SlideShare ist ein Scribd-Unternehmen logo
1 von 58
Downloaden Sie, um offline zu lesen
Integration
Area Under Curve
Integration
Area Under Curve
Integration
Area Under Curve
Integration
Area Under Curve
Area  11  12 
3

3
Integration
Area Under Curve
Area  11  12 
3

Area  9

3
Integration
Area Under Curve
Area  11  12 
3

Area  9

3
Integration
Area Under Curve
10   11  Area  11  12 
3

3

3

Area  9

3
Integration
Area Under Curve
10   11  Area  11  12 
3

3

1  Area  9

3

3
Integration
Area Under Curve
10   11  Area  11  12 
3

3

3

1  Area  9
Estimate Area  5 unit 2

3
Integration
Area Under Curve
10   11  Area  11  12 
3

3

3

1  Area  9
Estimate Area  5 unit 2

Exact Area  4 unit 
2

3
Area  0.40.43  0.83  1.23  1.63  23 
Area  0.40.43  0.83  1.23  1.63  23 
Area  5.76
Area  0.40.43  0.83  1.23  1.63  23 
Area  5.76
0.403  0.43  0.83  1.23  1.63   Area  0.40.43  0.83  1.23  1.63  23 
Area  5.76
0.403  0.43  0.83  1.23  1.63   Area  0.40.43  0.83  1.23  1.63  23 
2.56  Area  5.76
0.403  0.43  0.83  1.23  1.63   Area  0.40.43  0.83  1.23  1.63  23 
2.56  Area  5.76
Estimate Area  4.16 unit 2
Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23 
Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23 
Area  4.84
Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23 
Area  4.84
0.203  0.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  

Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23 
Area  4.84
0.203  0.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  

Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23 
3.24  Area  4.84
0.203  0.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  

Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23 
3.24  Area  4.84
Estimate Area  4.04 unit 2
As the widths decrease, the estimate becomes more accurate, lets
investigate one of these rectangles.
y
y = f(x)

x
As the widths decrease, the estimate becomes more accurate, lets
investigate one of these rectangles.
y
y = f(x)

x
As the widths decrease, the estimate becomes more accurate, lets
investigate one of these rectangles.
y
y = f(x)

c
A(c) is the area from 0 to c

x
As the widths decrease, the estimate becomes more accurate, lets
investigate one of these rectangles.
y
y = f(x)

c

x

A(c) is the area from 0 to c
A(x) is the area from 0 to x

x
A(x) – A(c) denotes the area from c to x, and can be estimated by
the rectangle;
A(x) – A(c) denotes the area from c to x, and can be estimated by
the rectangle;

f(x)

x-c
A(x) – A(c) denotes the area from c to x, and can be estimated by
the rectangle;

f(x)

x-c
A x   Ac    x  c  f  x 
A(x) – A(c) denotes the area from c to x, and can be estimated by
the rectangle;

f(x)

x-c
A x   Ac    x  c  f  x 

A x   Ac 
f x 
xc
A(x) – A(c) denotes the area from c to x, and can be estimated by
the rectangle;

f(x)

x-c
A x   Ac    x  c  f  x 

A x   Ac 
f x 
xc
Ac  h   Ac 

h

h = width of rectangle
A(x) – A(c) denotes the area from c to x, and can be estimated by
the rectangle;

f(x)

x-c
A x   Ac    x  c  f  x 

A x   Ac 
f x 
xc
Ac  h   Ac 

h = width of rectangle
h
As the width of the rectangle decreases, the estimate becomes more
accurate.
i.e. as h  0, the Area becomes exact
i.e. as h  0, the Area becomes exact
Ac  h   Ac 
f  x   lim
h 0
h
i.e. as h  0, the Area becomes exact
Ac  h   Ac 
f  x   lim
h 0
h
A x  h   A x 
 lim
 as h  0, c  x 
h 0
h
i.e. as h  0, the Area becomes exact
Ac  h   Ac 
f  x   lim
h 0
h
A x  h   A x 
 lim
 as h  0, c  x 
h 0
h

 A x 
i.e. as h  0, the Area becomes exact
Ac  h   Ac 
f  x   lim
h 0
h
A x  h   A x 
 lim
 as h  0, c  x 
h 0
h

