SlideShare ist ein Scribd-Unternehmen logo
1 von 24
Downloaden Sie, um offline zu lesen
Polynomial Functions
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
where : pn  0
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
where : pn  0
n  0 and is an integer
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
where : pn  0
n  0 and is an integer
coefficients: p0 , p1 , p2 , , pn
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
where : pn  0
n  0 and is an integer
coefficients: p0 , p1 , p2 , , pn
index (exponent): the powers of the pronumerals.
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
where : pn  0
n  0 and is an integer
coefficients: p0 , p1 , p2 , , pn
index (exponent): the powers of the pronumerals.
degree (order): the highest index of the polynomial. The
polynomial is called “polynomial of degree n”
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
where : pn  0
n  0 and is an integer
coefficients: p0 , p1 , p2 , , pn
index (exponent): the powers of the pronumerals.
degree (order): the highest index of the polynomial. The
polynomial is called “polynomial of degree n”
n
leading term: pn x
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
where : pn  0
n  0 and is an integer
coefficients: p0 , p1 , p2 , , pn
index (exponent): the powers of the pronumerals.
degree (order): the highest index of the polynomial. The
polynomial is called “polynomial of degree n”
n
leading term: pn x
leading coefficient: pn
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
where : pn  0
n  0 and is an integer
coefficients: p0 , p1 , p2 , , pn
index (exponent): the powers of the pronumerals.
degree (order): the highest index of the polynomial. The
polynomial is called “polynomial of degree n”
n
leading term: pn x
leading coefficient: pn
monic polynomial: leading coefficient is equal to one.
P(x) = 0: polynomial equation
P(x) = 0: polynomial equation
y = P(x): polynomial function
P(x) = 0: polynomial equation
y = P(x): polynomial function
roots: solutions to the polynomial equation P(x) = 0
P(x) = 0: polynomial equation
y = P(x): polynomial function
roots: solutions to the polynomial equation P(x) = 0
zeros: the values of x that make polynomial P(x) zero. i.e. the x
intercepts of the graph of the polynomial.
P(x) = 0: polynomial equation
y = P(x): polynomial function
roots: solutions to the polynomial equation P(x) = 0
zeros: the values of x that make polynomial P(x) zero. i.e. the x
intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
1
2

a) 5 x 3  7 x  2
4
b) 2
x 3
x2  3
c)
4
d) 7
P(x) = 0: polynomial equation
y = P(x): polynomial function
roots: solutions to the polynomial equation P(x) = 0
zeros: the values of x that make polynomial P(x) zero. i.e. the x
intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
1
2

a) 5 x 3  7 x  2
4
b) 2
x 3
x2  3
c)
4
d) 7

NO, can’t have fraction as a power
P(x) = 0: polynomial equation
y = P(x): polynomial function
roots: solutions to the polynomial equation P(x) = 0
zeros: the values of x that make polynomial P(x) zero. i.e. the x
intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
1
2

a) 5 x 3  7 x  2
NO, can’t have fraction as a power
4
1
2
b) 2
NO, can’t have negative as a power 4  x  3
x 3
x2  3
c)
4
d) 7
P(x) = 0: polynomial equation
y = P(x): polynomial function
roots: solutions to the polynomial equation P(x) = 0
zeros: the values of x that make polynomial P(x) zero. i.e. the x
intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
1
2

a) 5 x 3  7 x  2
NO, can’t have fraction as a power
4
1
2
b) 2
NO, can’t have negative as a power 4  x  3
x 3
1 2 3
x2  3
x 
c)
YES,
4
4
4
d) 7
P(x) = 0: polynomial equation
y = P(x): polynomial function
roots: solutions to the polynomial equation P(x) = 0
zeros: the values of x that make polynomial P(x) zero. i.e. the x
intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
1
2

a) 5 x 3  7 x  2
NO, can’t have fraction as a power
4
1
2
b) 2
NO, can’t have negative as a power 4  x  3
x 3
1 2 3
x2  3
x 
c)
YES,
4
4
4
YES, 7x 0
d) 7
P(x) = 0: polynomial equation
y = P(x): polynomial function
roots: solutions to the polynomial equation P(x) = 0
zeros: the values of x that make polynomial P(x) zero. i.e. the x
intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
1
2

