SlideShare ist ein Scribd-Unternehmen logo
1 von 58
Downloaden Sie, um offline zu lesen
Locus
Locus
                         Locus
The collection of all points whose location is determined by some
stated law.
Locus
                           Locus
The collection of all points whose location is determined by some
stated law.
e.g. (i) Find the locus of the point which is always 4 units from the
         origin
Locus
                           Locus
The collection of all points whose location is determined by some
stated law.
e.g. (i) Find the locus of the point which is always 4 units from the
         origin
            y




                          x
Locus
                           Locus
The collection of all points whose location is determined by some
stated law.
e.g. (i) Find the locus of the point which is always 4 units from the
         origin
            y




                     4    x
Locus
                           Locus
The collection of all points whose location is determined by some
stated law.
e.g. (i) Find the locus of the point which is always 4 units from the
         origin
            y

          4



                     4    x
Locus
                           Locus
The collection of all points whose location is determined by some
stated law.
e.g. (i) Find the locus of the point which is always 4 units from the
         origin
            y

          4



–4                   4    x
Locus
                           Locus
The collection of all points whose location is determined by some
stated law.
e.g. (i) Find the locus of the point which is always 4 units from the
         origin
            y

          4



–4                   4    x


         –4
Locus
                           Locus
The collection of all points whose location is determined by some
stated law.
e.g. (i) Find the locus of the point which is always 4 units from the
         origin
            y

          4



–4                   4    x


         –4
Locus
                           Locus
The collection of all points whose location is determined by some
stated law.
e.g. (i) Find the locus of the point which is always 4 units from the
         origin
            y

          4



–4                   4    x


         –4
Locus
                              Locus
The collection of all points whose location is determined by some
stated law.
e.g. (i) Find the locus of the point which is always 4 units from the
         origin
            y

          4
                 P  x, y 


–4                    4       x


         –4
Locus
                              Locus
The collection of all points whose location is determined by some
stated law.
e.g. (i) Find the locus of the point which is always 4 units from the
         origin
            y

          4
                 P  x, y 
                                         x  02   y  02  4
–4                    4       x


         –4
Locus
                              Locus
The collection of all points whose location is determined by some
stated law.
e.g. (i) Find the locus of the point which is always 4 units from the
         origin
            y

          4
                 P  x, y 
                                         x  02   y  02  4
–4                    4       x               x 2  y 2  16


         –4
(ii) A point moves so that it is always 5 units away from the y axis
(ii) A point moves so that it is always 5 units away from the y axis
         y



                   x
(ii) A point moves so that it is always 5 units away from the y axis
         y
                P  x, y 


                   x
(ii) A point moves so that it is always 5 units away from the y axis
           y
      0, y  5 P x, y 

                   x
(ii) A point moves so that it is always 5 units away from the y axis
           y
      0, y  5 P x, y 
                                     x  0   y  y   5
                                            2           2



                   x
(ii) A point moves so that it is always 5 units away from the y axis
           y
      0, y  5 P x, y 
                                     x  0   y  y   5
                                            2           2



                   x                               x 2  25
(ii) A point moves so that it is always 5 units away from the y axis
           y
      0, y  5 P x, y 
                                     x  0   y  y   5
                                            2           2



                   x                               x 2  25
                                                    x  5
(ii) A point moves so that it is always 5 units away from the y axis
            y
       0, y  5 P x, y 
                                      x  0   y  y   5
                                             2           2



                     x                                x 2  25
                                                       x  5

(iii) A point moves so that it is always 3 units away from the line y = x + 1
(ii) A point moves so that it is always 5 units away from the y axis
            y
       0, y  5 P x, y 
                                      x  0   y  y   5
                                             2           2



                     x                                x 2  25
                                                       x  5

(iii) A point moves so that it is always 3 units away from the line y = x + 1
          y



                     x
(ii) A point moves so that it is always 5 units away from the y axis
            y
       0, y  5 P x, y 
                                      x  0   y  y   5
                                             2           2



                     x                                x 2  25
                                                       x  5

(iii) A point moves so that it is always 3 units away from the line y = x + 1
             y    y  x 1
             1

