Albuquerque, Bernalillo County, New Mexico
Rainwater Harvest Garden - Albuquerque, Bernalillo County, New MexicoRainwater Harvest Garden - Albuquerque, Bernalillo County, New Mexico
Rainwater Harvest Garden - Albuquerque, Bernalillo County, New Mexico
 
Xarxes d
Xarxes dXarxes d
Xarxes d
 
Xarxes de informatica
Xarxes de informaticaXarxes de informatica
Xarxes de informatica
 
Xamarin in Healthcare Sector
Xamarin in Healthcare SectorXamarin in Healthcare Sector
Xamarin in Healthcare Sector
 
Xado spain distribucion -end-esp publicidad & marketing rev03
Xado spain distribucion -end-esp publicidad & marketing rev03Xado spain distribucion -end-esp publicidad & marketing rev03
Xado spain distribucion -end-esp publicidad & marketing rev03
 
X25119123
X25119123X25119123
X25119123
 
X.8 magistra dwinovia indriani ppt
X.8 magistra dwinovia indriani pptX.8 magistra dwinovia indriani ppt
X.8 magistra dwinovia indriani ppt
 
XandXII.com (tenth and twelfth dot com)
XandXII.com (tenth and twelfth dot com)XandXII.com (tenth and twelfth dot com)
XandXII.com (tenth and twelfth dot com)
 
XAML と C# を使った Windows ストアアプリ(LOB)構築のためのtips Prism 4.5 & Kona project 等のご紹介
XAML と C# を使った Windows ストアアプリ(LOB)構築のためのtips   Prism 4.5 & Kona project 等のご紹介XAML と C# を使った Windows ストアアプリ(LOB)構築のためのtips   Prism 4.5 & Kona project 等のご紹介
XAML と C# を使った Windows ストアアプリ(LOB)構築のためのtips Prism 4.5 & Kona project 等のご紹介
 
XANGO-Королева фруктов
XANGO-Королева фруктовXANGO-Королева фруктов
XANGO-Королева фруктов
 
Xarxes i cablatge IV serv-transmissions i arquitectures
Xarxes i cablatge IV serv-transmissions i arquitecturesXarxes i cablatge IV serv-transmissions i arquitectures
Xarxes i cablatge IV serv-transmissions i arquitectures
 
X4502151157
X4502151157X4502151157
X4502151157
 
Xamarin.Android & Microsoft Azure
Xamarin.Android & Microsoft AzureXamarin.Android & Microsoft Azure
Xamarin.Android & Microsoft Azure
 
Coupled Inductor Based High Step-Up DC-DC Converter for Multi Input PV System
Coupled Inductor Based High Step-Up DC-DC Converter for Multi Input PV SystemCoupled Inductor Based High Step-Up DC-DC Converter for Multi Input PV System
Coupled Inductor Based High Step-Up DC-DC Converter for Multi Input PV System
 
Xaliproden hydrochloride 90494-79-4-api
Xaliproden hydrochloride 90494-79-4-apiXaliproden hydrochloride 90494-79-4-api
Xaliproden hydrochloride 90494-79-4-api
 
Xarxes informàtiquesss
Xarxes informàtiquesssXarxes informàtiquesss
Xarxes informàtiquesss
 
X6 syadza adila putri
X6 syadza adila putriX6 syadza adila putri
X6 syadza adila putri
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingTeacherCyreneCayanan
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.MateoGardella
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterMateoGardella
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 

Recently uploaded (20)

Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch Letter
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 

X2 T07 05 conical pendulum (2010)

