SlideShare ist ein Scribd-Unternehmen logo
1 von 144
Downloaden Sie, um offline zu lesen
Oltre l’ orizzonte cosmologico
            Paolo de Bernardis
           Dipartimento di Fisica
      Università di Roma La Sapienza


      A pranzo con la fisica - NIPS Lab
 Dipartimento di Fisica Università di Perugia
                 11/03/2010
L’ orizzonte in cosmologia




• L’ orizzonte delle particelle è la superficie che ci separa da
  quanto non possiamo osservare, perché la luce partita oltre l’
  orizzonte non è ancora arrivata fino a noi. Le particelle che si
  trovano oltre l’ orizzonte non sono ancora in contatto causale
  con noi. Esiste se l’ universo ha un’età finita.
• Esistono però altri orizzonti, di tipo fisico, più vicini di quello
  delle particelle, che dipendono dai dettagli della propagazione
  della luce nell’ universo.
Il redshift
• Negli anni ’20 Carl Wirtz,
Edwin Hubble ed altri,
analizzarono la luce
proveniente da galassie
distanti, e notarono che piu’
una galassia e’ distante,
piu’ le lunghezze d’ onda
della sua luce sono
allungate (spostamento
verso il rosso, redshift).
•Questo dato empirico viene
interpretato come una prova
dell’ espansione dell’
universo.
Lunghezza d’ onda λ (nm)

 Galassia
 molto lontana



Galassia lontana



Galassia vicina



   laboratorio




                   Ca II       HI

                                    Mg I   Na I
Percorrendo distanze cosmologiche, la luce cambia colore
• La relativita’ generale di Einstein prevede
  che, in un universo in espansione, le
  lunghezze d’onda λ dei fotoni si allunghino
  esattamente quanto le altre lunghezze.
• Piu’ distante e’ una galassia, piu’ e’ lungo il
  cammino che la luce deve percorrere, piu’
  lungo e’ il tempo che impiega, maggiore e’
  l’ espansione dell’ universo dal momento
  dell’ emissione a quello dalla ricezione, e
  piu’ la lunghezza d’ onda viene allungata.
 to

 t1


 t2
• Se vogliamo arrivare a
  osservare l’ orizzonte,
  dobbiamo osservare più
  lontano possibile.
• La luce che è partita da
  regioni di universo così
  remote, avrà allungato
  moltissimo le sue
  lunghezze d’ onda,
  diventando infrarossa, o
  microonde, o radioonde …
• Quindi richiede telescopi e
  rivelatori speciali per essere
  osservata.
• L’ orizzonte a cui si arriva, però, è di tipo fisico.
• Infatti l’ espansione dell’ universo comporta un suo
  raffreddamento. Osservando lontano riceveremo
  luce che è stata emessa quando l’ universo era più
  caldo di oggi.
• Se guardiamo abbastanza lontano, arriveremo ad
  osservare epoche in cui l’ universo era caldo come
  o più della superficie del sole.
• E quindi era ionizzato. In quell’ epoca i fotoni non
  potevano propagarsi su linee rette, ma su spezzate
  venendo continuamente diffusi dagli elettroni liberi
  del mezzo ionizzato.
• L’ universo primordiale è opaco, come opaco è l’
  interno di una stella.
Orizzonte fisico
• In un universo in espansione, dominato dalla
  radiazione, si può calcolare accuratamente il
  tempo necessario per passare dal Big Bang
  (densità e temperatura infinite) fino alla
  temperatura in cui elettroni e protoni
  possono combinarsi in atomi
  (ricombinazione dell’ idrogeno).
• La temperatura a cui avviene la
  ricombinazione è circa 3000K, e il tempo
  necessario per arrivarci è di 380000 anni.
• Quindi per i primi 380000 anni della sua
  evoluzione l’ universo è ionizzato e opaco.
Orizzonte fisico
• Osservando sempre più lontano,
  potremo vedere solo finchè l’ universo è
  trasparente. Cioè fino all’ epoca della
  ricombinazione.
• Possiamo quindi osservare entro un
  orizzonte che è una superficie sferica,
  centrata sulla nostra posizione, al di là
  della quale l’ universo è opaco a causa
  delle diffusioni (scattering) contro gli
  elettroni liberi subite dai fotoni.
• Si chiama superficie di ultimo scattering
  ed è il nostro orizzonte fisico.
Composizione della luce che viene dal sole (spettro)
                                   Lunghezza d’ onda (micron)
Intensità luminosa W/m2/sr/cm-1)

                                             Radiazione Termica,
                                             Spettro di Corpo Nero
Strong evidence for a hot
                  early phase of the Universe


                    Thermal spectrum ….

                    … and accurate isotropy




             0K                   3K            5K




Cosmic
Microwave
Background
Orizzonte fisico
• Nel seguito:
  –L’ osservazione della superficie di
   ultimo scattering.
    • Come si fa
    • Quali sono i risultati
    • Orizzonti causali impressi nell’ orizzonte
      fisico
    • Conseguenze per la cosmologia e la
      fisica fondamentale
  –Come andare oltre.
How to detect CMB photons

 • E(γCMB) of the order of 1 meV
 • Frequency: 15-600 GHz
 • Detection methods:
   – Coherent (antenna + amplifier)
   – Thermal (bolometers)
   – Direct (Cooper pairs in KIDs)
 • Space (atmospheric opacity)
How to detect CMB photons

 • E(γCMB) of the order of 1 meV
 • Frequency: 15-600 GHz
 • Detection methods:
   – Coherent (antenna + amplifier)
   – Thermal (bolometers)
   – Direct (Cooper pairs in KIDs)
 • Space (atmospheric opacity)
Cryogenic Bolometers
• The CMB spectrum is a continuum and bolometers are wide band
  detectors. That’s why they are so sensitive.
                             Thermometer
                             (Ge thermistor (ΔR)
                             at low T)
          Load resistor


                                                            Incoming
                ΔV                                          Photons (ΔB)

                                        Feed
                          Integrating   Horn         filter
               Radiation  cavity        (angle selective)
                                                     (frequency
               Absorber (ΔT)                         selective)
• Fundamental noise sources are Johnson noise in the thermistor
  (<ΔV2> = 4kTRΔf), temperature fluctuations in the thermistor
  ((<ΔW2> = 4kGT2Δf), background radiation noise (Tbkg5)        need
  to reduce the temperature of the detector and the radiative
  background.
Cryogenic Bolometers                     Again, need
• Johnson noise in the thermistor           of low
                                          temperature
 d Δ V J2                                   and low
            = 4 kTR
     df                                   background
• Temperature noise
 d Δ W T2        4 kT 2 G eff
           = 2
     df      G eff + (2π fC )
                               2
                                      Q
• Photon noise
  d ΔWPh 4k 5TBG x4 (ex −1+ ε )
        2      5
          = 2 3 ∫ε               dx
    df      ch          (e −1)
                          x   2


• Total NEP (fundamental):

      1 d ΔVJ2 d ΔWT2 d ΔWPh
                           2

NEP = 2
   2
              +      +
     ℜ df        df     df
Circa 1970



             Circa 1980
•The absorber is micro
machined as a web of              Spider-Web Bolometers
metallized Si3N4 wires, 2
μm thick, with 0.1 mm           Built by JPL          Signal wire
pitch.
                               Absorber
•This is a good absorber for
mm-wave photons and
features a very low cross
section for cosmic rays.
Also, the heat capacity is
reduced by a large factor
with respect to the solid
absorber.
•NEP ~ 2 10-17 W/Hz0.5 is
achieved @0.3K
•150μKCMB in 1 s
•Mauskopf et al. Appl.Opt.      Thermistor
36, 765-771, (1997)                            2 mm
Development of thermal detectors for far IR and mm-waves
                           17
                          10
                                  Langley's bolometer
                                                         Golay Cell
a measurement (seconds)




                           12
                          10                                  Golay Cell
  time required to make




                                                                  Boyle and Rodgers bolometer
                                           1year                      F.J.Low's cryogenic bolometer
                           7
                          10                                            Composite bolometer
                                                  1day
                                                    1 hour                    Composite bolometer at 0.3K
                           2
                          10
                                                         1 second
                                                                                     Spider web bolometer at 0.3K
                                                                                      Spider web bolometer at 0.1K
                                                            Photon noise limit for the CMB
                                1900       1920      1940      1960        1980     2000     2020     2040     2060

                                                                       year
How to detect CMB photons

 • E(γCMB) of the order of 1 meV
 • Frequency: 15-600 GHz
 • Detection methods:
   – Coherent (antenna + amplifier)
   – Thermal (bolometers)
   – Direct (Cooper pairs in KIDs)
 • Space (atmospheric opacity)
COBE-FIRAS
• COBE-FIRAS was a
  cryogenic Martin-
  Puplett Fourier-
  Transform
  Spectrometer with
  composite
  bolometers. It was
  placed in a 400 km
  orbit.
• A zero instrument
  comparing the specific
  sky brightness to the
  brightness of a
  cryogenic Blackbody
MPI
(Martin Puplett
Interferometer)

Beamsplitter =
wire grid
polarizer

Differential
instrument




                            ∞
               I SKY ( x) = C ∫ [SSKY (σ ) − SREF (σ )]rt(σ ){ + cos[4πσx]}dσ
                                                              1
                            0

                           ∞
               ICAL( x) = C ∫ [SCAL(σ ) − SREF (σ )]rt(σ ){ + cos[4πσx]}dσ
                                                           1
                            0
FIRAS
• The FIRAS guys were able to change the temperature of
  the internal blackbody until the interferograms were null.
• This is a null measurement, which is much more
  sensitive than an absolute one: (one can boost the gain of
  the instrument without saturating it !).
• This means that the difference between the spectrum of
  the sky and the spectrum of a blackbody is zero, i.e. the
  spectrum of the sky is a blackbody with that temperature.
• This also means that the internal blackbody is a real
  blackbody: it is unlikely that the sky can have the same
  deviation from the Planck law characteristic of the
  source built in the lab.
σ (cm-1) wavenumber
• The spectrum

           2h ν   3
B(ν , T ) = 2 x
           c e −1
TCMB = 2.725K
                                        RJ   Wien
          hν      ν
xCMB   =      ≅
         kTCMB 56 GHz
    − xmax  xmax
1− e      =      ⇒ xmax = 2.82 ⇒
             3
ν max = 159 GHz (σ max = 5.31 cm −1 )
           λ
B(ν , T ) = B(λ , T ) ⇒ λmax = 1.06 mm
           ν
• Techniques ?