a) 5 x 3  7 x  2
NO, can’t have fraction as a power
4
1
2
b) 2
NO, can’t have negative as a power 4  x  3
x 3
1 2 3
x2  3
x 
c)
YES,
4
4
4
YES, 7x 0
d) 7
(ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is
monic and state its degree.
P(x) = 0: polynomial equation
y = P(x): polynomial function
roots: solutions to the polynomial equation P(x) = 0
zeros: the values of x that make polynomial P(x) zero. i.e. the x
intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
1
2

a) 5 x 3  7 x  2
NO, can’t have fraction as a power
4
1
2
b) 2
NO, can’t have negative as a power 4  x  3
x 3
1 2 3
x2  3
x 
c)
YES,
4
4
4
YES, 7x 0
d) 7
(ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is
monic and state its degree.
P( x)  8 x 4  x3  7 x  11  8 x 4  6 x 2  4 x 2  3
P(x) = 0: polynomial equation
y = P(x): polynomial function
roots: solutions to the polynomial equation P(x) = 0
zeros: the values of x that make polynomial P(x) zero. i.e. the x
intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
1
2

a) 5 x 3  7 x  2
NO, can’t have fraction as a power
4
1
2
b) 2
NO, can’t have negative as a power 4  x  3
x 3
1 2 3
x2  3
x 
c)
YES,
4
4
4
YES, 7x 0
d) 7
(ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is
monic and state its degree.
P( x)  8 x 4  x3  7 x  11  8 x 4  6 x 2  4 x 2  3
 x3  2 x 2  7 x  8
P(x) = 0: polynomial equation
y = P(x): polynomial function
roots: solutions to the polynomial equation P(x) = 0
zeros: the values of x that make polynomial P(x) zero. i.e. the x
intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
1
2

a) 5 x 3  7 x  2
NO, can’t have fraction as a power
4
1
2
b) 2
NO, can’t have negative as a power 4  x  3
x 3
1 2 3
x2  3
x 
c)
YES,
4
4
4
YES, 7x 0
d) 7
(ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is
monic and state its degree.
P( x)  8 x 4  x3  7 x  11  8 x 4  6 x 2  4 x 2  3
 monic, degree = 3
 x3  2 x 2  7 x  8
P(x) = 0: polynomial equation
y = P(x): polynomial function
roots: solutions to the polynomial equation P(x) = 0
zeros: the values of x that make polynomial P(x) zero. i.e. the x
intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
1
2

a) 5 x 3  7 x  2
NO, can’t have fraction as a power
4
1
2
b) 2
NO, can’t have negative as a power 4  x  3
x 3
1 2 3
x2  3
Exercise 4A; 1, 2acehi, 3bdf,
x 
c)
YES,
4
4
4
6bdf, 7, 9d, 10ad, 13
0
YES, 7x
d) 7
(ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is
monic and state its degree.
P( x)  8 x 4  x3  7 x  11  8 x 4  6 x 2  4 x 2  3
 monic, degree = 3
 x3  2 x 2  7 x  8

Weitere ähnliche Inhalte

Was ist angesagt?

13 graphs of factorable polynomials x
13 graphs of factorable polynomials x13 graphs of factorable polynomials x
13 graphs of factorable polynomials xmath260
 
10 rectangular coordinate system x
10 rectangular coordinate system x10 rectangular coordinate system x
10 rectangular coordinate system xmath260
 
8 sign charts of factorable formulas y
8 sign charts of factorable formulas y8 sign charts of factorable formulas y
8 sign charts of factorable formulas ymath260
 
2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomials2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomialsmath260
 
3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiation3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiationmath265
 
2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functions2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functionsmath260
 
3.3 Zeros of Polynomial Functions
3.3 Zeros of Polynomial Functions3.3 Zeros of Polynomial Functions
3.3 Zeros of Polynomial Functionssmiller5
 
1.5 algebraic and elementary functions
1.5 algebraic and elementary functions1.5 algebraic and elementary functions
1.5 algebraic and elementary functionsmath265
 
