SlideShare ist ein Scribd-Unternehmen logo
1 von 32
Downloaden Sie, um offline zu lesen
Origin of the Different Architectures
of the Jovian and Saturnian Satellite Systems


Takanori Sasaki, Shigeru Ida (Tokyo Tech)
Glen R. Stewart (U. Colorado)
Jovian System v.s. Saturnian System

                 rocky       rocky         icy      icy, undiff.



                  Io        Europa     Ganymede        Callisto
              mutual mean motion resonances (MMR)

                                                 icy
                   only one big body
               (~95% of total satellite mass)

                                                 Titan
Questions; Motivation of this study

Satellites’ size, number, and location
 Jovian: 4 similar mass satellites in MMR
 Saturnian: only 1 large satellite far from Saturn

         What is the origin of the different architecture?

Among Galilean satellites
 Io & Europa: rocky satellite
 Ganymede & Callisto: icy satellite
 Callisto: undifferentiated

          What is the origin of the satellites’ diversity?
Overview of this study

  Circum-Planetary Disk                  Satellite Formation
Canup & Ward, 2002, 2006            Ida & Lin, 2004, 2008, in prep.
Satellites formed in c.-p. disk     Analytical solution for
Actively-supplied accretion disk      accretion timescale
Supplied from circum-stellar disk     type I migration timescale
  → Analytical solution for T, Σ      trapping condition in MMR
Overview of this study

  Circum-Planetary Disk                   Satellite Formation
Canup & Ward, 2002, 2006             Ida & Lin, 2004, 2008, in prep.
Satellites formed in c.-p. disk      Analytical solution for
Actively-supplied accretion disk       accretion timescale
Supplied from circum-stellar disk      type I migration timescale
  → Analytical solution for T, Σ       trapping condition in MMR



            Adding New Ideas        Disk boundary conditions



Difference of Jovian/Saturnian systems is naturally reproduced?
Overview of this study

  Circum-Planetary Disk                   Satellite Formation
Canup & Ward, 2002, 2006             Ida & Lin, 2004, 2008, in prep.
Satellites formed in c.-p. disk      Analytical solution for
Actively-supplied accretion disk       accretion timescale
Supplied from circum-stellar disk      type I migration timescale
  → Analytical solution for T, Σ       trapping in MMR



            Adding New Ideas        Disk boundary conditions



 Difference of Jovian/Saturnian system is naturally reproduced
Canup & Ward (2002, 2006)

Actively-Supplied Accretion Disk
 Uniform mass infall Fin from the circum-stellar disk
 Infall regions: rin < r < rc (rc ~ 30Rp)
 Diffuse out at outer edge: rd ~ 150Rp
 Infall rate decays exponentially with time
 Temperature: balance of viscous heating and blackbody radiation
 Viscosity: α model
Canup & Ward (2002, 2006) +α

Inflow flux Fin = Fin (t = 0)exp("t # in )     [g/s]

                            12                +1 4          +3 4
                    # Mp & #     )G     &            # r &
Temperature Td " 160%     ( %      6    (            %      (   [K]
                    $ M J ' $ 5 *10 yrs '            $ 20RJ '
 !

Gas density                                [g/cm2]
   !

Dust density                                 [g/cm2]


                                  (2 3         (1                  (1    34
Increasing rate df d        " Mp %       " f % "     )G     % " r %
                     = 0.029$    '       $    ' $      6    ' $      '    [/years]
of dust density dt          # MJ &       #100 & # 5 *10 yrs & # 20RJ &
Overview of this study

  Circum-Planetary Disk                   Satellite Formation
Canup & Ward, 2002, 2006             Ida & Lin, 2004, 2008, in prep.
Satellites formed in c.-p. disk      Analytical solution for
Actively-supplied accretion disk       accretion timescale
Supplied from circum-stellar disk      type I migration timescale
  → Analytical solution for T, Σ       trapping in MMR



            Adding New Ideas        Disk boundary conditions



 Difference of Jovian/Saturnian system is naturally reproduced
Ida & Lin (2004, 2008, in prep.)

    Timescales of satellite’s accretion & type I migration

                M                  ' & *1 3 ' M *1 3 ' M *$5 / 6 ' - * 2 ' r * 5 4
      " acc   =   # 10 6 f d$1%$1 ) , ) $4
                               ice )             , ) p, ) , )
                                        , )10 M , M                            ,   [years]
                ˙
                M                                                ( 10 + ( 20RJ +
                                   ( &p + (     p+ (    J +



               r      1  % M ($1% M ($1% r (1 2 % "      ($1 4
      " mig   = # 10 5 ' $4     * ' p* '
                         ' 10 M * M            * '
                                                      G
                                                        6*     [years]
!              ˙
               r      fg &     p) & J ) & 20RJ ) & 5 +10 )




