SlideShare a Scribd company logo
1 of 44
Download to read offline
Solving Quadratics
e.g . x 2  3 x  7  0
Solving Quadratics
e.g . x 2  3 x  7  0

 3  9  28
2
 3   19

2

x
Solving Quadratics
e.g . x 2  3 x  7  0
 3  9  28
2
 3   19

2
 3  19i

2
 3  19i
 3  19i
x
or x 
2
2
x
Solving Quadratics
e.g . x 2  3 x  7  0
 3  9  28
x
2
 3   19

2
 3  19i

2
 3  19i
 3  19i
x
or x 
2
2

OR
by completing the square
x 2  3x  7  0
Solving Quadratics
e.g . x 2  3 x  7  0
 3  9  28
x
2
 3   19

2
 3  19i

2
 3  19i
 3  19i
x
or x 
2
2

OR
by completing the square
x 2  3x  7  0
2
3  19
x

  0
2
4

2

 x  3   19 i 2  0


2
4

Solving Quadratics
e.g . x 2  3 x  7  0
 3  9  28
x
2
 3   19

2
 3  19i

2
 3  19i
 3  19i
x
or x 
2
2

OR
by completing the square
x 2  3x  7  0
2
3  19
x

  0
2
4

2

 x  3   19 i 2  0


2
4

3
19 
3
19 

i  x  
i  0
x 
2
2 
2
2 

Solving Quadratics
e.g . x 2  3 x  7  0
 3  9  28
x
2
 3   19

2
 3  19i

2
 3  19i
 3  19i
x
or x 
2
2

OR
by completing the square
x 2  3x  7  0
2
3  19
x

  0
2
4

2

 x  3   19 i 2  0


2
4

3
19 
3
19 

i  x  
i  0
x 
2
2 
2
2 

3
19
3
19
x 
i or x   
i
2
2
2
2
Creating Quadratics
All quadratics with real coefficients have
conjugate pairs as solutions
Creating Quadratics
All quadratics with real coefficients have
conjugate pairs as solutions

 x  z   x  z   x2  ( z  z) x  z z
Creating Quadratics
All quadratics with real coefficients have
conjugate pairs as solutions

 x  z   x  z   x2  ( z  z) x  z z
 x 2  2 Re( z ) x  z z
Creating Quadratics
All quadratics with real coefficients have
conjugate pairs as solutions

 x  z   x  z   x2  ( z  z) x  z z
 x 2  2 Re( z ) x  z z

iii  Find the quadratic equation with roots 4  i and 4-i
Creating Quadratics
All quadratics with real coefficients have
conjugate pairs as solutions

 x  z   x  z   x2  ( z  z) x  z z
 x 2  2 Re( z ) x  z z

iii  Find the quadratic equation with roots 4  i and 4-i
  8

  17
Creating Quadratics
All quadratics with real coefficients have
conjugate pairs as solutions

 x  z   x  z   x2  ( z  z) x  z z
 x 2  2 Re( z ) x  z z

iii  Find the quadratic equation with roots 4  i and 4-i
  8

  17

 equation is x 2  8 x  17  0
Finding Square Roots
a  ib  x  iy
Finding Square Roots
a  ib  x  iy

