SlideShare ist ein Scribd-Unternehmen logo
1 von 35
Downloaden Sie, um offline zu lesen
Pythagorean Trig Identities
Pythagorean Trig Identities
   y

       1
           y
       
       x       x
Pythagorean Trig Identities
   y
                   x2  y 2  1
       1
           y
       
       x       x
Pythagorean Trig Identities
   y
                           x2  y 2  1
                           y
       1           sin  
           y               1
                      y  sin 
       x       x
Pythagorean Trig Identities
   y
                           x2  y 2  1
                           y                      x
       1           sin                  cos  
           y               1                      1
                      y  sin               x  cos 
       x       x
Pythagorean Trig Identities
   y
                           x2  y 2  1
                           y                      x
       1           sin                  cos  
           y               1                      1
                      y  sin               x  cos 
       x       x
                             sin 2   cos 2   1
Pythagorean Trig Identities
      y
                               x2  y 2  1
                               y                      x
          1            sin                  cos  
               y               1                      1
                          y  sin               x  cos 
           x       x
                                 sin 2   cos 2   1



 Divide by sin 2 
Pythagorean Trig Identities
      y
                               x2  y 2  1
                               y                      x
          1            sin                  cos  
               y               1                      1
                          y  sin               x  cos 
           x       x
                                 sin 2   cos 2   1



 Divide by sin 2 
 sin 2  cos 2    1
                 2
 sin  sin  sin 
     2      2
Pythagorean Trig Identities
      y
                                         x2  y 2  1
                                         y                      x
           1                     sin                  cos  
                y                        1                      1
                                    y  sin               x  cos 
            x       x
                                           sin 2   cos 2   1



 Divide by sin 2 
 sin 2  cos 2         1
                    2
 sin  sin  sin 
     2         2


        1  cot 2   cosec 2
Pythagorean Trig Identities
      y
                                         x2  y 2  1
                                         y                      x
           1                     sin                  cos  
                y                        1                      1
                                    y  sin               x  cos 
            x       x
                                           sin 2   cos 2   1



 Divide by sin 2                          Divide by cos 2
 sin 2  cos 2         1
                    2
 sin  sin  sin 
     2         2


        1  cot 2   cosec 2
Pythagorean Trig Identities
      y
                                         x2  y 2  1
                                         y                      x
           1                     sin                  cos  
                y                        1                      1
                                    y  sin               x  cos 
            x       x
                                           sin 2   cos 2   1



 Divide by sin 2                          Divide by cos 2
 sin 2  cos 2         1                  sin 2  cos 2    1
                    2                                   
 sin  sin  sin 
     2         2
                                           cos  cos  cos 2 
                                               2       2


        1  cot 2   cosec 2
Pythagorean Trig Identities
      y
                                         x2  y 2  1
                                         y                      x
           1                     sin                  cos  
                y                        1                      1
                                    y  sin               x  cos 
            x       x
                                           sin 2   cos 2   1



 Divide by sin 2                          Divide by cos 2
 sin 2  cos 2         1                  sin 2  cos 2         1
                    2                                      
 sin  sin  sin 
     2         2
                                           cos  cos  cos 2 
                                               2          2


        1  cot 2   cosec 2                    tan 2   1  sec2
Pythagorean Trig Identities
      y
                                         x2  y 2  1
                                         y                      x
           1                     sin                  cos  
                y                        1                      1
                                    y  sin               x  cos 
            x       x
                                           sin 2   cos 2   1



 Divide by sin 2                          Divide by cos 2
 sin 2  cos 2         1                  sin 2  cos 2         1
                    2                                      
 sin  sin  sin 
     2         2
                                           cos  cos  cos 2 
                                               2          2


        1  cot 2   cosec 2                    tan 2   1  sec2
sin 2   cos 2   1
1  tan 2   sec2
1  cot 2   cosec 2
sin 2   cos 2   1
               1  tan 2   sec2
               1  cot 2   cosec 2

