SlideShare a Scribd company logo
1 of 90
Download to read offline
The Conical Pendulum
The Conical Pendulum
  A




      
      P
The Conical Pendulum
  A
      
  h

              
 O        r   P
The Conical Pendulum
  A               Force Diagram
      
  h

              
 O        r   P
The Conical Pendulum
  A               Force Diagram
      
  h

              
 O        r   P
The Conical Pendulum
  A               Force Diagram
                                 T= tension in the string
                          T         (always away from object)
  h

              
 O        r   P
The Conical Pendulum
  A               Force Diagram
                                  T= tension in the string
                          T          (always away from object)
  h

                             mg
 O        r   P
The Conical Pendulum
  A               Force Diagram
                                  T= tension in the string
                          T          (always away from object)
  h                                   string makes with vertical
                             mg
 O        r   P
The Conical Pendulum
  A               Force Diagram
                                  T= tension in the string
                          T          (always away from object)
  h                                   string makes with vertical
                             mg     angular velocity of pendulum
 O        r   P
The Conical Pendulum
     A               Force Diagram
                                     T= tension in the string
                             T          (always away from object)
    h                                    string makes with vertical
                                mg     angular velocity of pendulum
   O       r     P
Resultant Forces
The Conical Pendulum
     A               Force Diagram
                                     T= tension in the string
                             T          (always away from object)
    h                                    string makes with vertical
                                mg     angular velocity of pendulum
   O       r     P
Resultant Forces
        mv 2
  m 
   x
         r
The Conical Pendulum
     A               Force Diagram
                                     T= tension in the string
                             T          (always away from object)
    h                                    string makes with vertical
                                mg     angular velocity of pendulum
   O       r     P
Resultant Forces
        mv 2
  m 
   x                                           m  0
                                                y
         r
The Conical Pendulum
       A              Force Diagram
                                      T= tension in the string
                              T          (always away from object)
      h                                   string makes with vertical
                                 mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                         m  0
                                                 y
            r
                    mv 2
horizontal forces 
                     r
The Conical Pendulum
       A              Force Diagram
                                       T= tension in the string
                              T           (always away from object)
      h                                    string makes with vertical
                                 mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                           m  0
                                                   y
            r
                    mv 2
horizontal forces                     vertical forces  0
                     r
The Conical Pendulum
       A              Force Diagram
                                      T= tension in the string
                            T           (always away from object)
      h                                   string makes with vertical
                                mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                          m  0
                                                  y
            r
                    mv 2
horizontal forces                    vertical forces  0
                     r
The Conical Pendulum
       A              Force Diagram
                                      T= tension in the string
                            T           (always away from object)
      h                                   string makes with vertical
                                mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                          m  0
                                                  y
            r
                    mv 2
horizontal forces                    vertical forces  0
                     r
The Conical Pendulum
       A              Force Diagram
                                      T= tension in the string
                            T           (always away from object)
      h                                   string makes with vertical
                                mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                          m  0
                                                  y
            r
                    mv 2
horizontal forces                    vertical forces  0
                     r

   T sin 
The Conical Pendulum
       A              Force Diagram
                                      T= tension in the string
                            T           (always away from object)
      h                                   string makes with vertical
                                mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                          m  0
                                                  y
            r
                    mv 2
horizontal forces                    vertical forces  0
                     r

   T sin  2
           mv
 T sin  
            r
The Conical Pendulum
       A              Force Diagram
                                          T= tension in the string
                                T           (always away from object)
      h                                       string makes with vertical
                                    mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                              m  0
                                                      y
            r
                    mv 2
horizontal forces                        vertical forces  0
                     r

   T sin  2
 T sin  
           mv       mr 2

            r
The Conical Pendulum
       A              Force Diagram
                                          T= tension in the string
                                T           (always away from object)
      h                                       string makes with vertical
                                    mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                              m  0
                                                      y
            r
                    mv 2
horizontal forces                        vertical forces  0
                     r