 A x 
 the equation of the curve is the derivative of the Area function.
i.e. as h  0, the Area becomes exact
Ac  h   Ac 
f  x   lim
h 0
h
A x  h   A x 
 lim
 as h  0, c  x 
h 0
h

 A x 
 the equation of the curve is the derivative of the Area function.
The area under the curve y  f  x  between x  a and x  b is;
i.e. as h  0, the Area becomes exact
Ac  h   Ac 
f  x   lim
h 0
h
A x  h   A x 
 lim
 as h  0, c  x 
h 0
h

 A x 
 the equation of the curve is the derivative of the Area function.
The area under the curve y  f  x  between x  a and x  b is;
b

A   f  x dx
a
i.e. as h  0, the Area becomes exact
Ac  h   Ac 
f  x   lim
h 0
h
A x  h   A x 
 lim
 as h  0, c  x 
h 0
h

 A x 
 the equation of the curve is the derivative of the Area function.
The area under the curve y  f  x  between x  a and x  b is;
b

A   f  x dx
a

 F b   F a 
i.e. as h  0, the Area becomes exact
Ac  h   Ac 
f  x   lim
h 0
h
A x  h   A x 
 lim
 as h  0, c  x 
h 0
h

 A x 
 the equation of the curve is the derivative of the Area function.
The area under the curve y  f  x  between x  a and x  b is;
b

A   f  x dx
a

 F b   F a 
where F  x  is the primitive function of f  x 
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
x= 2
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
2
x= 2
A   x 3 dx
0
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
2
x= 2
A   x 3 dx
0

2

1 x 4 

4 0

e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
2
x= 2
A   x 3 dx
0

2

1 x 4 

4 0



1 4
2  04 
4
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
2
x= 2
A   x 3 dx
0

2

1 x 4 

4 0



1 4
2  04 
4

 4 units 2
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
2
x= 2
A   x 3 dx
0

2

1 x 4 

4 0



1 4
2  04 
4

 4 units 2
3

ii   x 2  1dx
2
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
2
x= 2
A   x 3 dx
0

2

1 x 4 

4 0



1 4
2  04 
4

 4 units 2
3

3

1 x 3  x 
2
ii   x  1dx  
2
3

2
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
2
x= 2
A   x 3 dx
0

2

1 x 4 

4 0



1 4
2  04 
4

 4 units 2
3

3

1 x 3  x 
2
ii   x  1dx  
2
3

2
1 33  3  1 2 3  2

 

3
3

 

e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
2
x= 2
A   x 3 dx
0

2

1 x 4 

4 0



1 4
2  04 
4

 4 units 2
3

3

1 x 3  x 
2
ii   x  1dx  
2
3

2
1 33  3  1 2 3  2

 

3
3

 

22

3
5

iii   x 3dx
4
5

5

 1  2 
3
iii   x dx   x 
 2 4
4
5

5

 1  2 
3
iii   x dx   x 
 2 4
4
11 1 
   2  2
2 5 4 
9

800
5

5

 1  2 
3
iii   x dx   x 
 2 4
4
11 1 
   2  2
2 5 4 
9

800

Exercise 11A; 1
Exercise 11B; 1 aefhi, 2ab (i,ii), 3ace, 4b, 5a, 7*

Weitere ähnliche Inhalte

Was ist angesagt?

Heron’s formula
Heron’s formulaHeron’s formula
Heron’s formulasiddhik
 
Lesson 11 plane areas area by integration
Lesson 11 plane areas area by integrationLesson 11 plane areas area by integration
Lesson 11 plane areas area by integrationLawrence De Vera
 
Integration application (Aplikasi Integral)
Integration application (Aplikasi Integral)Integration application (Aplikasi Integral)
Integration application (Aplikasi Integral)Muhammad Luthfan
 
New microsoft office power point presentation
New microsoft office power point presentationNew microsoft office power point presentation
New microsoft office power point presentationsreelakshmimathematics
 
Application of the integral
Application of the integral Application of the integral
Application of the integral Abhishek Das
 
College Algebra 2.3
College Algebra 2.3College Algebra 2.3
College Algebra 2.3Jeneva Clark
 
Applications of integration
Applications of integrationApplications of integration
Applications of integrationcaldny
 