  • 3. The Conical Pendulum A  h  O r P
  • 4. The Conical Pendulum A Force Diagram  h  O r P
  • 5. The Conical Pendulum A Force Diagram  h  O r P
  • 6. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h  O r P
  • 7. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h  mg O r P
  • 8. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg O r P
  • 9. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P
  • 10. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces
  • 11. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x r
  • 12. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r
  • 13. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  r
  • 14. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r
  • 15. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r
  • 16. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r
  • 17. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T sin 
  • 18. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T sin  2 mv T sin   r
  • 19. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T sin  2 T sin   mv  mr 2 r
  • 20. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T sin  2 T sin   mv  mr 2 r
  • 21. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T cos T sin  2 T sin   mv  mr 2 mg r
  • 22. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T cos T cos  mg  0 T sin  2 T sin   mv  mr 2 mg T cos  mg r
  • 23. T sin  mv 2 1   T cos r mg
  • 24. T sin  mv 2 1   T cos r mg v2 tan   rg
  • 25. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g 
  • 26. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h
  • 27. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h
  • 28. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h r2g h 2 v
  • 29. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h r2g  g  h 2   v  2 
  • 30. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h r2g  g  h 2   v  2  Implications
  • 31. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h r2g  g  h 2   v  2  Implications •depth of the pendulum below A is independent of the length of the string.
  • 32. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h r2g  g  h 2   v  2  Implications •depth of the pendulum below A is independent of the length of the string. •as the speed increases, the particle (bob) rises.
  • 33. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.
  • 34. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.
  • 35. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob. T
  • 36. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob. T mg
  • 37. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg
  • 38. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  r
  • 39. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r
  • 40. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r
  • 41. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r T sin 
  • 42. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r T sin  T sin   mr 2
  • 43. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r T sin  T sin   mr 2
  • 44. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r T sin  T cos T sin   mr 2 mg
  • 45. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r T sin  T cos T cos  mg  0 T sin   mr 2 mg T cos  mg
  • 46. 1  tan   mr 2  mg r 2  g
  • 47. 1  tan   mr 2  mg r 2  g r But tan   h
  • 48. 1  tan   mr 2  mg r 2  g r But tan   h r 2 r   g h g h 2 
  • 49. 1  tan   mr 2  when   60rev/min mg 120 r 2  rad/s  60 g  2rad/s r But tan   h r 2 r   g h g h 2 
  • 50. 1  tan   mr 2  when   60rev/min h g mg 120 2 2 r 2  rad/s g  60  m g  2rad/s 4 2 r But tan   h r 2 r   g h g h 2 
  • 51. 1  tan   mr 2  when   60rev/min h g mg 120 2 2 r 2  rad/s g  60  m g  2rad/s 4 2 r But tan   h when   90rev/min r 2 r   180 g h  rad/s 60 h 2 g  3rad/s 
  • 52. 1  tan   mr 2  when   60rev/min h g mg 120 2 2 r 2  rad/s g  60  m g  2rad/s 4 2 r But tan   h when   90rev/min g h  r 2 r  180 3 2 g h  rad/s g 60  m g  3rad/s 9 2 h 2 
  • 53. 1  tan   mr 2  when   60rev/min h g mg 120 2 2 r 2  rad/s g  60  m g  2rad/s 4 2 r But tan   h when   90rev/min g h  r 2 r  180 3 2 g h  rad/s g 60  m g  3rad/s 9 2 h 2   g  g m  rise in height   2  4 9 2    0.14m
  • 54. (ii) (2002) A particle of mass m is suspended by a string of length l from a point directly above the vertex of a smooth cone, which has a vertical axis. The particle remains in contact with the cone and rotates as a conical pendulum with angular velocity . The angle of the cone at its vertex is 2  where   , and the string makes an 4 angle of  with the horizontal as shown in the diagram. The forces acting on the particle are the tension in the string T, the normal reaction N and the gravitational force mg.
  • 55. (ii) (2002) A particle of mass m is suspended by a string of length l from a point directly above the vertex of a smooth cone, which has a vertical axis. The particle remains in contact with the cone and rotates as a conical pendulum with angular velocity . The angle of the cone at its vertex is 2  where   , and the string makes an 4 angle of  with the horizontal as shown in the diagram. The forces acting on the particle are the tension in the string T, the normal reaction N and the gravitational force mg. Note: whenever a particle makes contact with a surface there will be a normal force perpendicular to the surface.
  • 56. a) Show, with the aid of a diagram, that the vertical component of N is N sin 
  • 57. a) Show, with the aid of a diagram, that the vertical component of N is N sin 
  • 58. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T
  • 59. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T 
  • 60. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T N 
  • 61. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T N  mg
  • 62. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T N  
  • 63. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T N   
  • 64. a) Show, with the aid of a diagram, that the vertical component of N is N sin   T  N   
  • 65. a) Show, with the aid of a diagram, that the vertical component of N is N sin   T  N    mg
  • 66. a) Show, with the aid of a diagram, that the vertical component of N is N sin   T c  N    mg
  • 67. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     mg
  • 68. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin 
  • 69. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and
  • 70. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2
  • 71. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2
  • 72. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 T cos  N cos 
  • 73. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 T cos  N cos  T cos   N cos   mr 2
  • 74. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 vertical forces  0 T cos  N cos  T cos   N cos   mr 2
  • 75. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 vertical forces  0 T cos  N cos  T cos   N cos   mr 2
  • 76. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 vertical forces  0 T cos  N cos  T sin  N sin  T cos   N cos   mr 2 mg
  • 77. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 vertical forces  0 T cos  N cos  T sin  N sin  T sin   N sin   mg  0 T cos   N cos   mr 2 mg T sin   N sin   mg
  • 78. T sin   N sin   mg
  • 79. T sin   N sin   mg T  N  sin   mg mg TN  sin 
  • 80. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg mg TN  sin 
  • 81. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos 
  • 82. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  l
  • 83. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l
  • 84. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g
  • 85. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g When N  0;
  • 86. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g When N  0; mg T sin 
  • 87. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g When N  0; mg T and T  ml 2 sin 
  • 88. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g When N  0;  mg  ml 2 sin  mg T and T  ml 2 sin 
  • 89. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g When N  0;  mg  ml 2 sin  mg g T and T  ml 2  2 sin  l sin  g  l sin 