    Resonant trapping width of migrating proto-satellites
!
                                        1/6           −1/4
                              m i + mj            vmig
       btrap = 0.16                                              rH
                                 M⊕                vK

                   These approximate analytical solutions
                   are based on the results of N-body simulations
Overview of this study

  Circum-Planetary Disk                   Satellite Formation
Canup  Ward, 2002, 2006             Ida  Lin, 2004, 2008, in prep.
Satellites formed in c.-p. disk      Analytical solution for
Actively-supplied accretion disk       accretion timescale
Supplied from circum-stellar disk      type I migration timescale
  → Analytical solution for T, Σ       trapping condition in MMR



            Adding New Ideas        Disk boundary conditions



Difference of Jovian/Saturnian systems is naturally reproduced?
The Ideas

Jupiter

          inner cavity         opened up gap in c.-s. disk
                                 → infall to c.-p. disk stop abruptly


Saturn

             no cavity        did not open up gap in c.-s. disk
                              	

 → c.-p. disk decay with c.-s. disk

  Difference of “inner cavity” is from Königl (1991) and Stevenson (1974)
  Difference of gap conditions is from Ida  Lin (2004)
Inner Cavity (Analogy with T-Tauri stars)




            974                                HERBST  MUNDT
         number of stars




                                                     Herbst  Mundt (2005)

                           spin period [day]
Inner Cavity (Analogy with T-Tauri stars)
  weak magnetic field                     strong magnetic field → coupling with disk




   No Cavity                                      Cavity
              974                                  HERBST  MUNDT


                                                           If the magnetic torque is stronger
                                                           than the viscous torque, the disk
                                                           would be truncated at the
           number of stars




                                                           corotation radius




                                                           Herbst  Mundt (2005)

                             spin period [day]
Inner Cavity (Analogy with T-Tauri stars)
   weak magnetic field                     strong magnetic field → coupling with disk




     No Cavity                                     Cavity
               974                                  HERBST  MUNDT


Saturnian                                                                 Jovian
            number of stars




                                                            Herbst  Mundt (2005)

                              spin period [day]
Estimates of Cavity Opening

                                                   Cavity
Stevenson (1974)
  proto-Jovian magnetic field      1000 Gauss




                           
Königl (1991)
  magnetic field for the magnetic coupling
  accretion rate 10-6MJ/yr → a few hundred Gauss
                           

Present Saturnian magnetic field  1 Gauss         No Cavity
  ≒ late stage of Saturnian satellite formation
Jovian System




      inner cavity                           outer proto-satellite
    @corotation radius                   grow faster  migrate earlier

    Because the infall mass flux per unit area is constant,
    the total mass flux to satellite feeding zones is larger in outer regions.
Jovian System




         Type I migration is
      halted near the inner edge
                       The outer most satellite migrates and sweeps up
                       the inner small satellites.
Jovian System




                MMR



       Proto-satellites grow  migrate repeatedly
  They are trapped in MMR with the innermost satellite
Jovian System




      Total mass of the trapped satellites  Disk mass
         → the halting mechanism is not effective
        → Innermost satellite is released to the host planet
Jovian System




           after the gap opening → c.-p. disk deplete quickly
Saturnian System




     No inner cavity       outer proto-satellite
                       grow faster  migrate earlier
Saturnian System




              fall to Saturn


   Large proto-satellites migrate from the outer regions
   and fall to the host planet with inner smaller satellites
Saturnian System




             c.-p. disk depleted slowly
             with the decay of c.-s. disk
Monte Carlo Simulation (n=100)
	

 Parameters:
	

   	

   Disk viscosity (α model)   α = 10−3 − 10−2
	

   	

   Disk decay timescale        τin = 3 × 10 − 5 × 10
                                                    6         6 yr

	

   	

   Number of “satellite seeds” N = 10 − 20
Results: Distribution of the number of large satellites

                                       Jovian                            Saturnian
                          40                                    80
Total count of the case




                                                                60

                          20                                    40

                                                                20

                          0                                     0
                               0 1 2 3 4 5 6 7                       0   1   2   3   4
                                number of produced satellites
Results: Distribution of the number of large satellites

                                       Jovian                               Saturnian
                          40                                       80
Total count of the case




                                                                   60

                          20                                       40

                                                                   20

                          0                                         0
                               0 1 2 3 4 5 6 7                          0   1   2   3   4
                                number of produced satellites

                          inner two bodies: rocky               icy satellite
                           outer two bodies: icy                large enough (~MTitan)
Results: Properties of produced satellite systems

                             Jovian                        Saturnian
        1e-3
                   Galilean Satellites
                                                          Titan
        1e-4
Ms/Mp




        1e-5                   rocky component
                               icy component
        1e-6
               0          10           20        30   0   10      20   30
                                a/Rp
Results: Properties of produced satellite systems

                             Jovian                            Saturnian
        1e-3
                   Galilean Satellites
                                                             Titan
        1e-4
Ms/Mp




        1e-5                   rocky component
                               icy component
        1e-6
               0          10           20        30   0      10       20       30
                                a/Rp
        inner three bodies                       the largest satellite
        are trapped in MMR                       has ~90% of total satellite mass
Summary

• Jovian Satellite System v.s. Saturnian Satellite System
   Difference of size, number, location, and compositions

• Satellite Accretion/Migration in Circum-Planetary Disk
   Canup  Ward (2002, 2006) + Ida  Lin (2004, 2008, in prep.)