        –1           x
(ii) A point moves so that it is always 5 units away from the y axis
            y
       0, y  5 P x, y 
                                      x  0   y  y   5
                                             2           2



                      x                               x 2  25
                                                       x  5

(iii) A point moves so that it is always 3 units away from the line y = x + 1
              y     y  x 1
   P  x, y 
                1

         –1           x
(ii) A point moves so that it is always 5 units away from the y axis
            y
       0, y  5 P x, y 
                                      x  0   y  y   5
                                             2           2



                      x                               x 2  25
                                                       x  5

(iii) A point moves so that it is always 3 units away from the line y = x + 1
              y     y  x 1
   P  x, y 
                1

         –1           x
(ii) A point moves so that it is always 5 units away from the y axis
            y
       0, y  5 P x, y 
                                      x  0   y  y   5
                                             2           2



                      x                                    x 2  25
                                                            x  5

(iii) A point moves so that it is always 3 units away from the line y = x + 1
              y     y  x 1             x  y 1
   P  x, y                                              3
                                         12   1
                                                      2
                1

         –1           x
(ii) A point moves so that it is always 5 units away from the y axis
            y
       0, y  5 P x, y 
                                      x  0   y  y   5
                                             2           2



                      x                                    x 2  25
                                                            x  5

(iii) A point moves so that it is always 3 units away from the line y = x + 1
              y     y  x 1             x  y 1
   P  x, y                                              3
                                         12   1
                                                      2
                1
                                           x  y 1  3 2
         –1           x
(ii) A point moves so that it is always 5 units away from the y axis
            y
       0, y  5 P x, y 
                                      x  0   y  y   5
                                             2           2



                      x                                      x 2  25
                                                              x  5

(iii) A point moves so that it is always 3 units away from the line y = x + 1
              y     y  x 1               x  y 1
   P  x, y                                                3
                                           12   1
                                                        2
                1
                                                x  y 1  3 2
         –1           x
                               x  y 1  3 2
(ii) A point moves so that it is always 5 units away from the y axis
            y
       0, y  5 P x, y 
                                      x  0   y  y   5
                                             2           2



                      x                                      x 2  25
                                                              x  5

(iii) A point moves so that it is always 3 units away from the line y = x + 1
              y     y  x 1               x  y 1
   P  x, y                                                3
                                           12   1
                                                        2
                1
                                                x  y 1  3 2
         –1           x
                               x  y 1  3 2      or         x  y  1  3 2
(ii) A point moves so that it is always 5 units away from the y axis
            y
       0, y  5 P x, y 
                                      x  0   y  y   5
                                             2           2



                      x                                      x 2  25
                                                              x  5

(iii) A point moves so that it is always 3 units away from the line y = x + 1
              y     y  x 1               x  y 1
   P  x, y                                                3
                                           12   1
                                                        2
                1
                                                x  y 1  3 2
         –1           x
                               x  y 1  3 2      or         x  y  1  3 2
                          x  y 1 3 2  0
(ii) A point moves so that it is always 5 units away from the y axis
            y
       0, y  5 P x, y 
                                      x  0   y  y   5
                                             2           2



                      x                                      x 2  25
                                                              x  5

(iii) A point moves so that it is always 3 units away from the line y = x + 1
              y     y  x 1               x  y 1
   P  x, y                                                3
                                           12   1
                                                        2
                1
                                                x  y 1  3 2
         –1           x
                               x  y 1  3 2      or         x  y  1  3 2
                          x  y 1 3 2  0                   x  y 1  3 2
(ii) A point moves so that it is always 5 units away from the y axis
            y
       0, y  5 P x, y 
                                      x  0   y  y   5
                                             2           2



                      x                                      x 2  25
                                                              x  5