57 graphing lines from linear equations
57 graphing lines from linear equations57 graphing lines from linear equations
57 graphing lines from linear equationsalg1testreview
 
1.6 sign charts and inequalities i
1.6 sign charts and inequalities i1.6 sign charts and inequalities i
1.6 sign charts and inequalities imath260
 
3.1 methods of division
3.1 methods of division3.1 methods of division
3.1 methods of divisionmath260
 
7 sign charts and inequalities i x
7 sign charts and inequalities i x7 sign charts and inequalities i x
7 sign charts and inequalities i xmath260
 
5.1 sequences
5.1 sequences5.1 sequences
5.1 sequencesmath123c
 

Was ist angesagt? (17)

13 graphs of factorable polynomials x
13 graphs of factorable polynomials x13 graphs of factorable polynomials x
13 graphs of factorable polynomials x
 
10 rectangular coordinate system x
10 rectangular coordinate system x10 rectangular coordinate system x
10 rectangular coordinate system x
 
Zeros of p(x)
Zeros of p(x)Zeros of p(x)
Zeros of p(x)
 
8 sign charts of factorable formulas y
8 sign charts of factorable formulas y8 sign charts of factorable formulas y
8 sign charts of factorable formulas y
 
2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomials2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomials
 
3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiation3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiation
 
2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functions2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functions
 
3.3 Zeros of Polynomial Functions
3.3 Zeros of Polynomial Functions3.3 Zeros of Polynomial Functions
3.3 Zeros of Polynomial Functions
 
1.5 algebraic and elementary functions
1.5 algebraic and elementary functions1.5 algebraic and elementary functions
1.5 algebraic and elementary functions
 
3
33
3
 
57 graphing lines from linear equations
57 graphing lines from linear equations57 graphing lines from linear equations
57 graphing lines from linear equations
 
1.6 sign charts and inequalities i
1.6 sign charts and inequalities i1.6 sign charts and inequalities i
1.6 sign charts and inequalities i
 
3.1 methods of division
3.1 methods of division3.1 methods of division
3.1 methods of division
 
2 5 zeros of poly fn
2 5 zeros of poly fn2 5 zeros of poly fn
2 5 zeros of poly fn
 
7 sign charts and inequalities i x
7 sign charts and inequalities i x7 sign charts and inequalities i x
7 sign charts and inequalities i x
 
Grph quad fncts
Grph quad fnctsGrph quad fncts
Grph quad fncts
 
5.1 sequences
5.1 sequences5.1 sequences
5.1 sequences
 

Andere mochten auch

11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)Nigel Simmons
 
11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)Nigel Simmons
 
11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)Nigel Simmons
 
11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)Nigel Simmons
 
11 x1 t11 06 tangents & normals ii (2012)
11 x1 t11 06 tangents & normals ii (2012)11 x1 t11 06 tangents & normals ii (2012)
11 x1 t11 06 tangents & normals ii (2012)Nigel Simmons
 
11X1 T08 04 chain rule
11X1 T08 04 chain rule11X1 T08 04 chain rule
11X1 T08 04 chain ruleNigel Simmons
 
12 X1 T04 07 approximations to roots (2010)
12 X1 T04 07 approximations to roots (2010)12 X1 T04 07 approximations to roots (2010)
12 X1 T04 07 approximations to roots (2010)Nigel Simmons
 
11 x1 t07 03 congruent triangles (2012)
11 x1 t07 03 congruent triangles (2012)11 x1 t07 03 congruent triangles (2012)
11 x1 t07 03 congruent triangles (2012)Nigel Simmons
 
11 x1 t13 06 tangent theorems 2
11 x1 t13 06 tangent theorems 211 x1 t13 06 tangent theorems 2
11 x1 t13 06 tangent theorems 2Nigel Simmons
 
11 x1 t13 05 tangent theorems 1 (2013)
11 x1 t13 05 tangent theorems 1 (2013)11 x1 t13 05 tangent theorems 1 (2013)
11 x1 t13 05 tangent theorems 1 (2013)Nigel Simmons
 
11 x1 t13 01 definitions & chord theorems (2013)
11 x1 t13 01 definitions & chord theorems (2013)11 x1 t13 01 definitions & chord theorems (2013)
11 x1 t13 01 definitions & chord theorems (2013)Nigel Simmons
 
