SlideShare ist ein Scribd-Unternehmen logo
1 von 23
Downloaden Sie, um offline zu lesen
Odd & Even Functions
(1) Even   f  x   f  x 
Odd & Even Functions
(1) Even        f  x   f  x 
           a                 a

            f  x dx  2 f  x dx
           a                0
Odd & Even Functions
(1) Even                       f  x   f  x 
                          a                 a

                           f  x dx  2 f  x dx
                          a                0
                            ca                     ca
 NOTE: horizontal shift
                               f  x  c dx  2  f  x  c dx
                              ca                    c
Odd & Even Functions
(1) Even                       f  x   f  x 
                          a                 a

                           f  x dx  2 f  x dx
                          a                0
                            ca                      ca
 NOTE: horizontal shift
                               f  x  c dx  2  f  x  c dx
                              ca                     c

(2) Odd                       f  x    f  x 
Odd & Even Functions
(1) Even                        f  x   f  x 
                           a                 a

                           f  x dx  2 f  x dx
                          a                 0
                            ca                       ca
 NOTE: horizontal shift
                                f  x  c dx  2  f  x  c dx
                               ca                     c

(2) Odd                        f  x    f  x 
                          a

                           f  x dx  0
                          a
Odd & Even Functions
(1) Even                        f  x   f  x 
                          a                  a

                           f  x dx  2 f  x dx
                          a                 0
                            ca                      ca
 NOTE: horizontal shift
                               f  x  c dx  2  f  x  c dx
                              ca                     c

(2) Odd                       f  x    f  x 
                          a

                           f  x dx  0
                          a
                          ca
 NOTE: horizontal shift
                            f  x  c dx  0
                          ca
Odd & Even Functions
(1) Even                        f  x   f  x 
                          a                  a

                           f  x dx  2 f  x dx
                          a                 0
                            ca                      ca
 NOTE: horizontal shift
                               f  x  c dx  2  f  x  c dx
                              ca                     c

(2) Odd                       f  x    f  x 
                          a

                           f  x dx  0
                          a
                          ca
 NOTE: horizontal shift
                            f  x  c dx  0
                          ca
                    a                a

                    f  x dx   f a  x dx
(3)
                    0                0
a

          f a  x dx
Proof:
         0
a

          f a  x dx
Proof:                     u ax
         0                du  dx
a

          f a  x dx
Proof:                     u ax
         0                du  dx
                          x  0, u  a
                          x  a, u  0
a

          f a  x dx
Proof:                     u ax
         0   0            du  dx
            f u du   x  0, u  a
             a
                          x  a, u  0
a

          f a  x dx
Proof:                     u ax
         0       0        du  dx
            f u du   x  0, u  a
                 a
             a            x  a, u  0
           f u du
             0
a

          f a  x dx
Proof:                     u ax
         0       0        du  dx
            f u du   x  0, u  a
                 a
             a            x  a, u  0
           f u du
             0
             a
           f  x dx
             0
a

          f a  x dx
Proof:                                     u ax
         0       0                        du  dx
            f u du                   x  0, u  a
                 a
             a                            x  a, u  0
           f u du
             0
             a
           f  x dx
             0




                            odd  odd  even
                           odd  even  odd
                          even  even  even
1
e.g. i   sin 3 xdx
        1
1
e.g. i   sin 3 xdx   odd function 3  odd function
        1
1
e.g. i   sin 3 xdx  0   odd function 3  odd function
       1
1
e.g. i   sin 3 xdx  0   odd function 3  odd function
       1



       1
   ii  x 2 1  xdx
       0
1
e.g. i   sin 3 xdx  0       odd function 3  odd function
       1



       1                    1

   ii  x 2 1  xdx   1  x 2 xdx
       0                    0
1
e.g. i   sin 3 xdx  0            odd function 3  odd function
       1



       1                     1

   ii  x 2 1  xdx   1  x 2 xdx
       0                     0
                             1
                                 1      3   5
                                               
                               x  2 x  x dx
                                
                                   2     2   2

                              0               
1
e.g. i   sin 3 xdx  0             odd function 3  odd function
       1



       1                     1

   ii  x 2 1  xdx   1  x 2 xdx
       0                     0
                             1
                                 1      3   5
                                               
                               x  2 x  x dx
                                
                                   2     2   2

                              0               
                                                7 1
                             2   3
                                  4   2  5
                             x  x  x 
                                  2       2     2

                             3   5   7 0
1
e.g. i   sin 3 xdx  0             odd function 3  odd function
       1



       1                     1

   ii  x 2 1  xdx   1  x 2 xdx
       0                     0
                             1
                                 1      3   5
                                               
                               x  2 x  x dx
                                
                                   2     2   2

                              0               
                                                7 1
                             2   3
                                  4   2  5
                             x  x  x 
                                  2       2     2

                             3   5   7 0

                              2 4 2
                               0
                              3 5 7
                              16
                            
                              105
Exercise 2I; 1 bdf, 2 ace, 3

    Exercise 2J; 42, 44

     The 100 (not 78)

Weitere ähnliche Inhalte

Was ist angesagt?