(iii) A point moves so that it is always 3 units away from the line y = x + 1
              y     y  x 1               x  y 1
   P  x, y                                                3
                                           12   1
                                                        2
                1
                                                x  y 1  3 2
         –1           x
                               x  y 1  3 2      or         x  y  1  3 2
                          x  y 1 3 2  0                   x  y 1  3 2
                                                              x  y 1 3 2  0
(iv) A point moves so that its distance from the x axis is always 5 times
     as great as its distance from the y axis.
(iv) A point moves so that its distance from the x axis is always 5 times
     as great as its distance from the y axis.
          y



                   x
(iv) A point moves so that its distance from the x axis is always 5 times
     as great as its distance from the y axis.
          y
                    P  x, y 


                   x
(iv) A point moves so that its distance from the x axis is always 5 times
     as great as its distance from the y axis.
          y
                    P  x, y 


              x,0  x
(iv) A point moves so that its distance from the x axis is always 5 times
     as great as its distance from the y axis.
            y
       0, y       P  x, y 


              x,0  x
(iv) A point moves so that its distance from the x axis is always 5 times
     as great as its distance from the y axis.
            y d
       0, y       P  x, y 
                 5d

              x,0  x
(iv) A point moves so that its distance from the x axis is always 5 times
     as great as its distance from the y axis.
            y d
       0, y       P  x, y 
                                 x  x    y  0  5  x  0   y  y 
                                         2          2            2            2

                   5d

               x,0  x
(iv) A point moves so that its distance from the x axis is always 5 times
     as great as its distance from the y axis.
            y d
       0, y       P  x, y 
                                 x  x    y  0  5  x  0   y  y 
                                         2           2           2            2

                   5d
                                                   y 2  25 x 2
                x,0  x
(iv) A point moves so that its distance from the x axis is always 5 times
     as great as its distance from the y axis.
            y d
       0, y       P  x, y 
                                 x  x    y  0  5  x  0   y  y 
                                         2           2           2            2

                   5d
                                                   y 2  25 x 2
                x,0  x                             y  5 x
(iv) A point moves so that its distance from the x axis is always 5 times
     as great as its distance from the y axis.
            y d
       0, y       P  x, y 
                                 x  x    y  0  5  x  0   y  y 
                                         2           2           2            2

                   5d
                                                   y 2  25 x 2
                x,0  x                             y  5 x

(v) A point moves so that its distance from (1,2) is the same as its
    distance from (5,–4).
(iv) A point moves so that its distance from the x axis is always 5 times
     as great as its distance from the y axis.
            y d
       0, y       P  x, y 
                                 x  x    y  0  5  x  0   y  y 
                                         2           2           2            2

                   5d
                                                   y 2  25 x 2
                x,0  x                             y  5 x

(v) A point moves so that its distance from (1,2) is the same as its
    distance from (5,–4).
          y



                     x
(iv) A point moves so that its distance from the x axis is always 5 times
     as great as its distance from the y axis.
            y d
       0, y       P  x, y 
                                 x  x    y  0  5  x  0   y  y 
                                         2           2           2            2

                   5d
                                                   y 2  25 x 2
                x,0  x                             y  5 x

(v) A point moves so that its distance from (1,2) is the same as its
    distance from (5,–4).
          y
               1, 2 
                         x
                      5, 4 
(iv) A point moves so that its distance from the x axis is always 5 times
     as great as its distance from the y axis.
            y d
       0, y       P  x, y 
                                 x  x    y  0  5  x  0   y  y 
                                         2           2           2            2

                   5d
                                                   y 2  25 x 2
                x,0  x                             y  5 x

(v) A point moves so that its distance from (1,2) is the same as its
    distance from (5,–4).
          y
                    1, 2 
       P  x, y              x
                           5, 4 
(iv) A point moves so that its distance from the x axis is always 5 times
     as great as its distance from the y axis.
            y d
       0, y       P  x, y 
                                 x  x    y  0  5  x  0   y  y 
                                         2           2           2            2

                   5d
                                                   y 2  25 x 2
                x,0  x                             y  5 x

(v) A point moves so that its distance from (1,2) is the same as its
    distance from (5,–4).
          y
                    1, 2 
       P  x, y              x
                           5, 4 
(iv) A point moves so that its distance from the x axis is always 5 times
     as great as its distance from the y axis.
            y d
       0, y       P  x, y 
                                 x  x    y  0  5  x  0   y  y 
                                         2           2           2            2

                   5d
                                                   y 2  25 x 2
                x,0  x                             y  5 x