• The Ideas of Disk Boundary Conditions
   Difference of inner cavity opening and gap opening conditions

• Monte Carlo Simulations
   Difference of Jovian/Saturnian system are naturally reproduced

• Application to Solar/Super-Earths Systems

Weitere ähnliche Inhalte

Was ist angesagt?

Reduce, Reuse, Recycle: PNe as green galactic citizens
Reduce, Reuse, Recycle: PNe as green galactic citizensReduce, Reuse, Recycle: PNe as green galactic citizens
Reduce, Reuse, Recycle: PNe as green galactic citizensAstroAtom
 
N.19 harris asteroids-lightcurve-studies-then-and-now
N.19 harris asteroids-lightcurve-studies-then-and-nowN.19 harris asteroids-lightcurve-studies-then-and-now
N.19 harris asteroids-lightcurve-studies-then-and-nowIAPS
 
N4.Lemaitre - "Stability of an asteroid satellite"
N4.Lemaitre - "Stability of an asteroid satellite"N4.Lemaitre - "Stability of an asteroid satellite"
N4.Lemaitre - "Stability of an asteroid satellite"IAPS
 
Unit 3 - Astronomical Numbers
Unit 3 - Astronomical NumbersUnit 3 - Astronomical Numbers
Unit 3 - Astronomical NumbersKCTCS
 
A polarimetric survey for dust in 47 tucanae (ngc 104)
A polarimetric survey for dust in 47 tucanae (ngc 104)A polarimetric survey for dust in 47 tucanae (ngc 104)
A polarimetric survey for dust in 47 tucanae (ngc 104)Sérgio Sacani
 
Observational evidence for_a_dark_side_to_ngc5128_globular_cluster_system
Observational evidence for_a_dark_side_to_ngc5128_globular_cluster_systemObservational evidence for_a_dark_side_to_ngc5128_globular_cluster_system
Observational evidence for_a_dark_side_to_ngc5128_globular_cluster_systemSérgio Sacani
 
PSRI30yr anniversary lecture on Scaling Law and Agglomeration Issues in Fluid...
PSRI30yr anniversary lecture on Scaling Law and Agglomeration Issues in Fluid...PSRI30yr anniversary lecture on Scaling Law and Agglomeration Issues in Fluid...
PSRI30yr anniversary lecture on Scaling Law and Agglomeration Issues in Fluid...Masayuki Horio
 
A young protoplanet_candidate_embedded_in_the_circumstellar_disk_of_hd100546
A young protoplanet_candidate_embedded_in_the_circumstellar_disk_of_hd100546A young protoplanet_candidate_embedded_in_the_circumstellar_disk_of_hd100546
A young protoplanet_candidate_embedded_in_the_circumstellar_disk_of_hd100546Sérgio Sacani
 
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...JeremyHeyl
 
A luminous X-ray outburst from an intermediatemass black hole in an off-centr...
A luminous X-ray outburst from an intermediatemass black hole in an off-centr...A luminous X-ray outburst from an intermediatemass black hole in an off-centr...
A luminous X-ray outburst from an intermediatemass black hole in an off-centr...Sérgio Sacani
 
A LUMINOUS Be+WHITE DWARF SUPERSOFT SOURCE IN THE WING OF THE SMC: MAXI J0158...
A LUMINOUS Be+WHITE DWARF SUPERSOFT SOURCE IN THE WING OF THE SMC: MAXI J0158...A LUMINOUS Be+WHITE DWARF SUPERSOFT SOURCE IN THE WING OF THE SMC: MAXI J0158...
A LUMINOUS Be+WHITE DWARF SUPERSOFT SOURCE IN THE WING OF THE SMC: MAXI J0158...Carlos Bella
 
The puzzling source_in_ngc6388_a_possible_planetary_tidal_disruption_event
The puzzling source_in_ngc6388_a_possible_planetary_tidal_disruption_eventThe puzzling source_in_ngc6388_a_possible_planetary_tidal_disruption_event
The puzzling source_in_ngc6388_a_possible_planetary_tidal_disruption_eventSérgio Sacani
 