 a  ib   x  iy
2

a 2  2abi  b 2  x  iy
Finding Square Roots
a  ib  x  iy

If

x  iy  a  ib

 a  ib   x  iy

then a 2  b 2  x

a 2  2abi  b 2  x  iy

2ab  y

2
Finding Square Roots
a  ib  x  iy

If

x  iy  a  ib

 a  ib   x  iy

then a 2  b 2  x

a 2  2abi  b 2  x  iy

2ab  y

2

e.g. Find  12  16i
Finding Square Roots
a  ib  x  iy

If

x  iy  a  ib

 a  ib   x  iy

then a 2  b 2  x

a 2  2abi  b 2  x  iy

2ab  y

2

e.g. Find  12  16i

a 2  b 2  12

2ab  16
8
b
a
Finding Square Roots
a  ib  x  iy

If

x  iy  a  ib

 a  ib   x  iy

then a 2  b 2  x

a 2  2abi  b 2  x  iy

2ab  y

2

e.g. Find  12  16i

a 2  b 2  12
64
2
a  2  12
a

2ab  16
8
b
a
Finding Square Roots
a  ib  x  iy

If

x  iy  a  ib

 a  ib   x  iy

then a 2  b 2  x

a 2  2abi  b 2  x  iy

2ab  y

2

e.g. Find  12  16i

a 2  b 2  12
64
2
a  2  12
a
a 4  12a 2  64  0

2ab  16
8
b
a
Finding Square Roots
a  ib  x  iy

If

x  iy  a  ib

 a  ib   x  iy

then a 2  b 2  x

a 2  2abi  b 2  x  iy

2ab  y

2

e.g. Find  12  16i

a 2  b 2  12
64
2
a  2  12
a
a 4  12a 2  64  0

a

2

 4 a 2  16   0

a 2  4 or a 2  16

2ab  16
8
b
a
Finding Square Roots
a  ib  x  iy

If

x  iy  a  ib

 a  ib   x  iy

then a 2  b 2  x

a 2  2abi  b 2  x  iy

2ab  y

2

e.g. Find  12  16i

a 2  b 2  12
64
2
a  2  12
a
a 4  12a 2  64  0

a

2

 4 a 2  16   0

a 2  4 or a 2  16
a  2 no real solutions
 b  4

2ab  16
8
b
a
Finding Square Roots
a  ib  x  iy

If

x  iy  a  ib

 a  ib   x  iy

then a 2  b 2  x

a 2  2abi  b 2  x  iy

2ab  y

2

e.g. Find  12  16i

a 2  b 2  12
64
2
a  2  12
a
a 4  12a 2  64  0

a

2

2ab  16
8
b
a

 4 a 2  16   0

a 2  4 or a 2  16
a  2 no real solutions
 b  4

 12  16i  2  4i 
OR

a  ib  x  iy
OR

a  ib  x  iy
a 2  b2  x
2ab  y
OR

a  ib  x  iy
a b  x
2ab  y
2

x  y  a  b
2

2



2

2



2 2

 4a 2b 2

 a 4  2a 2 b 2  b 4  4a 2b 2
= a 4  2a 2 b 2  b 4
OR

a  ib  x  iy
a b  x
2ab  y
2

x  y  a  b
2

2

If x  iy  a  ib
then a 2  b 2  x
a 2  b2  x2  y 2



2

2



2 2

 4a 2b 2

 a 4  2a 2 b 2  b 4  4a 2b 2
= a 4  2a 2 b 2  b 4
OR

a  ib  x  iy
a b  x
2ab  y
2

x  y  a  b
2

2

If x  iy  a  ib
then a 2  b 2  x
a 2  b2  x2  y 2



2

2



2 2

 4a 2b 2

 a 4  2a 2 b 2  b 4  4a 2b 2
= a 4  2a 2 b 2  b 4

Note: y > 0, then a and b have same sign
y < 0, then a and b have different sign
OR

a  ib  x  iy
a b  x
2ab  y
2

x  y  a  b
2

2

If x  iy  a  ib
then a 2  b 2  x
a 2  b2  x2  y 2
e.g. Find  12  16i



2

2



2 2

 4a 2b 2

 a 4  2a 2 b 2  b 4  4a 2b 2
= a 4  2a 2 b 2  b 4

Note: y > 0, then a and b have same sign
y < 0, then a and b have different sign
OR

a  ib  x  iy
a b  x
2ab  y
2

x  y  a  b
2

2

If x  iy  a  ib
then a 2  b 2  x
a 2  b2  x2  y 2
e.g. Find  12  16i
a 2  b 2  12
a 2  b 2  20



2

2



2 2

 4a 2b 2

 a 4  2a 2 b 2  b 4  4a 2b 2
= a 4  2a 2 b 2  b 4

Note: y > 0, then a and b have same sign
y < 0, then a and b have different sign
OR

a  ib  x  iy
a b  x
2ab  y
2

x  y  a  b
2

2

If x  iy  a  ib
then a 2  b 2  x
a 2  b2  x2  y 2
e.g. Find  12  16i
a 2  b 2  12
a 2  b 2  20
2a 2
8
a2  4
a2