In addition:
                  sin 
                         tan 
                  cos 
sin 2   cos 2   1
                             1  tan 2   sec2
                             1  cot 2   cosec 2

              In addition:
                                sin 
                                       tan 
                                cos 
                    3
e.g. (i ) If cos   and tan  is negative, find sin 
                    4
sin 2   cos 2   1
                             1  tan 2   sec2
                             1  cot 2   cosec 2

              In addition:
                                sin 
                                       tan 
                                cos 
                    3
e.g. (i ) If cos   and tan  is negative, find sin 
                    4
   3    4
sin 2   cos 2   1
                             1  tan 2   sec2
                             1  cot 2   cosec 2

              In addition:
                                sin 
                                       tan 
                                cos 
                    3
e.g. (i ) If cos   and tan  is negative, find sin 
                    4
   3    4

         7
sin 2   cos 2   1
                             1  tan 2   sec2
                             1  cot 2   cosec 2

              In addition:
                                sin 
                                       tan 
                                cos 
                    3
e.g. (i ) If cos   and tan  is negative, find sin 
                    4
                                4th quadrant
    3 4

         7
sin 2   cos 2   1
                             1  tan 2   sec2
                             1  cot 2   cosec 2

              In addition:
                                sin 
                                       tan 
                                cos 
                    3
e.g. (i ) If cos   and tan  is negative, find sin 
                    4
                                4th quadrant
    3 4
                                           7
                                sin   
           7                              4
(ii) Simplify;
a ) 1  cos 2 
(ii) Simplify;
a ) 1  cos 2 
     1  1  sin 2  
(ii) Simplify;
a ) 1  cos 2 
     1  1  sin 2  
     1  1  sin 2 
     sin 2 
(ii) Simplify;
a ) 1  cos 2             b) sec 2 A  tan 2 A
     1  1  sin 2  
     1  1  sin 2 
     sin 2 
(ii) Simplify;
a ) 1  cos 2             b) sec 2 A  tan 2 A
     1  1  sin 2         1  tan 2 A  tan 2 A
     1  1  sin 2          1
     sin 2 
(ii) Simplify;
a ) 1  cos 2             b) sec 2 A  tan 2 A         c) tan  cos 
     1  1  sin 2         1  tan 2 A  tan 2 A
     1  1  sin 2          1
     sin 2 
(ii) Simplify;
a ) 1  cos 2             b) sec 2 A  tan 2 A   c) tan  cos 
                                                       sin  cos 
     1  1  sin 2         1  tan A  tan A
                                       2       2            
                                                       cos      1
     1  1  sin 2          1                    sin 
     sin 2 
(ii) Simplify;
a ) 1  cos 2             b) sec 2 A  tan 2 A   c) tan  cos 
                                                       sin  cos 
     1  1  sin 2         1  tan A  tan A
                                       2       2            
                                                       cos      1
     1  1  sin 2          1                    sin 
     sin 2 
              2sec 2   2 tan 
 iii  Prove             
                4 tan       2
(ii) Simplify;
a ) 1  cos 2             b) sec 2 A  tan 2 A   c) tan  cos 
                                                       sin  cos 
     1  1  sin 2         1  tan A  tan A
                                       2       2            
                                                       cos      1
     1  1  sin 2          1                    sin 
     sin 2 
              2sec 2   2 tan 
 iii  Prove             
                4 tan       2
   2sec 2   2
     4 tan 
(ii) Simplify;
a ) 1  cos 2                b) sec 2 A  tan 2 A     c) tan  cos 
                                                            sin  cos 
     1  1  sin 2              1  tan A  tan A
                                            2       2            
                                                            cos      1
     1  1  sin 2               1                    sin 
     sin 2 
              2sec 2   2 tan 
 iii  Prove             
                4 tan       2
   2sec   2
         2
                        2 1  tan 2    2
              
