SlideShare ist ein Scribd-Unternehmen logo
1 von 57
Downloaden Sie, um offline zu lesen
nth Roots Of Unity  z

n

 1
nth Roots Of Unity  z

n

 1

The solutions of equations of the form, z n  1, are the nth roots of unity
nth Roots Of Unity  z

n

 1

The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
nth Roots Of Unity  z

n

 1

The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
nth Roots Of Unity  z

n

 1

The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
 2 k  0 
z  cis 
 k  0, 1, 2
 5 
nth Roots Of Unity  z

n

 1

The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
 2 k  0 
z  cis 
 k  0, 1, 2
 5 
2
2
4
4
z  cis 0, cis
, cis 
, cis
, cis 
5
5
5
5
nth Roots Of Unity  z

n

 1

The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
 2 k  0 
z  cis 
 k  0, 1, 2
 5 
2
2
4
4
z  cis 0, cis
, cis 
, cis
, cis 
y
5
5
5
5

cis 0
x
nth Roots Of Unity  z

n

 1

The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
 2 k  0 
z  cis 
 k  0, 1, 2
 5 
2
2
4
4
z  cis 0, cis
, cis 
, cis
, cis 
y
2
cis
5
5
5
5
5
cis 0
x
2
cis 
5
nth Roots Of Unity  z

n

 1

The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
 2 k  0 
z  cis 
 k  0, 1, 2
 5 
2
2
4
4
z  cis 0, cis
, cis 
, cis
, cis 
y
2
4
cis
5
5
5
5
cis
5
5
cis 0
x
4
cis 
5

2
cis 
5
nth Roots Of Unity  z

n

 1

The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
 2 k  0 
z  cis 
 k  0, 1, 2
 5 
2
2
4
4
z  cis 0, cis
, cis 
, cis
, cis 
y
2
4
cis
5
5
5
5
cis
5
5
cis 0
x
4
cis 
5

2
cis 
5
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
the other roots.
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
the other roots.
z5  1

If  is a solution then  5  1
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
the other roots.
z5  1

If  is a solution then  5  1
5 5
    15
 5 is a solution
1
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
the other roots.
z5  1

If  is a solution then  5  1
5 5
    15
 5 is a solution
1

    
2 5

5 2

 12
1
 2 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
the other roots.
z5  1

If  is a solution then  5  1
5 5
    15
 5 is a solution
1

    
2 5

5 2

 12
1
 2 is a solution

    
3 5

5 3

 13
1
 3 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
the other roots.
z5  1

If  is a solution then  5  1
5 5
    15
 5 is a solution
1

    
2 5

5 2

 12
1
 2 is a solution

    
3 5

5 3

 13
1
 3 is a solution

    
4 5

5 4

 14
1
 4 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
the other roots.
z5  1

If  is a solution then  5  1
5 5
    15
 5 is a solution
1

    
2 5

5 2

 12
1
 2 is a solution

    
3 5

5 3

 13
1
 3 is a solution

    
4 5

5 4

 14
1
 4 is a solution

Thus if  is a root then  2 ,  3 ,  4 and  5 are also roots
ii  Prove that 1     2   3   4  0
ii  Prove that 1     2   3   4  0
b
      
a
1   2  3  4  0
2

3

4

5

sum of the roots 



5

 1
ii  Prove that 1     2   3   4  0
b
      
a
1   2  3  4  0
2

3

4

5

5
OR   1  0
  11     2   3   4   0
1     2   3   4  0   1

sum of the roots 



 1
 NOTE :

 n

 1  0


  11     2     n1   0


5
ii  Prove that 1     2   3   4  0
b
      
a
1   2  3  4  0
2

3

4

sum of the roots 

5



5
OR   1  0
  11     2   3   4   0
1     2   3   4  0   1

OR

1   2  3  4 



a  r n  1
r 1
1 5  1

 1

 1
 NOTE :

 n

 1  0


  11     2     n1   0


5

GP: a  1, r   , n  5

0



5

1  0
ii  Prove that 1     2   3   4  0
b
      
a
1   2  3  4  0
2

3

4

5

sum of the roots 



5
OR   1  0
  11     2   3   4   0
1     2   3   4  0   1

OR

1   2  3  4 

a  r n  1
r 1
1 5  1

 1
 NOTE :

 n

 1  0


  11     2     n1   0


5

GP: a  1, r   , n  5



1  0

0
 1
iii  Find the quadratic equation whose roots are    4 and  2   3
5
ii  Prove that 1     2   3   4  0
b
      
a
1   2  3  4  0
2

3

4

5

sum of the roots 



5
OR   1  0
  11     2   3   4   0
1     2   3   4  0   1

OR

1   2  3  4 

a  r n  1
r 1
1 5  1

 1
 NOTE :

 n

 1  0


  11     2     n1   0


5

GP: a  1, r   , n  5



1  0

0
 1
iii  Find the quadratic equation whose roots are    4 and  2   3
4
2
3
     4  2   3 
       
