SlideShare a Scribd company logo
1 of 42
Download to read offline
Approximations To Areas
(1) Trapezoidal Rule

y

y = f(x)

a

b

x
Approximations To Areas
(1) Trapezoidal Rule

y

y = f(x)

a

b

x
Approximations To Areas
(1) Trapezoidal Rule

y

y = f(x)

a

b

x

ba
A
 f a   f b 
2
Approximations To Areas
(1) Trapezoidal Rule

y

y = f(x)

ba
A
 f a   f b 
2

y
a

b

y = f(x)

x

a

b

x
Approximations To Areas
(1) Trapezoidal Rule

y

y = f(x)

ba
A
 f a   f b 
2

y
a

b

y = f(x)

x

a

c

b

x
Approximations To Areas
(1) Trapezoidal Rule

y

y = f(x)

ba
A
 f a   f b 
2

y
a

b

y = f(x)

x

ca
bc
A
 f a   f c  
 f c   f b 
2
2

a

c

b

x
Approximations To Areas
(1) Trapezoidal Rule

y

y = f(x)

ba
A
 f a   f b 
2

y
a

b

y = f(x)

x

ca
bc
A
 f a   f c  
 f c   f b 
2
2
ca

 f a   2 f c   f b 
2

a

c

b

x
y

y = f(x)

a

b

x
y

y = f(x)

a

c

d

b

x
y

y = f(x)

ca
d c
A
 f a   f c  
 f c   f d 
2
2
bd

 f d   f b 
2

a

c

d

b

x
y

y = f(x)

a

c

d

b

ca
d c
A
 f a   f c  
 f c   f d 
2
2
bd

 f d   f b 
2
x  c  a  f a   2 f c   2 f d   f b 
2
y

y = f(x)

a

c

In general;

d

b

ca
d c
A
 f a   f c  
 f c   f d 
2
2
bd

 f d   f b 
2
x  c  a  f a   2 f c   2 f d   f b 
2
y

y = f(x)

a

c

In general;

d

ca
d c
A
 f a   f c  
 f c   f d 
2
2
bd

 f d   f b 
2
x  c  a  f a   2 f c   2 f d   f b 
2

b
b

Area   f  x dx
a
y

y = f(x)

a

c

In general;

d

ca
d c
A
 f a   f c  
 f c   f d 
2
2
bd

 f d   f b 
2
x  c  a  f a   2 f c   2 f d   f b 
2

b
b

Area   f  x dx
a

h
 y0  2 yothers  yn 
2
y

y = f(x)

a

c

In general;

d

ca
d c
A
 f a   f c  
 f c   f d 
2
2
bd

 f d   f b 
2
x  c  a  f a   2 f c   2 f d   f b 
2

b
b

Area   f  x dx
a

h
 y0  2 yothers  yn 
2

ba
n
n  number of trapeziums

where h 
y

y = f(x)

a

c

In general;

d

ca
d c
A
 f a   f c  
 f c   f d 
2
2
bd

 f d   f b 
2
x  c  a  f a   2 f c   2 f d   f b 
2

b
b

Area   f  x dx
a

h
 y0  2 yothers  yn 
2

ba
n
n  number of trapeziums

where h 

NOTE: there is
always one more
function value
than interval
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the
area under the curve y  4  x

correct to 3 decimal points 

 , between x  0 and x  2

1
2 2
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the
area under the curve y  4  x

correct to 3 decimal points 
ba
h
n
20

4
 0.5

 , between x  0 and x  2

1
2 2
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the
area under the curve y  4  x

correct to 3 decimal points 
ba
h
n
20

4
 0.5

x
y

0
2

 , between x  0 and x  2

1
2 2

0.5
1.9365

1
1.7321

1.5
1.3229

2
0
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the
area under the curve y  4  x

correct to 3 decimal points 
ba
h
n
20

4
 0.5

x
y

0
2

 , between x  0 and x  2

1
2 2

0.5
1.9365

1
1.7321

h
Area  y0  2 yothers  yn 
2

1.5
1.3229

2
0
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the
area under the curve y  4  x