                                RJ   Wien




ν << ν max = 160 GHz ⇒ coherent detectors
ν >> ν max = 160 GHz ⇒ bolometers
ν ≈ ν max = 160 GHz ⇒ ? ??
• The DMR instrument aboard      COBE-DMR
  of the COBE satellite                     CMB anisotropy
  measured the first map of
  CMB anisotropy (1992)
                                   Galactic Plane
• The contrast of the image is
  very low, but there are
  structures, at a level of
  10ppm.
• Instrumental noise is
  significant in the maps
  (compare the three different
  wavelengths)
• DMR did not have a real
  telescope, so the angular
  resolution was quite coarse
  (10 o !!)
Cosmic Horizons
• The very good isotropy of the CMB sky is to
  some extent surprising.
• The CMB comes from an epoch of 380000 years
  after the Big Bang.
• So it depicts a region of the universe as it was
  380000 years after the Big Bang.
• The region we can map, however, is much wider
  than 380000 light years.
• So it contains subregions which are separated
  more than the length light has travelled since the
  Big Bang. These regions would not be in causal
  contact in a static universe.
R= distance from
                                                 us = 14 Glyrs

                                                 But also distance in
              R                                  time: 14 Gyrs ago
                  &
                      t



                          here, now




                                             K
                                         000
                                      T=3
           Transparent
           universe
Opaque
universe
R= distance from
                        ly                         us = 14 Glyrs
              several G




                                    y
                                4 Gl
                                                   But also distance in




                               R= 1
              R=                                   time: 14 Gyrs ago
                 1   4G
                          ly


                          here, now




                                               K
                                           000
                                        T=3
           Transparent
           universe
Opaque
universe
r=3                       R= distance from
                                             80 k
                                                 l   y
                            ly                                      us = 14 Glyrs
                  several G

          ly
        0k




                                        y
      38




                                    4 Gl
                                                                    But also distance in
    r=




                                   R= 1
                  R=                                                time: 14 Gyrs ago
                     1   4G
                              ly


                              here, now




                                                                K
                                                            000
                                                         T=3
               Transparent
               universe
Opaque
universe
Cosmic Horizons
• We measure the same brightness
  (temperature) in all these regions, and this
  is surprising, because to attain thermal
  equilibrium, contact is required ! (through
  forces, thermal, radiative …).
• We live in an expanding universe. Regions
  separated by more than 380000 light
  years might have been in causal contact
  (and thus homogeneized) earlier.
Expansion vs Horizon
     In a Universe made of                                   o   n
     matter and radiation, the                          oriz
                                                e   h
     expansion rate decreases              f th
     with time.                       eo
                                  siz

                                 size of        region
                                 the considered




                                                    time
Expansion vs Horizon
     In a Universe made of                                                  o   n
     matter and radiation, the                                         oriz
                                                               e   h
     expansion rate decreases                             f th
     with time.                                      eo
                                                 siz

                                               size of        region
                                               the considered



                                   So a region as large as
                                   the horizon when the CMB
                                   is released ….



                                 380000 y
                                                                   time
Expansion vs Horizon
     In a Universe made of                                              o   n
     matter and radiation, the                                     oriz
                                                           e   h
     expansion rate decreases                         f th
     with time.                                  eo
                                             siz

                                            size of        region
                                            the considered




           … has never been
           causally connected
           before

                                 380000 y
                                                               time
Expansion vs Horizon
     In a Universe made of                                                o   n
     matter and radiation, the                                       oriz
                                                             e   h
     expansion rate decreases                           f th
     with time.                                    eo
                                               siz

                                              size of        region
                                              the considered




           … nor has been
           causally connected to
           surrounding regions

                                   380000 y
                                                                 time
Cosmic Horizons
• Hence the “Paradox of Horizons” :
• We see approximately the same temperature
  everywhere in the map of the CMB, but we
  do not understand how this has been
  obtained in the first 380000 years of the
  evolution of the universe.
• Was this temperature regulated everywhere
  ab-initio ?
• Are our assumptions about the composition
  of the universe wrong, and the universe does
  not decelerate in the first 380000 years ?
Granulazione solare


                      Gas incandescente
                      sulla superficie del
                      Sole (5500 K)

           8 minuti luce
Qui, ora
Granulazione solare


                       Gas incandescente
                       sulla superficie del
                       Sole (5500 K)

           8 minuti luce
Qui, ora



                    Gas incandescente
                    nell’ universo
                    primordiale (l’
                    universo diventa
                    trasparente a 3000 K)

           14 miliardi di anni luce
Qui, ora

                                              Mappa di BOOMERanG dell’ Universo Primordiale
Flatness Paradox
• The expansion of the Universe is regulated by the
  Friedmann equation, directly deriving from
  Einstein’s equations for a homogeneous and
  isotropic fluid.
• If the Universe contains only matter and radiation, it
  either collapses or dilutes, with a rate depending on
  the mass-energy density.
• To get an evolution with a mass-energy density of
  the order of the observed one today, billions of
  years after the Big Bang, you need to tune it at the
  beginning very accurately, precisely equal to a
  critical value.
• How was this fine-tuning achieved ?
a(t)

                                                                                 g
                                                                       ig B an
                                                                   B
                                                             the
                                                         ter
                                                     s af
 Cosmic distances




                                             1   n
                                      nsity,
                             l   de
                    Cr itica




                                            Billion years                  t
Inflation might be the solution
                         C
                      In o sm
                        fla ic
                           ti o
                               n
   Sub-atomic scales

         t=10-36s
Quantum fluctuations of
the field dominating the
 energy of the universe

     Energy scale:
      1016 GeV

  Cosmic Inflation:

  A very fast expansion             Cosmological scales
  of the universe, driven
  by a phase transition in
                                       t=380000 y
  the first split-second            density fluctuations
Expansion vs Horizon
     According to the inflation                                               o   n
     theory ….                                                           oriz
                                                                 e   h
                                                            f th
                                                       eo
                                                   siz

                                                 size of        region
                                                 the considered

                                    A region as large as the
                                    horizon when the CMB is
                                    released ….
              …had been causally
              connected to the
              surrounding regions
              before inflation
                                  380000 y
                                                                     time
al   size of             n
               orm tion the considered regio
              n lu
               evo

                                                           o   n
                                                      oriz
                                              e   h
                                         f th
                                    eo
exponential                     siz
expansion
Inflation:




10-36 s                                           time
al   size of             n
                         orm tion the considered regio
                        n lu
                         evo

                                                                     o   n
                                                                oriz
                                                        e   h
                                                   f th
                                              eo
exponential                               siz
expansion
Inflation:




              Here the horizon
              contains all of the
              universe observable
              today

10-36 s                                                     time
• Inflation
   – Provides a physical process to origin density fluctuations
   – Explains the flatness paradox
   – Explains the horizons paradox
• Is a predictive theory (a list of > models has been compiled..)
   – Predicts gaussian density fluctuations
   – Predicts scale invariant density fluctuations
   – Predicts Ω=1
• How can we test it ?
• We still expect a difference between the physical processes
  happening inside the horizon and those relevant outside the
  horizon.
• So we expect anyway that the scale of the causal horizon is
  imprinted in the image of the CMB.
• The angular size subtended by the horizons when the CMB is
  released is around 1 degree, if the geometry of space is
  Euclidean.
• We need sharp images of the CMB, so that we can resolve
  the density fuctuations predicted by inflation.
θ                d

                    R



  d ao   380000 ly
θ≈ × ≈               ×1100 ≈1o
  R a 14000000000 ly
380000 lyrs




          R

                              1o
COBE resolution
                  Here, now




                                          K
    10o




                                      000


                                                  ang
                                                 ∞)
                                   T=3


                                              BigB
                                              (T=
                                                R= distance
                                                from us
                                                = 14 Glyrs
high resolution
•   The images from COBE-DMR were not sharp
    enough to resolve cosmic horizons (the angular
    resolution was 7°).
•   After COBE, experimentalists worked hard to
    develop higher resolution experiments.
•   In addition to testing inflation, we expected high
    resolution observations to give informations
    about

    a) The geometry of space
    b) The physics of the primeval fireball.

a) The angle subteneded by the horizon can be
    more or less than 1° if space is curved.
LSS
                14 Gly




                                               horizon
         Critical density Universe Ω=1
    1o




                                               horizon
                           Ω>1
     2o
High density Universe




                                               horizon
     0.5o
   Low density Universe Ω<1
PS                           PS                               PS


 0          200          l    0           200             l    0          200          l
 High density Universe        Critical density Universe         Low density Universe
        Ω>1                             Ω=1                             Ω<1




                   2o                         1o
                                                                           0.5o
The quest for high resolution
b) Within a causally connected region, the
  hot, ionized gas of the primeval fireball is
  subject to opposite forces: gravity and
  photon pressure.
• If a density fluctuation is present,
  “acoustic oscillations” start, depending on
  the composition of the universe (density
  of baryons) and on the spectrum of initial
  density fluctuations.
Density perturbations (Δρ/ρ) were oscillating in the primeval plasma (as a result of the
opposite effects of gravity and photon pressure).
               Due to gravity,                             T is reduced enough
               Δρ/ρ increases,                             that gravity wins again
               and so does T




                            Pressure of photons
 overdensity                increases, resisting to the
                            compression, and the
                   t        perturbation bounces back
                                 Before recombination T > 3000 K
                   t              After recombination T < 3000 K

                                                              Here photons are not tightly
                                                              coupled to matter, and their
                                                              pressure is not effective.
                                                              Perturbations can grow and
                                                              form Galaxies.
After recombination, density perturbation can grow and create the hierarchy of structures
we see in the nearby Universe.
• The study of solar oscillations
  allows us to study the interior
  structure of the sun, well below
  the photosphere, because these
  waves depend on the internal
  structure of the sun.