(v) A point moves so that its distance from (1,2) is the same as its
    distance from (5,–4).
          y                   Perpendicular bisector of (1,2) and (5,–4)
                    1, 2 
       P  x, y              x
                           5, 4 
(iv) A point moves so that its distance from the x axis is always 5 times
     as great as its distance from the y axis.
            y d
       0, y       P  x, y 
                                 x  x    y  0  5  x  0   y  y 
                                         2           2           2            2

                   5d
                                                   y 2  25 x 2
                x,0  x                             y  5 x

(v) A point moves so that its distance from (1,2) is the same as its
    distance from (5,–4).
           y                        Perpendicular bisector of (1,2) and (5,–4)
                                            4  2
                   1, 2             mAB 
                                             5 1
        P  x, y                           6
                           x              
                                            4
                           5, 4          3
                                          
                                            2
(iv) A point moves so that its distance from the x axis is always 5 times
     as great as its distance from the y axis.
            y d
       0, y       P  x, y 
                                 x  x    y  0  5  x  0   y  y 
                                         2           2           2            2

                   5d
                                                   y 2  25 x 2
                x,0  x                             y  5 x

(v) A point moves so that its distance from (1,2) is the same as its
    distance from (5,–4).
           y                        Perpendicular bisector of (1,2) and (5,–4)
                                             4  2
                   1, 2             mAB 
                                              5 1
        P  x, y                            6
                           x              
                                             4
                           5, 4           3
                                          
                                             2         2
                                     required slope 
                                                       3
(iv) A point moves so that its distance from the x axis is always 5 times
     as great as its distance from the y axis.
            y d
       0, y       P  x, y 
                                 x  x    y  0  5  x  0   y  y 
                                         2           2           2            2

                   5d
                                                   y 2  25 x 2
                x,0  x                             y  5 x

(v) A point moves so that its distance from (1,2) is the same as its
    distance from (5,–4).
           y                        Perpendicular bisector of (1,2) and (5,–4)
                                             4  2
                   1, 2             mAB                       1  5 4  2 
                                                         M AB  
                                              5 1                     ,       
                                                                   2     2 
        P  x, y                            6
                           x                                   3, 1
                                             4
                           5, 4           3
                                          
                                             2         2
                                     required slope 
                                                       3
2
y  1   x  3
       3
2
 y  1   x  3
         3
3y  3  2x  6
2x  3y  9  0
2
 y  1   x  3
         3
3y  3  2x  6
2x  3y  9  0

     OR
2
              y  1   x  3
                      3
             3y  3  2x  6
             2x  3y  9  0

                   OR
 x  1   y  2    x  5    y  4 
        2           2           2            2
2
                     y  1   x  3
                             3
                    3y  3  2x  6
                    2x  3y  9  0

                           OR
       x  1   y  2    x  5    y  4 
              2           2           2            2



x 2  2 x  1  y 2  4 y  4  x 2  10 x  25  y 2  8 y  16
2
                     y  1   x  3
                             3
                    3y  3  2x  6
                    2x  3y  9  0

                           OR
       x  1   y  2    x  5    y  4 
              2           2           2            2



x 2  2 x  1  y 2  4 y  4  x 2  10 x  25  y 2  8 y  16
            8 x  12 y  36  0
2
                     y  1   x  3
                             3
                    3y  3  2x  6
                    2x  3y  9  0

                           OR
       x  1   y  2    x  5    y  4 
              2           2           2            2



x 2  2 x  1  y 2  4 y  4  x 2  10 x  25  y 2  8 y  16
            8 x  12 y  36  0
                2x  3y  9  0
2
                     y  1   x  3
                             3
                    3y  3  2x  6
                    2x  3y  9  0

                           OR
       x  1   y  2    x  5    y  4 
              2           2           2            2



x 2  2 x  1  y 2  4 y  4  x 2  10 x  25  y 2  8 y  16
            8 x  12 y  36  0
                2x  3y  9  0



     Exercise 9A; 1aceg, 3a, 4, 6, 8, 10, 11, 13, 14

Weitere ähnliche Inhalte

Was ist angesagt?