correct to 3 decimal points 
ba
h
n
20

4
 0.5

 , between x  0 and x  2

1
2 2

1
x
y

0
2

1
0.5
1.9365

1
1.7321

h
Area  y0  2 yothers  yn 
2

1.5
1.3229

2
0
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the
area under the curve y  4  x

correct to 3 decimal points 
ba
h
n
20

4
 0.5

1
x
y

0
2

 , between x  0 and x  2

1
2 2

2

2

2

1

0.5
1.9365

1
1.7321

1.5
1.3229

2
0

h
Area  y0  2 yothers  yn 
2
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the
area under the curve y  4  x

correct to 3 decimal points 
ba
h
n
20

4
 0.5

1
x
y

0
2

 , between x  0 and x  2

1
2 2

2

2

2

1

0.5
1.9365

1
1.7321

1.5
1.3229

2
0

h
Area  y0  2 yothers  yn 
2
0.5

2  21.9365  1.7321  1.3229  0
2
 2.996 units 2
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the
area under the curve y  4  x

correct to 3 decimal points 
ba
h
n
20

4
 0.5

1
x
y

0
2

 , between x  0 and x  2

1
2 2

2

2

2

1

0.5
1.9365

1
1.7321

1.5
1.3229

2
0

h
Area  y0  2 yothers  yn 
2
0.5

2  21.9365  1.7321  1.3229  0
2
exact value  π 
 2.996 units 2
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the
area under the curve y  4  x

correct to 3 decimal points 
ba
h
n
20

4
 0.5

1
x
y

0
2

 , between x  0 and x  2

1
2 2

2

2

2

1

0.5
1.9365

1
1.7321

1.5
1.3229

2
0

h
Area  y0  2 yothers  yn 
2
0.5

2  21.9365  1.7321  1.3229  0
2
exact value  π 
 2.996 units 2
3.142  2.996
100
3.142
 4.6%