• The study of CMB anisotropy
  allows us to study the universe
  well behind (well before) the
  cosmic photosphere (the
  recombination epoch), because
  the oscillations depend on the
  composition of the universe
  and on the initial perturbations.
How to obtain wide, high angular
      resolution maps of the CMB
• Angular Resolution: Microwave telescope, at
  relatively high frequencies (θ=λ/D)
• 150GHz: peak of CMB brightness
• Low sky noise and high transparency at 150 GHz:
  Balloon or Satellite
• High sensitivity at 150 GHz: cryogenic bolometers
• Multiband for controlling foreground emission

  Statistical samples of the CMB sky (about one hundred directions) in the 90s


   In Italy: ARGO                       In the USA: MAX, MSAM, …
How to obtain wide, high angular
      resolution maps of the CMB
• Angular Resolution: Microwave telescope, at
  relatively high frequencies (θ=λ/D)
• 150GHz: peak of CMB brightness
• Low sky noise and high transparency at 150 GHz:
  Balloon or Satellite
• High sensitivity at 150 GHz: cryogenic bolometers
• Multiband for controlling foreground emission
• Sensitivity and sky coverage (size of explored
  region): either
  – Extremely high sensitivity (0.1K) and regular flight
                        or
  – High sensitivity (0.3K) and long duration flight
How to obtain wide, high angular
      resolution maps of the CMB
• Angular Resolution: Microwave telescope, at
  relatively high frequencies (θ=λ/D)
• 150GHz: peak of CMB brightness
• Low sky noise and high transparency at 150 GHz:
  Balloon or Satellite
• High sensitivity at 150 GHz: cryogenic bolometers
• Multiband for controlling foreground emission
• Sensitivity and sky coverage (size of explored
  region): either
  – Extremely high sensitivity (0.1K) and regular flight MAXIMA
                        or
  – High sensitivity (0.3K) and long duration flight BOOMERanG
Universita’ di Roma, La Sapienza:                      Cardiff University: P. Ade, P. Mauskopf
P. de Bernardis, G. De Troia, A. Iacoangeli,           IFAC-CNR: A. Boscaleri
S. Masi, A. Melchiorri, L. Nati, F. Nati, F.           INGV: G. Romeo, G. di Stefano
Piacentini, G. Polenta, S. Ricciardi, P. Santini, M.   IPAC: B. Crill, E. Hivon
Veneziani                                              CITA: D. Bond, S. Prunet, D. Pogosyan
Case Western Reserve University:                       LBNL, UC Berkeley: J. Borrill
J. Ruhl, T. Kisner, E. Torbet, T. Montroy              Imperial College: A. Jaffe, C. Contaldi
Caltech/JPL:                                           U. Penn.: M. Tegmark, A. de Oliveira-Costa
A. Lange, J. Bock, W. Jones, V. Hristov                Universita’ di Roma, Tor Vergata: N. Vittorio,
University of Toronto:                                 G. de Gasperis, P. Natoli, P. Cabella
B. Netterfield, C. MacTavish, E. Pascale




                                BOOMERanG
the BOOMERanG ballon-borne telescope

Sun Shield
                    Solar
                    Array   Differential
                            GPS Array
                                                  Star
                                                  Camera
                            Cryostat
                            and
                            detectors


Ground
Shield                       Primary
                             Mirror
                             (1.3m)


             Sensitive at 90, 150, 240, 410 GHz
120 mm


            3He   fridge


    D                      D



                0.3K

D           D          D   D
        D                              Focal plane assembly
                                       BOOMERanG-LDB Appl.Opt
                1.6K                        MultiBand
                                 150    D = location of detectors
                                           Photometers         150
                                          (150,240,410)
        preamps                90                               90
                                          4o on the sky
• The instrument is flown
  above the Earth
  atmosphere, at an altitude
  of 37 km, by means of a
  stratospheric balloon.
• Long duration flights (LDB,
  1-3 weeks) are performad
  by NASA-NSBF over
  Antarctica
• BOOMERanG has been flown
  LDB two times:
• From Dec.28, 1998 to
  Jan.8, 1999, for CMB
  anisotropy measurements
• In 2003, from Jan.6 to
  Jan.20, for CMB polarization
  measurements (B2K).
9/Jan/1999
BOOMERanG
• 1998:
  BOOMERanG
  mapped the
  temperature
  fluctuations of
  the CMB at
  sub-horizon
  scales (<1O).
• The signal
  was well
  above the
  noise:
   2 indep. det.
    at 150 GHz
• 1998:
  BOOMERanG
  mapped the
  temperature
  fluctuations of
  the CMB at
  sub-horizon
  scales (<1O).
• The rms
  signal has the
  CMB
  spectrum and
  does not fit
  any spectrum
  of foreground
  emission.
PS                           PS                               PS


 0          200          l    0           200             l    0          200          l
 High density Universe        Critical density Universe         Low density Universe
        Ω>1                             Ω=1                             Ω<1




                   2o                         1o
                                                                           0.5o
Full power
spectrum
measurement
from
BOOMERanG
(2002)

-Geometry of
the universe
from location of
first peak

-Signature of
inflation from
amplitudes of 3
peaks and
general slope
In the primeval plasma, photons/baryons density perturbations start to oscillate only when the sound horizon
becomes larger than their linear size . Small wavelength perturbations oscillate faster than large ones.




                                                                                                                                                                  multipole
                                                                                            The angle subtended depends on the geometry of space
    Size of sound horizon
                             v                  v               v                LSS
                                                                                                                                                       2nd dip
                                        C               R

  size of perturbation
  (wavelength/2)                        v               v




                                                                                                                                                                  450
                                                C              R
                                                                                                                                                      2nd peak

                                            v                     v

                                                        C
                                                                                                                                                        1st dip
                                                    v                    380000 ly




                                                                                                                                                                  220
                                                              C                                                                                    1st peak

 0y                              time                 300000 y
Big-bang                                             recombination                     Power Spectrum
We can measure cosmological parameters with CMB !
Temperature Angular spectrum varies with Ωtot , Ωb , Ωc, Λ, τ, h, ns, …
“The perfect universe”
• Data consistent with flat Universe 
• Baryon fraction agrees with BBN
• With supernovae or LSS => Λ term
Normal
    Radiation Matter
     < 0.3%    4%

                       Dark
                       Matter
                        22%




 Dark
Energy
 74%
Did Inflation really happen ?
• We do not know. Inflation has not been
  proven yet. It is, however, a mechanism able
  to produce primordial fluctuations with the right
  characteristics.
• Four of the basic predictions of inflation have
  been proven:
  –   existence of super-horizon fluctuations
  –   gaussianity of the fluctuations
  –   flatness of the universe
  –   scale invariance of the density perturbations
• One more remains to be proved: the stochastic
  background of gravitational waves produced
  during the inflation phase.
• CMB can help in this – see below.
CMB polarization
• CMB radiation is Thomson scattered at recombination.
• If the local distribution of incoming radiation in the
  rest frame of the electron has a quadrupole moment,
  the scattered radiation acquires some degree of linear
  polarization.
                    Last scatte
                                ring surfa
                                           ce
y                                                y
                          -10ppm           +10ppm
           -                                                +
                            x                                       x
+          -        +                         -             -   -
                                   y
           -                                             +

                                                    x
                                       -



= e- at last scattering
If inflation really
            happened…
• It stretched geometry of        OK
  space to nearly Euclidean
• It produced a nearly scale
  invariant spectrum of density   OK
  fluctuations
• It produced a stochastic
  background of gravitational
  waves.
                                  ?
Quadrupole from P.G.W.
• If inflation really happened:
      It stretched geometry of space to
      nearly Euclidean
      It produced a nearly scale invariant
      spectrum of gaussian density
      fluctuations
      It produced a stochastic background of
      gravitational waves: Primordial G.W.
      The background is so faint that even
      LISA will not be able to measure it.
                                                E-modes
• Tensor perturbations also produce
  quadrupole anisotropy. They generate
  irrotational (E-modes) and rotational
  (B-modes) components in the CMB
  polarization field.
• Since B-modes are not produced by scalar
  fluctuations, they represent a signature of
  inflation.                                    B-modes
B-modes from P.G.W.
• The amplitude of this effect is very small, but
  depends on the Energy scale of inflation. In fact the
  amplitude of tensor modes normalized to the scalar
  ones is:
                 1/ 4
           ⎛ C2 ⎞                        Inflation potential
      1/ 4    GW
  ⎛ T⎞                   V 1/ 4
  ⎜ ⎟   ≡ ⎜ Scalar ⎟
          ⎜C       ⎟   ≅
  ⎝S⎠     ⎝ 2      ⎠       3.7 ×1016 GeV
• and
          l(l + 1) B             ⎡ V 1/ 4    ⎤
                  cl max ≅ 0.1μK ⎢           ⎥
            2π                   ⎢ 2 ×10 GeV ⎥
                                 ⎣
                                        16
                                             ⎦
• There are theoretical arguments to expect that the
  energy scale of inflation is close to the scale of GUT
  i.e. around 1016 GeV.
• The current upper limit on anisotropy at large scales
  gives T/S<0.5 (at 2σ)
• A competing effect is lensing of E-modes, which is
  important at large multipoles.
06/01/2003
PSB devices & feed optics (Caltech + JPL)

     PSB Pair
145 GHz
T map

(Masi et al.,
2005)


the deepest
CMB map
ever




                [Masi et al. 2005]
B03 TT Power Spectrum
• Detection of anisotropy signals all the way up to l=1500
• Time and detector jacknife tests OK
• Systematic effects negligible wrt noise & cosmic variance




        Jones et al. 2005
19/20




La mappa dell’ universo primordiale con sovrapposta la polarizzazione
Realizzata dal gruppo di Cosmologia di Tor Vergata (Genn. 2005)
TE Power Spectrum