Are Young Galaxies Visible? - Partridge & Peebles 1967, ApJ 147, 686
Are Young Galaxies Visible? - Partridge & Peebles 1967, ApJ 147, 686Are Young Galaxies Visible? - Partridge & Peebles 1967, ApJ 147, 686
Are Young Galaxies Visible? - Partridge & Peebles 1967, ApJ 147, 686Edmund Christian Herenz
 
Regolith grain sizes_of saturn_rings_inferred_from_cassini
Regolith grain sizes_of saturn_rings_inferred_from_cassiniRegolith grain sizes_of saturn_rings_inferred_from_cassini
Regolith grain sizes_of saturn_rings_inferred_from_cassiniSérgio Sacani
 

Was ist angesagt? (18)

F gensenada
F gensenadaF gensenada
F gensenada
 
Reduce, Reuse, Recycle: PNe as green galactic citizens
Reduce, Reuse, Recycle: PNe as green galactic citizensReduce, Reuse, Recycle: PNe as green galactic citizens
Reduce, Reuse, Recycle: PNe as green galactic citizens
 
N.19 harris asteroids-lightcurve-studies-then-and-now
N.19 harris asteroids-lightcurve-studies-then-and-nowN.19 harris asteroids-lightcurve-studies-then-and-now
N.19 harris asteroids-lightcurve-studies-then-and-now
 
N4.Lemaitre - "Stability of an asteroid satellite"
N4.Lemaitre - "Stability of an asteroid satellite"N4.Lemaitre - "Stability of an asteroid satellite"
N4.Lemaitre - "Stability of an asteroid satellite"
 
Unit 3 - Astronomical Numbers
Unit 3 - Astronomical NumbersUnit 3 - Astronomical Numbers
Unit 3 - Astronomical Numbers
 
A polarimetric survey for dust in 47 tucanae (ngc 104)
A polarimetric survey for dust in 47 tucanae (ngc 104)A polarimetric survey for dust in 47 tucanae (ngc 104)
A polarimetric survey for dust in 47 tucanae (ngc 104)
 
CUWiP Poster
CUWiP PosterCUWiP Poster
CUWiP Poster
 
Observational evidence for_a_dark_side_to_ngc5128_globular_cluster_system
Observational evidence for_a_dark_side_to_ngc5128_globular_cluster_systemObservational evidence for_a_dark_side_to_ngc5128_globular_cluster_system
Observational evidence for_a_dark_side_to_ngc5128_globular_cluster_system
 
PSRI30yr anniversary lecture on Scaling Law and Agglomeration Issues in Fluid...
PSRI30yr anniversary lecture on Scaling Law and Agglomeration Issues in Fluid...PSRI30yr anniversary lecture on Scaling Law and Agglomeration Issues in Fluid...
PSRI30yr anniversary lecture on Scaling Law and Agglomeration Issues in Fluid...
 
A young protoplanet_candidate_embedded_in_the_circumstellar_disk_of_hd100546
A young protoplanet_candidate_embedded_in_the_circumstellar_disk_of_hd100546A young protoplanet_candidate_embedded_in_the_circumstellar_disk_of_hd100546
A young protoplanet_candidate_embedded_in_the_circumstellar_disk_of_hd100546
 
Astroparticle cosmo
Astroparticle cosmoAstroparticle cosmo
Astroparticle cosmo
 
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
 
A luminous X-ray outburst from an intermediatemass black hole in an off-centr...
A luminous X-ray outburst from an intermediatemass black hole in an off-centr...A luminous X-ray outburst from an intermediatemass black hole in an off-centr...
A luminous X-ray outburst from an intermediatemass black hole in an off-centr...
 
Teachers colloquium
Teachers colloquiumTeachers colloquium
Teachers colloquium
 
A LUMINOUS Be+WHITE DWARF SUPERSOFT SOURCE IN THE WING OF THE SMC: MAXI J0158...
A LUMINOUS Be+WHITE DWARF SUPERSOFT SOURCE IN THE WING OF THE SMC: MAXI J0158...A LUMINOUS Be+WHITE DWARF SUPERSOFT SOURCE IN THE WING OF THE SMC: MAXI J0158...
A LUMINOUS Be+WHITE DWARF SUPERSOFT SOURCE IN THE WING OF THE SMC: MAXI J0158...
 