   T sin  2
 T sin  
           mv       mr 2

            r
The Conical Pendulum
       A              Force Diagram
                                          T= tension in the string
                                T           (always away from object)
      h                                       string makes with vertical
                                    mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                              m  0
                                                      y
            r
                    mv 2
horizontal forces                        vertical forces  0
                     r
                                          T cos
   T sin  2
 T sin  
           mv       mr 2              mg
            r
The Conical Pendulum
       A              Force Diagram
                                          T= tension in the string
                                T           (always away from object)
      h                                       string makes with vertical
                                    mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                              m  0
                                                      y
            r
                    mv 2
horizontal forces                        vertical forces  0
                     r
                                          T cos       T cos  mg  0
   T sin  2
 T sin  
           mv       mr 2              mg                    T cos  mg
            r
T sin  mv 2 1
           
T cos   r    mg
T sin  mv 2 1
            
T cos     r   mg
          v2
  tan  
          rg
T sin  mv 2 1
            
T cos     r   mg
          v2         r 2 
  tan                  
          rg         g 
T sin  mv 2 1
                          
              T cos     r   mg
                        v2         r 2 
                tan                  
                        rg         g 
                        r
But in AOP     tan  
                        h
T sin  mv 2 1
                          
              T cos     r   mg
                        v2         r 2 
                tan                  
                        rg         g 
                        r
But in AOP     tan  
                        h
                  v2 r
                 
                  rg h
T sin  mv 2 1
                          
              T cos     r   mg
                        v2         r 2 
                tan                  
                        rg         g 
                        r
But in AOP     tan  
                        h
                  v2 r
                 
                  rg h
                     r2g
                   h 2
                      v
T sin  mv 2 1
                          
              T cos     r   mg
                        v2         r 2 
                tan                  
                        rg         g 
                        r
But in AOP     tan  
                        h
                  v2 r
                 
                  rg h
                     r2g           g 
                   h 2               
                      v            2 
T sin  mv 2 1
                           
               T cos     r   mg
                         v2         r 2 
                 tan                  
                         rg         g 
                         r
But in AOP      tan  
                         h
                   v2 r
                  
                   rg h
                      r2g           g 
                    h 2               
                       v            2 
Implications
T sin  mv 2 1
                            
                T cos     r   mg
                          v2                      r 2 
                  tan                               
                          rg                      g 
                          r
But in AOP       tan  
                          h
                    v2 r
                   
                    rg h
                        r2g                       g 
                      h 2                           
                         v                        2 
Implications
•depth of the pendulum below A is independent of the length of the
 string.
T sin  mv 2 1
                            
                T cos     r   mg
                          v2                      r 2 
                  tan                               
                          rg                      g 
                          r
But in AOP       tan  
                          h
                    v2 r
                   
                    rg h
                        r2g                       g 
                      h 2                           
                         v                        2 
Implications
•depth of the pendulum below A is independent of the length of the
 string.
•as the speed increases, the particle (bob) rises.
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                            T
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                            T



                                mg
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                             T
                      h


                              r
                                  mg
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces 
                     r
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r

    T sin 
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r

    T sin 

   T sin   mr 2
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r

    T sin 

   T sin   mr 2
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r

    T sin                              T cos

   T sin   mr 2                      mg
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r

    T sin                              T cos T cos  mg  0

   T sin   mr 2                      mg          T cos  mg
1
 tan   mr 2 
                    mg
         r 2
       
          g
1
 tan   mr 2 
                    mg
         r 2
       
          g
              r
  But tan  
              h
1
 tan   mr 2 
                    mg
         r 2
       
          g
              r
  But tan  
              h
       r 2 r
           
        g     h
               g
          h 2
                
1
 tan   mr 2         when   60rev/min
                    mg
                                  120
         r 2                         rad/s
                                  60
          g
                                 2rad/s
              r
  But tan  
              h
       r 2 r
           
        g     h
               g
          h 2
                
1
 tan   mr 2         when   60rev/min    h
                                                      g
                    mg
                                  120
                                                    2 2
         r 2                         rad/s         g
                                  60                       m
          g
                                 2rad/s           4   2


              r
  But tan  
              h
       r 2 r
           
        g     h
               g
          h 2
                
1
 tan   mr 2         when   60rev/min    h
                                                      g
                    mg
                                  120
                                                    2 2
         r 2                         rad/s         g
                                  60                       m
          g
                                 2rad/s           4   2


              r
  But tan  
              h          when   90rev/min
       r 2 r
                                180
        g     h                       rad/s
                                   60
          h 2
               g                 3rad/s
                