25285 mws gen_int_ppt_trapcontinuous
25285 mws gen_int_ppt_trapcontinuous25285 mws gen_int_ppt_trapcontinuous
25285 mws gen_int_ppt_trapcontinuousJyoti Parange
 
Mathematical creative quiz themed with space and infinity -Infinite hunt
Mathematical creative quiz themed with space and infinity -Infinite hunt Mathematical creative quiz themed with space and infinity -Infinite hunt
Mathematical creative quiz themed with space and infinity -Infinite hunt PrajwalKalame
 
Forms Of Quadratic
Forms Of QuadraticForms Of Quadratic
Forms Of Quadraticsoflaman
 
Herons formula by Ashu Kumar(the best)
Herons formula by Ashu Kumar(the best)Herons formula by Ashu Kumar(the best)
Herons formula by Ashu Kumar(the best)Ashu Kumar
 
Application of integrals flashcards
Application of integrals flashcardsApplication of integrals flashcards
Application of integrals flashcardsyunyun2313
 
Calculus Application of Integration
Calculus Application of IntegrationCalculus Application of Integration
Calculus Application of Integrationsagar maniya
 
Heron's Formula
Heron's FormulaHeron's Formula
Heron's FormulabrutalDLX
 
Application of Integrals
Application of IntegralsApplication of Integrals
Application of Integralssarcia
 

Was ist angesagt? (20)

Heron’s formula
Heron’s formulaHeron’s formula
Heron’s formula
 
Lesson 11 plane areas area by integration
Lesson 11 plane areas area by integrationLesson 11 plane areas area by integration
Lesson 11 plane areas area by integration
 
Heron’s formula
Heron’s formulaHeron’s formula
Heron’s formula
 
Integration application (Aplikasi Integral)
Integration application (Aplikasi Integral)Integration application (Aplikasi Integral)
Integration application (Aplikasi Integral)
 
New microsoft office power point presentation
New microsoft office power point presentationNew microsoft office power point presentation
New microsoft office power point presentation
 
Application of the integral
Application of the integral Application of the integral
Application of the integral
 
College Algebra 2.3
College Algebra 2.3College Algebra 2.3
College Algebra 2.3
 
Trapezoidal rule
Trapezoidal rule Trapezoidal rule
Trapezoidal rule
 
Applications of integration
Applications of integrationApplications of integration
Applications of integration
 
Maths.
Maths.Maths.
Maths.
 
Heron’s formula
Heron’s formulaHeron’s formula
Heron’s formula
 
25285 mws gen_int_ppt_trapcontinuous
25285 mws gen_int_ppt_trapcontinuous25285 mws gen_int_ppt_trapcontinuous
25285 mws gen_int_ppt_trapcontinuous
 
Mathematical creative quiz themed with space and infinity -Infinite hunt
Mathematical creative quiz themed with space and infinity -Infinite hunt Mathematical creative quiz themed with space and infinity -Infinite hunt
Mathematical creative quiz themed with space and infinity -Infinite hunt
 
Forms Of Quadratic
Forms Of QuadraticForms Of Quadratic
Forms Of Quadratic
 
Herons formula by Ashu Kumar(the best)
Herons formula by Ashu Kumar(the best)Herons formula by Ashu Kumar(the best)
Herons formula by Ashu Kumar(the best)
 
Application of integrals flashcards
Application of integrals flashcardsApplication of integrals flashcards
Application of integrals flashcards
 
Trapezoidal rule
Trapezoidal ruleTrapezoidal rule
Trapezoidal rule
 
Calculus Application of Integration
Calculus Application of IntegrationCalculus Application of Integration
Calculus Application of Integration
 
Heron's Formula
Heron's FormulaHeron's Formula
Heron's Formula
 
Application of Integrals
Application of IntegralsApplication of Integrals
Application of Integrals
 

Andere mochten auch

X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)Nigel Simmons
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)Nigel Simmons
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremNigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

Andere mochten auch (6)

X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
Sequencias e series
Sequencias e series Sequencias e series
Sequencias e series
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Ähnlich wie Calculate Area Under Curve Using Integration

11X1 T16 01 area under curve (2011)
11X1 T16 01 area under curve (2011)11X1 T16 01 area under curve (2011)
11X1 T16 01 area under curve (2011)Nigel Simmons
 