The puzzling source_in_ngc6388_a_possible_planetary_tidal_disruption_event
The puzzling source_in_ngc6388_a_possible_planetary_tidal_disruption_eventThe puzzling source_in_ngc6388_a_possible_planetary_tidal_disruption_event
The puzzling source_in_ngc6388_a_possible_planetary_tidal_disruption_event
 
Are Young Galaxies Visible? - Partridge & Peebles 1967, ApJ 147, 686
Are Young Galaxies Visible? - Partridge & Peebles 1967, ApJ 147, 686Are Young Galaxies Visible? - Partridge & Peebles 1967, ApJ 147, 686
Are Young Galaxies Visible? - Partridge & Peebles 1967, ApJ 147, 686
 
Regolith grain sizes_of saturn_rings_inferred_from_cassini
Regolith grain sizes_of saturn_rings_inferred_from_cassiniRegolith grain sizes_of saturn_rings_inferred_from_cassini
Regolith grain sizes_of saturn_rings_inferred_from_cassini
 

Andere mochten auch

Andere mochten auch (9)

20110928
2011092820110928
20110928
 
20101006
2010100620101006
20101006
 
Elsi130329
Elsi130329Elsi130329
Elsi130329
 
2009 DPS Satellite
2009 DPS Satellite2009 DPS Satellite
2009 DPS Satellite
 
20121024
2012102420121024
20121024
 
Career Kashiwa
Career KashiwaCareer Kashiwa
Career Kashiwa
 
20101020
2010102020101020
20101020
 
天文学概論7
天文学概論7天文学概論7
天文学概論7
 
20111109
2011110920111109
20111109
 

Ähnlich wie Cps Hokudai

N2.Burns "Dynamics and collisions at Saturn"
N2.Burns "Dynamics and collisions at Saturn"N2.Burns "Dynamics and collisions at Saturn"
N2.Burns "Dynamics and collisions at Saturn"IAPS
 
Cassini-Huygens Mission to Saturn Overview
Cassini-Huygens Mission to Saturn OverviewCassini-Huygens Mission to Saturn Overview
Cassini-Huygens Mission to Saturn OverviewAEM
 
Multi dimensional simulations_of_the_expanding_supernova_remnant_of_sn1987_a
Multi dimensional simulations_of_the_expanding_supernova_remnant_of_sn1987_aMulti dimensional simulations_of_the_expanding_supernova_remnant_of_sn1987_a
Multi dimensional simulations_of_the_expanding_supernova_remnant_of_sn1987_aSérgio Sacani
 
Cosmology and Numbers jfK
Cosmology and Numbers jfKCosmology and Numbers jfK
Cosmology and Numbers jfKDr Jim Kelly
 
A super earth transiting a naked-eye star
A super earth transiting a naked-eye starA super earth transiting a naked-eye star
A super earth transiting a naked-eye starSérgio Sacani
 
Biermann AstroPhysic
Biermann AstroPhysicBiermann AstroPhysic
Biermann AstroPhysicAtner Yegorov
 
Pawan Kumar Relativistic jets in tidal disruption events
Pawan Kumar	Relativistic jets in tidal disruption eventsPawan Kumar	Relativistic jets in tidal disruption events
Pawan Kumar Relativistic jets in tidal disruption eventsBaurzhan Alzhanov
 
Proto-planetary disks and planetesimal accretion - Alessandro Morbidelli
Proto-planetary disks and planetesimal accretion - Alessandro MorbidelliProto-planetary disks and planetesimal accretion - Alessandro Morbidelli
Proto-planetary disks and planetesimal accretion - Alessandro MorbidelliLake Como School of Advanced Studies
 
N.32 marzari changing-the-orbital-configuration-of-planets-
N.32 marzari changing-the-orbital-configuration-of-planets-N.32 marzari changing-the-orbital-configuration-of-planets-
N.32 marzari changing-the-orbital-configuration-of-planets-IAPS
 
Producing science with_ptf
Producing science with_ptfProducing science with_ptf
Producing science with_ptfbsesar
 
การเกิดดาว1
การเกิดดาว1การเกิดดาว1
การเกิดดาว1ja_wondergirl
 

Ähnlich wie Cps Hokudai (20)

N2.Burns "Dynamics and collisions at Saturn"
N2.Burns "Dynamics and collisions at Saturn"N2.Burns "Dynamics and collisions at Saturn"
N2.Burns "Dynamics and collisions at Saturn"
 
Satellite120524
Satellite120524Satellite120524
Satellite120524
 
Tohoku100316
Tohoku100316Tohoku100316
Tohoku100316
 
Tohoku100316
Tohoku100316Tohoku100316
Tohoku100316
 
Cassini-Huygens Mission to Saturn Overview
Cassini-Huygens Mission to Saturn OverviewCassini-Huygens Mission to Saturn Overview
Cassini-Huygens Mission to Saturn Overview
 
ESLABtalk
ESLABtalkESLABtalk
ESLABtalk
 
Multi dimensional simulations_of_the_expanding_supernova_remnant_of_sn1987_a
Multi dimensional simulations_of_the_expanding_supernova_remnant_of_sn1987_aMulti dimensional simulations_of_the_expanding_supernova_remnant_of_sn1987_a
Multi dimensional simulations_of_the_expanding_supernova_remnant_of_sn1987_a
 
Cosmology and Numbers jfK
Cosmology and Numbers jfKCosmology and Numbers jfK
Cosmology and Numbers jfK
 