X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
X2 T04 03 cuve sketching - addition, subtraction,  multiplication and divisionX2 T04 03 cuve sketching - addition, subtraction,  multiplication and division
X2 T04 03 cuve sketching - addition, subtraction, multiplication and divisionNigel Simmons
 
X2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functionsX2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functionsNigel Simmons
 
ฟังก์ชัน(function)
ฟังก์ชัน(function)ฟังก์ชัน(function)
ฟังก์ชัน(function)Yodhathai Reesrikom
 
Lesson 4: Calcuating Limits (slides)
Lesson 4: Calcuating Limits (slides)Lesson 4: Calcuating Limits (slides)
Lesson 4: Calcuating Limits (slides)Matthew Leingang
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsMatthew Leingang
 
Pc12 sol c04_4-4
Pc12 sol c04_4-4Pc12 sol c04_4-4
Pc12 sol c04_4-4Garden City
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsMatthew Leingang
 
Form 4 formulae and note
Form 4 formulae and noteForm 4 formulae and note
Form 4 formulae and notesmktsj2
 
Graphquadraticfcns2
Graphquadraticfcns2Graphquadraticfcns2
Graphquadraticfcns2loptruonga2
 

Was ist angesagt? (11)

X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
X2 T04 03 cuve sketching - addition, subtraction,  multiplication and divisionX2 T04 03 cuve sketching - addition, subtraction,  multiplication and division
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
 
X2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functionsX2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functions
 
0201 ch 2 day 1
0201 ch 2 day 10201 ch 2 day 1
0201 ch 2 day 1
 
ฟังก์ชัน(function)
ฟังก์ชัน(function)ฟังก์ชัน(function)
ฟังก์ชัน(function)
 
Lesson 4: Calcuating Limits (slides)
Lesson 4: Calcuating Limits (slides)Lesson 4: Calcuating Limits (slides)
Lesson 4: Calcuating Limits (slides)
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and Logarithms
 
1203 ch 12 day 3
1203 ch 12 day 31203 ch 12 day 3
1203 ch 12 day 3
 
Pc12 sol c04_4-4
Pc12 sol c04_4-4Pc12 sol c04_4-4
Pc12 sol c04_4-4
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and Logarithms
 
Form 4 formulae and note
Form 4 formulae and noteForm 4 formulae and note
Form 4 formulae and note
 
Graphquadraticfcns2
Graphquadraticfcns2Graphquadraticfcns2
Graphquadraticfcns2
 

Mehr von Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

Mehr von Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Kürzlich hochgeladen

A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 

Kürzlich hochgeladen (20)