% error 
(2) Simpson’s Rule
(2) Simpson’s Rule
b

Area   f  x dx
a
(2) Simpson’s Rule
b

Area   f  x dx
a

h
 y0  4 yodd  2 yeven  yn 
3
(2) Simpson’s Rule
b

Area   f  x dx
a

h
 y0  4 yodd  2 yeven  yn 
3

ba
n
n  number of intervals

where h 
(2) Simpson’s Rule
b

Area   f  x dx
a

h
 y0  4 yodd  2 yeven  yn 
3

ba
n
n  number of intervals

where h 

e.g.
x
y

0
2

0.5
1.9365

1
1.7321

1.5
1.3229

2
0
(2) Simpson’s Rule
b

Area   f  x dx
a

h
 y0  4 yodd  2 yeven  yn 
3

ba
n
n  number of intervals

where h 

e.g.
x
y

0
2

0.5
1.9365

1
1.7321

h
Area  y0  4 yodd  2 yeven  yn 
3

1.5
1.3229

2
0
(2) Simpson’s Rule
b

Area   f  x dx
a

h
 y0  4 yodd  2 yeven  yn 
3

ba
n
n  number of intervals

where h 

1

e.g.
x
y

0
2

1
0.5
1.9365

1
1.7321

h
Area  y0  4 yodd  2 yeven  yn 
3

1.5
1.3229

2
0
(2) Simpson’s Rule
b

Area   f  x dx
a

h
 y0  4 yodd  2 yeven  yn 
3

ba
n
n  number of intervals

where h 

1

e.g.
x
y

4

0
2

0.5
1.9365

4
1
1.7321

h
Area  y0  4 yodd  2 yeven  yn 
3

1

1.5
1.3229

2
0
(2) Simpson’s Rule
b

Area   f  x dx
a

h
 y0  4 yodd  2 yeven  yn 
3

ba
n
n  number of intervals

where h 

1

e.g.
x
y

4

2

4

1

0
2

0.5
1.9365

1
1.7321

1.5
1.3229

2
0

h
Area  y0  4 yodd  2 yeven  yn 
3
(2) Simpson’s Rule
b

Area   f  x dx
a

h
 y0  4 yodd  2 yeven  yn 
3

ba
n
n  number of intervals

where h 

1

e.g.
x
y

4

2

4

1

0
2

0.5
1.9365

1
1.7321

1.5
1.3229

2
0

h
Area  y0  4 yodd  2 yeven  yn 
3
0.5

2  41.9365  1.3229  21.7321  0
3
 3.084 units 2
(2) Simpson’s Rule
b

Area   f  x dx
a

h
 y0  4 yodd  2 yeven  yn 
3

ba
n
n  number of intervals

where h 

1

e.g.
x
y

4

2

4

1

0
2

0.5
1.9365

1
1.7321

1.5
1.3229

2
0

h
Area  y0  4 yodd  2 yeven  yn 
3
0.5

2  41.9365  1.3229  21.7321  0 3.142  3.084
3
% error 
100
3.142
 3.084 units 2
 1.8%
Alternative working out!!!
(1) Trapezoidal Rule
Alternative working out!!!
(1) Trapezoidal Rule
1
x
y

0
2

2

2

2

1

0.5
1.9365

1
1.7321

1.5
1.3229

2
0
Alternative working out!!!
(1) Trapezoidal Rule
1
x
y

Area 

0
2

2

2

2

1

0.5
1.9365

1
1.7321

1.5
1.3229

2
0

2  2 1.9365  1.7321  1.3229   0

1 2  2  2 1
 2.996 units 2

  2  0
(2) Simpson’s Rule
1
x
y

0
2

4

2

4

1

0.5
1.9365

1
1.7321

1.5
1.3229

2
0
(2) Simpson’s Rule
1
x
y

Area 

0
2

4

2

4

1

0.5
1.9365

1
1.7321

1.5
1.3229

2
0

2  4 1.9365  1.3229   2 1.7321  0
1 4  2  4 1

 3.084 units 2

  2  0
(2) Simpson’s Rule
1
x
y

Area 

0
2

4

2

4

1

0.5
1.9365

1
1.7321

1.5
1.3229

2
0

2  4 1.9365  1.3229   2 1.7321  0
1 4  2  4 1

 3.084 units 2

Exercise 11I; odds
Exercise 11J; evens

  2  0

More Related Content

What's hot

CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
Carlon Baird
 
1-1 Algebra Review HW
1-1 Algebra Review HW1-1 Algebra Review HW
1-1 Algebra Review HW
nechamkin
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
Definite Integral Review
Definite Integral ReviewDefinite Integral Review
Definite Integral Review
Sharon Henry
 
Exam ii(practice)
Exam ii(practice)Exam ii(practice)
Exam ii(practice)
PublicLeaks
 
Modul bimbingan add maths
Modul bimbingan add mathsModul bimbingan add maths
Modul bimbingan add maths
Sasi Villa
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 

What's hot (20)

Mathematic for engineering iii for prints calculate by seng phearun in m8
Mathematic for engineering iii for prints calculate by seng phearun in m8Mathematic for engineering iii for prints calculate by seng phearun in m8
Mathematic for engineering iii for prints calculate by seng phearun in m8
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
 
Pure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - TextbookPure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - Textbook
 
1-1 Algebra Review HW
1-1 Algebra Review HW1-1 Algebra Review HW
1-1 Algebra Review HW
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
Unit 7 Review A
Unit 7 Review AUnit 7 Review A
Unit 7 Review A
 
Ejercicios resueltos
Ejercicios resueltosEjercicios resueltos
Ejercicios resueltos
 
Tricky log graphs
Tricky log graphsTricky log graphs
Tricky log graphs
 
Function graphs
Function graphsFunction graphs
Function graphs
 
Definite Integral Review
Definite Integral ReviewDefinite Integral Review
Definite Integral Review
 
Exam ii(practice)
Exam ii(practice)Exam ii(practice)
Exam ii(practice)
 
Succesive differntiation
Succesive differntiationSuccesive differntiation
Succesive differntiation
 
