SlideShare ist ein Scribd-Unternehmen logo
1 von 55
Downloaden Sie, um offline zu lesen
Tangents & Normals
     (ii) Using Cartesian
Tangents & Normals
              (ii) Using Cartesian
(1) Tangent
Tangents & Normals
                  (ii) Using Cartesian
(1) Tangent
         y    x 2  4ay




                 x
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent
         y          x 2  4ay



              P( x1 , y1 )

                         x
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent
         y          x 2  4ay



              P( x1 , y1 )

                         x
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent                                    x2
         y          x 2  4ay               y
                                               4a



              P( x1 , y1 )

                         x
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent                                   x2
         y          x 2  4ay              y
                                              4a
                                          dy x
                                            
                                          dx 2a
              P( x1 , y1 )

                         x
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent                                   x2
         y          x 2  4ay              y
                                              4a
                                          dy x
                                            
                                          dx 2a
                                                   dy x1
              P( x1 , y1 )            when x  x1 , 
                                                   dx 2a
                         x
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent                                   x2
         y          x 2  4ay              y
                                              4a
                                          dy x
                                            
                                          dx 2a
                                                   dy x1
              P( x1 , y1 )            when x  x1 , 
                                                   dx 2a
                         x                                  x1
                                       slope of tangent is
                                                            2a
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent                                    x2
         y          x 2  4ay               y
                                               4a
                                           dy x
                                             
                                           dx 2a
                                                   dy x1
              P( x1 , y1 )            when x  x1 , 
                                                   dx 2a
                         x                                      x1
                                       slope of tangent is
                                                               2a
                                                   x
                                          y  y1  1  x  x1 
                                                   2a
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent                                    x2
         y          x 2  4ay               y
                                               4a
                                           dy x
                                             
                                           dx 2a
                                                   dy x1
              P( x1 , y1 )            when x  x1 , 
                                                   dx 2a
                         x                                      x1
                                       slope of tangent is
                                                               2a
                                                   x
                                          y  y1  1  x  x1 
                                                   2a
                                          2ay  2ay1  xx1  x12
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent                                    x2
         y          x 2  4ay               y
                                               4a
                                           dy x
                                             
                                           dx 2a
                                                   dy x1
              P( x1 , y1 )            when x  x1 , 
                                                   dx 2a
                         x                                      x1
                                       slope of tangent is
                                                               2a
                                                   x
                                          y  y1  1  x  x1 
                                                   2a
                                          2ay  2ay1  xx1  x12
                                          2ay  2ay1  xx1  4ay1
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent                                    x2
         y          x 2  4ay               y
                                               4a
                                           dy x
                                             
                                           dx 2a
                                                   dy x1
              P( x1 , y1 )            when x  x1 , 
                                                   dx 2a
                         x                                      x1
                                       slope of tangent is
                                                               2a
                                                   x
                                          y  y1  1  x  x1 
                                                   2a
                                          2ay  2ay1  xx1  x12
                                          2ay  2ay1  xx1  4ay1
                                                    xx1  2a y  y1 
(2) Normal
(2) Normal
        y    x 2  4ay




                x
(2) Normal
        y          x 2  4ay



             P( x1 , y1 )

                        x
(2) Normal
        y          x 2  4ay



             P( x1 , y1 )

                        x
(2) Normal
        y          x 2  4ay



             P( x1 , y1 )                                          x1
                               1 Show the slope of tangent at P is
                                                                   2a
                        x
(2) Normal
        y          x 2  4ay



             P( x1 , y1 )                                          x1
                               1 Show the slope of tangent at P is
                                                                   2a
                                                        2a
                        x      2  slope of normal is 
                                                        x1
(2) Normal
        y          x 2  4ay



             P( x1 , y1 )                                          x1
                               1 Show the slope of tangent at P is
                                                                   2a
                                                        2a
                        x      2  slope of normal is 
                                                        x1
                                             2a
                                   y  y1        x  x1 
                                             x1
(2) Normal
        y          x 2  4ay



             P( x1 , y1 )                                          x1
                               1 Show the slope of tangent at P is
                                                                   2a
                                                        2a
                        x      2  slope of normal is 
                                                        x1
                                             2a
                                   y  y1        x  x1 
                                             x1
                                    x1 y  x1 y1  2ax  2ax1
(2) Normal
        y          x 2  4ay