11 x1 t07 02 triangle theorems (2012)
11 x1 t07 02 triangle theorems (2012)11 x1 t07 02 triangle theorems (2012)
11 x1 t07 02 triangle theorems (2012)Nigel Simmons
 
11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)Nigel Simmons
 
11 x1 t07 05 similar triangles (2012)
11 x1 t07 05 similar triangles (2012)11 x1 t07 05 similar triangles (2012)
11 x1 t07 05 similar triangles (2012)Nigel Simmons
 
11X1 T07 06 tangent theorems 2
11X1 T07 06 tangent theorems 211X1 T07 06 tangent theorems 2
11X1 T07 06 tangent theorems 2Nigel Simmons
 
11X1 T08 01 angle theorems (2011)
11X1 T08 01 angle theorems (2011)11X1 T08 01 angle theorems (2011)
11X1 T08 01 angle theorems (2011)Nigel Simmons
 
11 x1 t13 01 definitions & chord theorems (2012)
11 x1 t13 01 definitions & chord theorems (2012)11 x1 t13 01 definitions & chord theorems (2012)
11 x1 t13 01 definitions & chord theorems (2012)Nigel Simmons
 
11 x1 t13 02 angle theorems 1 (2013)
11 x1 t13 02 angle theorems 1 (2013)11 x1 t13 02 angle theorems 1 (2013)
11 x1 t13 02 angle theorems 1 (2013)Nigel Simmons
 
11 x1 t15 03 polynomial division (2013)
11 x1 t15 03 polynomial division (2013)11 x1 t15 03 polynomial division (2013)
11 x1 t15 03 polynomial division (2013)Nigel Simmons
 
11 x1 t07 06 transversals (2013)
11 x1 t07 06 transversals (2013)11 x1 t07 06 transversals (2013)
11 x1 t07 06 transversals (2013)Nigel Simmons
 

Andere mochten auch (20)

11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)
 
11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)
 
11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)
 
11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)
 
11 x1 t11 06 tangents & normals ii (2012)
11 x1 t11 06 tangents & normals ii (2012)11 x1 t11 06 tangents & normals ii (2012)
11 x1 t11 06 tangents & normals ii (2012)
 
11X1 T08 04 chain rule
11X1 T08 04 chain rule11X1 T08 04 chain rule
11X1 T08 04 chain rule
 
12 X1 T04 07 approximations to roots (2010)
12 X1 T04 07 approximations to roots (2010)12 X1 T04 07 approximations to roots (2010)
12 X1 T04 07 approximations to roots (2010)
 
11 x1 t07 03 congruent triangles (2012)
11 x1 t07 03 congruent triangles (2012)11 x1 t07 03 congruent triangles (2012)
11 x1 t07 03 congruent triangles (2012)
 
11 x1 t13 06 tangent theorems 2
11 x1 t13 06 tangent theorems 211 x1 t13 06 tangent theorems 2
11 x1 t13 06 tangent theorems 2
 
11 x1 t13 05 tangent theorems 1 (2013)
11 x1 t13 05 tangent theorems 1 (2013)11 x1 t13 05 tangent theorems 1 (2013)
11 x1 t13 05 tangent theorems 1 (2013)
 
11 x1 t13 01 definitions & chord theorems (2013)
11 x1 t13 01 definitions & chord theorems (2013)11 x1 t13 01 definitions & chord theorems (2013)
11 x1 t13 01 definitions & chord theorems (2013)
 
11 x1 t07 02 triangle theorems (2012)
11 x1 t07 02 triangle theorems (2012)11 x1 t07 02 triangle theorems (2012)
11 x1 t07 02 triangle theorems (2012)
 
11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)
 
11 x1 t07 05 similar triangles (2012)
11 x1 t07 05 similar triangles (2012)11 x1 t07 05 similar triangles (2012)
11 x1 t07 05 similar triangles (2012)
 
11X1 T07 06 tangent theorems 2
11X1 T07 06 tangent theorems 211X1 T07 06 tangent theorems 2
11X1 T07 06 tangent theorems 2
 