GEOtop 2008
GEOtop 2008GEOtop 2008
GEOtop 2008
 
New Worlds of Cosmos
New Worlds of CosmosNew Worlds of Cosmos
New Worlds of Cosmos
 
A super earth transiting a naked-eye star
A super earth transiting a naked-eye starA super earth transiting a naked-eye star
A super earth transiting a naked-eye star
 
1379 bickford[2]
1379 bickford[2]1379 bickford[2]
1379 bickford[2]
 
Biermann AstroPhysic
Biermann AstroPhysicBiermann AstroPhysic
Biermann AstroPhysic
 
Dr.Philos._Trial_Lecture_Committee_Given_Topic
Dr.Philos._Trial_Lecture_Committee_Given_TopicDr.Philos._Trial_Lecture_Committee_Given_Topic
Dr.Philos._Trial_Lecture_Committee_Given_Topic
 
Pawan Kumar Relativistic jets in tidal disruption events
Pawan Kumar	Relativistic jets in tidal disruption eventsPawan Kumar	Relativistic jets in tidal disruption events
Pawan Kumar Relativistic jets in tidal disruption events
 
Proto-planetary disks and planetesimal accretion - Alessandro Morbidelli
Proto-planetary disks and planetesimal accretion - Alessandro MorbidelliProto-planetary disks and planetesimal accretion - Alessandro Morbidelli
Proto-planetary disks and planetesimal accretion - Alessandro Morbidelli
 
N.32 marzari changing-the-orbital-configuration-of-planets-
N.32 marzari changing-the-orbital-configuration-of-planets-N.32 marzari changing-the-orbital-configuration-of-planets-
N.32 marzari changing-the-orbital-configuration-of-planets-
 
Producing science with_ptf
Producing science with_ptfProducing science with_ptf
Producing science with_ptf
 
lecture20
lecture20lecture20
lecture20
 
การเกิดดาว1
การเกิดดาว1การเกิดดาว1
การเกิดดาว1
 

Mehr von noinoi79528

系外惑星の探し方
系外惑星の探し方系外惑星の探し方
系外惑星の探し方noinoi79528
 
NHK カルチャー講義(第2回)
NHK カルチャー講義(第2回)NHK カルチャー講義(第2回)
NHK カルチャー講義(第2回)noinoi79528
 
NHK カルチャー講義(第1回)
NHK カルチャー講義(第1回)NHK カルチャー講義(第1回)
NHK カルチャー講義(第1回)noinoi79528
 
惑星物理学 2015
惑星物理学 2015惑星物理学 2015
惑星物理学 2015noinoi79528
 
宇宙科学入門
宇宙科学入門宇宙科学入門
宇宙科学入門noinoi79528
 
Kyoshin 20150719
Kyoshin 20150719Kyoshin 20150719
Kyoshin 20150719noinoi79528
 
Tokyojuniour150712
Tokyojuniour150712Tokyojuniour150712
Tokyojuniour150712noinoi79528
 
Satelliteformation150604
Satelliteformation150604Satelliteformation150604
Satelliteformation150604noinoi79528
 
Moon formation sasaki
Moon formation sasakiMoon formation sasaki
Moon formation sasakinoinoi79528
 
Planetphys150409
Planetphys150409Planetphys150409
Planetphys150409noinoi79528
 

Mehr von noinoi79528 (20)

系外惑星の探し方
系外惑星の探し方系外惑星の探し方
系外惑星の探し方
 
NHK カルチャー講義(第2回)
NHK カルチャー講義(第2回)NHK カルチャー講義(第2回)
NHK カルチャー講義(第2回)
 
NHK カルチャー講義(第1回)
NHK カルチャー講義(第1回)NHK カルチャー講義(第1回)
NHK カルチャー講義(第1回)
 
惑星物理学 2015
惑星物理学 2015惑星物理学 2015
惑星物理学 2015
 
宇宙科学入門
宇宙科学入門宇宙科学入門
宇宙科学入門
 
Lecture151224
Lecture151224Lecture151224
Lecture151224
 
Sci cafe151128
Sci cafe151128Sci cafe151128
Sci cafe151128
 
Lecture151109
Lecture151109Lecture151109
Lecture151109
 
Kwasan150926
Kwasan150926Kwasan150926
Kwasan150926
 
Elcas150919
Elcas150919Elcas150919
Elcas150919
 
Nhk150726
Nhk150726Nhk150726
Nhk150726
 
Ss quiz 150728
Ss quiz 150728Ss quiz 150728
Ss quiz 150728
 
Kyoshin 20150719
Kyoshin 20150719Kyoshin 20150719
Kyoshin 20150719
 
Tokyojuniour150712
Tokyojuniour150712Tokyojuniour150712
Tokyojuniour150712
 
Satelliteformation150604
Satelliteformation150604Satelliteformation150604
Satelliteformation150604
 
Moon formation sasaki
Moon formation sasakiMoon formation sasaki
Moon formation sasaki
 