     4 tan                  4 tan 
(ii) Simplify;
a ) 1  cos 2                b) sec 2 A  tan 2 A     c) tan  cos 
                                                            sin  cos 
     1  1  sin 2              1  tan A  tan A
                                            2       2            
                                                            cos      1
     1  1  sin 2               1                    sin 
     sin 2 
              2sec 2   2 tan 
 iii  Prove             
                4 tan       2
   2sec   2
         2
                        2 1  tan 2    2
              
     4 tan               4 tan 
                      2  2 tan 2   2
                    
                          4 tan 
(ii) Simplify;
a ) 1  cos 2                b) sec 2 A  tan 2 A     c) tan  cos 
                                                            sin  cos 
     1  1  sin 2              1  tan A  tan A
                                            2       2            
                                                            cos      1
     1  1  sin 2               1                    sin 
     sin 2 
              2sec 2   2 tan 
 iii  Prove             
                4 tan       2
   2sec   2
         2
                        2 1  tan 2    2
              
     4 tan                4 tan 
                      2  2 tan 2   2
                    
                           4 tan 
                      2 tan 2 
                    
                       4 tan 
(ii) Simplify;
a ) 1  cos 2                b) sec 2 A  tan 2 A     c) tan  cos 
                                                            sin  cos 
     1  1  sin 2              1  tan A  tan A
                                            2       2            
                                                            cos      1
     1  1  sin 2               1                    sin 
     sin 2 
              2sec 2   2 tan 
 iii  Prove             
                4 tan       2
   2sec   2
         2
                        2 1  tan 2    2
              
     4 tan                4 tan 
                      2  2 tan 2   2
                    
                           4 tan 
                      2 tan 2 
                    
                       4 tan 
                      tan 
                    
                         2
(ii) Simplify;
a ) 1  cos 2                b) sec 2 A  tan 2 A     c) tan  cos 
                                                            sin  cos 
     1  1  sin 2              1  tan A  tan A
                                            2       2            
                                                            cos      1
     1  1  sin 2               1                    sin 
     sin 2 
              2sec 2   2 tan 
 iii  Prove                                    when proving trig identities
                4 tan       2                              you can;
   2sec   2
         2
                        2 1  tan 2    2   1. start with LHS and prove RHS
                                              2. start with RHS and prove LHS
     4 tan                4 tan 
                                                  3. work on LHS and RHS
                      2  2 tan 2   2
                                                  independently and show they
                           4 tan                      equal the same thing
                      2 tan 2 
                    
                       4 tan                        NEVER SOLVE LIKE AN
                      tan                                 EQUATION
                    
                         2
Exercise 4E; 1a, 2b, 3ac, 4bd, 5, 7, 9*


Exercise 4F; 3a, 4b, 5c, 6ac, 7bd, 8ac, 10ad,
   11acegi, 12bdfhj, 13ac, 14bd, 15ac,
              16acegik, 17*a

Weitere ähnliche Inhalte

Mehr von Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

Mehr von Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

11 x1 t04 03 pythagorean trig identities (2013)