 3  4  6  7
 1
 3  4    2
 1
5
ii  Prove that 1     2   3   4  0
b
      
a
1   2  3  4  0
2

3

4

5

sum of the roots 



5
OR   1  0
  11     2   3   4   0
1     2   3   4  0   1

OR

1   2  3  4 

a  r n  1
r 1
1 5  1

 1
 NOTE :

 n

 1  0


  11     2     n1   0


5

GP: a  1, r   , n  5



1  0

0
 1
iii  Find the quadratic equation whose roots are    4 and  2   3
4
2
3
     4  2   3 
       
 3  4  6  7
 1
 3  4    2
 equation is x 2  x  1  0
 1
5
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
(i ) Evaluate 1  



2 3
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
(i ) Evaluate 1  
   



2 3

3
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
(i ) Evaluate 1  
   

3

  3
 1



2 3
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
1
1
2 3

(ii ) Evaluate
(i ) Evaluate 1   
1  1 2
3
   
  3
 1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
1
1
2 3

(ii ) Evaluate
(i ) Evaluate 1   
1  1 2
3
   
1 1
 2 
3
 
 
 1



1  

2
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
1
1
2 3

(ii ) Evaluate
(i ) Evaluate 1   
1  1 2
3
   
1 1
 2 
3
 
 
 1



1  

2
2
 2

1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
1
1
2 3

(ii ) Evaluate
(i ) Evaluate 1   
1  1 2
3
   
1 1
 2 
3
 
 
 1
(iii) Form the cubic equation with roots 1, 1   , 1   2



1  

2
2
 2

1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
1
1
2 3

(ii ) Evaluate
(i ) Evaluate 1   
1  1 2
3
   
1 1
 2 
3
 
 
 1
(iii) Form the cubic equation with roots 1, 1   , 1   2
 z  1z 2  2     2 z  1     2   3   0



1  

2
2
 2

1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
1
1
2 3

(ii ) Evaluate
(i ) Evaluate 1   
1  1 2
3
   
1 1
 2 
3
 
 
 1
(iii) Form the cubic equation with roots 1, 1   , 1   2
 z  1z 2  2     2 z  1     2   3   0

 z  1z 2  z  1  0



1  

2
2
 2

1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
1
1
2 3

(ii ) Evaluate
(i ) Evaluate 1   
1  1 2
3
   
1 1
 2 
3
 
 
 1
(iii) Form the cubic equation with roots 1, 1   , 1   2
 z  1z 2  2     2 z  1     2   3   0

 z  1z 2  z  1  0

z  z  z  z  z 1  0
z3  2z 2  2z 1  0
3

2

2



1  

2
2
 2

1
d) Solve z 5  z 4  z 3  z 2  z  1  0
d) Solve z 5  z 4  z 3  z 2  z  1  0

Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
d) Solve z 5  z 4  z 3  z 2  z  1  0

Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
And z 6  1  0 has solutions;
 2 k 
z  cis 
 k  0, 1, 2,3
 6 
d) Solve z 5  z 4  z 3  z 2  z  1  0

Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
And z 6  1  0 has solutions;
 2 k 
z  cis 
 k  0, 1, 2,3
 6 
z5  z4  z3  z2 1  0
d) Solve z 5  z 4  z 3  z 2  z  1  0

Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
And z 6  1  0 has solutions;
 2 k 
z  cis 
 k  0, 1, 2,3
 6 
z5  z4  z3  z2 1  0

 z  1z 5  z 4  z 3  z 2  1
0
 z  1
z 6  1  0, z  1
d) Solve z 5  z 4  z 3  z 2  z  1  0

Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
And z 6  1  0 has solutions;
 2 k 
z  cis 
 k  0, 1, 2,3
 6 
z5  z4  z3  z2 1  0

 z  1z 5  z 4  z 3  z 2  1
0
 z  1
z 6  1  0, z  1


2
2
z  cis , cis  , cis
, cis 
, cis
3
3
3
3
1
3 1
3
1
3
1
3
z 
i, 
i,  
i,  
i, 1
2 2 2 2
2 2
2 2
e) 1996 HSC
2
2
 i sin
Let   cos
9
9
(i) Show that  k is a solution of z 9  1  0, where k is an integer
e) 1996 HSC
2
2
 i sin
Let   cos
9
9
(i) Show that  k is a solution of z 9  1  0, where k is an integer
z9  1
e) 1996 HSC
2
2
 i sin
Let   cos
9
9
(i) Show that  k is a solution of z 9  1  0, where k is an integer
z9  1