• Smaller signal, but
  detection evident (3.5σ)
• NA and IT results
  consistent
• Error bars dominated by
  cosmic variance
• Time and detectors
                             Piacentini et al. 2005
  jacknife OK, i.e.
  systematics negligible
• Data consistent with TT
  best fit model
EE Power Spectrum
• Signal extremely small, but
  detection evident for EE
  (non zero at 4.8σ).
• No detection for BB nor for
  EB
• Time and detectors jacknife
  OK, i.e. systematics
  negligible
• Data consistent with TT best
                                 Montroy et al. 2005
  fit model
• Error bars dominated by
  detector noise.
                                 Montroy et al. 2005
WMAP (2002)
Wilkinson Microwave Anisotropy Probe
WMAP in L2 : sun, earth, moon are all
  well behind the solar shield.
WMAP
                                      Hinshaw et al. 2006
                                      astro-ph/0603451




Detailed Views of the
                                 1o
Recombination Epoch
(z=1088, 13.7 Gyrs ago)
              BOOMERanG
              Masi et al. 2005
              astro-ph/0507509
2006   Hinshaw et al. 2006
Paradigm of CMB anisotropies                                               Power spectrum




                                           k




                                                                                                  l
  smaller than           Power                     Processed by             of CMB
                                                 causal effects like
                         spectrum of                                        temperature
  horizon
                                                Acoustic oscillations
  Scales



                         perturbations           Radiation pressure
                                                                            fluctuations
                             Gaussian,           from photons
                                                 resists gravitational
                 INFLATION
                             adiabatic
Quantum                      (density)           compression
fluctuations                   horizon              horizon                                 horizon
in the early
Universe                                             (ΔT/T) = (Δρ/ρ) /3
                                                            + (Δφ/c2)/3
                             P(k)=Akn




                                                                               l( l+1) cl
                                                            – (v/c)•n
   larger than
   horizon
   Scales




                                                     Unperturbed


                                                                     plasma     neutral
 0       10-36s                            3 min                              300000 yrs
Big-Bang Inflation                      Nucleosynthesis                  Recombination   t
Need for high
            angular
            resolution
              < 10’




2006   Hinshaw et al. 2006
Cosmological Parameters
     Assume an adiabatic inflationary model, and
    compare with same weak prior on 0.5<h<0.9
WMAP                           BOOMERanG
(100% of the sky, <1% gain     (4% of the sky, 10% gain
   calibration, <1% beam,        calibration, 10% beam,
   multipole coverage 2-700)     multipole coverage 50-
                                 1000)
Bennett et al. 2003
                               Ruhl et al. astro-ph/0212229




• Ωο =1.02+0.02                • Ωο = 1.03+0.05
•    ns = 0.99+0.04 *          •   ns = 1.02+0.07
•    Ωbh2 =0.022+0.001         •   Ωbh2 =0.023+0.003
•    Ωmh2 =0.14+0.02           •   Ωmh2 =0.14+0.04
•    T = 13.7+0.2 Gyr          •   T=14.5+1.5 Gyr
                               •   τrec= ?
•    τrec= 0.166+0.076
2009   Planck is a very
       ambitious
       experiment.

       It carries a
       complex CMB
       experiment (the
       state of the art, a
       few years ago)
       all the way to L2,

       improving the
       sensitivity wrt
       WMAP by at
       least a factor 10,

       extending the
       frequency
       coverage
       towards high
       frequencies by a
       factor about 10
PLANCK
ESA’s mission to map the Cosmic Microwave Background
Image of the whole sky at wavelengths near the intensity
peak of the CMB radiation, with
• high instrument sensitivity (ΔT/T∼10-6)
• high resolution (≈5 arcmin)
• wide frequency coverage (25 GHz-950 GHz)
• high control of systematics
•Sensitivity to polarization

Launch: 2009; payload module: 2 instruments + telescope
• Low Frequency Instrument (LFI, uses HEMTs)
• High Frequency Instrument (HFI, uses bolometers)
• Telescope: primary (1.50x1.89 m ellipsoid)
Galaxy

         CMB
Galaxy

         CMB
Galaxy

         CMB
Two Instruments: Low Frequency (LFI) and High Frequency (HFI)
Spider Web and PSB Bolometers
• Ultra-sensitive Technology
• Tested on BOOMERanG (Piacentini et al.
  2002, Crill et al. 2004, Masi et al. 2006) for
  bolometers, filters, horns, scan at 0.3K and
  on Archeops at 0.1K (Benoit et al. 2004).
• Crucial role of balloon missions to get
  important science results, but also to
  validate satellite technology.
Measured performance of Planck HFI bolometers (0.1K)
   (Holmes et al., Appl. Optics, 47, 5997, 2008)
                                                     Multi-moded

      =
Photon
noise
limit
Planck-Herschel
Launch
May 14, 2009
15:12 CEST
Telescopio fuori
asse, diametro
specchio principale
1.8 m
Observing strategy
                       The payload will work from L2, to
                       avoid the emission of the Earth, of the
                       Moon, of the Sun
                                                    Boresight
                                              (85o from spin axis)




                                                   Field of view
                                                 rotates at 1 rpm


                               M
Ecliptic plane
                 1 o/day   E
                                   L2
Launch
May 14th, 2009




                 Cruise
                 May-June 2009




                                 Calibrations,
                                 Scan
                                 start July 2009
HFI Verification / Calibration Plan
                                                        e
                                                    plan
                                         s tem cal        ht
                                      -sy FI fo SL) -flig
                                     b H
                                  su               C in
                                                S,
Main beam                                    (IA          LIGH, BEAM
Far side lobes                                          LIGH, BEAM
Spectral response
Time response                                           LFER, SPIN
Optical polarisation                                    LIGH, POLC
Thermo-optical coupling, bckgnd                         01TO, 16TO, 4KTO
Linearity                                               4KTO
Absolute response                                       LIGH
Detection noise                                         RW72, SPIN, NOIS
Crosstalk                                               XTLK
Detection chain caract                                  QECn, IVCF, IBTU, PHTU
Numerical compression                                   CPSE, CPVA
Cryo chain setup                                        4KTU,16TU, 01TU
Compatibility                                           XTRA, NOIS
Scanning                                                ACMS [1.7arcmin]
Solar AA                                                SUNI [50%]
3 months after launch
● The launch was flawless and the transfer to final orbit
  was completed on 1 July
● All parts of the satellite survived launch and it is fully
  functional
● Coldest temperature (0.1 K) was reached on 3 July. The
  thermal behavior (static and dynamic) is as predicted
  from the ground.
● The instruments have been fully tuned and are in stable
  operations since 30 July
● All planned initial tests and measurements have been
  completed on 13 August
● Planck is now transitioning into routine operational mode

Preview of data from the first-light survey (2 weeks of
  stable operation)
The sky explored by Planck so far (First Light Survey, 2 weeks)
The sky explored by Planck so far (First Light Survey, 2 weeks)




                                                        Galactic Plane
The sky explored by Planck in the First Light Survey, first 2 weeks




                                          High Galactic Latitude (CMB)
After Planck
• Planck will do many things but will not do:
  – Accurate measurement of B-Modes
    (gravitational waves from inflation) through
    polarization (unless we are very lucky …)
  – Measurements at high angular resolution
  – Deep surveys of clusters and superclusters of
    galaxies for SZ effect
precision
                              CMB
                          measurements


High Resolution                                    Polarization
  Anisotropy                 λ-spectrum
                          of the CMB and
                           its anisotropy
•Damping tail & param.s
                                                   • Inflation
• SZ & Clusters
                           • SZ distortions        • Reionization
                           • Early Metals
• nature of dark matter
                           • Recombination lines   • Magnetic fields
                           • CII
• neutrino physics
                           •…                      • …..
•…..
After Planck: CMB arrays
• Once we get to the photon noise limit, the only
  way to improve the measurement is to improve the
  mapping speed, i.e. to produce large detector
  arrays.
• The most important characteristic of future CMB
  detectors, in addition to be CMB noise limited, is
  the possibility to replicate detectors in large
  arrays at a reasonable cost.
• Suitable detection methods:
   – TES bolometers arrays
   – Direct detection and KIDs arrays
Bolometer Arrays
• Once bolometers reach BLIP
  conditions (CMB BLIP), the
  mapping speed can only be
  increased by creating large
  bolometer arrays.
• BOLOCAM and MAMBO are
  examples of large arrays
  with hybrid components (Si    Bolocam Wafer (CSO)
  wafer + Ge sensors)
• Techniques to build fully
  litographed arrays for the
  CMB are being developed.
• TES offer the natural
  sensors. (A. Lee, D. Benford,
  A. Golding, F. Gatti …)     MAMBO (MPIfR for IRAM)
Now
295 bolometers LABOCA (345 GHz) Bonn




APEX 12m telescope
Atacama (ALMA site)


                      330 bolometers APEX-SZ (150 GHz) Berkeley
Effect of a signal transmitted through the feed line past the resonator:




       Attenuation ≈ 0dB


                                                                           phase
                              amplitude



Which are the effects of incoming radiation?

               T<Tc        • nQP     Rs
  QP

                           • nCP    Lkin



       n′CP< nCP             Zs changes
  CP
                      hν >2DE
                                                                       Claudia Giordano
KIDs testbench: cryogenic system and RF circuit

                                                    KID

                                     SS-SS coax            300mK

                                           1xDC block
                                                          1xDC block
                                          1x10dB atten

                                                                2K
                                 SCN-CN coax

                                          2xDC block
                                                         2xDC block
                                         2x10dB atten


                                 SCN-CN coax
                                                                30K
                                                        36mm
                                                                      300K
                                          3x10dB atten amplifiers


                                         bias generator and
Cryostat modified                        acquisition data system
to have RF ports                 VNA : slower, easier, can give information
                                    on the sanity of the whole circuit.
                                    Ideal for the first runs.
                                  IQ mixers: faster, essential to measure
                                  noise, QP lifetime... Need fast
                                  acquisition system
Array of 81 LKID
built by the RIC (INFN gruppo V) collaboration
(Dip. Fisica La Sapienza, FBK Trento, Dip. Fis. Perugia
July 1st, 2009
First large balloon
  From Svalbards
• European proposal recently
  B-Pol             submitted to ESA (Cosmic
                    Vision).
(www.b-pol.org)
                  • ESA encourages the
                    development of technology and
                    resubmission for next round
                  • Detector Arrays development
                    activities (KIDs in Rome, TES
                    in Oxford, Genova etc.)
                  • A balloon-borne payload being
                    developed with ASI (B-B-Pol).
Sensitivity and frequency coverage: the focal plane
• Baseline technology: TES bolometers arrays
   Corrugated feedhorns              Sub-K, 600 mm
   for polarization purity and
   beam symmetry
.. Ancora moltissimo da fare




Vedi anche: PdB - Osservare l’ Universo - Il Mulino (da Aprile)
Per saperne di più…

• Steven Weinberg “I primi tre minuti”, Oscar
  Mondadori (Milano, 1986).
• Italo Mazzitelli “Tutti gli universi possibili e
  altri ancora”, Liguori Editore (Napoli, 2002),
• Paolo de Bernardis “Osservare l’ Universo”,
  Il Mulino (Bologna, da Aprile 2010).