  • 3. Pythagorean Trig Identities y x2  y 2  1 1 y  x x
  • 4. Pythagorean Trig Identities y x2  y 2  1 y 1 sin   y 1  y  sin  x x
  • 5. Pythagorean Trig Identities y x2  y 2  1 y x 1 sin   cos   y 1 1  y  sin  x  cos  x x
  • 6. Pythagorean Trig Identities y x2  y 2  1 y x 1 sin   cos   y 1 1  y  sin  x  cos  x x  sin 2   cos 2   1
  • 7. Pythagorean Trig Identities y x2  y 2  1 y x 1 sin   cos   y 1 1  y  sin  x  cos  x x  sin 2   cos 2   1 Divide by sin 2 
  • 8. Pythagorean Trig Identities y x2  y 2  1 y x 1 sin   cos   y 1 1  y  sin  x  cos  x x  sin 2   cos 2   1 Divide by sin 2  sin 2  cos 2  1   2 sin  sin  sin  2 2
  • 9. Pythagorean Trig Identities y x2  y 2  1 y x 1 sin   cos   y 1 1  y  sin  x  cos  x x  sin 2   cos 2   1 Divide by sin 2  sin 2  cos 2  1   2 sin  sin  sin  2 2 1  cot 2   cosec 2
  • 10. Pythagorean Trig Identities y x2  y 2  1 y x 1 sin   cos   y 1 1  y  sin  x  cos  x x  sin 2   cos 2   1 Divide by sin 2  Divide by cos 2 sin 2  cos 2  1   2 sin  sin  sin  2 2 1  cot 2   cosec 2
  • 11. Pythagorean Trig Identities y x2  y 2  1 y x 1 sin   cos   y 1 1  y  sin  x  cos  x x  sin 2   cos 2   1 Divide by sin 2  Divide by cos 2 sin 2  cos 2  1 sin 2  cos 2  1   2   sin  sin  sin  2 2 cos  cos  cos 2  2 2 1  cot 2   cosec 2
  • 12. Pythagorean Trig Identities y x2  y 2  1 y x 1 sin   cos   y 1 1  y  sin  x  cos  x x  sin 2   cos 2   1 Divide by sin 2  Divide by cos 2 sin 2  cos 2  1 sin 2  cos 2  1   2   sin  sin  sin  2 2 cos  cos  cos 2  2 2 1  cot 2   cosec 2 tan 2   1  sec2
  • 13. Pythagorean Trig Identities y x2  y 2  1 y x 1 sin   cos   y 1 1  y  sin  x  cos  x x  sin 2   cos 2   1 Divide by sin 2  Divide by cos 2 sin 2  cos 2  1 sin 2  cos 2  1   2   sin  sin  sin  2 2 cos  cos  cos 2  2 2 1  cot 2   cosec 2 tan 2   1  sec2
  • 14. sin 2   cos 2   1 1  tan 2   sec2 1  cot 2   cosec 2
  • 15. sin 2   cos 2   1 1  tan 2   sec2 1  cot 2   cosec 2 In addition: sin   tan  cos 
  • 16. sin 2   cos 2   1 1  tan 2   sec2 1  cot 2   cosec 2 In addition: sin   tan  cos  3 e.g. (i ) If cos   and tan  is negative, find sin  4
  • 17. sin 2   cos 2   1 1  tan 2   sec2 1  cot 2   cosec 2 In addition: sin   tan  cos  3 e.g. (i ) If cos   and tan  is negative, find sin  4 3 4
  • 18. sin 2   cos 2   1 1  tan 2   sec2 1  cot 2   cosec 2 In addition: sin   tan  cos  3 e.g. (i ) If cos   and tan  is negative, find sin  4 3 4 7
  • 19. sin 2   cos 2   1 1  tan 2   sec2 1  cot 2   cosec 2 In addition: sin   tan  cos  3 e.g. (i ) If cos   and tan  is negative, find sin  4 4th quadrant 3 4 7
  • 20. sin 2   cos 2   1 1  tan 2   sec2 1  cot 2   cosec 2 In addition: sin   tan  cos  3 e.g. (i ) If cos   and tan  is negative, find sin  4 4th quadrant 3 4 7 sin    7 4