1
 tan   mr 2         when   60rev/min    h
                                                      g
                    mg
                                  120
                                                    2 2
         r 2                         rad/s         g
                                  60                        m
          g
                                 2rad/s           4   2


              r
  But tan  
              h          when   90rev/min              g
                                               h
   
       r 2 r
                                 180
                                                    3 2
        g     h                       rad/s          g
                                   60                        m
               g                 3rad/s           9    2
          h 2
                
1
 tan   mr 2              when   60rev/min     h
                                                            g
                    mg
                                       120
                                                          2 2
         r 2                              rad/s          g
                                       60                         m
          g
                                      2rad/s            4   2


              r
  But tan  
              h               when   90rev/min               g
                                                     h
   
       r 2 r
                                      180
                                                          3 2
        g     h                            rad/s           g
                                        60                         m
               g                      3rad/s            9    2
          h 2
                

                                        g  g m
                     rise in height   2
                                        4 9 2 
                                                 
                                     0.14m
(ii) (2002)
     A particle of mass m is suspended by a string of length l from a point
     directly above the vertex of a smooth cone, which has a vertical axis.
     The particle remains in contact with the cone and rotates as a conical
     pendulum with angular velocity .
                               The angle of the cone at its vertex is 2
                                           
                               where         , and the string makes an
                                            4
                               angle of  with the horizontal as shown in
                               the diagram. The forces acting on the
                               particle are the tension in the string T, the
                               normal reaction N and the gravitational
                               force mg.
(ii) (2002)
     A particle of mass m is suspended by a string of length l from a point
     directly above the vertex of a smooth cone, which has a vertical axis.
     The particle remains in contact with the cone and rotates as a conical
     pendulum with angular velocity .
                               The angle of the cone at its vertex is 2
                                           
                               where         , and the string makes an
                                            4
                               angle of  with the horizontal as shown in
                               the diagram. The forces acting on the
                               particle are the tension in the string T, the
                               normal reaction N and the gravitational
                               force mg.
 Note: whenever a particle makes contact with a surface there will be
 a normal force perpendicular to the surface.
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T

        
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T
                 N
        
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T
                  N
        
             mg
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T
                 N
                                                 
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T
                 N
                                                     
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                 
        T                                                   
                 N
                                                     
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                  
        T                                                   
                  N
                                                     
             mg
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                   
        T c                                                 
                   N
                                                     
              mg
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                         c
        T c                   sin 
                          N                                 
                   N
                           c  N sin 
                                                     
              mg
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                          c
        T c                    sin 
                           N                                
                   N
                            c  N sin 
                                                 
                        the vertical component        
              mg
                        of N isN sin 
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                          c
        T c                    sin 
                           N                                   
                  N
                            c  N sin 
                                                  
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                 
                  N
                              c  N sin 
                                                  
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                 
                  N
                              c  N sin 
                                                  
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                 
                  N
                              c  N sin 
                                                  
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2

   T cos  N cos 
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                 
                  N
                              c  N sin 
                                                  
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2

   T cos  N cos 
T cos   N cos   mr 2
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                    
                  N
                              c  N sin 
                                                      
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2                  vertical forces  0

   T cos  N cos 
T cos   N cos   mr 2
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                    
                  N
                              c  N sin 
                                                      
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2                  vertical forces  0

   T cos  N cos 
T cos   N cos   mr 2
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                    
                  N
                              c  N sin 
                                                      
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2                  vertical forces  0

   T cos  N cos                 T sin     N sin 
T cos   N cos   mr 2                   mg
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                    
                  N
                              c  N sin 
                                                      
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2                  vertical forces  0