11X1 T08 01 angle theorems (2011)
11X1 T08 01 angle theorems (2011)11X1 T08 01 angle theorems (2011)
11X1 T08 01 angle theorems (2011)
 
11 x1 t13 01 definitions & chord theorems (2012)
11 x1 t13 01 definitions & chord theorems (2012)11 x1 t13 01 definitions & chord theorems (2012)
11 x1 t13 01 definitions & chord theorems (2012)
 
11 x1 t13 02 angle theorems 1 (2013)
11 x1 t13 02 angle theorems 1 (2013)11 x1 t13 02 angle theorems 1 (2013)
11 x1 t13 02 angle theorems 1 (2013)
 
11 x1 t15 03 polynomial division (2013)
11 x1 t15 03 polynomial division (2013)11 x1 t15 03 polynomial division (2013)
11 x1 t15 03 polynomial division (2013)
 
11 x1 t07 06 transversals (2013)
11 x1 t07 06 transversals (2013)11 x1 t07 06 transversals (2013)
11 x1 t07 06 transversals (2013)
 

Ähnlich wie 11 x1 t15 01 definitions (2013)

11X1 T16 01 definitions
11X1 T16 01 definitions11X1 T16 01 definitions
11X1 T16 01 definitionsNigel Simmons
 
11X1 T15 01 polynomial definitions (2011)
11X1 T15 01 polynomial definitions (2011)11X1 T15 01 polynomial definitions (2011)
11X1 T15 01 polynomial definitions (2011)Nigel Simmons
 
11X1 T13 01 polynomial definitions
11X1 T13 01 polynomial definitions11X1 T13 01 polynomial definitions
11X1 T13 01 polynomial definitionsNigel Simmons
 
11 x1 t15 01 polynomial definitions (2012)
11 x1 t15 01 polynomial definitions (2012)11 x1 t15 01 polynomial definitions (2012)
11 x1 t15 01 polynomial definitions (2012)Nigel Simmons
 
Chapter 5 Polynomials
Chapter 5 PolynomialsChapter 5 Polynomials
Chapter 5 PolynomialsReema
 
Polynomial functions modelllings
Polynomial functions modelllingsPolynomial functions modelllings
Polynomial functions modelllingsTarun Gehlot
 
Intro to Polynomials
Intro to PolynomialsIntro to Polynomials
Intro to Polynomialstoni dimella
 
6.3 evaluating-and-graphing-polynomila-functions
6.3 evaluating-and-graphing-polynomila-functions6.3 evaluating-and-graphing-polynomila-functions
6.3 evaluating-and-graphing-polynomila-functionsmorrobea
 
6.3 evaluating-and-graphing-polynomila-functions
6.3 evaluating-and-graphing-polynomila-functions6.3 evaluating-and-graphing-polynomila-functions
6.3 evaluating-and-graphing-polynomila-functionsmorrobea
 
Module 3 polynomial functions
Module 3   polynomial functionsModule 3   polynomial functions
Module 3 polynomial functionsdionesioable
 
Rational Zeros and Decarte's Rule of Signs
Rational Zeros and Decarte's Rule of SignsRational Zeros and Decarte's Rule of Signs
Rational Zeros and Decarte's Rule of Signsswartzje
 
Rational Root Theorem.ppt
Rational Root Theorem.pptRational Root Theorem.ppt
Rational Root Theorem.pptALEXANDERMORRON
 
Interpolation techniques - Background and implementation
Interpolation techniques - Background and implementationInterpolation techniques - Background and implementation
Interpolation techniques - Background and implementationQuasar Chunawala
 
Module 2 Lesson 2 Notes
Module 2 Lesson 2 NotesModule 2 Lesson 2 Notes
Module 2 Lesson 2 Notestoni dimella
 
Factoring polynomials
Factoring polynomialsFactoring polynomials
Factoring polynomialsPaco Marcos
 
Polynomial functionsandgraphs
Polynomial functionsandgraphsPolynomial functionsandgraphs
Polynomial functionsandgraphsJerlyn Fernandez
 