2

2



2 2

 4a 2b 2

 a 4  2a 2 b 2  b 4  4a 2b 2
= a 4  2a 2 b 2  b 4

Note: y > 0, then a and b have same sign
y < 0, then a and b have different sign
OR

a  ib  x  iy
a b  x
2ab  y
2

x  y  a  b
2

2

If x  iy  a  ib
then a 2  b 2  x
a 2  b2  x2  y 2
e.g. Find  12  16i
a 2  b 2  12
a 2  b 2  20
2a 2
8
a2  4
a  2 b  4



2

2



2 2

 4a 2b 2

 a 4  2a 2 b 2  b 4  4a 2b 2
= a 4  2a 2 b 2  b 4

Note: y > 0, then a and b have same sign
y < 0, then a and b have different sign
OR

a  ib  x  iy
a b  x
2ab  y
2

x  y  a  b
2

2

If x  iy  a  ib
then a 2  b 2  x

a 2  b2  x2  y 2



2

2



2 2

 4a 2b 2

 a 4  2a 2 b 2  b 4  4a 2b 2
= a 4  2a 2 b 2  b 4

Note: y > 0, then a and b have same sign
y < 0, then a and b have different sign

e.g. Find  12  16i
a 2  b 2  12
a 2  b 2  20
8
2a 2
a2  4
a  2 b  4

 12  16i  2  4i 
(ii ) Find 5  4i
(ii ) Find 5  4i

a 2  b2  5
a 2  b 2  41
(ii ) Find 5  4i
a 2  b2  5
a 2  b 2  41
2a 2

 5  41
1
2
a  5  41
2



a



5  41
2

1
a
10  2 41
2
(ii ) Find 5  4i
a 2  b2  5
a 2  b 2  41
2a 2

 5  41
1
2
a  5  41
2



a



5  41
2

1
a
10  2 41
2






1
 b  5  41  5
2
1
 5  41
2
2



5  41
b
2
1
10  2 41
b
2
(ii ) Find 5  4i
a 2  b2  5
a 2  b 2  41
2a 2

 5  41
1
2
a  5  41
2



a



5  41
2

1
a
10  2 41
2

1
5  4i  
2

 10  2






1
 b  5  41  5
2
1
 5  41
2
2



5  41
b
2
1
10  2 41
b
2
41  i 10  2 41


(iii ) Solve z 2  (2  i ) z  (2  2i )  0
(iii ) Solve z 2  (2  i ) z  (2  2i )  0
z



2  i 

 2  i   4  2  2i 
2

2
  2  i   4  4i  1  8  8i
2
  2  i   5  12i
2
(iii ) Solve z 2  (2  i ) z  (2  2i )  0
z



2  i 

 2  i   4  2  2i 
2

2
  2  i   4  4i  1  8  8i
2
  2  i   5  12i
2

5  12i

a 2  b 2  5
a 2  b 2  13
2a 2
8
a2  4
a  2 b  3
(iii ) Solve z 2  (2  i ) z  (2  2i )  0
z





2  i 

 2  i   4  2  2i 
2

2
  2  i   4  4i  1  8  8i
2
  2  i   5  12i
2
  2  i    2  3i 

2

5  12i

a 2  b 2  5
a 2  b 2  13
2a 2
8
a2  4
a  2 b  3
(iii ) Solve z 2  (2  i ) z  (2  2i )  0
z




2  i 

 2  i   4  2  2i 
2

2
  2  i   4  4i  1  8  8i
2
  2  i   5  12i
2
  2  i    2  3i 
2

2i
4  4i

or
2
2
 i or  2  2i

5  12i

a 2  b 2  5
a 2  b 2  13
2a 2
8
a2  4
a  2 b  3
Cambridge: Exercise 1B; 1 to 4 ace etc, 5, 6, 7 cf,
9, 10, 16 ac

More Related Content

Viewers also liked

X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)Nigel Simmons
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)Nigel Simmons
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)Nigel Simmons
 
X2 t01 09 geometrical representation (2012)
X2 t01 09 geometrical representation (2012)X2 t01 09 geometrical representation (2012)
X2 t01 09 geometrical representation (2012)Nigel Simmons
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)Nigel Simmons
 
X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)Nigel Simmons
 

Viewers also liked (7)

X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)
 
X2 t01 09 geometrical representation (2012)
X2 t01 09 geometrical representation (2012)X2 t01 09 geometrical representation (2012)
X2 t01 09 geometrical representation (2012)
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)
 
X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Recently uploaded

Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...
Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...
Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...Eesti Loodusturism
 
Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmibookbahareshariat
 
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmibookbahareshariat
 
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdf
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdfمحاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdf
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdfKhaled Elbattawy
 
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmibookbahareshariat
 

Recently uploaded (6)

Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...
Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...
Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...
 
Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmi
 
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
 
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdf
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdfمحاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdf
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdf
 
Energy drink .
Energy drink                           .Energy drink                           .
Energy drink .
 
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
 

X2 t01 02 solving quadratics (2013)

  • 1. Solving Quadratics e.g . x 2  3 x  7  0
  • 2. Solving Quadratics e.g . x 2  3 x  7  0  3  9  28 2  3   19  2 x
  • 3. Solving Quadratics e.g . x 2  3 x  7  0  3  9  28 2  3   19  2  3  19i  2  3  19i  3  19i x or x  2 2 x
  • 4. Solving Quadratics e.g . x 2  3 x  7  0  3  9  28 x 2  3   19  2  3  19i  2  3  19i  3  19i x or x  2 2 OR by completing the square x 2  3x  7  0
  • 5. Solving Quadratics e.g . x 2  3 x  7  0  3  9  28 x 2  3   19  2  3  19i  2  3  19i  3  19i x or x  2 2 OR by completing the square x 2  3x  7  0 2 3  19 x    0 2 4  2  x  3   19 i 2  0   2 4 
  • 6. Solving Quadratics e.g . x 2  3 x  7  0  3  9  28 x 2  3   19  2  3  19i  2  3  19i  3  19i x or x  2 2 OR by completing the square x 2  3x  7  0 2 3  19 x    0 2 4  2  x  3   19 i 2  0   2 4  3 19  3 19   i  x   i  0 x  2 2  2 2  
  • 7. Solving Quadratics e.g . x 2  3 x  7  0  3  9  28 x 2  3   19  2  3  19i  2  3  19i  3  19i x or x  2 2 OR by completing the square x 2  3x  7  0 2 3  19 x    0 2 4  2  x  3   19 i 2  0   2 4  3 19  3 19   i  x   i  0 x  2 2  2 2   3 19 3 19 x  i or x    i 2 2 2 2
  • 8. Creating Quadratics All quadratics with real coefficients have conjugate pairs as solutions
  • 9. Creating Quadratics All quadratics with real coefficients have conjugate pairs as solutions  x  z   x  z   x2  ( z  z) x  z z
  • 10. Creating Quadratics All quadratics with real coefficients have conjugate pairs as solutions  x  z   x  z   x2  ( z  z) x  z z  x 2  2 Re( z ) x  z z
  • 11. Creating Quadratics All quadratics with real coefficients have conjugate pairs as solutions  x  z   x  z   x2  ( z  z) x  z z  x 2  2 Re( z ) x  z z iii  Find the quadratic equation with roots 4  i and 4-i
  • 12. Creating Quadratics All quadratics with real coefficients have conjugate pairs as solutions  x  z   x  z   x2  ( z  z) x  z z  x 2  2 Re( z ) x  z z iii  Find the quadratic equation with roots 4  i and 4-i   8   17
  • 13. Creating Quadratics All quadratics with real coefficients have conjugate pairs as solutions  x  z   x  z   x2  ( z  z) x  z z  x 2  2 Re( z ) x  z z iii  Find the quadratic equation with roots 4  i and 4-i   8   17  equation is x 2  8 x  17  0