0207 ch 2 day 7
0207 ch 2 day 70207 ch 2 day 7
0207 ch 2 day 7
 
Multiple Choice Questions_Successive Differentiation (CALCULUS)
Multiple Choice Questions_Successive Differentiation (CALCULUS)Multiple Choice Questions_Successive Differentiation (CALCULUS)
Multiple Choice Questions_Successive Differentiation (CALCULUS)
 
Modul bimbingan add maths
Modul bimbingan add mathsModul bimbingan add maths
Modul bimbingan add maths
 
Cbse Class 12 Maths Sample Paper 2012
Cbse Class 12 Maths Sample Paper 2012Cbse Class 12 Maths Sample Paper 2012
Cbse Class 12 Maths Sample Paper 2012
 
125 5.4
125 5.4125 5.4
125 5.4
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 

Similar to 11 x1 t16 07 approximations (2013)

11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
Nigel Simmons
 
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.pptRvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
shivamvadgama50
 
Integral calculus formula sheet
Integral calculus formula sheetIntegral calculus formula sheet
Integral calculus formula sheet
AjEcuacion
 
11 x1 t15 03 polynomial division (2013)
11 x1 t15 03 polynomial division (2013)11 x1 t15 03 polynomial division (2013)
11 x1 t15 03 polynomial division (2013)
Nigel Simmons
 
11 x1 t11 06 tangents & normals ii (2013)
11 x1 t11 06 tangents & normals ii (2013)11 x1 t11 06 tangents & normals ii (2013)
11 x1 t11 06 tangents & normals ii (2013)
Nigel Simmons
 

Similar to 11 x1 t16 07 approximations (2013) (20)

11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
Lesson 4B - Intro to Quadratics.ppt
Lesson 4B - Intro to Quadratics.pptLesson 4B - Intro to Quadratics.ppt
Lesson 4B - Intro to Quadratics.ppt
 
Calc05_2.ppt
Calc05_2.pptCalc05_2.ppt
Calc05_2.ppt
 
Complete Factoring Rules.ppt
Complete Factoring Rules.pptComplete Factoring Rules.ppt
Complete Factoring Rules.ppt
 
Complete Factoring Rules in Grade 8 Math.ppt
Complete Factoring Rules in Grade 8 Math.pptComplete Factoring Rules in Grade 8 Math.ppt
Complete Factoring Rules in Grade 8 Math.ppt
 
Quadratic Functions graph
Quadratic Functions graphQuadratic Functions graph
Quadratic Functions graph
 
Day 5 of the Intuitive Online Calculus Course: The Squeeze Theorem
Day 5 of the Intuitive Online Calculus Course: The Squeeze TheoremDay 5 of the Intuitive Online Calculus Course: The Squeeze Theorem
Day 5 of the Intuitive Online Calculus Course: The Squeeze Theorem
 
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.pptRvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
 
Second-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesSecond-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like Masses
 
Integral calculus formula sheet
Integral calculus formula sheetIntegral calculus formula sheet
Integral calculus formula sheet
 
Integral calculus formula sheet
Integral calculus formula sheetIntegral calculus formula sheet
Integral calculus formula sheet
 
Integral calculus formula sheet 0
Integral calculus formula sheet 0Integral calculus formula sheet 0
Integral calculus formula sheet 0
 
Beam buckling
Beam bucklingBeam buckling
Beam buckling
 
Trapezoidal rule
Trapezoidal ruleTrapezoidal rule
Trapezoidal rule
 
Math For Physics
Math For PhysicsMath For Physics
Math For Physics
 
NUMERICAL METHODS
NUMERICAL METHODSNUMERICAL METHODS
NUMERICAL METHODS
 
PERTEMUAN 9B APLIKASI INTEGRAL.ppt
PERTEMUAN 9B APLIKASI  INTEGRAL.pptPERTEMUAN 9B APLIKASI  INTEGRAL.ppt
PERTEMUAN 9B APLIKASI INTEGRAL.ppt
 
11 x1 t15 03 polynomial division (2013)
11 x1 t15 03 polynomial division (2013)11 x1 t15 03 polynomial division (2013)
11 x1 t15 03 polynomial division (2013)
 