Evaluating and Graphing Polynomial Functions
Evaluating and Graphing Polynomial FunctionsEvaluating and Graphing Polynomial Functions
Evaluating and Graphing Polynomial Functionsswartzje
 

Ähnlich wie 11 x1 t15 01 definitions (2013) (20)

11X1 T16 01 definitions
11X1 T16 01 definitions11X1 T16 01 definitions
11X1 T16 01 definitions
 
11X1 T15 01 polynomial definitions (2011)
11X1 T15 01 polynomial definitions (2011)11X1 T15 01 polynomial definitions (2011)
11X1 T15 01 polynomial definitions (2011)
 
11X1 T13 01 polynomial definitions
11X1 T13 01 polynomial definitions11X1 T13 01 polynomial definitions
11X1 T13 01 polynomial definitions
 
11 x1 t15 01 polynomial definitions (2012)
11 x1 t15 01 polynomial definitions (2012)11 x1 t15 01 polynomial definitions (2012)
11 x1 t15 01 polynomial definitions (2012)
 
Chapter 5 Polynomials
Chapter 5 PolynomialsChapter 5 Polynomials
Chapter 5 Polynomials
 
Polynomial functions modelllings
Polynomial functions modelllingsPolynomial functions modelllings
Polynomial functions modelllings
 
Intro to Polynomials
Intro to PolynomialsIntro to Polynomials
Intro to Polynomials
 
Polynomials
PolynomialsPolynomials
Polynomials
 
6.3 evaluating-and-graphing-polynomila-functions
6.3 evaluating-and-graphing-polynomila-functions6.3 evaluating-and-graphing-polynomila-functions
6.3 evaluating-and-graphing-polynomila-functions
 
6.3 evaluating-and-graphing-polynomila-functions
6.3 evaluating-and-graphing-polynomila-functions6.3 evaluating-and-graphing-polynomila-functions
6.3 evaluating-and-graphing-polynomila-functions
 
Module 3 polynomial functions
Module 3   polynomial functionsModule 3   polynomial functions
Module 3 polynomial functions
 
Polynomials
PolynomialsPolynomials
Polynomials
 
Rational Zeros and Decarte's Rule of Signs
Rational Zeros and Decarte's Rule of SignsRational Zeros and Decarte's Rule of Signs
Rational Zeros and Decarte's Rule of Signs
 
Functions (Theory)
Functions (Theory)Functions (Theory)
Functions (Theory)
 
Rational Root Theorem.ppt
Rational Root Theorem.pptRational Root Theorem.ppt
Rational Root Theorem.ppt
 
Interpolation techniques - Background and implementation
Interpolation techniques - Background and implementationInterpolation techniques - Background and implementation
Interpolation techniques - Background and implementation
 
Module 2 Lesson 2 Notes
Module 2 Lesson 2 NotesModule 2 Lesson 2 Notes
Module 2 Lesson 2 Notes
 
Factoring polynomials
Factoring polynomialsFactoring polynomials
Factoring polynomials
 
Polynomial functionsandgraphs
Polynomial functionsandgraphsPolynomial functionsandgraphs
Polynomial functionsandgraphs
 
Evaluating and Graphing Polynomial Functions
Evaluating and Graphing Polynomial FunctionsEvaluating and Graphing Polynomial Functions
Evaluating and Graphing Polynomial Functions
 

Mehr von Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

Mehr von Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Kürzlich hochgeladen

Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESmohitsingh558521
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfMounikaPolabathina
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxLoriGlavin3
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 

Kürzlich hochgeladen (20)

Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdf
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptx
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 

11 x1 t15 01 definitions (2013)