Planetphys150409
Planetphys150409Planetphys150409
Planetphys150409
 
Kwasan 20150328
Kwasan 20150328Kwasan 20150328
Kwasan 20150328
 
Spaceunit150213
Spaceunit150213Spaceunit150213
Spaceunit150213
 
Spaceunit150111
Spaceunit150111Spaceunit150111
Spaceunit150111
 

Cps Hokudai

  • 1. Origin of the Different Architectures of the Jovian and Saturnian Satellite Systems Takanori Sasaki, Shigeru Ida (Tokyo Tech) Glen R. Stewart (U. Colorado)
  • 2. Jovian System v.s. Saturnian System rocky rocky icy icy, undiff. Io Europa Ganymede Callisto mutual mean motion resonances (MMR) icy only one big body (~95% of total satellite mass) Titan
  • 3. Questions; Motivation of this study Satellites’ size, number, and location Jovian: 4 similar mass satellites in MMR Saturnian: only 1 large satellite far from Saturn What is the origin of the different architecture? Among Galilean satellites Io & Europa: rocky satellite Ganymede & Callisto: icy satellite Callisto: undifferentiated What is the origin of the satellites’ diversity?
  • 4. Overview of this study Circum-Planetary Disk Satellite Formation Canup & Ward, 2002, 2006 Ida & Lin, 2004, 2008, in prep. Satellites formed in c.-p. disk Analytical solution for Actively-supplied accretion disk accretion timescale Supplied from circum-stellar disk type I migration timescale → Analytical solution for T, Σ trapping condition in MMR
  • 5. Overview of this study Circum-Planetary Disk Satellite Formation Canup & Ward, 2002, 2006 Ida & Lin, 2004, 2008, in prep. Satellites formed in c.-p. disk Analytical solution for Actively-supplied accretion disk accretion timescale Supplied from circum-stellar disk type I migration timescale → Analytical solution for T, Σ trapping condition in MMR Adding New Ideas Disk boundary conditions Difference of Jovian/Saturnian systems is naturally reproduced?
  • 6. Overview of this study Circum-Planetary Disk Satellite Formation Canup & Ward, 2002, 2006 Ida & Lin, 2004, 2008, in prep. Satellites formed in c.-p. disk Analytical solution for Actively-supplied accretion disk accretion timescale Supplied from circum-stellar disk type I migration timescale → Analytical solution for T, Σ trapping in MMR Adding New Ideas Disk boundary conditions Difference of Jovian/Saturnian system is naturally reproduced
  • 7. Canup & Ward (2002, 2006) Actively-Supplied Accretion Disk Uniform mass infall Fin from the circum-stellar disk Infall regions: rin < r < rc (rc ~ 30Rp) Diffuse out at outer edge: rd ~ 150Rp Infall rate decays exponentially with time Temperature: balance of viscous heating and blackbody radiation Viscosity: α model
  • 8. Canup & Ward (2002, 2006) +α Inflow flux Fin = Fin (t = 0)exp("t # in ) [g/s] 12 +1 4 +3 4 # Mp & # )G & # r & Temperature Td " 160% ( % 6 ( % ( [K] $ M J ' $ 5 *10 yrs ' $ 20RJ ' ! Gas density [g/cm2] ! Dust density [g/cm2] (2 3 (1 (1 34 Increasing rate df d " Mp % " f % " )G % " r % = 0.029$ ' $ ' $ 6 ' $ ' [/years] of dust density dt # MJ & #100 & # 5 *10 yrs & # 20RJ &
  • 9. Overview of this study Circum-Planetary Disk Satellite Formation Canup & Ward, 2002, 2006 Ida & Lin, 2004, 2008, in prep. Satellites formed in c.-p. disk Analytical solution for Actively-supplied accretion disk accretion timescale Supplied from circum-stellar disk type I migration timescale → Analytical solution for T, Σ trapping in MMR Adding New Ideas Disk boundary conditions Difference of Jovian/Saturnian system is naturally reproduced
  • 10. Ida & Lin (2004, 2008, in prep.) Timescales of satellite’s accretion & type I migration M ' & *1 3 ' M *1 3 ' M *$5 / 6 ' - * 2 ' r * 5 4 " acc = # 10 6 f d$1%$1 ) , ) $4 ice ) , ) p, ) , ) , )10 M , M , [years] ˙ M ( 10 + ( 20RJ + ( &p + ( p+ ( J + r 1 % M ($1% M ($1% r (1 2 % " ($1 4 " mig = # 10 5 ' $4 * ' p* ' ' 10 M * M * ' G 6* [years] ! ˙ r fg & p) & J ) & 20RJ ) & 5 +10 ) Resonant trapping width of migrating proto-satellites ! 1/6 −1/4 m i + mj vmig btrap = 0.16 rH M⊕ vK These approximate analytical solutions are based on the results of N-body simulations