             P( x1 , y1 )                                          x1
                               1 Show the slope of tangent at P is
                                                                   2a
                                                        2a
                        x      2  slope of normal is 
                                                        x1
                                             2a
                                   y  y1        x  x1 
                                             x1
                                    x1 y  x1 y1  2ax  2ax1
                                    2ax  x1 y  2ax1  x1 y1
(3) Line cutting/touching/missing parabola
(3) Line cutting/touching/missing parabola
        y          x 2  4ay




                       x
(3) Line cutting/touching/missing parabola
        y          x 2  4ay




                       x
(3) Line cutting/touching/missing parabola
        y          x 2  4ay




                       x
(3) Line cutting/touching/missing parabola
        y          x 2  4ay
                           y  mx  b



                       x
(3) Line cutting/touching/missing parabola
         y           x 2  4ay      parabola and tangent meet when;
                           y  mx  b



                       x
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b       x 2  4a  mx  b 




                        x
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b       x 2  4a  mx  b 
                                            x 2  4amx  4ab  0


                        x
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0

                        x
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0
                                   one solution (touches) when   0
                          x
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0
                                   one solution (touches) when   0
                          x         no solutions (misses) when   0
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0
                                   one solution (touches) when   0
                          x         no solutions (misses) when   0
                                              b2  4ac
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0
                                   one solution (touches) when   0
                          x         no solutions (misses) when   0
                                              b2  4ac
                                                4am   4 1 4ab 
                                                        2
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0
                                   one solution (touches) when   0
                          x         no solutions (misses) when   0
                                              b2  4ac
                                                4am   4 1 4ab 
                                                        2


                                               16a 2 m 2  16ab
                                               16a  am 2  b 
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0
                                   one solution (touches) when   0
                          x         no solutions (misses) when   0
                                              b2  4ac
                                                4am   4 1 4ab 
                                                        2


                                                  16a 2 m 2  16ab
                                                  16a  am 2  b 
        two solutions (cuts) when am2  b  0
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0
                                   one solution (touches) when   0
                          x         no solutions (misses) when   0
                                              b2  4ac
                                                4am   4 1 4ab 
                                                        2


                                               16a 2 m 2  16ab
                                               16a  am 2  b 
        two solutions (cuts) when am2  b  0
         one solution (touches) when am2  b  0
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0
                                   one solution (touches) when   0
                          x         no solutions (misses) when   0
                                              b2  4ac
                                                4am   4 1 4ab 
                                                        2


                                               16a 2 m 2  16ab
                                               16a  am 2  b 
        two solutions (cuts) when am2  b  0
         one solution (touches) when am2  b  0        (common idea)
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0
                                   one solution (touches) when   0
                          x         no solutions (misses) when   0
                                              b2  4ac
                                                4am   4 1 4ab 
                                                        2


                                               16a 2 m 2  16ab
                                               16a  am 2  b 
        two solutions (cuts) when am2  b  0
         one solution (touches) when am2  b  0        (common idea)
          no solutions (misses) when am2  b  0
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
             2  3m  b
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
             2  3m  b
               b  2  3m
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
              2  3m  b
                b  2  3m
        tangents are y  mx  2  3m
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
              2  3m  b
                b  2  3m
        tangents are y  mx  2  3m
             x2  4 y
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
              2  3m  b
                 b  2  3m
        tangents are y  mx  2  3m
             x2  4 y
              x 2  4  mx  2  3m 
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
              2  3m  b
                 b  2  3m
        tangents are y  mx  2  3m
             x2  4 y
              x 2  4  mx  2  3m 
              x 2  4mx  12m  8  0
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
              2  3m  b
                 b  2  3m
        tangents are y  mx  2  3m
             x2  4 y
              x 2  4  mx  2  3m 
              x 2  4mx  12m  8  0
              line is a tangent if   0
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
               2  3m  b
                  b  2  3m
        tangents are y  mx  2  3m
              x2  4 y
              x 2  4  mx  2  3m 
               x 2  4mx  12m  8  0
               line is a tangent if   0
            4m   4 112m  8  0
                    2
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
               2  3m  b
                  b  2  3m
        tangents are y  mx  2  3m
              x2  4 y
              x 2  4  mx  2  3m 
               x 2  4mx  12m  8  0
               line is a tangent if   0
            4m   4 112m  8  0
                    2