A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 

11X1 T12 01 locus

  • 2. Locus Locus The collection of all points whose location is determined by some stated law.
  • 3. Locus Locus The collection of all points whose location is determined by some stated law. e.g. (i) Find the locus of the point which is always 4 units from the origin
  • 4. Locus Locus The collection of all points whose location is determined by some stated law. e.g. (i) Find the locus of the point which is always 4 units from the origin y x
  • 5. Locus Locus The collection of all points whose location is determined by some stated law. e.g. (i) Find the locus of the point which is always 4 units from the origin y 4 x
  • 6. Locus Locus The collection of all points whose location is determined by some stated law. e.g. (i) Find the locus of the point which is always 4 units from the origin y 4 4 x
  • 7. Locus Locus The collection of all points whose location is determined by some stated law. e.g. (i) Find the locus of the point which is always 4 units from the origin y 4 –4 4 x
  • 8. Locus Locus The collection of all points whose location is determined by some stated law. e.g. (i) Find the locus of the point which is always 4 units from the origin y 4 –4 4 x –4
  • 9. Locus Locus The collection of all points whose location is determined by some stated law. e.g. (i) Find the locus of the point which is always 4 units from the origin y 4 –4 4 x –4
  • 10. Locus Locus The collection of all points whose location is determined by some stated law. e.g. (i) Find the locus of the point which is always 4 units from the origin y 4 –4 4 x –4
  • 11. Locus Locus The collection of all points whose location is determined by some stated law. e.g. (i) Find the locus of the point which is always 4 units from the origin y 4 P  x, y  –4 4 x –4
  • 12. Locus Locus The collection of all points whose location is determined by some stated law. e.g. (i) Find the locus of the point which is always 4 units from the origin y 4 P  x, y   x  02   y  02  4 –4 4 x –4
  • 13. Locus Locus The collection of all points whose location is determined by some stated law. e.g. (i) Find the locus of the point which is always 4 units from the origin y 4 P  x, y   x  02   y  02  4 –4 4 x x 2  y 2  16 –4
  • 14. (ii) A point moves so that it is always 5 units away from the y axis
  • 15. (ii) A point moves so that it is always 5 units away from the y axis y x
  • 16. (ii) A point moves so that it is always 5 units away from the y axis y P  x, y  x
  • 17. (ii) A point moves so that it is always 5 units away from the y axis y  0, y  5 P x, y  x
  • 18. (ii) A point moves so that it is always 5 units away from the y axis y  0, y  5 P x, y   x  0   y  y   5 2 2 x
  • 19. (ii) A point moves so that it is always 5 units away from the y axis y  0, y  5 P x, y   x  0   y  y   5 2 2 x x 2  25
  • 20. (ii) A point moves so that it is always 5 units away from the y axis y  0, y  5 P x, y   x  0   y  y   5 2 2 x x 2  25 x  5
  • 21. (ii) A point moves so that it is always 5 units away from the y axis y  0, y  5 P x, y   x  0   y  y   5 2 2 x x 2  25 x  5 (iii) A point moves so that it is always 3 units away from the line y = x + 1
  • 22. (ii) A point moves so that it is always 5 units away from the y axis y  0, y  5 P x, y   x  0   y  y   5 2 2 x x 2  25 x  5 (iii) A point moves so that it is always 3 units away from the line y = x + 1 y x
  • 23. (ii) A point moves so that it is always 5 units away from the y axis y  0, y  5 P x, y   x  0   y  y   5 2 2 x x 2  25 x  5 (iii) A point moves so that it is always 3 units away from the line y = x + 1 y y  x 1 1 –1 x
  • 24. (ii) A point moves so that it is always 5 units away from the y axis y  0, y  5 P x, y   x  0   y  y   5 2 2 x x 2  25 x  5 (iii) A point moves so that it is always 3 units away from the line y = x + 1 y y  x 1 P  x, y  1 –1 x