   T cos  N cos                 T sin    N sin 
                                                 T sin   N sin   mg  0
T cos   N cos   mr 2                   mg
                                                       T sin   N sin   mg
T sin   N sin   mg
T sin   N sin   mg
   T  N  sin   mg
                 mg
          TN 
                sin 
T sin   N sin   mg   T cos   N cos   mr 2
   T  N  sin   mg
                 mg
          TN 
                sin 
T sin   N sin   mg   T cos   N cos   mr 2
   T  N  sin   mg       T  N  cos   mr 2
                 mg                        mr 2
          TN                      T N 
                sin                       cos 
T sin   N sin   mg    T cos   N cos   mr 2
   T  N  sin   mg        T  N  cos   mr 2
                 mg                           mr 2
          TN                         T N 
                sin                          cos 
                            r
                         But  cos 
                            l
T sin   N sin   mg    T cos   N cos   mr 2
   T  N  sin   mg        T  N  cos   mr 2
                 mg                         mr 2
          TN                       T N 
                sin                        cos 
                            r
                         But  cos  T  N  ml 2
                            l
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                    mg                                      mr 2
             TN                                    T N 
                   sin                                     cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                    mg                                      mr 2
             TN                                    T N 
                   sin                                     cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
  When N  0;
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                     mg                                     mr 2
              TN                                   T N 
                    sin                                    cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
  When N  0;
       mg
   T
      sin 
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                    mg                                      mr 2
             TN                                    T N 
                   sin                                     cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
  When N  0;
       mg
   T       and T  ml 2
      sin 
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                    mg                                      mr 2
             TN                                    T N 
                   sin                                     cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
   When N  0;                              
                                               mg
                                                     ml 2
                                              sin 
         mg
    T          and T  ml 2
        sin 
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                    mg                                      mr 2
             TN                                    T N 
                   sin                                     cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
   When N  0;                              
                                               mg
                                                      ml 2
                                              sin 
         mg                                                g
    T          and T  ml  2
                                                 2

        sin                                           l sin 
                                                             g
                                                 
                                                          l sin 
Exercise 9C; all

More Related Content

What's hot

Physics a2 unit4_05_circular_motion_01- circular motion
Physics a2 unit4_05_circular_motion_01- circular motionPhysics a2 unit4_05_circular_motion_01- circular motion
Physics a2 unit4_05_circular_motion_01- circular motionsashrilisdi
 
Class 12th Physics Electrostatics part 2
Class 12th Physics Electrostatics part 2Class 12th Physics Electrostatics part 2
Class 12th Physics Electrostatics part 2Arpit Meena
 
Thermodynamics.ppt
Thermodynamics.pptThermodynamics.ppt
Thermodynamics.pptPooja M
 
Circuit theory mt
Circuit theory mtCircuit theory mt
Circuit theory mtjerbor
 
02 part1 thermo laws zeroth law
02 part1 thermo laws zeroth law02 part1 thermo laws zeroth law
02 part1 thermo laws zeroth lawgunabalan sellan
 
Ch 9 Rotational Dynamics
Ch 9 Rotational DynamicsCh 9 Rotational Dynamics
Ch 9 Rotational DynamicsScott Thomas
 
Chapter 6 - Superposition of waves.pptx
Chapter 6 - Superposition of waves.pptxChapter 6 - Superposition of waves.pptx
Chapter 6 - Superposition of waves.pptxPooja M
 
Dynamics13lecture
Dynamics13lectureDynamics13lecture
Dynamics13lectureAbdou Secka
 
Important equation in physics
Important equation in physicsImportant equation in physics
Important equation in physicsKing Ali
 
Magnetic Effects Of Current Class 12 Part-3
Magnetic Effects Of Current Class 12 Part-3Magnetic Effects Of Current Class 12 Part-3
Magnetic Effects Of Current Class 12 Part-3Self-employed
 
SUBJECT: PHYSICS - Chapter 6 : Superposition of waves (CLASS XII - MAHARASH...
 SUBJECT: PHYSICS - Chapter 6 : Superposition of waves  (CLASS XII - MAHARASH... SUBJECT: PHYSICS - Chapter 6 : Superposition of waves  (CLASS XII - MAHARASH...
SUBJECT: PHYSICS - Chapter 6 : Superposition of waves (CLASS XII - MAHARASH...Pooja M
 