 2k 
z  cis 

 9 
k
2 
z  cis 

9 


k  0,1,2,3,4,5,6,7,8
e) 1996 HSC
2
2
 i sin
Let   cos
9
9
(i) Show that  k is a solution of z 9  1  0, where k is an integer
z9  1

 2k 
z  cis 

 9 
k
2 
z  cis 

9 

z  k

k  0,1,2,3,4,5,6,7,8
e) 1996 HSC
2
2
 i sin
Let   cos
9
9
(i) Show that  k is a solution of z 9  1  0, where k is an integer
z9  1

 2k 
z  cis 
k  0,1,2,3,4,5,6,7,8

 9 
k
2 
z  cis 

9 

z  k
(ii) Prove that    2   3   4   5   6   7   8  1
z9 1  0
e) 1996 HSC
2
2
 i sin
Let   cos
9
9
(i) Show that  k is a solution of z 9  1  0, where k is an integer
z9  1

 2k 
z  cis 
k  0,1,2,3,4,5,6,7,8

 9 
k
2 
z  cis 

9 

z  k
(ii) Prove that    2   3   4   5   6   7   8  1
z9 1  0
1     2   3   4   5   6   7   8  0 sum of roots 
e) 1996 HSC
2
2
 i sin
Let   cos
9
9
(i) Show that  k is a solution of z 9  1  0, where k is an integer
z9  1

 2k 
z  cis 
k  0,1,2,3,4,5,6,7,8

 9 
k
2 
z  cis 

9 

z  k
(ii) Prove that    2   3   4   5   6   7   8  1
z9 1  0
1     2   3   4   5   6   7   8  0 sum of roots 

   2   3   4   5   6   7   8  1


2
4 1
(iii) Hence show that cos cos
cos

9
9
9 8


2
4 1
(iii) Hence show that cos cos
cos

9
9
9 8
9
z 1
  z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5 


2
4 1
(iii) Hence show that cos cos
cos

9
9
9 8
9
z 1
  z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5 
2
4
 2
 2

z  1 z  2cos
z  1
  z  1  z  2cos
9
9



6
8
 2


z  2cos
z  1 z 2  2cos
z  1

9
9



2
4
 2
 2

z  1 z  2cos
z  1
  z  1  z  2cos
9
9



8
 2

2
 z  z  1  z  2cos 9 z  1




2
4 1
(iii) Hence show that cos cos
cos

9
9
9 8
9
z 1
  z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5 
2
4
 2
 2