Weitere ähnliche Inhalte

Was ist angesagt?

Dielectronic recombination and stability of warm gas in AGN
Dielectronic recombination and stability of warm gas in AGNDielectronic recombination and stability of warm gas in AGN
Dielectronic recombination and stability of warm gas in AGNAstroAtom
 
Experimental Neutrino Physics Concepts in Nutshell
Experimental Neutrino Physics Concepts in Nutshell Experimental Neutrino Physics Concepts in Nutshell
Experimental Neutrino Physics Concepts in Nutshell Son Cao
 
KEK PH 2017
KEK PH 2017KEK PH 2017
KEK PH 2017Son Cao
 
Challenging the Isotropic Cosmos
Challenging the Isotropic CosmosChallenging the Isotropic Cosmos
Challenging the Isotropic CosmosCosmoAIMS Bassett
 
Madagascar2011 - 07 - OTB radiometry processing
Madagascar2011 - 07 -  OTB radiometry processingMadagascar2011 - 07 -  OTB radiometry processing
Madagascar2011 - 07 - OTB radiometry processingotb
 
Gael Reinaudi. Invited speaker at "Quantum Engineering based on Atoms and Pho...
Gael Reinaudi. Invited speaker at "Quantum Engineering based on Atoms and Pho...Gael Reinaudi. Invited speaker at "Quantum Engineering based on Atoms and Pho...
Gael Reinaudi. Invited speaker at "Quantum Engineering based on Atoms and Pho...Gael Reinaudi
 
T2KK/T2KO 実験での質量階層性、CP位相測定の可能性
T2KK/T2KO 実験での質量階層性、CP位相測定の可能性T2KK/T2KO 実験での質量階層性、CP位相測定の可能性
T2KK/T2KO 実験での質量階層性、CP位相測定の可能性Yoshitaro Takaesu
 
Antoine - Enhancement of First Penetration Field in Superconducting Multi-lay...
Antoine - Enhancement of First Penetration Field in Superconducting Multi-lay...Antoine - Enhancement of First Penetration Field in Superconducting Multi-lay...
Antoine - Enhancement of First Penetration Field in Superconducting Multi-lay...thinfilmsworkshop
 
ML-3 - Persistent Phosphors under Pressure
ML-3 - Persistent Phosphors under PressureML-3 - Persistent Phosphors under Pressure
ML-3 - Persistent Phosphors under PressurePhilippe Smet
 
ICL2017 Counting the photons - persistent phosphors
ICL2017 Counting the photons - persistent phosphorsICL2017 Counting the photons - persistent phosphors
ICL2017 Counting the photons - persistent phosphorsPhilippe Smet
 
Neon and oxygen in stellar coronae - a unification with the Sun
Neon and oxygen in stellar coronae - a unification with the SunNeon and oxygen in stellar coronae - a unification with the Sun
Neon and oxygen in stellar coronae - a unification with the SunAstroAtom
 
Energy storage phosphors @ Phosphor Global Summit 2019
Energy storage phosphors @ Phosphor Global Summit 2019Energy storage phosphors @ Phosphor Global Summit 2019
Energy storage phosphors @ Phosphor Global Summit 2019Philippe Smet
 
IGARSS2011_Kawamura.ppt
IGARSS2011_Kawamura.pptIGARSS2011_Kawamura.ppt
IGARSS2011_Kawamura.pptgrssieee
 
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...Chelsey Crosse
 

Was ist angesagt? (20)

Ue-Li Pen - 21cm Cosmology
Ue-Li Pen - 21cm CosmologyUe-Li Pen - 21cm Cosmology
Ue-Li Pen - 21cm Cosmology
 
Dielectronic recombination and stability of warm gas in AGN
Dielectronic recombination and stability of warm gas in AGNDielectronic recombination and stability of warm gas in AGN
Dielectronic recombination and stability of warm gas in AGN
 
Teachers colloquium
Teachers colloquiumTeachers colloquium
Teachers colloquium
 
W4 physics 2003
W4 physics 2003W4 physics 2003
W4 physics 2003
 
Experimental Neutrino Physics Concepts in Nutshell
Experimental Neutrino Physics Concepts in Nutshell Experimental Neutrino Physics Concepts in Nutshell
Experimental Neutrino Physics Concepts in Nutshell
 
Thesis defense
Thesis defenseThesis defense
Thesis defense
 
KEK PH 2017
KEK PH 2017KEK PH 2017
KEK PH 2017
 
Challenging the Isotropic Cosmos
Challenging the Isotropic CosmosChallenging the Isotropic Cosmos
Challenging the Isotropic Cosmos
 
Madagascar2011 - 07 - OTB radiometry processing
Madagascar2011 - 07 -  OTB radiometry processingMadagascar2011 - 07 -  OTB radiometry processing
Madagascar2011 - 07 - OTB radiometry processing
 
Gael Reinaudi. Invited speaker at "Quantum Engineering based on Atoms and Pho...
Gael Reinaudi. Invited speaker at "Quantum Engineering based on Atoms and Pho...Gael Reinaudi. Invited speaker at "Quantum Engineering based on Atoms and Pho...
Gael Reinaudi. Invited speaker at "Quantum Engineering based on Atoms and Pho...
 
T2KK/T2KO 実験での質量階層性、CP位相測定の可能性
T2KK/T2KO 実験での質量階層性、CP位相測定の可能性T2KK/T2KO 実験での質量階層性、CP位相測定の可能性
T2KK/T2KO 実験での質量階層性、CP位相測定の可能性
 
Grossan grbtelescope+bsti
Grossan grbtelescope+bstiGrossan grbtelescope+bsti
Grossan grbtelescope+bsti
 
Antoine - Enhancement of First Penetration Field in Superconducting Multi-lay...
Antoine - Enhancement of First Penetration Field in Superconducting Multi-lay...Antoine - Enhancement of First Penetration Field in Superconducting Multi-lay...
Antoine - Enhancement of First Penetration Field in Superconducting Multi-lay...
 
ML-3 - Persistent Phosphors under Pressure
ML-3 - Persistent Phosphors under PressureML-3 - Persistent Phosphors under Pressure
ML-3 - Persistent Phosphors under Pressure
 
ICL2017 Counting the photons - persistent phosphors
ICL2017 Counting the photons - persistent phosphorsICL2017 Counting the photons - persistent phosphors
ICL2017 Counting the photons - persistent phosphors
 
Neon and oxygen in stellar coronae - a unification with the Sun
Neon and oxygen in stellar coronae - a unification with the SunNeon and oxygen in stellar coronae - a unification with the Sun
Neon and oxygen in stellar coronae - a unification with the Sun
 
Energy storage phosphors @ Phosphor Global Summit 2019
Energy storage phosphors @ Phosphor Global Summit 2019Energy storage phosphors @ Phosphor Global Summit 2019
Energy storage phosphors @ Phosphor Global Summit 2019
 
IGARSS2011_Kawamura.ppt
IGARSS2011_Kawamura.pptIGARSS2011_Kawamura.ppt
IGARSS2011_Kawamura.ppt
 
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
 
Jan2010 Triumf1
Jan2010 Triumf1Jan2010 Triumf1
Jan2010 Triumf1
 

Ähnlich wie Oltre l'orizzonte cosmologico

Airborne and underground matter-wave interferometers: geodesy, navigation and...
Airborne and underground matter-wave interferometers: geodesy, navigation and...Airborne and underground matter-wave interferometers: geodesy, navigation and...
Airborne and underground matter-wave interferometers: geodesy, navigation and...Philippe Bouyer
 
Crystal structure analysis
Crystal structure analysisCrystal structure analysis
Crystal structure analysiszoelfalia
 
Oltre l'orizzonte cosmologico
Oltre l'orizzonte cosmologicoOltre l'orizzonte cosmologico
Oltre l'orizzonte cosmologiconipslab
 
Anisotropic Kondo-Effect with NRG
Anisotropic Kondo-Effect with NRGAnisotropic Kondo-Effect with NRG
Anisotropic Kondo-Effect with NRGmarduk18
 
INTRODUCTION TO SPECTROSCOPY
INTRODUCTION TO SPECTROSCOPYINTRODUCTION TO SPECTROSCOPY
INTRODUCTION TO SPECTROSCOPYSWAPNIL NIGAM
 
Spectroscopy.ppt
Spectroscopy.pptSpectroscopy.ppt
Spectroscopy.ppttahirmurad
 
Infrared spectroscopy - IR...............
Infrared spectroscopy - IR...............Infrared spectroscopy - IR...............
Infrared spectroscopy - IR...............3611VINODHAVARSHINIS
 
September 2014 NITheP Associate meeting Dr Chiang presentation
September 2014 NITheP Associate meeting Dr Chiang presentation September 2014 NITheP Associate meeting Dr Chiang presentation
September 2014 NITheP Associate meeting Dr Chiang presentation Rene Kotze
 
Ir spectroscopy from nstu
Ir spectroscopy from nstuIr spectroscopy from nstu
Ir spectroscopy from nstuArafat Jakir
 
X ray diffraction ppt
X ray diffraction pptX ray diffraction ppt
X ray diffraction pptVanithaVaniN1
 
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)Rene Kotze
 
Cosmology with the 21cm line
Cosmology with the 21cm lineCosmology with the 21cm line
Cosmology with the 21cm lineCosmoAIMS Bassett
 
An Overview of Cosmology
An Overview of CosmologyAn Overview of Cosmology
An Overview of CosmologyPratik Tarafdar
 
Neutron dosimeter personal and area monitoring.pptx
Neutron dosimeter personal and area monitoring.pptxNeutron dosimeter personal and area monitoring.pptx
Neutron dosimeter personal and area monitoring.pptxTaushifulHoque
 
FOURIER TRANSFORM - INFRARED SPECTROSCOPY
FOURIER TRANSFORM - INFRARED SPECTROSCOPYFOURIER TRANSFORM - INFRARED SPECTROSCOPY
FOURIER TRANSFORM - INFRARED SPECTROSCOPYSalmanLatif14
 
Physics of remote sensing
Physics  of remote sensing  Physics  of remote sensing
Physics of remote sensing Ghassan Hadi
 
Uv vis-ir spectroscopy
Uv vis-ir spectroscopyUv vis-ir spectroscopy
Uv vis-ir spectroscopySadiq Rahim
 

Ähnlich wie Oltre l'orizzonte cosmologico (20)

Airborne and underground matter-wave interferometers: geodesy, navigation and...
Airborne and underground matter-wave interferometers: geodesy, navigation and...Airborne and underground matter-wave interferometers: geodesy, navigation and...
Airborne and underground matter-wave interferometers: geodesy, navigation and...
 