Serie de maclaurin para 1/(1-x)
Serie de maclaurin para 1/(1-x)Serie de maclaurin para 1/(1-x)
Serie de maclaurin para 1/(1-x)Qwerty1293
 
Tich phan 216_tung_phan_8
Tich phan 216_tung_phan_8Tich phan 216_tung_phan_8
Tich phan 216_tung_phan_8Quyen Le
 
12X1 T05 05 integration with inverse trig (2010)
12X1 T05 05 integration with inverse trig (2010)12X1 T05 05 integration with inverse trig (2010)
12X1 T05 05 integration with inverse trig (2010)Nigel Simmons
 
12X1 T02 01 differentiating exponentials
12X1 T02 01 differentiating exponentials12X1 T02 01 differentiating exponentials
12X1 T02 01 differentiating exponentialsNigel Simmons
 
Calculus :Tutorial 3
Calculus :Tutorial 3Calculus :Tutorial 3
Calculus :Tutorial 3Nuril Ekma
 

Was ist angesagt? (8)

Serie de maclaurin para 1/(1-x)
Serie de maclaurin para 1/(1-x)Serie de maclaurin para 1/(1-x)
Serie de maclaurin para 1/(1-x)
 
Ex01
Ex01Ex01
Ex01
 
Tich phan 216_tung_phan_8
Tich phan 216_tung_phan_8Tich phan 216_tung_phan_8
Tich phan 216_tung_phan_8
 
Ex algebra (13)
Ex algebra  (13)Ex algebra  (13)
Ex algebra (13)
 
Operadores teoria
Operadores teoriaOperadores teoria
Operadores teoria
 
12X1 T05 05 integration with inverse trig (2010)
12X1 T05 05 integration with inverse trig (2010)12X1 T05 05 integration with inverse trig (2010)
12X1 T05 05 integration with inverse trig (2010)
 
12X1 T02 01 differentiating exponentials
12X1 T02 01 differentiating exponentials12X1 T02 01 differentiating exponentials
12X1 T02 01 differentiating exponentials
 
Calculus :Tutorial 3
Calculus :Tutorial 3Calculus :Tutorial 3
Calculus :Tutorial 3
 

Andere mochten auch

11X1 T10 04 maximum & minimum problems (2011)
11X1 T10 04 maximum & minimum problems (2011)11X1 T10 04 maximum & minimum problems (2011)
11X1 T10 04 maximum & minimum problems (2011)Nigel Simmons
 
11 x1 t02 02 rational & irrational (2012)
11 x1 t02 02 rational & irrational (2012)11 x1 t02 02 rational & irrational (2012)
11 x1 t02 02 rational & irrational (2012)Nigel Simmons
 
11 x1 t05 01 division of an interval (2012)
11 x1 t05 01 division of an interval (2012)11 x1 t05 01 division of an interval (2012)
11 x1 t05 01 division of an interval (2012)Nigel Simmons
 
11X1 T02 01 real numbers (2011)
11X1 T02 01 real numbers (2011)11X1 T02 01 real numbers (2011)
11X1 T02 01 real numbers (2011)Nigel Simmons
 
11 x1 t05 06 line through pt of intersection (2012)
11 x1 t05 06 line through pt of intersection (2012)11 x1 t05 06 line through pt of intersection (2012)
11 x1 t05 06 line through pt of intersection (2012)Nigel Simmons
 
11 x1 t05 04 probability & counting techniques (2012)
11 x1 t05 04 probability & counting techniques (2012)11 x1 t05 04 probability & counting techniques (2012)
11 x1 t05 04 probability & counting techniques (2012)Nigel Simmons
 
X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)Nigel Simmons
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)Nigel Simmons
 
11 x1 t07 03 congruent triangles (2012)
11 x1 t07 03 congruent triangles (2012)11 x1 t07 03 congruent triangles (2012)
11 x1 t07 03 congruent triangles (2012)Nigel Simmons
 

Andere mochten auch (9)

11X1 T10 04 maximum & minimum problems (2011)
11X1 T10 04 maximum & minimum problems (2011)11X1 T10 04 maximum & minimum problems (2011)
11X1 T10 04 maximum & minimum problems (2011)
 
11 x1 t02 02 rational & irrational (2012)
11 x1 t02 02 rational & irrational (2012)11 x1 t02 02 rational & irrational (2012)
11 x1 t02 02 rational & irrational (2012)
 
11 x1 t05 01 division of an interval (2012)
11 x1 t05 01 division of an interval (2012)11 x1 t05 01 division of an interval (2012)
11 x1 t05 01 division of an interval (2012)
 
11X1 T02 01 real numbers (2011)
11X1 T02 01 real numbers (2011)11X1 T02 01 real numbers (2011)
11X1 T02 01 real numbers (2011)
 