z  1 z  2cos
z  1
  z  1  z  2cos
9
9



6
8
 2


z  2cos
z  1 z 2  2cos
z  1

9
9



2
4
 2
 2

z  1 z  2cos
z  1
  z  1  z  2cos
9
9



8
 2

2
 z  z  1  z  2cos 9 z  1


Let z  i

2

i  1   i  1  2cos
9

9

4

i  2cos
9


8
 
i   i   2cos
9
 


i

2

i  1   i  1  2cos
9

9

4

i  2cos
9


8
 
i   i   2cos
9
 


i

2

i  1   i  1  2cos
9

9

4

i  2cos
9


8
 
i   i   2cos
9
 

2 
4 
8 

i  1  i  i  1  2cos
 2cos
 2cos 
9 
9 
9 

4


i

2

i  1   i  1  2cos
9

9

4

i  2cos
9


8
 
i   i   2cos
9
 

2 
4 
8 

i  1  i  i  1  2cos
 2cos
 2cos 
9 
9 
9 

2
4
8
cos
cos
1  8cos
9
9
9
4


i

2

i  1   i  1  2cos
9

9

4

i  2cos
9


8
 
i   i   2cos
9
 

2 
4 
8 

i  1  i  i  1  2cos
 2cos
 2cos 
9 
9 
9 

2
4
8
cos
cos
1  8cos
9
9
9
2
4 

cos
1  8cos
  cos 
9
9 
9
4


i

2

i  1   i  1  2cos
9

9

4

i  2cos
9


8
 
i   i   2cos
9
 

2 
4 
8 

i  1  i  i  1  2cos
 2cos
 2cos 
9 
9 
9 

2
4
8
cos
cos
1  8cos
9
9
9
2
4 

cos
1  8cos
  cos 
9
9 
9
4



2
4 1
cos cos
cos

9
9
9 8


i

2

i  1   i  1  2cos
9

9

4

i  2cos
9


8
 
i   i   2cos
9
 


i


2 
4 
8 

i  1  i  i  1  2cos
 2cos
 2cos 
9 
9 
9 

2
4
8
cos
cos
1  8cos
9
9
9
2
4 

cos
1  8cos
  cos 
9
9 
9
4



2
4 1
cos cos
cos

9
9
9 8
Cambridge: Exercise 7C; 1 to 4, 5ac, 6, 7, 8, 9, 11
Patel: Exercise 4I; 1, 3, 5 (need 4b), 7
Patel: Exercise 4J; 1 to 4, 7ac

Weitere ähnliche Inhalte

Was ist angesagt?

Effect of orientation angle of elliptical hole in thermoplastic composite pla...
Effect of orientation angle of elliptical hole in thermoplastic composite pla...Effect of orientation angle of elliptical hole in thermoplastic composite pla...
Effect of orientation angle of elliptical hole in thermoplastic composite pla...ijceronline
 
+2 maths pta question bank come book english medium
+2 maths  pta question bank come book  english medium+2 maths  pta question bank come book  english medium
+2 maths pta question bank come book english mediumMdk Raja
 
Expressions
Expressions Expressions
Expressions miburton
 
Odd Permutations - Part 5 of The Mathematics of Professor Alan's Puzzle Square
Odd Permutations - Part 5 of The Mathematics of Professor Alan's Puzzle SquareOdd Permutations - Part 5 of The Mathematics of Professor Alan's Puzzle Square
Odd Permutations - Part 5 of The Mathematics of Professor Alan's Puzzle SquareAlan Dix
 
Arithmetic and Geometric Progressions
Arithmetic and Geometric Progressions Arithmetic and Geometric Progressions
Arithmetic and Geometric Progressions Dr. Tushar J Bhatt
 
8.1, 3, 4 harder
8.1, 3, 4 harder8.1, 3, 4 harder
8.1, 3, 4 harderMsKendall
 
Algebra 2 Section 3-3
Algebra 2 Section 3-3Algebra 2 Section 3-3
Algebra 2 Section 3-3Jimbo Lamb
 
Arithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic SquaresArithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic SquaresLossian Barbosa Bacelar Miranda
 
ทักษะการลงความเห็นจากข้อมูล
ทักษะการลงความเห็นจากข้อมูลทักษะการลงความเห็นจากข้อมูล
ทักษะการลงความเห็นจากข้อมูลPom Piyatip
 
Math is Awesome ACT Prep
Math is Awesome ACT PrepMath is Awesome ACT Prep
Math is Awesome ACT PrepJTKnull
 

Was ist angesagt? (20)

Effect of orientation angle of elliptical hole in thermoplastic composite pla...
Effect of orientation angle of elliptical hole in thermoplastic composite pla...Effect of orientation angle of elliptical hole in thermoplastic composite pla...
Effect of orientation angle of elliptical hole in thermoplastic composite pla...
 
Expanding
ExpandingExpanding
Expanding
 
1. complex numbers
1. complex numbers1. complex numbers
1. complex numbers
 
+2 maths pta question bank come book english medium
+2 maths  pta question bank come book  english medium+2 maths  pta question bank come book  english medium
+2 maths pta question bank come book english medium
 
Algebra presentation
Algebra presentation Algebra presentation
Algebra presentation
 
Expressions
Expressions Expressions
Expressions
 
Odd Permutations - Part 5 of The Mathematics of Professor Alan's Puzzle Square
Odd Permutations - Part 5 of The Mathematics of Professor Alan's Puzzle SquareOdd Permutations - Part 5 of The Mathematics of Professor Alan's Puzzle Square
Odd Permutations - Part 5 of The Mathematics of Professor Alan's Puzzle Square
 
3. apply distance and midpoint
3.  apply distance and midpoint3.  apply distance and midpoint
3. apply distance and midpoint
 
Arithmetic and Geometric Progressions
Arithmetic and Geometric Progressions Arithmetic and Geometric Progressions
Arithmetic and Geometric Progressions
 
Jeopardy review
Jeopardy reviewJeopardy review
Jeopardy review
 
8.1, 3, 4 harder
8.1, 3, 4 harder8.1, 3, 4 harder
8.1, 3, 4 harder
 
Algebra 2 Section 3-3
Algebra 2 Section 3-3Algebra 2 Section 3-3
Algebra 2 Section 3-3
 
Arithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic SquaresArithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic Squares
 
8.1 8.4 quizzo
8.1 8.4 quizzo8.1 8.4 quizzo
8.1 8.4 quizzo
 
#125 documented
#125 documented#125 documented
#125 documented
 
ทักษะการลงความเห็นจากข้อมูล
ทักษะการลงความเห็นจากข้อมูลทักษะการลงความเห็นจากข้อมูล
ทักษะการลงความเห็นจากข้อมูล
 
Math is Awesome ACT Prep
Math is Awesome ACT PrepMath is Awesome ACT Prep
Math is Awesome ACT Prep
 
Algebra
AlgebraAlgebra
Algebra
 
Alg1 lesson 7-1
Alg1 lesson 7-1Alg1 lesson 7-1
Alg1 lesson 7-1
 
Alg2 lesson 8-1
Alg2 lesson 8-1Alg2 lesson 8-1
Alg2 lesson 8-1
 

Andere mochten auch

11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)Nigel Simmons
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)Nigel Simmons
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremNigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

Andere mochten auch (6)

11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
Sequencias e series
Sequencias e series Sequencias e series
Sequencias e series
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Ähnlich wie X2 t01 11 nth roots of unity (2012)

11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)Nigel Simmons
 
11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)Nigel Simmons
 
Pc12 sol c08_ptest
Pc12 sol c08_ptestPc12 sol c08_ptest
Pc12 sol c08_ptestGarden City
 
X2 T01 07 nth roots of unity (2010)
X2 T01 07 nth roots of unity (2010)X2 T01 07 nth roots of unity (2010)
X2 T01 07 nth roots of unity (2010)Nigel Simmons
 
X2 T01 07 nth roots of unity (2011)
X2 T01 07 nth roots of unity (2011)X2 T01 07 nth roots of unity (2011)
X2 T01 07 nth roots of unity (2011)Nigel Simmons
 
X2 T01 07 nth roots of unity
X2 T01 07 nth roots of unityX2 T01 07 nth roots of unity
X2 T01 07 nth roots of unityNigel Simmons
 
X2 t01 07 nth roots of unity (2012)
X2 t01 07 nth roots of unity (2012)X2 t01 07 nth roots of unity (2012)
X2 t01 07 nth roots of unity (2012)Nigel Simmons
 
X2 T02 04 forming polynomials
X2 T02 04 forming polynomialsX2 T02 04 forming polynomials
X2 T02 04 forming polynomialsNigel Simmons
 
Problem solvingstrategies pp
Problem solvingstrategies ppProblem solvingstrategies pp
Problem solvingstrategies ppcollins1156
 
X2 t01 02 complex equations (2012)
X2 t01 02 complex equations (2012)X2 t01 02 complex equations (2012)
X2 t01 02 complex equations (2012)Nigel Simmons
 
X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)Nigel Simmons
 
X2 T01 02 complex equations
X2 T01 02 complex equationsX2 T01 02 complex equations
X2 T01 02 complex equationsNigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCarlon Baird
 

Ähnlich wie X2 t01 11 nth roots of unity (2012) (16)

11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)
 
11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)
 
Pc12 sol c08_ptest
Pc12 sol c08_ptestPc12 sol c08_ptest
Pc12 sol c08_ptest
 
X2 T01 07 nth roots of unity (2010)
X2 T01 07 nth roots of unity (2010)X2 T01 07 nth roots of unity (2010)
X2 T01 07 nth roots of unity (2010)
 
X2 T01 07 nth roots of unity (2011)
X2 T01 07 nth roots of unity (2011)X2 T01 07 nth roots of unity (2011)
X2 T01 07 nth roots of unity (2011)
 
X2 T01 07 nth roots of unity
X2 T01 07 nth roots of unityX2 T01 07 nth roots of unity
X2 T01 07 nth roots of unity
 
X2 t01 07 nth roots of unity (2012)
X2 t01 07 nth roots of unity (2012)X2 t01 07 nth roots of unity (2012)
X2 t01 07 nth roots of unity (2012)
 
X2 T02 04 forming polynomials
X2 T02 04 forming polynomialsX2 T02 04 forming polynomials
X2 T02 04 forming polynomials
 
Problem solvingstrategies pp
Problem solvingstrategies ppProblem solvingstrategies pp
Problem solvingstrategies pp
 