Crystal structure analysis
Crystal structure analysisCrystal structure analysis
Crystal structure analysis
 
Oltre l'orizzonte cosmologico
Oltre l'orizzonte cosmologicoOltre l'orizzonte cosmologico
Oltre l'orizzonte cosmologico
 
Anisotropic Kondo-Effect with NRG
Anisotropic Kondo-Effect with NRGAnisotropic Kondo-Effect with NRG
Anisotropic Kondo-Effect with NRG
 
INTRODUCTION TO SPECTROSCOPY
INTRODUCTION TO SPECTROSCOPYINTRODUCTION TO SPECTROSCOPY
INTRODUCTION TO SPECTROSCOPY
 
Spectroscopy.ppt
Spectroscopy.pptSpectroscopy.ppt
Spectroscopy.ppt
 
Infrared spectroscopy - IR...............
Infrared spectroscopy - IR...............Infrared spectroscopy - IR...............
Infrared spectroscopy - IR...............
 
Radiation detectors
Radiation detectorsRadiation detectors
Radiation detectors
 
September 2014 NITheP Associate meeting Dr Chiang presentation
September 2014 NITheP Associate meeting Dr Chiang presentation September 2014 NITheP Associate meeting Dr Chiang presentation
September 2014 NITheP Associate meeting Dr Chiang presentation
 
Ir spectroscopy from nstu
Ir spectroscopy from nstuIr spectroscopy from nstu
Ir spectroscopy from nstu
 
X ray diffraction ppt
X ray diffraction pptX ray diffraction ppt
X ray diffraction ppt
 
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
 
Cosmology with the 21cm line
Cosmology with the 21cm lineCosmology with the 21cm line
Cosmology with the 21cm line
 
An Overview of Cosmology
An Overview of CosmologyAn Overview of Cosmology
An Overview of Cosmology
 
Neutron dosimeter personal and area monitoring.pptx
Neutron dosimeter personal and area monitoring.pptxNeutron dosimeter personal and area monitoring.pptx
Neutron dosimeter personal and area monitoring.pptx
 
FOURIER TRANSFORM - INFRARED SPECTROSCOPY
FOURIER TRANSFORM - INFRARED SPECTROSCOPYFOURIER TRANSFORM - INFRARED SPECTROSCOPY
FOURIER TRANSFORM - INFRARED SPECTROSCOPY
 
Physics of remote sensing
Physics  of remote sensing  Physics  of remote sensing
Physics of remote sensing
 
Uv vis-ir spectroscopy
Uv vis-ir spectroscopyUv vis-ir spectroscopy
Uv vis-ir spectroscopy
 
ir spectroscopy
ir spectroscopyir spectroscopy
ir spectroscopy
 
IR Spectroscopy.pdf
IR Spectroscopy.pdfIR Spectroscopy.pdf
IR Spectroscopy.pdf
 

Mehr von nipslab

Fluidi e superfluidi luminosi
Fluidi e superfluidi luminosiFluidi e superfluidi luminosi
Fluidi e superfluidi luminosinipslab
 
Perugia giazotto
Perugia giazottoPerugia giazotto
Perugia giazottonipslab
 
Perugia giazotto
Perugia giazottoPerugia giazotto
Perugia giazottonipslab
 
Spettroscopia di neutroni e dinamica proteica
Spettroscopia di neutroni e dinamica proteicaSpettroscopia di neutroni e dinamica proteica
Spettroscopia di neutroni e dinamica proteicanipslab
 
E' possibile controllare la corrente di calore?
E' possibile controllare la corrente di calore?E' possibile controllare la corrente di calore?
E' possibile controllare la corrente di calore?nipslab
 
La fisica dei motori molecolari
La fisica dei motori molecolariLa fisica dei motori molecolari
La fisica dei motori molecolarinipslab
 
Stringhe, Brane e Olografia
Stringhe, Brane e OlografiaStringhe, Brane e Olografia
Stringhe, Brane e Olografianipslab
 
Econofisica: alcuni tratti di una scienza ibrida
Econofisica: alcuni tratti di una scienza ibridaEconofisica: alcuni tratti di una scienza ibrida
Econofisica: alcuni tratti di una scienza ibridanipslab
 
Parlami di Scienza Mariù
Parlami di Scienza MariùParlami di Scienza Mariù
Parlami di Scienza Mariùnipslab
 
COHERENCE, SELF-SIMILARITY AND BRAIN ACTIVITY
COHERENCE, SELF-SIMILARITY AND BRAIN ACTIVITYCOHERENCE, SELF-SIMILARITY AND BRAIN ACTIVITY
COHERENCE, SELF-SIMILARITY AND BRAIN ACTIVITYnipslab
 
La Previsione del tempo atmosferico dal paradigma deterministico a quello pro...
La Previsione del tempo atmosferico dal paradigma deterministico a quello pro...La Previsione del tempo atmosferico dal paradigma deterministico a quello pro...
La Previsione del tempo atmosferico dal paradigma deterministico a quello pro...nipslab
 
Computazione quantistica con i fotoni -P. Mataloni
Computazione quantistica con i fotoni -P. MataloniComputazione quantistica con i fotoni -P. Mataloni
Computazione quantistica con i fotoni -P. Mataloninipslab
 
Luce Colore e Visione - Alessandro Farini
Luce Colore e Visione - Alessandro FariniLuce Colore e Visione - Alessandro Farini
Luce Colore e Visione - Alessandro Farininipslab
 
Il Calore nella Finanza
Il Calore nella FinanzaIl Calore nella Finanza
Il Calore nella Finanzanipslab
 

Mehr von nipslab (14)

Fluidi e superfluidi luminosi
Fluidi e superfluidi luminosiFluidi e superfluidi luminosi
Fluidi e superfluidi luminosi
 
Perugia giazotto
Perugia giazottoPerugia giazotto
Perugia giazotto
 
Perugia giazotto
Perugia giazottoPerugia giazotto
Perugia giazotto
 
Spettroscopia di neutroni e dinamica proteica
Spettroscopia di neutroni e dinamica proteicaSpettroscopia di neutroni e dinamica proteica
Spettroscopia di neutroni e dinamica proteica
 
E' possibile controllare la corrente di calore?
E' possibile controllare la corrente di calore?E' possibile controllare la corrente di calore?
E' possibile controllare la corrente di calore?
 
La fisica dei motori molecolari
La fisica dei motori molecolariLa fisica dei motori molecolari
La fisica dei motori molecolari
 
Stringhe, Brane e Olografia
Stringhe, Brane e OlografiaStringhe, Brane e Olografia
Stringhe, Brane e Olografia
 
Econofisica: alcuni tratti di una scienza ibrida
Econofisica: alcuni tratti di una scienza ibridaEconofisica: alcuni tratti di una scienza ibrida
Econofisica: alcuni tratti di una scienza ibrida
 
Parlami di Scienza Mariù
Parlami di Scienza MariùParlami di Scienza Mariù
Parlami di Scienza Mariù
 
COHERENCE, SELF-SIMILARITY AND BRAIN ACTIVITY
COHERENCE, SELF-SIMILARITY AND BRAIN ACTIVITYCOHERENCE, SELF-SIMILARITY AND BRAIN ACTIVITY
COHERENCE, SELF-SIMILARITY AND BRAIN ACTIVITY
 
La Previsione del tempo atmosferico dal paradigma deterministico a quello pro...
La Previsione del tempo atmosferico dal paradigma deterministico a quello pro...La Previsione del tempo atmosferico dal paradigma deterministico a quello pro...
La Previsione del tempo atmosferico dal paradigma deterministico a quello pro...
 