  • 14. Finding Square Roots a  ib  x  iy
  • 15. Finding Square Roots a  ib  x  iy  a  ib   x  iy 2 a 2  2abi  b 2  x  iy
  • 16. Finding Square Roots a  ib  x  iy If x  iy  a  ib  a  ib   x  iy then a 2  b 2  x a 2  2abi  b 2  x  iy 2ab  y 2
  • 17. Finding Square Roots a  ib  x  iy If x  iy  a  ib  a  ib   x  iy then a 2  b 2  x a 2  2abi  b 2  x  iy 2ab  y 2 e.g. Find  12  16i
  • 18. Finding Square Roots a  ib  x  iy If x  iy  a  ib  a  ib   x  iy then a 2  b 2  x a 2  2abi  b 2  x  iy 2ab  y 2 e.g. Find  12  16i a 2  b 2  12 2ab  16 8 b a
  • 19. Finding Square Roots a  ib  x  iy If x  iy  a  ib  a  ib   x  iy then a 2  b 2  x a 2  2abi  b 2  x  iy 2ab  y 2 e.g. Find  12  16i a 2  b 2  12 64 2 a  2  12 a 2ab  16 8 b a
  • 20. Finding Square Roots a  ib  x  iy If x  iy  a  ib  a  ib   x  iy then a 2  b 2  x a 2  2abi  b 2  x  iy 2ab  y 2 e.g. Find  12  16i a 2  b 2  12 64 2 a  2  12 a a 4  12a 2  64  0 2ab  16 8 b a
  • 21. Finding Square Roots a  ib  x  iy If x  iy  a  ib  a  ib   x  iy then a 2  b 2  x a 2  2abi  b 2  x  iy 2ab  y 2 e.g. Find  12  16i a 2  b 2  12 64 2 a  2  12 a a 4  12a 2  64  0 a 2  4 a 2  16   0 a 2  4 or a 2  16 2ab  16 8 b a
  • 22. Finding Square Roots a  ib  x  iy If x  iy  a  ib  a  ib   x  iy then a 2  b 2  x a 2  2abi  b 2  x  iy 2ab  y 2 e.g. Find  12  16i a 2  b 2  12 64 2 a  2  12 a a 4  12a 2  64  0 a 2  4 a 2  16   0 a 2  4 or a 2  16 a  2 no real solutions  b  4 2ab  16 8 b a
  • 23. Finding Square Roots a  ib  x  iy If x  iy  a  ib  a  ib   x  iy then a 2  b 2  x a 2  2abi  b 2  x  iy 2ab  y 2 e.g. Find  12  16i a 2  b 2  12 64 2 a  2  12 a a 4  12a 2  64  0 a 2 2ab  16 8 b a  4 a 2  16   0 a 2  4 or a 2  16 a  2 no real solutions  b  4  12  16i  2  4i 
  • 24. OR a  ib  x  iy
  • 25. OR a  ib  x  iy a 2  b2  x 2ab  y
  • 26. OR a  ib  x  iy a b  x 2ab  y 2 x  y  a  b 2 2  2 2  2 2  4a 2b 2  a 4  2a 2 b 2  b 4  4a 2b 2 = a 4  2a 2 b 2  b 4
  • 27. OR a  ib  x  iy a b  x 2ab  y 2 x  y  a  b 2 2 If x  iy  a  ib then a 2  b 2  x a 2  b2  x2  y 2  2 2  2 2  4a 2b 2  a 4  2a 2 b 2  b 4  4a 2b 2 = a 4  2a 2 b 2  b 4
  • 28. OR a  ib  x  iy a b  x 2ab  y 2 x  y  a  b 2 2 If x  iy  a  ib then a 2  b 2  x a 2  b2  x2  y 2  2 2  2 2  4a 2b 2  a 4  2a 2 b 2  b 4  4a 2b 2 = a 4  2a 2 b 2  b 4 Note: y > 0, then a and b have same sign y < 0, then a and b have different sign
  • 29. OR a  ib  x  iy a b  x 2ab  y 2 x  y  a  b 2 2 If x  iy  a  ib then a 2  b 2  x a 2  b2  x2  y 2 e.g. Find  12  16i  2 2  2 2  4a 2b 2  a 4  2a 2 b 2  b 4  4a 2b 2 = a 4  2a 2 b 2  b 4 Note: y > 0, then a and b have same sign y < 0, then a and b have different sign