X2 t01 02 complex equations (2012)
X2 t01 02 complex equations (2012)X2 t01 02 complex equations (2012)
X2 t01 02 complex equations (2012)
 
X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)
 
X2 T01 02 complex equations
X2 T01 02 complex equationsX2 T01 02 complex equations
X2 T01 02 complex equations
 
EKR for Matchings
EKR for MatchingsEKR for Matchings
EKR for Matchings
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
0913 ch 9 day 13
0913 ch 9 day 130913 ch 9 day 13
0913 ch 9 day 13
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
 

Mehr von Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)Nigel Simmons
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)Nigel Simmons
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)Nigel Simmons
 
X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)Nigel Simmons
 
X2 t01 02 solving quadratics (2013)
X2 t01 02 solving quadratics (2013)X2 t01 02 solving quadratics (2013)
X2 t01 02 solving quadratics (2013)Nigel Simmons
 

Mehr von Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)
 
X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)
 
X2 t01 02 solving quadratics (2013)
X2 t01 02 solving quadratics (2013)X2 t01 02 solving quadratics (2013)
X2 t01 02 solving quadratics (2013)
 

Kürzlich hochgeladen

4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxMaryGraceBautista27
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 

Kürzlich hochgeladen (20)

4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptx
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 

X2 t01 11 nth roots of unity (2012)