  • 21. (ii) Simplify; a ) 1  cos 2 
  • 22. (ii) Simplify; a ) 1  cos 2   1  1  sin 2  
  • 23. (ii) Simplify; a ) 1  cos 2   1  1  sin 2    1  1  sin 2   sin 2 
  • 24. (ii) Simplify; a ) 1  cos 2  b) sec 2 A  tan 2 A  1  1  sin 2    1  1  sin 2   sin 2 
  • 25. (ii) Simplify; a ) 1  cos 2  b) sec 2 A  tan 2 A  1  1  sin 2    1  tan 2 A  tan 2 A  1  1  sin 2  1  sin 2 
  • 26. (ii) Simplify; a ) 1  cos 2  b) sec 2 A  tan 2 A c) tan  cos   1  1  sin 2    1  tan 2 A  tan 2 A  1  1  sin 2  1  sin 2 
  • 27. (ii) Simplify; a ) 1  cos 2  b) sec 2 A  tan 2 A c) tan  cos  sin  cos   1  1  sin 2    1  tan A  tan A 2 2   cos  1  1  1  sin 2  1  sin   sin 2 
  • 28. (ii) Simplify; a ) 1  cos 2  b) sec 2 A  tan 2 A c) tan  cos  sin  cos   1  1  sin 2    1  tan A  tan A 2 2   cos  1  1  1  sin 2  1  sin   sin 2  2sec 2   2 tan   iii  Prove  4 tan  2
  • 29. (ii) Simplify; a ) 1  cos 2  b) sec 2 A  tan 2 A c) tan  cos  sin  cos   1  1  sin 2    1  tan A  tan A 2 2   cos  1  1  1  sin 2  1  sin   sin 2  2sec 2   2 tan   iii  Prove  4 tan  2 2sec 2   2 4 tan 
  • 30. (ii) Simplify; a ) 1  cos 2  b) sec 2 A  tan 2 A c) tan  cos  sin  cos   1  1  sin 2    1  tan A  tan A 2 2   cos  1  1  1  sin 2  1  sin   sin 2  2sec 2   2 tan   iii  Prove  4 tan  2 2sec   2 2 2 1  tan 2    2  4 tan  4 tan 
  • 31. (ii) Simplify; a ) 1  cos 2  b) sec 2 A  tan 2 A c) tan  cos  sin  cos   1  1  sin 2    1  tan A  tan A 2 2   cos  1  1  1  sin 2  1  sin   sin 2  2sec 2   2 tan   iii  Prove  4 tan  2 2sec   2 2 2 1  tan 2    2  4 tan  4 tan  2  2 tan 2   2  4 tan 
  • 32. (ii) Simplify; a ) 1  cos 2  b) sec 2 A  tan 2 A c) tan  cos  sin  cos   1  1  sin 2    1  tan A  tan A 2 2   cos  1  1  1  sin 2  1  sin   sin 2  2sec 2   2 tan   iii  Prove  4 tan  2 2sec   2 2 2 1  tan 2    2  4 tan  4 tan  2  2 tan 2   2  4 tan  2 tan 2   4 tan 
  • 33. (ii) Simplify; a ) 1  cos 2  b) sec 2 A  tan 2 A c) tan  cos  sin  cos   1  1  sin 2    1  tan A  tan A 2 2   cos  1  1  1  sin 2  1  sin   sin 2  2sec 2   2 tan   iii  Prove  4 tan  2 2sec   2 2 2 1  tan 2    2  4 tan  4 tan  2  2 tan 2   2  4 tan  2 tan 2   4 tan  tan   2
  • 34. (ii) Simplify; a ) 1  cos 2  b) sec 2 A  tan 2 A c) tan  cos  sin  cos   1  1  sin 2    1  tan A  tan A 2 2   cos  1  1  1  sin 2  1  sin   sin 2  2sec 2   2 tan   iii  Prove  when proving trig identities 4 tan  2 you can; 2sec   2 2 2 1  tan 2    2 1. start with LHS and prove RHS  2. start with RHS and prove LHS 4 tan  4 tan  3. work on LHS and RHS 2  2 tan 2   2  independently and show they 4 tan  equal the same thing 2 tan 2   4 tan  NEVER SOLVE LIKE AN tan  EQUATION  2
  • 35. Exercise 4E; 1a, 2b, 3ac, 4bd, 5, 7, 9* Exercise 4F; 3a, 4b, 5c, 6ac, 7bd, 8ac, 10ad, 11acegi, 12bdfhj, 13ac, 14bd, 15ac, 16acegik, 17*a