11 x1 t11 06 tangents & normals ii (2013)
11 x1 t11 06 tangents & normals ii (2013)11 x1 t11 06 tangents & normals ii (2013)
11 x1 t11 06 tangents & normals ii (2013)
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
Nigel Simmons
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
Nigel Simmons
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
Nigel Simmons
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
 

Recently uploaded

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 

Recently uploaded (20)

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 

11 x1 t16 07 approximations (2013)

  • 1. Approximations To Areas (1) Trapezoidal Rule y y = f(x) a b x
  • 2. Approximations To Areas (1) Trapezoidal Rule y y = f(x) a b x
  • 3. Approximations To Areas (1) Trapezoidal Rule y y = f(x) a b x ba A  f a   f b  2
  • 4. Approximations To Areas (1) Trapezoidal Rule y y = f(x) ba A  f a   f b  2 y a b y = f(x) x a b x
  • 5. Approximations To Areas (1) Trapezoidal Rule y y = f(x) ba A  f a   f b  2 y a b y = f(x) x a c b x
  • 6. Approximations To Areas (1) Trapezoidal Rule y y = f(x) ba A  f a   f b  2 y a b y = f(x) x ca bc A  f a   f c    f c   f b  2 2 a c b x
  • 7. Approximations To Areas (1) Trapezoidal Rule y y = f(x) ba A  f a   f b  2 y a b y = f(x) x ca bc A  f a   f c    f c   f b  2 2 ca   f a   2 f c   f b  2 a c b x
  • 10. y y = f(x) ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 a c d b x
  • 11. y y = f(x) a c d b ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 x  c  a  f a   2 f c   2 f d   f b  2
  • 12. y y = f(x) a c In general; d b ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 x  c  a  f a   2 f c   2 f d   f b  2
  • 13. y y = f(x) a c In general; d ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 x  c  a  f a   2 f c   2 f d   f b  2 b b Area   f  x dx a
  • 14. y y = f(x) a c In general; d ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 x  c  a  f a   2 f c   2 f d   f b  2 b b Area   f  x dx a h  y0  2 yothers  yn  2
  • 15. y y = f(x) a c In general; d ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 x  c  a  f a   2 f c   2 f d   f b  2 b b Area   f  x dx a h  y0  2 yothers  yn  2 ba n n  number of trapeziums where h 
  • 16. y y = f(x) a c In general; d ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 x  c  a  f a   2 f c   2 f d   f b  2 b b Area   f  x dx a h  y0  2 yothers  yn  2 ba n n  number of trapeziums where h  NOTE: there is always one more function value than interval
  • 17. e.g. Use the Trapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x correct to 3 decimal points   , between x  0 and x  2 1 2 2
  • 18. e.g. Use the Trapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x correct to 3 decimal points  ba h n 20  4  0.5  , between x  0 and x  2 1 2 2
  • 19. e.g. Use the Trapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x correct to 3 decimal points  ba h n 20  4  0.5 x y 0 2  , between x  0 and x  2 1 2 2 0.5 1.9365 1 1.7321 1.5 1.3229 2 0
  • 20. e.g. Use the Trapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x correct to 3 decimal points  ba h n 20  4  0.5 x y 0 2  , between x  0 and x  2 1 2 2 0.5 1.9365 1 1.7321 h Area  y0  2 yothers  yn  2 1.5 1.3229 2 0
  • 21. e.g. Use the Trapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x correct to 3 decimal points  ba h n 20  4  0.5  , between x  0 and x  2 1 2 2 1 x y 0 2 1 0.5 1.9365 1 1.7321 h Area  y0  2 yothers  yn  2 1.5 1.3229 2 0