  • 1. nth Roots Of Unity  z n  1
  • 2. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity
  • 3. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle.
  • 4. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1
  • 5. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5 
  • 6. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  5 5 5 5
  • 7. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  y 5 5 5 5 cis 0 x
  • 8. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  y 2 cis 5 5 5 5 5 cis 0 x 2 cis  5
  • 9. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  y 2 4 cis 5 5 5 5 cis 5 5 cis 0 x 4 cis  5 2 cis  5
  • 10. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  y 2 4 cis 5 5 5 5 cis 5 5 cis 0 x 4 cis  5 2 cis  5
  • 11. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots.
  • 12. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1
  • 13. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1 5 5     15  5 is a solution 1
  • 14. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1 5 5     15  5 is a solution 1      2 5 5 2  12 1  2 is a solution
  • 15. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1 5 5     15  5 is a solution 1      2 5 5 2  12 1  2 is a solution      3 5 5 3  13 1  3 is a solution
  • 16. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1 5 5     15  5 is a solution 1      2 5 5 2  12 1  2 is a solution      3 5 5 3  13 1  3 is a solution      4 5 5 4  14 1  4 is a solution
  • 17. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1 5 5     15  5 is a solution 1      2 5 5 2  12 1  2 is a solution      3 5 5 3  13 1  3 is a solution      4 5 5 4  14 1  4 is a solution Thus if  is a root then  2 ,  3 ,  4 and  5 are also roots
  • 18. ii  Prove that 1     2   3   4  0
  • 19. ii  Prove that 1     2   3   4  0 b        a 1   2  3  4  0 2 3 4 5 sum of the roots   5  1
  • 20. ii  Prove that 1     2   3   4  0 b        a 1   2  3  4  0 2 3 4 5 5 OR   1  0   11     2   3   4   0 1     2   3   4  0   1 sum of the roots    1  NOTE :   n   1  0     11     2     n1   0   5
  • 21. ii  Prove that 1     2   3   4  0 b        a 1   2  3  4  0 2 3 4 sum of the roots  5  5 OR   1  0   11     2   3   4   0 1     2   3   4  0   1 OR 1   2  3  4   a  r n  1 r 1 1 5  1  1  1  NOTE :   n   1  0     11     2     n1   0   5 GP: a  1, r   , n  5 0  5 1  0
  • 22. ii  Prove that 1     2   3   4  0 b        a 1   2  3  4  0 2 3 4 5 sum of the roots   5 OR   1  0   11     2   3   4   0 1     2   3   4  0   1 OR 1   2  3  4  a  r n  1 r 1 1 5  1  1  NOTE :   n   1  0     11     2     n1   0   5 GP: a  1, r   , n  5  1  0  0  1 iii  Find the quadratic equation whose roots are    4 and  2   3 5
  • 23. ii  Prove that 1     2   3   4  0 b        a 1   2  3  4  0 2 3 4 5 sum of the roots   5 OR   1  0   11     2   3   4   0 1     2   3   4  0   1 OR 1   2  3  4  a  r n  1 r 1 1 5  1  1  NOTE :   n   1  0     11     2     n1   0   5 GP: a  1, r   , n  5  1  0  0  1 iii  Find the quadratic equation whose roots are    4 and  2   3 4 2 3      4  2   3           3  4  6  7  1  3  4    2  1 5
  • 24. ii  Prove that 1     2   3   4  0 b        a 1   2  3  4  0 2 3 4 5 sum of the roots   5 OR   1  0   11     2   3   4   0 1     2   3   4  0   1 OR 1   2  3  4  a  r n  1 r 1 1 5  1  1  NOTE :   n   1  0     11     2     n1   0   5 GP: a  1, r   , n  5  1  0  0  1 iii  Find the quadratic equation whose roots are    4 and  2   3 4 2 3      4  2   3           3  4  6  7  1  3  4    2  equation is x 2  x  1  0  1 5
  • 25. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1    2 3
  • 26. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1        2 3 3
  • 27. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1       3   3  1  2 3
  • 28. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; 1 1 2 3  (ii ) Evaluate (i ) Evaluate 1    1  1 2 3       3  1
  • 29. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; 1 1 2 3  (ii ) Evaluate (i ) Evaluate 1    1  1 2 3     1 1  2  3      1  1   2
  • 30. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; 1 1 2 3  (ii ) Evaluate (i ) Evaluate 1    1  1 2 3     1 1  2  3      1  1   2 2  2  1
  • 31. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; 1 1 2 3  (ii ) Evaluate (i ) Evaluate 1    1  1 2 3     1 1  2  3      1 (iii) Form the cubic equation with roots 1, 1   , 1   2  1   2 2  2  1
  • 32. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; 1 1 2 3  (ii ) Evaluate (i ) Evaluate 1    1  1 2 3     1 1  2  3      1 (iii) Form the cubic equation with roots 1, 1   , 1   2  z  1z 2  2     2 z  1     2   3   0  1   2 2  2  1
  • 33. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; 1 1 2 3  (ii ) Evaluate (i ) Evaluate 1    1  1 2 3     1 1  2  3      1 (iii) Form the cubic equation with roots 1, 1   , 1   2  z  1z 2  2     2 z  1     2   3   0  z  1z 2  z  1  0  1   2 2  2  1