Curvilinear motion of a particle
Curvilinear motion of a particleCurvilinear motion of a particle
Curvilinear motion of a particleKhanSaif2
 
EM propulsion drive
EM propulsion driveEM propulsion drive
EM propulsion driveLarryReed15
 

What's hot (20)

Physics a2 unit4_05_circular_motion_01- circular motion
Physics a2 unit4_05_circular_motion_01- circular motionPhysics a2 unit4_05_circular_motion_01- circular motion
Physics a2 unit4_05_circular_motion_01- circular motion
 
Class 12th Physics Electrostatics part 2
Class 12th Physics Electrostatics part 2Class 12th Physics Electrostatics part 2
Class 12th Physics Electrostatics part 2
 
Ch12 ln
Ch12 lnCh12 ln
Ch12 ln
 
Ripple factor
Ripple factorRipple factor
Ripple factor
 
Moment of inertia (1)
Moment of inertia (1)Moment of inertia (1)
Moment of inertia (1)
 
Thermodynamics.ppt
Thermodynamics.pptThermodynamics.ppt
Thermodynamics.ppt
 
Simple harmonic motion
Simple harmonic motionSimple harmonic motion
Simple harmonic motion
 
Gauss' law
Gauss' lawGauss' law
Gauss' law
 
Circuit theory mt
Circuit theory mtCircuit theory mt
Circuit theory mt
 
02 part1 thermo laws zeroth law
02 part1 thermo laws zeroth law02 part1 thermo laws zeroth law
02 part1 thermo laws zeroth law
 
Ch 9 Rotational Dynamics
Ch 9 Rotational DynamicsCh 9 Rotational Dynamics
Ch 9 Rotational Dynamics
 
Day 02
Day 02Day 02
Day 02
 
Chapter 6 - Superposition of waves.pptx
Chapter 6 - Superposition of waves.pptxChapter 6 - Superposition of waves.pptx
Chapter 6 - Superposition of waves.pptx
 
Dynamics13lecture
Dynamics13lectureDynamics13lecture
Dynamics13lecture
 
Important equation in physics
Important equation in physicsImportant equation in physics
Important equation in physics
 
Magnetic Effects Of Current Class 12 Part-3
Magnetic Effects Of Current Class 12 Part-3Magnetic Effects Of Current Class 12 Part-3
Magnetic Effects Of Current Class 12 Part-3
 
Entropy
EntropyEntropy
Entropy
 
SUBJECT: PHYSICS - Chapter 6 : Superposition of waves (CLASS XII - MAHARASH...
 SUBJECT: PHYSICS - Chapter 6 : Superposition of waves  (CLASS XII - MAHARASH... SUBJECT: PHYSICS - Chapter 6 : Superposition of waves  (CLASS XII - MAHARASH...
SUBJECT: PHYSICS - Chapter 6 : Superposition of waves (CLASS XII - MAHARASH...
 
Curvilinear motion of a particle
Curvilinear motion of a particleCurvilinear motion of a particle
Curvilinear motion of a particle
 
EM propulsion drive
EM propulsion driveEM propulsion drive
EM propulsion drive
 

Similar to X2 T07 05 conical pendulum

X2 T06 05 conical pendulum (2011)
X2 T06 05 conical pendulum (2011)X2 T06 05 conical pendulum (2011)
X2 T06 05 conical pendulum (2011)Nigel Simmons
 
X2 T07 05 conical pendulum (2010)
X2 T07 05 conical pendulum (2010)X2 T07 05 conical pendulum (2010)
X2 T07 05 conical pendulum (2010)Nigel Simmons
 
X2 t06 05 conical pendulum (2012)
X2 t06 05 conical pendulum (2012)X2 t06 05 conical pendulum (2012)
X2 t06 05 conical pendulum (2012)Nigel Simmons
 
X2 t06 05 conical pendulum (2013)
X2 t06 05 conical pendulum (2013)X2 t06 05 conical pendulum (2013)
X2 t06 05 conical pendulum (2013)Nigel Simmons
 