11 x1 t16 01 area under curve (2012)
11 x1 t16 01 area under curve (2012)11 x1 t16 01 area under curve (2012)
11 x1 t16 01 area under curve (2012)Nigel Simmons
 
11X1 T17 01 area under curve
11X1 T17 01 area under curve11X1 T17 01 area under curve
11X1 T17 01 area under curveNigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
Areas and Definite Integrals.ppt
Areas and Definite Integrals.pptAreas and Definite Integrals.ppt
Areas and Definite Integrals.pptLaeGadgude
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
Application of integral calculus
Application of integral calculusApplication of integral calculus
Application of integral calculusHabibur Rahman
 
Volumes of solid (slicing, disc, washer, cylindrical shell)
Volumes of solid (slicing, disc, washer, cylindrical shell)Volumes of solid (slicing, disc, washer, cylindrical shell)
Volumes of solid (slicing, disc, washer, cylindrical shell)MariaFaithDalay2
 
4 ftc and signed areas x
4 ftc and signed areas x4 ftc and signed areas x
4 ftc and signed areas xmath266
 
3. Quadrature Complete Theory Module-5.pdf
3. Quadrature Complete Theory Module-5.pdf3. Quadrature Complete Theory Module-5.pdf
3. Quadrature Complete Theory Module-5.pdfRajuSingh806014
 
Maths-double integrals
Maths-double integralsMaths-double integrals
Maths-double integralsmihir jain
 
PERTEMUAN 9B APLIKASI INTEGRAL.ppt
PERTEMUAN 9B APLIKASI  INTEGRAL.pptPERTEMUAN 9B APLIKASI  INTEGRAL.ppt
PERTEMUAN 9B APLIKASI INTEGRAL.pptTiodoraSihombing
 
Lesson 4B - Intro to Quadratics.ppt
Lesson 4B - Intro to Quadratics.pptLesson 4B - Intro to Quadratics.ppt
Lesson 4B - Intro to Quadratics.pptMarjoCeloso1
 
AP Calculus Slides May 5, 2008
AP Calculus Slides May 5, 2008AP Calculus Slides May 5, 2008
AP Calculus Slides May 5, 2008Darren Kuropatwa
 
Area and volume practice
Area and volume practiceArea and volume practice
Area and volume practicetschmucker
 
double integral.pptx
double integral.pptxdouble integral.pptx
double integral.pptxssuser521537
 
5.4 more areas
5.4 more areas5.4 more areas
5.4 more areasmath265
 

Ähnlich wie Calculate Area Under Curve Using Integration (20)

11X1 T16 01 area under curve (2011)
11X1 T16 01 area under curve (2011)11X1 T16 01 area under curve (2011)
11X1 T16 01 area under curve (2011)
 
11 x1 t16 01 area under curve (2012)
11 x1 t16 01 area under curve (2012)11 x1 t16 01 area under curve (2012)
11 x1 t16 01 area under curve (2012)
 
11X1 T17 01 area under curve
11X1 T17 01 area under curve11X1 T17 01 area under curve
11X1 T17 01 area under curve
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
Calc05_2.ppt
Calc05_2.pptCalc05_2.ppt
Calc05_2.ppt
 
Areas and Definite Integrals.ppt
Areas and Definite Integrals.pptAreas and Definite Integrals.ppt
Areas and Definite Integrals.ppt
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
Application of integral calculus
Application of integral calculusApplication of integral calculus
Application of integral calculus
 
taller calculo b
taller calculo btaller calculo b
taller calculo b
 
Ch 7 c volumes
Ch 7 c  volumesCh 7 c  volumes
Ch 7 c volumes
 
Volumes of solid (slicing, disc, washer, cylindrical shell)
Volumes of solid (slicing, disc, washer, cylindrical shell)Volumes of solid (slicing, disc, washer, cylindrical shell)
Volumes of solid (slicing, disc, washer, cylindrical shell)
 
4 ftc and signed areas x
4 ftc and signed areas x4 ftc and signed areas x
4 ftc and signed areas x
 
3. Quadrature Complete Theory Module-5.pdf
3. Quadrature Complete Theory Module-5.pdf3. Quadrature Complete Theory Module-5.pdf
3. Quadrature Complete Theory Module-5.pdf
 