  • 25. (ii) A point moves so that it is always 5 units away from the y axis y  0, y  5 P x, y   x  0   y  y   5 2 2 x x 2  25 x  5 (iii) A point moves so that it is always 3 units away from the line y = x + 1 y y  x 1 P  x, y  1 –1 x
  • 26. (ii) A point moves so that it is always 5 units away from the y axis y  0, y  5 P x, y   x  0   y  y   5 2 2 x x 2  25 x  5 (iii) A point moves so that it is always 3 units away from the line y = x + 1 y y  x 1 x  y 1 P  x, y  3 12   1 2 1 –1 x
  • 27. (ii) A point moves so that it is always 5 units away from the y axis y  0, y  5 P x, y   x  0   y  y   5 2 2 x x 2  25 x  5 (iii) A point moves so that it is always 3 units away from the line y = x + 1 y y  x 1 x  y 1 P  x, y  3 12   1 2 1 x  y 1  3 2 –1 x
  • 28. (ii) A point moves so that it is always 5 units away from the y axis y  0, y  5 P x, y   x  0   y  y   5 2 2 x x 2  25 x  5 (iii) A point moves so that it is always 3 units away from the line y = x + 1 y y  x 1 x  y 1 P  x, y  3 12   1 2 1 x  y 1  3 2 –1 x x  y 1  3 2
  • 29. (ii) A point moves so that it is always 5 units away from the y axis y  0, y  5 P x, y   x  0   y  y   5 2 2 x x 2  25 x  5 (iii) A point moves so that it is always 3 units away from the line y = x + 1 y y  x 1 x  y 1 P  x, y  3 12   1 2 1 x  y 1  3 2 –1 x x  y 1  3 2 or   x  y  1  3 2
  • 30. (ii) A point moves so that it is always 5 units away from the y axis y  0, y  5 P x, y   x  0   y  y   5 2 2 x x 2  25 x  5 (iii) A point moves so that it is always 3 units away from the line y = x + 1 y y  x 1 x  y 1 P  x, y  3 12   1 2 1 x  y 1  3 2 –1 x x  y 1  3 2 or   x  y  1  3 2 x  y 1 3 2  0
  • 31. (ii) A point moves so that it is always 5 units away from the y axis y  0, y  5 P x, y   x  0   y  y   5 2 2 x x 2  25 x  5 (iii) A point moves so that it is always 3 units away from the line y = x + 1 y y  x 1 x  y 1 P  x, y  3 12   1 2 1 x  y 1  3 2 –1 x x  y 1  3 2 or   x  y  1  3 2 x  y 1 3 2  0 x  y 1  3 2
  • 32. (ii) A point moves so that it is always 5 units away from the y axis y  0, y  5 P x, y   x  0   y  y   5 2 2 x x 2  25 x  5 (iii) A point moves so that it is always 3 units away from the line y = x + 1 y y  x 1 x  y 1 P  x, y  3 12   1 2 1 x  y 1  3 2 –1 x x  y 1  3 2 or   x  y  1  3 2 x  y 1 3 2  0 x  y 1  3 2 x  y 1 3 2  0
  • 33. (iv) A point moves so that its distance from the x axis is always 5 times as great as its distance from the y axis.
  • 34. (iv) A point moves so that its distance from the x axis is always 5 times as great as its distance from the y axis. y x
  • 35. (iv) A point moves so that its distance from the x axis is always 5 times as great as its distance from the y axis. y P  x, y  x
  • 36. (iv) A point moves so that its distance from the x axis is always 5 times as great as its distance from the y axis. y P  x, y   x,0  x
  • 37. (iv) A point moves so that its distance from the x axis is always 5 times as great as its distance from the y axis. y  0, y  P  x, y   x,0  x
  • 38. (iv) A point moves so that its distance from the x axis is always 5 times as great as its distance from the y axis. y d  0, y  P  x, y  5d  x,0  x
  • 39. (iv) A point moves so that its distance from the x axis is always 5 times as great as its distance from the y axis. y d  0, y  P  x, y   x  x    y  0  5  x  0   y  y  2 2 2 2 5d  x,0  x
  • 40. (iv) A point moves so that its distance from the x axis is always 5 times as great as its distance from the y axis. y d  0, y  P  x, y   x  x    y  0  5  x  0   y  y  2 2 2 2 5d y 2  25 x 2  x,0  x
  • 41. (iv) A point moves so that its distance from the x axis is always 5 times as great as its distance from the y axis. y d  0, y  P  x, y   x  x    y  0  5  x  0   y  y  2 2 2 2 5d y 2  25 x 2  x,0  x y  5 x
  • 42. (iv) A point moves so that its distance from the x axis is always 5 times as great as its distance from the y axis. y d  0, y  P  x, y   x  x    y  0  5  x  0   y  y  2 2 2 2 5d y 2  25 x 2  x,0  x y  5 x (v) A point moves so that its distance from (1,2) is the same as its distance from (5,–4).