Computazione quantistica con i fotoni -P. Mataloni
Computazione quantistica con i fotoni -P. MataloniComputazione quantistica con i fotoni -P. Mataloni
Computazione quantistica con i fotoni -P. Mataloni
 
Luce Colore e Visione - Alessandro Farini
Luce Colore e Visione - Alessandro FariniLuce Colore e Visione - Alessandro Farini
Luce Colore e Visione - Alessandro Farini
 
Il Calore nella Finanza
Il Calore nella FinanzaIl Calore nella Finanza
Il Calore nella Finanza
 

Kürzlich hochgeladen

Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 

Kürzlich hochgeladen (20)

Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 

Oltre l'orizzonte cosmologico

  • 1. Oltre l’ orizzonte cosmologico Paolo de Bernardis Dipartimento di Fisica Università di Roma La Sapienza A pranzo con la fisica - NIPS Lab Dipartimento di Fisica Università di Perugia 11/03/2010
  • 2. L’ orizzonte in cosmologia • L’ orizzonte delle particelle è la superficie che ci separa da quanto non possiamo osservare, perché la luce partita oltre l’ orizzonte non è ancora arrivata fino a noi. Le particelle che si trovano oltre l’ orizzonte non sono ancora in contatto causale con noi. Esiste se l’ universo ha un’età finita. • Esistono però altri orizzonti, di tipo fisico, più vicini di quello delle particelle, che dipendono dai dettagli della propagazione della luce nell’ universo.
  • 3. Il redshift • Negli anni ’20 Carl Wirtz, Edwin Hubble ed altri, analizzarono la luce proveniente da galassie distanti, e notarono che piu’ una galassia e’ distante, piu’ le lunghezze d’ onda della sua luce sono allungate (spostamento verso il rosso, redshift). •Questo dato empirico viene interpretato come una prova dell’ espansione dell’ universo.
  • 4. Lunghezza d’ onda λ (nm) Galassia molto lontana Galassia lontana Galassia vicina laboratorio Ca II HI Mg I Na I
  • 5. Percorrendo distanze cosmologiche, la luce cambia colore • La relativita’ generale di Einstein prevede che, in un universo in espansione, le lunghezze d’onda λ dei fotoni si allunghino esattamente quanto le altre lunghezze. • Piu’ distante e’ una galassia, piu’ e’ lungo il cammino che la luce deve percorrere, piu’ lungo e’ il tempo che impiega, maggiore e’ l’ espansione dell’ universo dal momento dell’ emissione a quello dalla ricezione, e piu’ la lunghezza d’ onda viene allungata. to t1 t2
  • 6. • Se vogliamo arrivare a osservare l’ orizzonte, dobbiamo osservare più lontano possibile. • La luce che è partita da regioni di universo così remote, avrà allungato moltissimo le sue lunghezze d’ onda, diventando infrarossa, o microonde, o radioonde … • Quindi richiede telescopi e rivelatori speciali per essere osservata.
  • 7. • L’ orizzonte a cui si arriva, però, è di tipo fisico. • Infatti l’ espansione dell’ universo comporta un suo raffreddamento. Osservando lontano riceveremo luce che è stata emessa quando l’ universo era più caldo di oggi. • Se guardiamo abbastanza lontano, arriveremo ad osservare epoche in cui l’ universo era caldo come o più della superficie del sole. • E quindi era ionizzato. In quell’ epoca i fotoni non potevano propagarsi su linee rette, ma su spezzate venendo continuamente diffusi dagli elettroni liberi del mezzo ionizzato. • L’ universo primordiale è opaco, come opaco è l’ interno di una stella.
  • 8. Orizzonte fisico • In un universo in espansione, dominato dalla radiazione, si può calcolare accuratamente il tempo necessario per passare dal Big Bang (densità e temperatura infinite) fino alla temperatura in cui elettroni e protoni possono combinarsi in atomi (ricombinazione dell’ idrogeno). • La temperatura a cui avviene la ricombinazione è circa 3000K, e il tempo necessario per arrivarci è di 380000 anni. • Quindi per i primi 380000 anni della sua evoluzione l’ universo è ionizzato e opaco.
  • 9. Orizzonte fisico • Osservando sempre più lontano, potremo vedere solo finchè l’ universo è trasparente. Cioè fino all’ epoca della ricombinazione. • Possiamo quindi osservare entro un orizzonte che è una superficie sferica, centrata sulla nostra posizione, al di là della quale l’ universo è opaco a causa delle diffusioni (scattering) contro gli elettroni liberi subite dai fotoni. • Si chiama superficie di ultimo scattering ed è il nostro orizzonte fisico.
  • 10. Composizione della luce che viene dal sole (spettro) Lunghezza d’ onda (micron) Intensità luminosa W/m2/sr/cm-1) Radiazione Termica, Spettro di Corpo Nero
  • 11. Strong evidence for a hot early phase of the Universe Thermal spectrum …. … and accurate isotropy 0K 3K 5K Cosmic Microwave Background
  • 12. Orizzonte fisico • Nel seguito: –L’ osservazione della superficie di ultimo scattering. • Come si fa • Quali sono i risultati • Orizzonti causali impressi nell’ orizzonte fisico • Conseguenze per la cosmologia e la fisica fondamentale –Come andare oltre.
  • 13. How to detect CMB photons • E(γCMB) of the order of 1 meV • Frequency: 15-600 GHz • Detection methods: – Coherent (antenna + amplifier) – Thermal (bolometers) – Direct (Cooper pairs in KIDs) • Space (atmospheric opacity)
  • 14. How to detect CMB photons • E(γCMB) of the order of 1 meV • Frequency: 15-600 GHz • Detection methods: – Coherent (antenna + amplifier) – Thermal (bolometers) – Direct (Cooper pairs in KIDs) • Space (atmospheric opacity)
  • 15. Cryogenic Bolometers • The CMB spectrum is a continuum and bolometers are wide band detectors. That’s why they are so sensitive. Thermometer (Ge thermistor (ΔR) at low T) Load resistor Incoming ΔV Photons (ΔB) Feed Integrating Horn filter Radiation cavity (angle selective) (frequency Absorber (ΔT) selective) • Fundamental noise sources are Johnson noise in the thermistor (<ΔV2> = 4kTRΔf), temperature fluctuations in the thermistor ((<ΔW2> = 4kGT2Δf), background radiation noise (Tbkg5) need to reduce the temperature of the detector and the radiative background.
  • 16. Cryogenic Bolometers Again, need • Johnson noise in the thermistor of low temperature d Δ V J2 and low = 4 kTR df background • Temperature noise d Δ W T2 4 kT 2 G eff = 2 df G eff + (2π fC ) 2 Q • Photon noise d ΔWPh 4k 5TBG x4 (ex −1+ ε ) 2 5 = 2 3 ∫ε dx df ch (e −1) x 2 • Total NEP (fundamental): 1 d ΔVJ2 d ΔWT2 d ΔWPh 2 NEP = 2 2 + + ℜ df df df
  • 17. Circa 1970 Circa 1980
  • 18. •The absorber is micro machined as a web of Spider-Web Bolometers metallized Si3N4 wires, 2 μm thick, with 0.1 mm Built by JPL Signal wire pitch. Absorber •This is a good absorber for mm-wave photons and features a very low cross section for cosmic rays. Also, the heat capacity is reduced by a large factor with respect to the solid absorber. •NEP ~ 2 10-17 W/Hz0.5 is achieved @0.3K •150μKCMB in 1 s •Mauskopf et al. Appl.Opt. Thermistor 36, 765-771, (1997) 2 mm
  • 19. Development of thermal detectors for far IR and mm-waves 17 10 Langley's bolometer Golay Cell a measurement (seconds) 12 10 Golay Cell time required to make Boyle and Rodgers bolometer 1year F.J.Low's cryogenic bolometer 7 10 Composite bolometer 1day 1 hour Composite bolometer at 0.3K 2 10 1 second Spider web bolometer at 0.3K Spider web bolometer at 0.1K Photon noise limit for the CMB 1900 1920 1940 1960 1980 2000 2020 2040 2060 year
  • 20. How to detect CMB photons • E(γCMB) of the order of 1 meV • Frequency: 15-600 GHz • Detection methods: – Coherent (antenna + amplifier) – Thermal (bolometers) – Direct (Cooper pairs in KIDs) • Space (atmospheric opacity)
  • 21. COBE-FIRAS • COBE-FIRAS was a cryogenic Martin- Puplett Fourier- Transform Spectrometer with composite bolometers. It was placed in a 400 km orbit. • A zero instrument comparing the specific sky brightness to the brightness of a cryogenic Blackbody
  • 22. MPI (Martin Puplett Interferometer) Beamsplitter = wire grid polarizer Differential instrument ∞ I SKY ( x) = C ∫ [SSKY (σ ) − SREF (σ )]rt(σ ){ + cos[4πσx]}dσ 1 0 ∞ ICAL( x) = C ∫ [SCAL(σ ) − SREF (σ )]rt(σ ){ + cos[4πσx]}dσ 1 0
  • 23. FIRAS • The FIRAS guys were able to change the temperature of the internal blackbody until the interferograms were null. • This is a null measurement, which is much more sensitive than an absolute one: (one can boost the gain of the instrument without saturating it !). • This means that the difference between the spectrum of the sky and the spectrum of a blackbody is zero, i.e. the spectrum of the sky is a blackbody with that temperature. • This also means that the internal blackbody is a real blackbody: it is unlikely that the sky can have the same deviation from the Planck law characteristic of the source built in the lab.
  • 25. • The spectrum 2h ν 3 B(ν , T ) = 2 x c e −1 TCMB = 2.725K RJ Wien hν ν xCMB = ≅ kTCMB 56 GHz − xmax xmax 1− e = ⇒ xmax = 2.82 ⇒ 3 ν max = 159 GHz (σ max = 5.31 cm −1 ) λ B(ν , T ) = B(λ , T ) ⇒ λmax = 1.06 mm ν
  • 26. • Techniques ? RJ Wien ν << ν max = 160 GHz ⇒ coherent detectors ν >> ν max = 160 GHz ⇒ bolometers ν ≈ ν max = 160 GHz ⇒ ? ??
  • 27. • The DMR instrument aboard COBE-DMR of the COBE satellite CMB anisotropy measured the first map of CMB anisotropy (1992) Galactic Plane • The contrast of the image is very low, but there are structures, at a level of 10ppm. • Instrumental noise is significant in the maps (compare the three different wavelengths) • DMR did not have a real telescope, so the angular resolution was quite coarse (10 o !!)
  • 28. Cosmic Horizons • The very good isotropy of the CMB sky is to some extent surprising. • The CMB comes from an epoch of 380000 years after the Big Bang. • So it depicts a region of the universe as it was 380000 years after the Big Bang. • The region we can map, however, is much wider than 380000 light years. • So it contains subregions which are separated more than the length light has travelled since the Big Bang. These regions would not be in causal contact in a static universe.
  • 29. R= distance from us = 14 Glyrs But also distance in R time: 14 Gyrs ago & t here, now K 000 T=3 Transparent universe Opaque universe
  • 30. R= distance from ly us = 14 Glyrs several G y 4 Gl But also distance in R= 1 R= time: 14 Gyrs ago 1 4G ly here, now K 000 T=3 Transparent universe Opaque universe
  • 31. r=3 R= distance from 80 k l y ly us = 14 Glyrs several G ly 0k y 38 4 Gl But also distance in r= R= 1 R= time: 14 Gyrs ago 1 4G ly here, now K 000 T=3 Transparent universe Opaque universe