11 x1 t05 06 line through pt of intersection (2012)
11 x1 t05 06 line through pt of intersection (2012)11 x1 t05 06 line through pt of intersection (2012)
11 x1 t05 06 line through pt of intersection (2012)
 
11 x1 t05 04 probability & counting techniques (2012)
11 x1 t05 04 probability & counting techniques (2012)11 x1 t05 04 probability & counting techniques (2012)
11 x1 t05 04 probability & counting techniques (2012)
 
X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)
 
11 x1 t07 03 congruent triangles (2012)
11 x1 t07 03 congruent triangles (2012)11 x1 t07 03 congruent triangles (2012)
11 x1 t07 03 congruent triangles (2012)
 

Mehr von Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

Mehr von Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

X2 T04 08 odd & even functions (2011)

  • 1. Odd & Even Functions (1) Even f  x   f  x 
  • 2. Odd & Even Functions (1) Even f  x   f  x  a a  f  x dx  2 f  x dx a 0
  • 3. Odd & Even Functions (1) Even f  x   f  x  a a  f  x dx  2 f  x dx a 0 ca ca NOTE: horizontal shift  f  x  c dx  2  f  x  c dx ca c
  • 4. Odd & Even Functions (1) Even f  x   f  x  a a  f  x dx  2 f  x dx a 0 ca ca NOTE: horizontal shift  f  x  c dx  2  f  x  c dx ca c (2) Odd f  x    f  x 
  • 5. Odd & Even Functions (1) Even f  x   f  x  a a  f  x dx  2 f  x dx a 0 ca ca NOTE: horizontal shift  f  x  c dx  2  f  x  c dx ca c (2) Odd f  x    f  x  a  f  x dx  0 a
  • 6. Odd & Even Functions (1) Even f  x   f  x  a a  f  x dx  2 f  x dx a 0 ca ca NOTE: horizontal shift  f  x  c dx  2  f  x  c dx ca c (2) Odd f  x    f  x  a  f  x dx  0 a ca NOTE: horizontal shift  f  x  c dx  0 ca
  • 7. Odd & Even Functions (1) Even f  x   f  x  a a  f  x dx  2 f  x dx a 0 ca ca NOTE: horizontal shift  f  x  c dx  2  f  x  c dx ca c (2) Odd f  x    f  x  a  f  x dx  0 a ca NOTE: horizontal shift  f  x  c dx  0 ca a a  f  x dx   f a  x dx (3) 0 0
  • 8. a  f a  x dx Proof: 0
  • 9. a  f a  x dx Proof: u ax 0 du  dx
  • 10. a  f a  x dx Proof: u ax 0 du  dx x  0, u  a x  a, u  0
  • 11. a  f a  x dx Proof: u ax 0 0 du  dx    f u du x  0, u  a a x  a, u  0
  • 12. a  f a  x dx Proof: u ax 0 0 du  dx    f u du x  0, u  a a a x  a, u  0   f u du 0
  • 13. a  f a  x dx Proof: u ax 0 0 du  dx    f u du x  0, u  a a a x  a, u  0   f u du 0 a   f  x dx 0
  • 14. a  f a  x dx Proof: u ax 0 0 du  dx    f u du x  0, u  a a a x  a, u  0   f u du 0 a   f  x dx 0 odd  odd  even odd  even  odd even  even  even
  • 15. 1 e.g. i   sin 3 xdx 1
  • 16. 1 e.g. i   sin 3 xdx odd function 3  odd function 1
  • 17. 1 e.g. i   sin 3 xdx  0 odd function 3  odd function 1
  • 18. 1 e.g. i   sin 3 xdx  0 odd function 3  odd function 1 1 ii  x 2 1  xdx 0
  • 19. 1 e.g. i   sin 3 xdx  0 odd function 3  odd function 1 1 1 ii  x 2 1  xdx   1  x 2 xdx 0 0
  • 20. 1 e.g. i   sin 3 xdx  0 odd function 3  odd function 1 1 1 ii  x 2 1  xdx   1  x 2 xdx 0 0 1  1 3 5     x  2 x  x dx  2 2 2 0 
  • 21. 1 e.g. i   sin 3 xdx  0 odd function 3  odd function 1 1 1 ii  x 2 1  xdx   1  x 2 xdx 0 0 1  1 3 5     x  2 x  x dx  2 2 2 0  7 1 2 3 4 2  5  x  x  x  2 2 2 3 5 7 0
  • 22. 1 e.g. i   sin 3 xdx  0 odd function 3  odd function 1 1 1 ii  x 2 1  xdx   1  x 2 xdx 0 0 1  1 3 5     x  2 x  x dx  2 2 2 0  7 1 2 3 4 2  5  x  x  x  2 2 2 3 5 7 0 2 4 2    0 3 5 7 16  105
  • 23. Exercise 2I; 1 bdf, 2 ace, 3 Exercise 2J; 42, 44 The 100 (not 78)