Maths-double integrals
Maths-double integralsMaths-double integrals
Maths-double integrals
 
PERTEMUAN 9B APLIKASI INTEGRAL.ppt
PERTEMUAN 9B APLIKASI  INTEGRAL.pptPERTEMUAN 9B APLIKASI  INTEGRAL.ppt
PERTEMUAN 9B APLIKASI INTEGRAL.ppt
 
Lesson 4B - Intro to Quadratics.ppt
Lesson 4B - Intro to Quadratics.pptLesson 4B - Intro to Quadratics.ppt
Lesson 4B - Intro to Quadratics.ppt
 
AP Calculus Slides May 5, 2008
AP Calculus Slides May 5, 2008AP Calculus Slides May 5, 2008
AP Calculus Slides May 5, 2008
 
Area and volume practice
Area and volume practiceArea and volume practice
Area and volume practice
 
double integral.pptx
double integral.pptxdouble integral.pptx
double integral.pptx
 
5.4 more areas
5.4 more areas5.4 more areas
5.4 more areas
 

Mehr von Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)Nigel Simmons
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)Nigel Simmons
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)Nigel Simmons
 

Mehr von Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)
 

Kürzlich hochgeladen

"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clashcharlottematthew16
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostLeverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostZilliz
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Wonjun Hwang
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
The Future of Software Development - Devin AI Innovative Approach.pdf
The Future of Software Development - Devin AI Innovative Approach.pdfThe Future of Software Development - Devin AI Innovative Approach.pdf
The Future of Software Development - Devin AI Innovative Approach.pdfSeasiaInfotech2
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxhariprasad279825
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 

Kürzlich hochgeladen (20)

"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clash
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostLeverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
The Future of Software Development - Devin AI Innovative Approach.pdf
The Future of Software Development - Devin AI Innovative Approach.pdfThe Future of Software Development - Devin AI Innovative Approach.pdf
The Future of Software Development - Devin AI Innovative Approach.pdf
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptx
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 