                     16m2  48m  32  0
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
               2  3m  b
                  b  2  3m
        tangents are y  mx  2  3m
              x2  4 y
              x 2  4  mx  2  3m 
               x 2  4mx  12m  8  0
               line is a tangent if   0
            4m   4 112m  8  0
                    2


                     16m2  48m  32  0
                          m2  3m  2  0
                    m  1 m  2   0
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
               2  3m  b
                  b  2  3m
        tangents are y  mx  2  3m
              x2  4 y
              x 2  4  mx  2  3m 
               x 2  4mx  12m  8  0
               line is a tangent if   0
            4m   4 112m  8  0
                    2


                     16m2  48m  32  0
                          m2  3m  2  0
                    m  1 m  2   0
                    m  1 or m  2
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
               2  3m  b
                  b  2  3m
        tangents are y  mx  2  3m
              x2  4 y
              x 2  4  mx  2  3m 
               x 2  4mx  12m  8  0
               line is a tangent if   0
            4m   4 112m  8  0
                    2


                     16m2  48m  32  0
                          m2  3m  2  0
                    m  1 m  2   0
                   m  1 or m  2
     tangents are y  x  1 and y  2 x  4
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
               2  3m  b
                  b  2  3m
        tangents are y  mx  2  3m
              x2  4 y
              x 2  4  mx  2  3m 
               x 2  4mx  12m  8  0        Exercise 9G; 1ac, 2ac,
                                                   3a, 4, 7, 9, 11, 12,
               line is a tangent if   0
                                                     13, 15, 17, 18
            4m   4 112m  8  0
                    2


                     16m2  48m  32  0
                          m2  3m  2  0
                    m  1 m  2   0
                   m  1 or m  2
     tangents are y  x  1 and y  2 x  4

Weitere ähnliche Inhalte

Was ist angesagt?

Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problemsDelta Pi Systems
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesMatthew Leingang
 
2010 mathematics hsc solutions
2010 mathematics hsc solutions2010 mathematics hsc solutions
2010 mathematics hsc solutionsjharnwell
 
Limits and derivatives
Limits and derivativesLimits and derivatives
Limits and derivativessahil9100
 
Inverse circular function
Inverse circular functionInverse circular function
Inverse circular functionAPEX INSTITUTE
 
Monte-Carlo method for Two-Stage SLP
Monte-Carlo method for Two-Stage SLPMonte-Carlo method for Two-Stage SLP
Monte-Carlo method for Two-Stage SLPSSA KPI
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Matthew Leingang
 
Applied Calculus Chapter 4 multiple integrals
Applied Calculus Chapter  4 multiple integralsApplied Calculus Chapter  4 multiple integrals
Applied Calculus Chapter 4 multiple integralsJ C
 
Numerical Linear Algebra for Data and Link Analysis.
Numerical Linear Algebra for Data and Link Analysis.Numerical Linear Algebra for Data and Link Analysis.
Numerical Linear Algebra for Data and Link Analysis.Leonid Zhukov
 
15815265 form-4-amat-formulae-and-note
15815265 form-4-amat-formulae-and-note15815265 form-4-amat-formulae-and-note
15815265 form-4-amat-formulae-and-noteotpeng
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2zukun
 
Formula List Math 1230
Formula List Math 1230Formula List Math 1230
Formula List Math 1230samhui48
 

Was ist angesagt? (16)

Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation Rules
 
2010 mathematics hsc solutions
2010 mathematics hsc solutions2010 mathematics hsc solutions
2010 mathematics hsc solutions
 
Limits and derivatives
Limits and derivativesLimits and derivatives
Limits and derivatives
 
Inverse circular function
Inverse circular functionInverse circular function
Inverse circular function
 
Monte-Carlo method for Two-Stage SLP
Monte-Carlo method for Two-Stage SLPMonte-Carlo method for Two-Stage SLP
Monte-Carlo method for Two-Stage SLP
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lagrange
LagrangeLagrange
Lagrange
 
Applied Calculus Chapter 4 multiple integrals
Applied Calculus Chapter  4 multiple integralsApplied Calculus Chapter  4 multiple integrals
Applied Calculus Chapter 4 multiple integrals
 
Numerical Linear Algebra for Data and Link Analysis.
Numerical Linear Algebra for Data and Link Analysis.Numerical Linear Algebra for Data and Link Analysis.
Numerical Linear Algebra for Data and Link Analysis.
 