  • 2. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
  • 3. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0
  • 4. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0 n  0 and is an integer
  • 5. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0 n  0 and is an integer coefficients: p0 , p1 , p2 , , pn
  • 6. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0 n  0 and is an integer coefficients: p0 , p1 , p2 , , pn index (exponent): the powers of the pronumerals.
  • 7. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0 n  0 and is an integer coefficients: p0 , p1 , p2 , , pn index (exponent): the powers of the pronumerals. degree (order): the highest index of the polynomial. The polynomial is called “polynomial of degree n”
  • 8. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0 n  0 and is an integer coefficients: p0 , p1 , p2 , , pn index (exponent): the powers of the pronumerals. degree (order): the highest index of the polynomial. The polynomial is called “polynomial of degree n” n leading term: pn x
  • 9. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0 n  0 and is an integer coefficients: p0 , p1 , p2 , , pn index (exponent): the powers of the pronumerals. degree (order): the highest index of the polynomial. The polynomial is called “polynomial of degree n” n leading term: pn x leading coefficient: pn
  • 10. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0 n  0 and is an integer coefficients: p0 , p1 , p2 , , pn index (exponent): the powers of the pronumerals. degree (order): the highest index of the polynomial. The polynomial is called “polynomial of degree n” n leading term: pn x leading coefficient: pn monic polynomial: leading coefficient is equal to one.
  • 11. P(x) = 0: polynomial equation
  • 12. P(x) = 0: polynomial equation y = P(x): polynomial function
  • 13. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0
  • 14. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial.
  • 15. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 2 a) 5 x 3  7 x  2 4 b) 2 x 3 x2  3 c) 4 d) 7
  • 16. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 2 a) 5 x 3  7 x  2 4 b) 2 x 3 x2  3 c) 4 d) 7 NO, can’t have fraction as a power
  • 17. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 2 a) 5 x 3  7 x  2 NO, can’t have fraction as a power 4 1 2 b) 2 NO, can’t have negative as a power 4  x  3 x 3 x2  3 c) 4 d) 7
  • 18. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 2 a) 5 x 3  7 x  2 NO, can’t have fraction as a power 4 1 2 b) 2 NO, can’t have negative as a power 4  x  3 x 3 1 2 3 x2  3 x  c) YES, 4 4 4 d) 7
  • 19. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 2 a) 5 x 3  7 x  2 NO, can’t have fraction as a power 4 1 2 b) 2 NO, can’t have negative as a power 4  x  3 x 3 1 2 3 x2  3 x  c) YES, 4 4 4 YES, 7x 0 d) 7
  • 20. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 2 a) 5 x 3  7 x  2 NO, can’t have fraction as a power 4 1 2 b) 2 NO, can’t have negative as a power 4  x  3 x 3 1 2 3 x2  3 x  c) YES, 4 4 4 YES, 7x 0 d) 7 (ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is monic and state its degree.
  • 21. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 2 a) 5 x 3  7 x  2 NO, can’t have fraction as a power 4 1 2 b) 2 NO, can’t have negative as a power 4  x  3 x 3 1 2 3 x2  3 x  c) YES, 4 4 4 YES, 7x 0 d) 7 (ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is monic and state its degree. P( x)  8 x 4  x3  7 x  11  8 x 4  6 x 2  4 x 2  3
  • 22. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 2 a) 5 x 3  7 x  2 NO, can’t have fraction as a power 4 1 2 b) 2 NO, can’t have negative as a power 4  x  3 x 3 1 2 3 x2  3 x  c) YES, 4 4 4 YES, 7x 0 d) 7 (ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is monic and state its degree. P( x)  8 x 4  x3  7 x  11  8 x 4  6 x 2  4 x 2  3  x3  2 x 2  7 x  8
  • 23. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 2 a) 5 x 3  7 x  2 NO, can’t have fraction as a power 4 1 2 b) 2 NO, can’t have negative as a power 4  x  3 x 3 1 2 3 x2  3 x  c) YES, 4 4 4 YES, 7x 0 d) 7 (ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is monic and state its degree. P( x)  8 x 4  x3  7 x  11  8 x 4  6 x 2  4 x 2  3  monic, degree = 3  x3  2 x 2  7 x  8
  • 24. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 2 a) 5 x 3  7 x  2 NO, can’t have fraction as a power 4 1 2 b) 2 NO, can’t have negative as a power 4  x  3 x 3 1 2 3 x2  3 Exercise 4A; 1, 2acehi, 3bdf, x  c) YES, 4 4 4 6bdf, 7, 9d, 10ad, 13 0 YES, 7x d) 7 (ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is monic and state its degree. P( x)  8 x 4  x3  7 x  11  8 x 4  6 x 2  4 x 2  3  monic, degree = 3  x3  2 x 2  7 x  8