  • 34. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; 1 1 2 3  (ii ) Evaluate (i ) Evaluate 1    1  1 2 3     1 1  2  3      1 (iii) Form the cubic equation with roots 1, 1   , 1   2  z  1z 2  2     2 z  1     2   3   0  z  1z 2  z  1  0 z  z  z  z  z 1  0 z3  2z 2  2z 1  0 3 2 2  1   2 2  2  1
  • 35. d) Solve z 5  z 4  z 3  z 2  z  1  0
  • 36. d) Solve z 5  z 4  z 3  z 2  z  1  0 Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
  • 37. d) Solve z 5  z 4  z 3  z 2  z  1  0 Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1 And z 6  1  0 has solutions;  2 k  z  cis   k  0, 1, 2,3  6 
  • 38. d) Solve z 5  z 4  z 3  z 2  z  1  0 Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1 And z 6  1  0 has solutions;  2 k  z  cis   k  0, 1, 2,3  6  z5  z4  z3  z2 1  0
  • 39. d) Solve z 5  z 4  z 3  z 2  z  1  0 Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1 And z 6  1  0 has solutions;  2 k  z  cis   k  0, 1, 2,3  6  z5  z4  z3  z2 1  0  z  1z 5  z 4  z 3  z 2  1 0  z  1 z 6  1  0, z  1
  • 40. d) Solve z 5  z 4  z 3  z 2  z  1  0 Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1 And z 6  1  0 has solutions;  2 k  z  cis   k  0, 1, 2,3  6  z5  z4  z3  z2 1  0  z  1z 5  z 4  z 3  z 2  1 0  z  1 z 6  1  0, z  1   2 2 z  cis , cis  , cis , cis  , cis 3 3 3 3 1 3 1 3 1 3 1 3 z  i,  i,   i,   i, 1 2 2 2 2 2 2 2 2
  • 41. e) 1996 HSC 2 2  i sin Let   cos 9 9 (i) Show that  k is a solution of z 9  1  0, where k is an integer
  • 42. e) 1996 HSC 2 2  i sin Let   cos 9 9 (i) Show that  k is a solution of z 9  1  0, where k is an integer z9  1
  • 43. e) 1996 HSC 2 2  i sin Let   cos 9 9 (i) Show that  k is a solution of z 9  1  0, where k is an integer z9  1  2k  z  cis    9  k 2  z  cis   9   k  0,1,2,3,4,5,6,7,8
  • 44. e) 1996 HSC 2 2  i sin Let   cos 9 9 (i) Show that  k is a solution of z 9  1  0, where k is an integer z9  1  2k  z  cis    9  k 2  z  cis   9   z  k k  0,1,2,3,4,5,6,7,8
  • 45. e) 1996 HSC 2 2  i sin Let   cos 9 9 (i) Show that  k is a solution of z 9  1  0, where k is an integer z9  1  2k  z  cis  k  0,1,2,3,4,5,6,7,8   9  k 2  z  cis   9   z  k (ii) Prove that    2   3   4   5   6   7   8  1 z9 1  0
  • 46. e) 1996 HSC 2 2  i sin Let   cos 9 9 (i) Show that  k is a solution of z 9  1  0, where k is an integer z9  1  2k  z  cis  k  0,1,2,3,4,5,6,7,8   9  k 2  z  cis   9   z  k (ii) Prove that    2   3   4   5   6   7   8  1 z9 1  0 1     2   3   4   5   6   7   8  0 sum of roots 
  • 47. e) 1996 HSC 2 2  i sin Let   cos 9 9 (i) Show that  k is a solution of z 9  1  0, where k is an integer z9  1  2k  z  cis  k  0,1,2,3,4,5,6,7,8   9  k 2  z  cis   9   z  k (ii) Prove that    2   3   4   5   6   7   8  1 z9 1  0 1     2   3   4   5   6   7   8  0 sum of roots     2   3   4   5   6   7   8  1
  • 48.  2 4 1 (iii) Hence show that cos cos cos  9 9 9 8
  • 49.  2 4 1 (iii) Hence show that cos cos cos  9 9 9 8 9 z 1   z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5 
  • 50.  2 4 1 (iii) Hence show that cos cos cos  9 9 9 8 9 z 1   z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5  2 4  2  2  z  1 z  2cos z  1   z  1  z  2cos 9 9    6 8  2   z  2cos z  1 z 2  2cos z  1  9 9    2 4  2  2  z  1 z  2cos z  1   z  1  z  2cos 9 9    8  2  2  z  z  1  z  2cos 9 z  1  
  • 51.  2 4 1 (iii) Hence show that cos cos cos  9 9 9 8 9 z 1   z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5  2 4  2  2  z  1 z  2cos z  1   z  1  z  2cos 9 9    6 8  2   z  2cos z  1 z 2  2cos z  1  9 9    2 4  2  2  z  1 z  2cos z  1   z  1  z  2cos 9 9    8  2  2  z  z  1  z  2cos 9 z  1   Let z  i 2  i  1   i  1  2cos 9  9 4  i  2cos 9  8   i   i   2cos 9    i 
  • 52. 2  i  1   i  1  2cos 9  9 4  i  2cos 9  8   i   i   2cos 9    i 
  • 53. 2  i  1   i  1  2cos 9  9 4  i  2cos 9  8   i   i   2cos 9   2  4  8   i  1  i  i  1  2cos  2cos  2cos  9  9  9   4  i 
  • 54. 2  i  1   i  1  2cos 9  9 4  i  2cos 9  8   i   i   2cos 9   2  4  8   i  1  i  i  1  2cos  2cos  2cos  9  9  9   2 4 8 cos cos 1  8cos 9 9 9 4  i 
  • 55. 2  i  1   i  1  2cos 9  9 4  i  2cos 9  8   i   i   2cos 9   2  4  8   i  1  i  i  1  2cos  2cos  2cos  9  9  9   2 4 8 cos cos 1  8cos 9 9 9 2 4   cos 1  8cos   cos  9 9  9 4  i 
  • 56. 2  i  1   i  1  2cos 9  9 4  i  2cos 9  8   i   i   2cos 9   2  4  8   i  1  i  i  1  2cos  2cos  2cos  9  9  9   2 4 8 cos cos 1  8cos 9 9 9 2 4   cos 1  8cos   cos  9 9  9 4  2 4 1 cos cos cos  9 9 9 8  i 
  • 57. 2  i  1   i  1  2cos 9  9 4  i  2cos 9  8   i   i   2cos 9    i  2  4  8   i  1  i  i  1  2cos  2cos  2cos  9  9  9   2 4 8 cos cos 1  8cos 9 9 9 2 4   cos 1  8cos   cos  9 9  9 4  2 4 1 cos cos cos  9 9 9 8 Cambridge: Exercise 7C; 1 to 4, 5ac, 6, 7, 8, 9, 11 Patel: Exercise 4I; 1, 3, 5 (need 4b), 7 Patel: Exercise 4J; 1 to 4, 7ac