Lista exercintegrais
Lista exercintegraisLista exercintegrais
Lista exercintegrais
 
Section7 stochastic
Section7 stochasticSection7 stochastic
Section7 stochastic
 
15815265 form-4-amat-formulae-and-note
15815265 form-4-amat-formulae-and-note15815265 form-4-amat-formulae-and-note
15815265 form-4-amat-formulae-and-note
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2
 
Formula List Math 1230
Formula List Math 1230Formula List Math 1230
Formula List Math 1230
 

Andere mochten auch

11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)Nigel Simmons
 
11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)Nigel Simmons
 
11X1 T08 04 chain rule
11X1 T08 04 chain rule11X1 T08 04 chain rule
11X1 T08 04 chain ruleNigel Simmons
 
12 X1 T04 07 approximations to roots (2010)
12 X1 T04 07 approximations to roots (2010)12 X1 T04 07 approximations to roots (2010)
12 X1 T04 07 approximations to roots (2010)Nigel Simmons
 
11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)Nigel Simmons
 
11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)Nigel Simmons
 
11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)Nigel Simmons
 

Andere mochten auch (7)

11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)
 
11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)
 
11X1 T08 04 chain rule
11X1 T08 04 chain rule11X1 T08 04 chain rule
11X1 T08 04 chain rule
 
12 X1 T04 07 approximations to roots (2010)
12 X1 T04 07 approximations to roots (2010)12 X1 T04 07 approximations to roots (2010)
12 X1 T04 07 approximations to roots (2010)
 
11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)
 
11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)
 
11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)
 

Ähnlich wie 11 x1 t11 06 tangents & normals ii (2012)

11X1 T12 05 tangents & normals I
11X1 T12 05 tangents & normals I11X1 T12 05 tangents & normals I
11X1 T12 05 tangents & normals INigel Simmons
 
11X1 T11 05 tangents and normals I
11X1 T11 05 tangents and normals I11X1 T11 05 tangents and normals I
11X1 T11 05 tangents and normals INigel Simmons
 
11 x1 t11 05 tangents & normals i (2012)
11 x1 t11 05 tangents & normals i (2012)11 x1 t11 05 tangents & normals i (2012)
11 x1 t11 05 tangents & normals i (2012)Nigel Simmons
 
11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)Nigel Simmons
 
11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)Nigel Simmons
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)Nigel Simmons
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]Nigel Simmons
 
X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)Nigel Simmons
 
X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)Nigel Simmons
 
X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)Nigel Simmons
 
001 basic concepts
001 basic concepts001 basic concepts
001 basic conceptsphysics101
 
Cea0001 ppt project
Cea0001 ppt projectCea0001 ppt project
Cea0001 ppt projectcea0001
 
Particle filter
Particle filterParticle filter
Particle filterbugway
 
12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)Nigel Simmons
 
12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)Nigel Simmons
 
12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)Nigel Simmons
 
study Accelerating Spatially Varying Gaussian Filters
study Accelerating Spatially Varying Gaussian Filtersstudy Accelerating Spatially Varying Gaussian Filters
study Accelerating Spatially Varying Gaussian FiltersChiamin Hsu
 

Ähnlich wie 11 x1 t11 06 tangents & normals ii (2012) (20)

11X1 T12 05 tangents & normals I
11X1 T12 05 tangents & normals I11X1 T12 05 tangents & normals I
11X1 T12 05 tangents & normals I
 
11X1 T11 05 tangents and normals I
11X1 T11 05 tangents and normals I11X1 T11 05 tangents and normals I
11X1 T11 05 tangents and normals I
 
11 x1 t11 05 tangents & normals i (2012)
11 x1 t11 05 tangents & normals i (2012)11 x1 t11 05 tangents & normals i (2012)
11 x1 t11 05 tangents & normals i (2012)
 
sol pg 89
sol pg 89 sol pg 89
sol pg 89
 
Exercise #10 notes
Exercise #10 notesExercise #10 notes
Exercise #10 notes
 
11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)
 
11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]
 
X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)
 
X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)
 
X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)
 
001 basic concepts
001 basic concepts001 basic concepts
001 basic concepts
 
Ism et chapter_6
Ism et chapter_6Ism et chapter_6
Ism et chapter_6
 
Cea0001 ppt project
Cea0001 ppt projectCea0001 ppt project
Cea0001 ppt project
 
Particle filter
Particle filterParticle filter
Particle filter
 
12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)
 
12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)
 