  • 11. Overview of this study Circum-Planetary Disk Satellite Formation Canup Ward, 2002, 2006 Ida Lin, 2004, 2008, in prep. Satellites formed in c.-p. disk Analytical solution for Actively-supplied accretion disk accretion timescale Supplied from circum-stellar disk type I migration timescale → Analytical solution for T, Σ trapping condition in MMR Adding New Ideas Disk boundary conditions Difference of Jovian/Saturnian systems is naturally reproduced?
  • 12. The Ideas Jupiter inner cavity opened up gap in c.-s. disk → infall to c.-p. disk stop abruptly Saturn no cavity did not open up gap in c.-s. disk → c.-p. disk decay with c.-s. disk Difference of “inner cavity” is from Königl (1991) and Stevenson (1974) Difference of gap conditions is from Ida Lin (2004)
  • 13. Inner Cavity (Analogy with T-Tauri stars) 974 HERBST MUNDT number of stars Herbst Mundt (2005) spin period [day]
  • 14. Inner Cavity (Analogy with T-Tauri stars) weak magnetic field strong magnetic field → coupling with disk No Cavity Cavity 974 HERBST MUNDT If the magnetic torque is stronger than the viscous torque, the disk would be truncated at the number of stars corotation radius Herbst Mundt (2005) spin period [day]
  • 15. Inner Cavity (Analogy with T-Tauri stars) weak magnetic field strong magnetic field → coupling with disk No Cavity Cavity 974 HERBST MUNDT Saturnian Jovian number of stars Herbst Mundt (2005) spin period [day]
  • 16. Estimates of Cavity Opening Cavity Stevenson (1974) proto-Jovian magnetic field 1000 Gauss Königl (1991) magnetic field for the magnetic coupling accretion rate 10-6MJ/yr → a few hundred Gauss Present Saturnian magnetic field 1 Gauss No Cavity ≒ late stage of Saturnian satellite formation
  • 17. Jovian System inner cavity outer proto-satellite @corotation radius grow faster migrate earlier Because the infall mass flux per unit area is constant, the total mass flux to satellite feeding zones is larger in outer regions.
  • 18. Jovian System Type I migration is halted near the inner edge The outer most satellite migrates and sweeps up the inner small satellites.
  • 19. Jovian System MMR Proto-satellites grow migrate repeatedly They are trapped in MMR with the innermost satellite
  • 20. Jovian System Total mass of the trapped satellites Disk mass → the halting mechanism is not effective → Innermost satellite is released to the host planet
  • 21. Jovian System after the gap opening → c.-p. disk deplete quickly
  • 22. Saturnian System No inner cavity outer proto-satellite grow faster migrate earlier
  • 23. Saturnian System fall to Saturn Large proto-satellites migrate from the outer regions and fall to the host planet with inner smaller satellites
  • 24. Saturnian System c.-p. disk depleted slowly with the decay of c.-s. disk
  • 25. Monte Carlo Simulation (n=100) Parameters: Disk viscosity (α model) α = 10−3 − 10−2 Disk decay timescale τin = 3 × 10 − 5 × 10 6 6 yr Number of “satellite seeds” N = 10 − 20
  • 26. Results: Distribution of the number of large satellites Jovian Saturnian 40 80 Total count of the case 60 20 40 20 0 0 0 1 2 3 4 5 6 7 0 1 2 3 4 number of produced satellites
  • 27. Results: Distribution of the number of large satellites Jovian Saturnian 40 80 Total count of the case 60 20 40 20 0 0 0 1 2 3 4 5 6 7 0 1 2 3 4 number of produced satellites inner two bodies: rocky icy satellite outer two bodies: icy large enough (~MTitan)
  • 28. Results: Properties of produced satellite systems Jovian Saturnian 1e-3 Galilean Satellites Titan 1e-4 Ms/Mp 1e-5 rocky component icy component 1e-6 0 10 20 30 0 10 20 30 a/Rp
  • 29. Results: Properties of produced satellite systems Jovian Saturnian 1e-3 Galilean Satellites Titan 1e-4 Ms/Mp 1e-5 rocky component icy component 1e-6 0 10 20 30 0 10 20 30 a/Rp inner three bodies the largest satellite are trapped in MMR has ~90% of total satellite mass
  • 30.
  • 31.
  • 32. Summary • Jovian Satellite System v.s. Saturnian Satellite System Difference of size, number, location, and compositions • Satellite Accretion/Migration in Circum-Planetary Disk Canup Ward (2002, 2006) + Ida Lin (2004, 2008, in prep.) • The Ideas of Disk Boundary Conditions Difference of inner cavity opening and gap opening conditions • Monte Carlo Simulations Difference of Jovian/Saturnian system are naturally reproduced • Application to Solar/Super-Earths Systems