X2 T07 06 banked curves
X2 T07 06 banked curvesX2 T07 06 banked curves
X2 T07 06 banked curvesNigel Simmons
 
11X1 T12 08 geometrical theorems
11X1 T12 08 geometrical theorems11X1 T12 08 geometrical theorems
11X1 T12 08 geometrical theoremsNigel Simmons
 

Similar to X2 T07 05 conical pendulum (8)

X2 T06 05 conical pendulum (2011)
X2 T06 05 conical pendulum (2011)X2 T06 05 conical pendulum (2011)
X2 T06 05 conical pendulum (2011)
 
X2 T07 05 conical pendulum (2010)
X2 T07 05 conical pendulum (2010)X2 T07 05 conical pendulum (2010)
X2 T07 05 conical pendulum (2010)
 
X2 t06 05 conical pendulum (2012)
X2 t06 05 conical pendulum (2012)X2 t06 05 conical pendulum (2012)
X2 t06 05 conical pendulum (2012)
 
X2 t06 05 conical pendulum (2013)
X2 t06 05 conical pendulum (2013)X2 t06 05 conical pendulum (2013)
X2 t06 05 conical pendulum (2013)
 
Equations
EquationsEquations
Equations
 
X2 T07 06 banked curves
X2 T07 06 banked curvesX2 T07 06 banked curves
X2 T07 06 banked curves
 
Lesson8
Lesson8Lesson8
Lesson8
 
11X1 T12 08 geometrical theorems
11X1 T12 08 geometrical theorems11X1 T12 08 geometrical theorems
11X1 T12 08 geometrical theorems
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxnegromaestrong
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesShubhangi Sonawane
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxNikitaBankoti2
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 

Recently uploaded (20)

Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 

X2 T07 05 conical pendulum

  • 3. The Conical Pendulum A  h  O r P
  • 4. The Conical Pendulum A Force Diagram  h  O r P
  • 5. The Conical Pendulum A Force Diagram  h  O r P
  • 6. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h  O r P
  • 7. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h  mg O r P
  • 8. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg O r P
  • 9. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P
  • 10. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces
  • 11. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x r
  • 12. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r
  • 13. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  r
  • 14. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r
  • 15. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r
  • 16. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r
  • 17. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T sin 
  • 18. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T sin  2 mv T sin   r
  • 19. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T sin  2 T sin   mv  mr 2 r
  • 20. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T sin  2 T sin   mv  mr 2 r
  • 21. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T cos T sin  2 T sin   mv  mr 2 mg r
  • 22. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T cos T cos  mg  0 T sin  2 T sin   mv  mr 2 mg T cos  mg r
  • 23. T sin  mv 2 1   T cos r mg
  • 24. T sin  mv 2 1   T cos r mg v2 tan   rg
  • 25. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g 
  • 26. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h
  • 27. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h
  • 28. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h r2g h 2 v
  • 29. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h r2g  g  h 2   v  2 
  • 30. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h r2g  g  h 2   v  2  Implications
  • 31. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h r2g  g  h 2   v  2  Implications •depth of the pendulum below A is independent of the length of the string.
  • 32. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h r2g  g  h 2   v  2  Implications •depth of the pendulum below A is independent of the length of the string. •as the speed increases, the particle (bob) rises.
  • 33. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.
  • 34. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.
  • 35. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob. T
  • 36. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob. T mg
  • 37. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg
  • 38. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  r
  • 39. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r
  • 40. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r
  • 41. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r T sin 
  • 42. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r T sin  T sin   mr 2
  • 43. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r T sin  T sin   mr 2
  • 44. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r T sin  T cos T sin   mr 2 mg
  • 45. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r T sin  T cos T cos  mg  0 T sin   mr 2 mg T cos  mg
  • 46. 1  tan   mr 2  mg r 2  g
  • 47. 1  tan   mr 2  mg r 2  g r But tan   h
  • 48. 1  tan   mr 2  mg r 2  g r But tan   h r 2 r   g h g h 2 
  • 49. 1  tan   mr 2  when   60rev/min mg 120 r 2  rad/s  60 g  2rad/s r But tan   h r 2 r   g h g h 2 
  • 50. 1  tan   mr 2  when   60rev/min h g mg 120 2 2 r 2  rad/s g  60  m g  2rad/s 4 2 r But tan   h r 2 r   g h g h 2 
  • 51. 1  tan   mr 2  when   60rev/min h g mg 120 2 2 r 2  rad/s g  60  m g  2rad/s 4 2 r But tan   h when   90rev/min r 2 r   180 g h  rad/s 60 h 2 g  3rad/s 
  • 52. 1  tan   mr 2  when   60rev/min h g mg 120 2 2 r 2  rad/s g  60  m g  2rad/s 4 2 r But tan   h when   90rev/min g h  r 2 r  180 3 2 g h  rad/s g 60  m g  3rad/s 9 2 h 2 
  • 53. 1  tan   mr 2  when   60rev/min h g mg 120 2 2 r 2  rad/s g  60  m g  2rad/s 4 2 r But tan   h when   90rev/min g h  r 2 r  180 3 2 g h  rad/s g 60  m g  3rad/s 9 2 h 2   g  g m  rise in height   2  4 9 2    0.14m
  • 54. (ii) (2002) A particle of mass m is suspended by a string of length l from a point directly above the vertex of a smooth cone, which has a vertical axis. The particle remains in contact with the cone and rotates as a conical pendulum with angular velocity . The angle of the cone at its vertex is 2  where   , and the string makes an 4 angle of  with the horizontal as shown in the diagram. The forces acting on the particle are the tension in the string T, the normal reaction N and the gravitational force mg.
  • 55. (ii) (2002) A particle of mass m is suspended by a string of length l from a point directly above the vertex of a smooth cone, which has a vertical axis. The particle remains in contact with the cone and rotates as a conical pendulum with angular velocity . The angle of the cone at its vertex is 2  where   , and the string makes an 4 angle of  with the horizontal as shown in the diagram. The forces acting on the particle are the tension in the string T, the normal reaction N and the gravitational force mg. Note: whenever a particle makes contact with a surface there will be a normal force perpendicular to the surface.
  • 56. a) Show, with the aid of a diagram, that the vertical component of N is N sin 
  • 57. a) Show, with the aid of a diagram, that the vertical component of N is N sin 
  • 58. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T
  • 59. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T 
  • 60. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T N 
  • 61. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T N  mg
  • 62. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T N  
  • 63. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T N   
  • 64. a) Show, with the aid of a diagram, that the vertical component of N is N sin   T  N   
  • 65. a) Show, with the aid of a diagram, that the vertical component of N is N sin   T  N    mg
  • 66. a) Show, with the aid of a diagram, that the vertical component of N is N sin   T c  N    mg
  • 67. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     mg
  • 68. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin 
  • 69. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and
  • 70. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2
  • 71. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2
  • 72. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 T cos  N cos 
  • 73. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 T cos  N cos  T cos   N cos   mr 2
  • 74. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 vertical forces  0 T cos  N cos  T cos   N cos   mr 2
  • 75. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 vertical forces  0 T cos  N cos  T cos   N cos   mr 2
  • 76. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 vertical forces  0 T cos  N cos  T sin  N sin  T cos   N cos   mr 2 mg
  • 77. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 vertical forces  0 T cos  N cos  T sin  N sin  T sin   N sin   mg  0 T cos   N cos   mr 2 mg T sin   N sin   mg
  • 78. T sin   N sin   mg
  • 79. T sin   N sin   mg T  N  sin   mg mg TN  sin 
  • 80. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg mg TN  sin 
  • 81. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos 
  • 82. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  l
  • 83. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l
  • 84. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g
  • 85. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g When N  0;
  • 86. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g When N  0; mg T sin 
  • 87. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g When N  0; mg T and T  ml 2 sin 
  • 88. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g When N  0;  mg  ml 2 sin  mg T and T  ml 2 sin 
  • 89. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g When N  0;  mg  ml 2 sin  mg g T and T  ml 2  2 sin  l sin  g  l sin 