  • 43. (iv) A point moves so that its distance from the x axis is always 5 times as great as its distance from the y axis. y d  0, y  P  x, y   x  x    y  0  5  x  0   y  y  2 2 2 2 5d y 2  25 x 2  x,0  x y  5 x (v) A point moves so that its distance from (1,2) is the same as its distance from (5,–4). y x
  • 44. (iv) A point moves so that its distance from the x axis is always 5 times as great as its distance from the y axis. y d  0, y  P  x, y   x  x    y  0  5  x  0   y  y  2 2 2 2 5d y 2  25 x 2  x,0  x y  5 x (v) A point moves so that its distance from (1,2) is the same as its distance from (5,–4). y 1, 2  x  5, 4 
  • 45. (iv) A point moves so that its distance from the x axis is always 5 times as great as its distance from the y axis. y d  0, y  P  x, y   x  x    y  0  5  x  0   y  y  2 2 2 2 5d y 2  25 x 2  x,0  x y  5 x (v) A point moves so that its distance from (1,2) is the same as its distance from (5,–4). y 1, 2  P  x, y  x  5, 4 
  • 46. (iv) A point moves so that its distance from the x axis is always 5 times as great as its distance from the y axis. y d  0, y  P  x, y   x  x    y  0  5  x  0   y  y  2 2 2 2 5d y 2  25 x 2  x,0  x y  5 x (v) A point moves so that its distance from (1,2) is the same as its distance from (5,–4). y 1, 2  P  x, y  x  5, 4 
  • 47. (iv) A point moves so that its distance from the x axis is always 5 times as great as its distance from the y axis. y d  0, y  P  x, y   x  x    y  0  5  x  0   y  y  2 2 2 2 5d y 2  25 x 2  x,0  x y  5 x (v) A point moves so that its distance from (1,2) is the same as its distance from (5,–4). y Perpendicular bisector of (1,2) and (5,–4) 1, 2  P  x, y  x  5, 4 
  • 48. (iv) A point moves so that its distance from the x axis is always 5 times as great as its distance from the y axis. y d  0, y  P  x, y   x  x    y  0  5  x  0   y  y  2 2 2 2 5d y 2  25 x 2  x,0  x y  5 x (v) A point moves so that its distance from (1,2) is the same as its distance from (5,–4). y Perpendicular bisector of (1,2) and (5,–4) 4  2 1, 2  mAB  5 1 P  x, y  6 x  4  5, 4  3  2
  • 49. (iv) A point moves so that its distance from the x axis is always 5 times as great as its distance from the y axis. y d  0, y  P  x, y   x  x    y  0  5  x  0   y  y  2 2 2 2 5d y 2  25 x 2  x,0  x y  5 x (v) A point moves so that its distance from (1,2) is the same as its distance from (5,–4). y Perpendicular bisector of (1,2) and (5,–4) 4  2 1, 2  mAB  5 1 P  x, y  6 x  4  5, 4  3  2 2  required slope  3
  • 50. (iv) A point moves so that its distance from the x axis is always 5 times as great as its distance from the y axis. y d  0, y  P  x, y   x  x    y  0  5  x  0   y  y  2 2 2 2 5d y 2  25 x 2  x,0  x y  5 x (v) A point moves so that its distance from (1,2) is the same as its distance from (5,–4). y Perpendicular bisector of (1,2) and (5,–4) 4  2 1, 2  mAB   1  5 4  2  M AB   5 1 ,   2 2  P  x, y  6 x    3, 1 4  5, 4  3  2 2  required slope  3
  • 51. 2 y  1   x  3 3
  • 52. 2 y  1   x  3 3 3y  3  2x  6 2x  3y  9  0
  • 53. 2 y  1   x  3 3 3y  3  2x  6 2x  3y  9  0 OR
  • 54. 2 y  1   x  3 3 3y  3  2x  6 2x  3y  9  0 OR  x  1   y  2    x  5    y  4  2 2 2 2
  • 55. 2 y  1   x  3 3 3y  3  2x  6 2x  3y  9  0 OR  x  1   y  2    x  5    y  4  2 2 2 2 x 2  2 x  1  y 2  4 y  4  x 2  10 x  25  y 2  8 y  16
  • 56. 2 y  1   x  3 3 3y  3  2x  6 2x  3y  9  0 OR  x  1   y  2    x  5    y  4  2 2 2 2 x 2  2 x  1  y 2  4 y  4  x 2  10 x  25  y 2  8 y  16 8 x  12 y  36  0
  • 57. 2 y  1   x  3 3 3y  3  2x  6 2x  3y  9  0 OR  x  1   y  2    x  5    y  4  2 2 2 2 x 2  2 x  1  y 2  4 y  4  x 2  10 x  25  y 2  8 y  16 8 x  12 y  36  0 2x  3y  9  0
  • 58. 2 y  1   x  3 3 3y  3  2x  6 2x  3y  9  0 OR  x  1   y  2    x  5    y  4  2 2 2 2 x 2  2 x  1  y 2  4 y  4  x 2  10 x  25  y 2  8 y  16 8 x  12 y  36  0 2x  3y  9  0 Exercise 9A; 1aceg, 3a, 4, 6, 8, 10, 11, 13, 14