12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)
 
study Accelerating Spatially Varying Gaussian Filters
study Accelerating Spatially Varying Gaussian Filtersstudy Accelerating Spatially Varying Gaussian Filters
study Accelerating Spatially Varying Gaussian Filters
 

Mehr von Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

Mehr von Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Kürzlich hochgeladen

4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operationalssuser3e220a
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptxmary850239
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Projectjordimapav
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSMae Pangan
 
Dust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSEDust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSEaurabinda banchhor
 
Presentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxPresentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxRosabel UA
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
Measures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataMeasures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataBabyAnnMotar
 
Millenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxMillenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxJanEmmanBrigoli
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmStan Meyer
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 

Kürzlich hochgeladen (20)

4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operational
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Project
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHS
 
Dust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSEDust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSE
 
Presentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxPresentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptx
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
Measures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataMeasures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped data
 
Millenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxMillenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptx
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and Film
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptxINCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
 

11 x1 t11 06 tangents & normals ii (2012)

  • 1. Tangents & Normals (ii) Using Cartesian
  • 2. Tangents & Normals (ii) Using Cartesian (1) Tangent
  • 3. Tangents & Normals (ii) Using Cartesian (1) Tangent y x 2  4ay x
  • 4. Tangents & Normals (ii) Using Cartesian (1) Tangent y x 2  4ay P( x1 , y1 ) x
  • 5. Tangents & Normals (ii) Using Cartesian (1) Tangent y x 2  4ay P( x1 , y1 ) x
  • 6. Tangents & Normals (ii) Using Cartesian (1) Tangent x2 y x 2  4ay y 4a P( x1 , y1 ) x
  • 7. Tangents & Normals (ii) Using Cartesian (1) Tangent x2 y x 2  4ay y 4a dy x  dx 2a P( x1 , y1 ) x
  • 8. Tangents & Normals (ii) Using Cartesian (1) Tangent x2 y x 2  4ay y 4a dy x  dx 2a dy x1 P( x1 , y1 ) when x  x1 ,  dx 2a x
  • 9. Tangents & Normals (ii) Using Cartesian (1) Tangent x2 y x 2  4ay y 4a dy x  dx 2a dy x1 P( x1 , y1 ) when x  x1 ,  dx 2a x x1  slope of tangent is 2a
  • 10. Tangents & Normals (ii) Using Cartesian (1) Tangent x2 y x 2  4ay y 4a dy x  dx 2a dy x1 P( x1 , y1 ) when x  x1 ,  dx 2a x x1  slope of tangent is 2a x y  y1  1  x  x1  2a
  • 11. Tangents & Normals (ii) Using Cartesian (1) Tangent x2 y x 2  4ay y 4a dy x  dx 2a dy x1 P( x1 , y1 ) when x  x1 ,  dx 2a x x1  slope of tangent is 2a x y  y1  1  x  x1  2a 2ay  2ay1  xx1  x12
  • 12. Tangents & Normals (ii) Using Cartesian (1) Tangent x2 y x 2  4ay y 4a dy x  dx 2a dy x1 P( x1 , y1 ) when x  x1 ,  dx 2a x x1  slope of tangent is 2a x y  y1  1  x  x1  2a 2ay  2ay1  xx1  x12 2ay  2ay1  xx1  4ay1
  • 13. Tangents & Normals (ii) Using Cartesian (1) Tangent x2 y x 2  4ay y 4a dy x  dx 2a dy x1 P( x1 , y1 ) when x  x1 ,  dx 2a x x1  slope of tangent is 2a x y  y1  1  x  x1  2a 2ay  2ay1  xx1  x12 2ay  2ay1  xx1  4ay1 xx1  2a y  y1 
  • 15. (2) Normal y x 2  4ay x
  • 16. (2) Normal y x 2  4ay P( x1 , y1 ) x
  • 17. (2) Normal y x 2  4ay P( x1 , y1 ) x
  • 18. (2) Normal y x 2  4ay P( x1 , y1 ) x1 1 Show the slope of tangent at P is 2a x
  • 19. (2) Normal y x 2  4ay P( x1 , y1 ) x1 1 Show the slope of tangent at P is 2a 2a x 2  slope of normal is  x1
  • 20. (2) Normal y x 2  4ay P( x1 , y1 ) x1 1 Show the slope of tangent at P is 2a 2a x 2  slope of normal is  x1  2a y  y1   x  x1  x1