  • 22. e.g. Use the Trapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x correct to 3 decimal points  ba h n 20  4  0.5 1 x y 0 2  , between x  0 and x  2 1 2 2 2 2 2 1 0.5 1.9365 1 1.7321 1.5 1.3229 2 0 h Area  y0  2 yothers  yn  2
  • 23. e.g. Use the Trapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x correct to 3 decimal points  ba h n 20  4  0.5 1 x y 0 2  , between x  0 and x  2 1 2 2 2 2 2 1 0.5 1.9365 1 1.7321 1.5 1.3229 2 0 h Area  y0  2 yothers  yn  2 0.5  2  21.9365  1.7321  1.3229  0 2  2.996 units 2
  • 24. e.g. Use the Trapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x correct to 3 decimal points  ba h n 20  4  0.5 1 x y 0 2  , between x  0 and x  2 1 2 2 2 2 2 1 0.5 1.9365 1 1.7321 1.5 1.3229 2 0 h Area  y0  2 yothers  yn  2 0.5  2  21.9365  1.7321  1.3229  0 2 exact value  π   2.996 units 2
  • 25. e.g. Use the Trapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x correct to 3 decimal points  ba h n 20  4  0.5 1 x y 0 2  , between x  0 and x  2 1 2 2 2 2 2 1 0.5 1.9365 1 1.7321 1.5 1.3229 2 0 h Area  y0  2 yothers  yn  2 0.5  2  21.9365  1.7321  1.3229  0 2 exact value  π   2.996 units 2 3.142  2.996 100 3.142  4.6% % error 
  • 27. (2) Simpson’s Rule b Area   f  x dx a
  • 28. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3
  • 29. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba n n  number of intervals where h 
  • 30. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba n n  number of intervals where h  e.g. x y 0 2 0.5 1.9365 1 1.7321 1.5 1.3229 2 0
  • 31. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba n n  number of intervals where h  e.g. x y 0 2 0.5 1.9365 1 1.7321 h Area  y0  4 yodd  2 yeven  yn  3 1.5 1.3229 2 0
  • 32. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba n n  number of intervals where h  1 e.g. x y 0 2 1 0.5 1.9365 1 1.7321 h Area  y0  4 yodd  2 yeven  yn  3 1.5 1.3229 2 0
  • 33. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba n n  number of intervals where h  1 e.g. x y 4 0 2 0.5 1.9365 4 1 1.7321 h Area  y0  4 yodd  2 yeven  yn  3 1 1.5 1.3229 2 0
  • 34. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba n n  number of intervals where h  1 e.g. x y 4 2 4 1 0 2 0.5 1.9365 1 1.7321 1.5 1.3229 2 0 h Area  y0  4 yodd  2 yeven  yn  3
  • 35. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba n n  number of intervals where h  1 e.g. x y 4 2 4 1 0 2 0.5 1.9365 1 1.7321 1.5 1.3229 2 0 h Area  y0  4 yodd  2 yeven  yn  3 0.5  2  41.9365  1.3229  21.7321  0 3  3.084 units 2
  • 36. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba n n  number of intervals where h  1 e.g. x y 4 2 4 1 0 2 0.5 1.9365 1 1.7321 1.5 1.3229 2 0 h Area  y0  4 yodd  2 yeven  yn  3 0.5  2  41.9365  1.3229  21.7321  0 3.142  3.084 3 % error  100 3.142  3.084 units 2  1.8%
  • 37. Alternative working out!!! (1) Trapezoidal Rule
  • 38. Alternative working out!!! (1) Trapezoidal Rule 1 x y 0 2 2 2 2 1 0.5 1.9365 1 1.7321 1.5 1.3229 2 0
  • 39. Alternative working out!!! (1) Trapezoidal Rule 1 x y Area  0 2 2 2 2 1 0.5 1.9365 1 1.7321 1.5 1.3229 2 0 2  2 1.9365  1.7321  1.3229   0 1 2  2  2 1  2.996 units 2   2  0
  • 41. (2) Simpson’s Rule 1 x y Area  0 2 4 2 4 1 0.5 1.9365 1 1.7321 1.5 1.3229 2 0 2  4 1.9365  1.3229   2 1.7321  0 1 4  2  4 1  3.084 units 2   2  0
  • 42. (2) Simpson’s Rule 1 x y Area  0 2 4 2 4 1 0.5 1.9365 1 1.7321 1.5 1.3229 2 0 2  4 1.9365  1.3229   2 1.7321  0 1 4  2  4 1  3.084 units 2 Exercise 11I; odds Exercise 11J; evens   2  0