Calculate Area Under Curve Using Integration

  • 4. Integration Area Under Curve Area  11  12  3 3
  • 5. Integration Area Under Curve Area  11  12  3 Area  9 3
  • 6. Integration Area Under Curve Area  11  12  3 Area  9 3
  • 7. Integration Area Under Curve 10   11  Area  11  12  3 3 3 Area  9 3
  • 8. Integration Area Under Curve 10   11  Area  11  12  3 3 1  Area  9 3 3
  • 9. Integration Area Under Curve 10   11  Area  11  12  3 3 3 1  Area  9 Estimate Area  5 unit 2 3
  • 10. Integration Area Under Curve 10   11  Area  11  12  3 3 3 1  Area  9 Estimate Area  5 unit 2 Exact Area  4 unit  2 3
  • 11.
  • 12.
  • 13. Area  0.40.43  0.83  1.23  1.63  23 
  • 14. Area  0.40.43  0.83  1.23  1.63  23  Area  5.76
  • 15. Area  0.40.43  0.83  1.23  1.63  23  Area  5.76
  • 16. 0.403  0.43  0.83  1.23  1.63   Area  0.40.43  0.83  1.23  1.63  23  Area  5.76
  • 17. 0.403  0.43  0.83  1.23  1.63   Area  0.40.43  0.83  1.23  1.63  23  2.56  Area  5.76
  • 18. 0.403  0.43  0.83  1.23  1.63   Area  0.40.43  0.83  1.23  1.63  23  2.56  Area  5.76 Estimate Area  4.16 unit 2
  • 19.
  • 20.
  • 21. Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23 
  • 22. Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23  Area  4.84
  • 23. Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23  Area  4.84
  • 24. 0.203  0.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83   Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23  Area  4.84
  • 25. 0.203  0.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83   Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23  3.24  Area  4.84
  • 26. 0.203  0.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83   Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23  3.24  Area  4.84 Estimate Area  4.04 unit 2
  • 27. As the widths decrease, the estimate becomes more accurate, lets investigate one of these rectangles. y y = f(x) x
  • 28. As the widths decrease, the estimate becomes more accurate, lets investigate one of these rectangles. y y = f(x) x
  • 29. As the widths decrease, the estimate becomes more accurate, lets investigate one of these rectangles. y y = f(x) c A(c) is the area from 0 to c x
  • 30. As the widths decrease, the estimate becomes more accurate, lets investigate one of these rectangles. y y = f(x) c x A(c) is the area from 0 to c A(x) is the area from 0 to x x
  • 31. A(x) – A(c) denotes the area from c to x, and can be estimated by the rectangle;
  • 32. A(x) – A(c) denotes the area from c to x, and can be estimated by the rectangle; f(x) x-c
  • 33. A(x) – A(c) denotes the area from c to x, and can be estimated by the rectangle; f(x) x-c A x   Ac    x  c  f  x 
  • 34. A(x) – A(c) denotes the area from c to x, and can be estimated by the rectangle; f(x) x-c A x   Ac    x  c  f  x  A x   Ac  f x  xc
  • 35. A(x) – A(c) denotes the area from c to x, and can be estimated by the rectangle; f(x) x-c A x   Ac    x  c  f  x  A x   Ac  f x  xc Ac  h   Ac   h h = width of rectangle
  • 36. A(x) – A(c) denotes the area from c to x, and can be estimated by the rectangle; f(x) x-c A x   Ac    x  c  f  x  A x   Ac  f x  xc Ac  h   Ac   h = width of rectangle h As the width of the rectangle decreases, the estimate becomes more accurate.
  • 37. i.e. as h  0, the Area becomes exact
  • 38. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h
  • 39. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h A x  h   A x   lim  as h  0, c  x  h 0 h
  • 40. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h A x  h   A x   lim  as h  0, c  x  h 0 h  A x 
  • 41. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h A x  h   A x   lim  as h  0, c  x  h 0 h  A x   the equation of the curve is the derivative of the Area function.
  • 42. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h A x  h   A x   lim  as h  0, c  x  h 0 h  A x   the equation of the curve is the derivative of the Area function. The area under the curve y  f  x  between x  a and x  b is;
  • 43. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h A x  h   A x   lim  as h  0, c  x  h 0 h  A x   the equation of the curve is the derivative of the Area function. The area under the curve y  f  x  between x  a and x  b is; b A   f  x dx a
  • 44. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h A x  h   A x   lim  as h  0, c  x  h 0 h  A x   the equation of the curve is the derivative of the Area function. The area under the curve y  f  x  between x  a and x  b is; b A   f  x dx a  F b   F a 
  • 45. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h A x  h   A x   lim  as h  0, c  x  h 0 h  A x   the equation of the curve is the derivative of the Area function. The area under the curve y  f  x  between x  a and x  b is; b A   f  x dx a  F b   F a  where F  x  is the primitive function of f  x 
  • 46. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and x= 2
  • 47. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0
  • 48. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0 2 1 x 4   4 0 
  • 49. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0 2 1 x 4   4 0   1 4 2  04  4
  • 50. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0 2 1 x 4   4 0   1 4 2  04  4  4 units 2
  • 51. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0 2 1 x 4   4 0   1 4 2  04  4  4 units 2 3 ii   x 2  1dx 2
  • 52. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0 2 1 x 4   4 0   1 4 2  04  4  4 units 2 3 3 1 x 3  x  2 ii   x  1dx   2 3  2
  • 53. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0 2 1 x 4   4 0   1 4 2  04  4  4 units 2 3 3 1 x 3  x  2 ii   x  1dx   2 3  2 1 33  3  1 2 3  2     3 3    
  • 54. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0 2 1 x 4   4 0   1 4 2  04  4  4 units 2 3 3 1 x 3  x  2 ii   x  1dx   2 3  2 1 33  3  1 2 3  2     3 3     22  3
  • 55. 5 iii   x 3dx 4
  • 56. 5 5  1  2  3 iii   x dx   x   2 4 4
  • 57. 5 5  1  2  3 iii   x dx   x   2 4 4 11 1     2  2 2 5 4  9  800
  • 58. 5 5  1  2  3 iii   x dx   x   2 4 4 11 1     2  2 2 5 4  9  800 Exercise 11A; 1 Exercise 11B; 1 aefhi, 2ab (i,ii), 3ace, 4b, 5a, 7*