  • 21. (2) Normal y x 2  4ay P( x1 , y1 ) x1 1 Show the slope of tangent at P is 2a 2a x 2  slope of normal is  x1  2a y  y1   x  x1  x1 x1 y  x1 y1  2ax  2ax1
  • 22. (2) Normal y x 2  4ay P( x1 , y1 ) x1 1 Show the slope of tangent at P is 2a 2a x 2  slope of normal is  x1  2a y  y1   x  x1  x1 x1 y  x1 y1  2ax  2ax1 2ax  x1 y  2ax1  x1 y1
  • 24. (3) Line cutting/touching/missing parabola y x 2  4ay x
  • 25. (3) Line cutting/touching/missing parabola y x 2  4ay x
  • 26. (3) Line cutting/touching/missing parabola y x 2  4ay x
  • 27. (3) Line cutting/touching/missing parabola y x 2  4ay y  mx  b x
  • 28. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x
  • 29. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x
  • 30. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 x
  • 31. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 x
  • 32. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 one solution (touches) when   0 x
  • 33. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 one solution (touches) when   0 x no solutions (misses) when   0
  • 34. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 one solution (touches) when   0 x no solutions (misses) when   0   b2  4ac
  • 35. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 one solution (touches) when   0 x no solutions (misses) when   0   b2  4ac   4am   4 1 4ab  2
  • 36. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 one solution (touches) when   0 x no solutions (misses) when   0   b2  4ac   4am   4 1 4ab  2  16a 2 m 2  16ab  16a  am 2  b 
  • 37. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 one solution (touches) when   0 x no solutions (misses) when   0   b2  4ac   4am   4 1 4ab  2  16a 2 m 2  16ab  16a  am 2  b   two solutions (cuts) when am2  b  0
  • 38. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 one solution (touches) when   0 x no solutions (misses) when   0   b2  4ac   4am   4 1 4ab  2  16a 2 m 2  16ab  16a  am 2  b   two solutions (cuts) when am2  b  0 one solution (touches) when am2  b  0
  • 39. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 one solution (touches) when   0 x no solutions (misses) when   0   b2  4ac   4am   4 1 4ab  2  16a 2 m 2  16ab  16a  am 2  b   two solutions (cuts) when am2  b  0 one solution (touches) when am2  b  0 (common idea)
  • 40. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 one solution (touches) when   0 x no solutions (misses) when   0   b2  4ac   4am   4 1 4ab  2  16a 2 m 2  16ab  16a  am 2  b   two solutions (cuts) when am2  b  0 one solution (touches) when am2  b  0 (common idea) no solutions (misses) when am2  b  0
  • 41. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2).
  • 42. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b
  • 43. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b
  • 44. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m
  • 45. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m
  • 46. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y
  • 47. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y x 2  4  mx  2  3m 
  • 48. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y x 2  4  mx  2  3m  x 2  4mx  12m  8  0
  • 49. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y x 2  4  mx  2  3m  x 2  4mx  12m  8  0 line is a tangent if   0
  • 50. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y x 2  4  mx  2  3m  x 2  4mx  12m  8  0 line is a tangent if   0  4m   4 112m  8  0 2
  • 51. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y x 2  4  mx  2  3m  x 2  4mx  12m  8  0 line is a tangent if   0  4m   4 112m  8  0 2 16m2  48m  32  0
  • 52. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y x 2  4  mx  2  3m  x 2  4mx  12m  8  0 line is a tangent if   0  4m   4 112m  8  0 2 16m2  48m  32  0 m2  3m  2  0  m  1 m  2   0
  • 53. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y x 2  4  mx  2  3m  x 2  4mx  12m  8  0 line is a tangent if   0  4m   4 112m  8  0 2 16m2  48m  32  0 m2  3m  2  0  m  1 m  2   0 m  1 or m  2
  • 54. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y x 2  4  mx  2  3m  x 2  4mx  12m  8  0 line is a tangent if   0  4m   4 112m  8  0 2 16m2  48m  32  0 m2  3m  2  0  m  1 m  2   0 m  1 or m  2  tangents are y  x  1 and y  2 x  4
  • 55. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y x 2  4  mx  2  3m  x 2  4mx  12m  8  0 Exercise 9G; 1ac, 2ac, 3a, 4, 7, 9, 11, 12, line is a tangent if   0 13, 15, 17, 18  4m   4 112m  8  0 2 16m2  48m  32  0 m2  3m  2  0  m  1 m  2   0 m  1 or m  2  tangents are y  x  1 and y  2 x  4