  • 30. OR a  ib  x  iy a b  x 2ab  y 2 x  y  a  b 2 2 If x  iy  a  ib then a 2  b 2  x a 2  b2  x2  y 2 e.g. Find  12  16i a 2  b 2  12 a 2  b 2  20  2 2  2 2  4a 2b 2  a 4  2a 2 b 2  b 4  4a 2b 2 = a 4  2a 2 b 2  b 4 Note: y > 0, then a and b have same sign y < 0, then a and b have different sign
  • 31. OR a  ib  x  iy a b  x 2ab  y 2 x  y  a  b 2 2 If x  iy  a  ib then a 2  b 2  x a 2  b2  x2  y 2 e.g. Find  12  16i a 2  b 2  12 a 2  b 2  20 2a 2 8 a2  4 a2  2 2  2 2  4a 2b 2  a 4  2a 2 b 2  b 4  4a 2b 2 = a 4  2a 2 b 2  b 4 Note: y > 0, then a and b have same sign y < 0, then a and b have different sign
  • 32. OR a  ib  x  iy a b  x 2ab  y 2 x  y  a  b 2 2 If x  iy  a  ib then a 2  b 2  x a 2  b2  x2  y 2 e.g. Find  12  16i a 2  b 2  12 a 2  b 2  20 2a 2 8 a2  4 a  2 b  4  2 2  2 2  4a 2b 2  a 4  2a 2 b 2  b 4  4a 2b 2 = a 4  2a 2 b 2  b 4 Note: y > 0, then a and b have same sign y < 0, then a and b have different sign
  • 33. OR a  ib  x  iy a b  x 2ab  y 2 x  y  a  b 2 2 If x  iy  a  ib then a 2  b 2  x a 2  b2  x2  y 2  2 2  2 2  4a 2b 2  a 4  2a 2 b 2  b 4  4a 2b 2 = a 4  2a 2 b 2  b 4 Note: y > 0, then a and b have same sign y < 0, then a and b have different sign e.g. Find  12  16i a 2  b 2  12 a 2  b 2  20 8 2a 2 a2  4 a  2 b  4  12  16i  2  4i 
  • 34. (ii ) Find 5  4i
  • 35. (ii ) Find 5  4i a 2  b2  5 a 2  b 2  41
  • 36. (ii ) Find 5  4i a 2  b2  5 a 2  b 2  41 2a 2  5  41 1 2 a  5  41 2  a  5  41 2 1 a 10  2 41 2
  • 37. (ii ) Find 5  4i a 2  b2  5 a 2  b 2  41 2a 2  5  41 1 2 a  5  41 2  a  5  41 2 1 a 10  2 41 2    1  b  5  41  5 2 1  5  41 2 2  5  41 b 2 1 10  2 41 b 2
  • 38. (ii ) Find 5  4i a 2  b2  5 a 2  b 2  41 2a 2  5  41 1 2 a  5  41 2  a  5  41 2 1 a 10  2 41 2 1 5  4i   2  10  2    1  b  5  41  5 2 1  5  41 2 2  5  41 b 2 1 10  2 41 b 2 41  i 10  2 41 
  • 39. (iii ) Solve z 2  (2  i ) z  (2  2i )  0
  • 40. (iii ) Solve z 2  (2  i ) z  (2  2i )  0 z   2  i   2  i   4  2  2i  2 2   2  i   4  4i  1  8  8i 2   2  i   5  12i 2
  • 41. (iii ) Solve z 2  (2  i ) z  (2  2i )  0 z   2  i   2  i   4  2  2i  2 2   2  i   4  4i  1  8  8i 2   2  i   5  12i 2 5  12i a 2  b 2  5 a 2  b 2  13 2a 2 8 a2  4 a  2 b  3
  • 42. (iii ) Solve z 2  (2  i ) z  (2  2i )  0 z    2  i   2  i   4  2  2i  2 2   2  i   4  4i  1  8  8i 2   2  i   5  12i 2   2  i    2  3i  2 5  12i a 2  b 2  5 a 2  b 2  13 2a 2 8 a2  4 a  2 b  3
  • 43. (iii ) Solve z 2  (2  i ) z  (2  2i )  0 z    2  i   2  i   4  2  2i  2 2   2  i   4  4i  1  8  8i 2   2  i   5  12i 2   2  i    2  3i  2 2i 4  4i  or 2 2  i or  2  2i 5  12i a 2  b 2  5 a 2  b 2  13 2a 2 8 a2  4 a  2 b  3
  • 44. Cambridge: Exercise 1B; 1 to 4 ace etc, 5, 6, 7 cf, 9, 10, 16 ac