  • 32. Cosmic Horizons • We measure the same brightness (temperature) in all these regions, and this is surprising, because to attain thermal equilibrium, contact is required ! (through forces, thermal, radiative …). • We live in an expanding universe. Regions separated by more than 380000 light years might have been in causal contact (and thus homogeneized) earlier.
  • 33. Expansion vs Horizon In a Universe made of o n matter and radiation, the oriz e h expansion rate decreases f th with time. eo siz size of region the considered time
  • 34. Expansion vs Horizon In a Universe made of o n matter and radiation, the oriz e h expansion rate decreases f th with time. eo siz size of region the considered So a region as large as the horizon when the CMB is released …. 380000 y time
  • 35. Expansion vs Horizon In a Universe made of o n matter and radiation, the oriz e h expansion rate decreases f th with time. eo siz size of region the considered … has never been causally connected before 380000 y time
  • 36. Expansion vs Horizon In a Universe made of o n matter and radiation, the oriz e h expansion rate decreases f th with time. eo siz size of region the considered … nor has been causally connected to surrounding regions 380000 y time
  • 37. Cosmic Horizons • Hence the “Paradox of Horizons” : • We see approximately the same temperature everywhere in the map of the CMB, but we do not understand how this has been obtained in the first 380000 years of the evolution of the universe. • Was this temperature regulated everywhere ab-initio ? • Are our assumptions about the composition of the universe wrong, and the universe does not decelerate in the first 380000 years ?
  • 38. Granulazione solare Gas incandescente sulla superficie del Sole (5500 K) 8 minuti luce Qui, ora
  • 39. Granulazione solare Gas incandescente sulla superficie del Sole (5500 K) 8 minuti luce Qui, ora Gas incandescente nell’ universo primordiale (l’ universo diventa trasparente a 3000 K) 14 miliardi di anni luce Qui, ora Mappa di BOOMERanG dell’ Universo Primordiale
  • 40. Flatness Paradox • The expansion of the Universe is regulated by the Friedmann equation, directly deriving from Einstein’s equations for a homogeneous and isotropic fluid. • If the Universe contains only matter and radiation, it either collapses or dilutes, with a rate depending on the mass-energy density. • To get an evolution with a mass-energy density of the order of the observed one today, billions of years after the Big Bang, you need to tune it at the beginning very accurately, precisely equal to a critical value. • How was this fine-tuning achieved ?
  • 41. a(t) g ig B an B the ter s af Cosmic distances 1 n nsity, l de Cr itica Billion years t
  • 42. Inflation might be the solution C In o sm fla ic ti o n Sub-atomic scales t=10-36s Quantum fluctuations of the field dominating the energy of the universe Energy scale: 1016 GeV Cosmic Inflation: A very fast expansion Cosmological scales of the universe, driven by a phase transition in t=380000 y the first split-second density fluctuations
  • 43. Expansion vs Horizon According to the inflation o n theory …. oriz e h f th eo siz size of region the considered A region as large as the horizon when the CMB is released …. …had been causally connected to the surrounding regions before inflation 380000 y time
  • 44. al size of n orm tion the considered regio n lu evo o n oriz e h f th eo exponential siz expansion Inflation: 10-36 s time
  • 45. al size of n orm tion the considered regio n lu evo o n oriz e h f th eo exponential siz expansion Inflation: Here the horizon contains all of the universe observable today 10-36 s time
  • 46. • Inflation – Provides a physical process to origin density fluctuations – Explains the flatness paradox – Explains the horizons paradox • Is a predictive theory (a list of > models has been compiled..) – Predicts gaussian density fluctuations – Predicts scale invariant density fluctuations – Predicts Ω=1 • How can we test it ? • We still expect a difference between the physical processes happening inside the horizon and those relevant outside the horizon. • So we expect anyway that the scale of the causal horizon is imprinted in the image of the CMB. • The angular size subtended by the horizons when the CMB is released is around 1 degree, if the geometry of space is Euclidean. • We need sharp images of the CMB, so that we can resolve the density fuctuations predicted by inflation.
  • 47. θ d R d ao 380000 ly θ≈ × ≈ ×1100 ≈1o R a 14000000000 ly
  • 48. 380000 lyrs R 1o COBE resolution Here, now K 10o 000 ang ∞) T=3 BigB (T= R= distance from us = 14 Glyrs
  • 49. high resolution • The images from COBE-DMR were not sharp enough to resolve cosmic horizons (the angular resolution was 7°). • After COBE, experimentalists worked hard to develop higher resolution experiments. • In addition to testing inflation, we expected high resolution observations to give informations about a) The geometry of space b) The physics of the primeval fireball. a) The angle subteneded by the horizon can be more or less than 1° if space is curved.
  • 50. LSS 14 Gly horizon Critical density Universe Ω=1 1o horizon Ω>1 2o High density Universe horizon 0.5o Low density Universe Ω<1
  • 51. PS PS PS 0 200 l 0 200 l 0 200 l High density Universe Critical density Universe Low density Universe Ω>1 Ω=1 Ω<1 2o 1o 0.5o
  • 52. The quest for high resolution b) Within a causally connected region, the hot, ionized gas of the primeval fireball is subject to opposite forces: gravity and photon pressure. • If a density fluctuation is present, “acoustic oscillations” start, depending on the composition of the universe (density of baryons) and on the spectrum of initial density fluctuations.
  • 53. Density perturbations (Δρ/ρ) were oscillating in the primeval plasma (as a result of the opposite effects of gravity and photon pressure). Due to gravity, T is reduced enough Δρ/ρ increases, that gravity wins again and so does T Pressure of photons overdensity increases, resisting to the compression, and the t perturbation bounces back Before recombination T > 3000 K t After recombination T < 3000 K Here photons are not tightly coupled to matter, and their pressure is not effective. Perturbations can grow and form Galaxies. After recombination, density perturbation can grow and create the hierarchy of structures we see in the nearby Universe.
  • 54. • The study of solar oscillations allows us to study the interior structure of the sun, well below the photosphere, because these waves depend on the internal structure of the sun. • The study of CMB anisotropy allows us to study the universe well behind (well before) the cosmic photosphere (the recombination epoch), because the oscillations depend on the composition of the universe and on the initial perturbations.
  • 55. How to obtain wide, high angular resolution maps of the CMB • Angular Resolution: Microwave telescope, at relatively high frequencies (θ=λ/D) • 150GHz: peak of CMB brightness • Low sky noise and high transparency at 150 GHz: Balloon or Satellite • High sensitivity at 150 GHz: cryogenic bolometers • Multiband for controlling foreground emission Statistical samples of the CMB sky (about one hundred directions) in the 90s In Italy: ARGO In the USA: MAX, MSAM, …
  • 56. How to obtain wide, high angular resolution maps of the CMB • Angular Resolution: Microwave telescope, at relatively high frequencies (θ=λ/D) • 150GHz: peak of CMB brightness • Low sky noise and high transparency at 150 GHz: Balloon or Satellite • High sensitivity at 150 GHz: cryogenic bolometers • Multiband for controlling foreground emission • Sensitivity and sky coverage (size of explored region): either – Extremely high sensitivity (0.1K) and regular flight or – High sensitivity (0.3K) and long duration flight
  • 57. How to obtain wide, high angular resolution maps of the CMB • Angular Resolution: Microwave telescope, at relatively high frequencies (θ=λ/D) • 150GHz: peak of CMB brightness • Low sky noise and high transparency at 150 GHz: Balloon or Satellite • High sensitivity at 150 GHz: cryogenic bolometers • Multiband for controlling foreground emission • Sensitivity and sky coverage (size of explored region): either – Extremely high sensitivity (0.1K) and regular flight MAXIMA or – High sensitivity (0.3K) and long duration flight BOOMERanG
  • 58. Universita’ di Roma, La Sapienza: Cardiff University: P. Ade, P. Mauskopf P. de Bernardis, G. De Troia, A. Iacoangeli, IFAC-CNR: A. Boscaleri S. Masi, A. Melchiorri, L. Nati, F. Nati, F. INGV: G. Romeo, G. di Stefano Piacentini, G. Polenta, S. Ricciardi, P. Santini, M. IPAC: B. Crill, E. Hivon Veneziani CITA: D. Bond, S. Prunet, D. Pogosyan Case Western Reserve University: LBNL, UC Berkeley: J. Borrill J. Ruhl, T. Kisner, E. Torbet, T. Montroy Imperial College: A. Jaffe, C. Contaldi Caltech/JPL: U. Penn.: M. Tegmark, A. de Oliveira-Costa A. Lange, J. Bock, W. Jones, V. Hristov Universita’ di Roma, Tor Vergata: N. Vittorio, University of Toronto: G. de Gasperis, P. Natoli, P. Cabella B. Netterfield, C. MacTavish, E. Pascale BOOMERanG
  • 59. the BOOMERanG ballon-borne telescope Sun Shield Solar Array Differential GPS Array Star Camera Cryostat and detectors Ground Shield Primary Mirror (1.3m) Sensitive at 90, 150, 240, 410 GHz
  • 60. 120 mm 3He fridge D D 0.3K D D D D D Focal plane assembly BOOMERanG-LDB Appl.Opt 1.6K MultiBand 150 D = location of detectors Photometers 150 (150,240,410) preamps 90 90 4o on the sky
  • 61. • The instrument is flown above the Earth atmosphere, at an altitude of 37 km, by means of a stratospheric balloon. • Long duration flights (LDB, 1-3 weeks) are performad by NASA-NSBF over Antarctica • BOOMERanG has been flown LDB two times: • From Dec.28, 1998 to Jan.8, 1999, for CMB anisotropy measurements • In 2003, from Jan.6 to Jan.20, for CMB polarization measurements (B2K).
  • 63. BOOMERanG • 1998: BOOMERanG mapped the temperature fluctuations of the CMB at sub-horizon scales (<1O). • The signal was well above the noise: 2 indep. det. at 150 GHz
  • 64. • 1998: BOOMERanG mapped the temperature fluctuations of the CMB at sub-horizon scales (<1O). • The rms signal has the CMB spectrum and does not fit any spectrum of foreground emission.
  • 65. PS PS PS 0 200 l 0 200 l 0 200 l High density Universe Critical density Universe Low density Universe Ω>1 Ω=1 Ω<1 2o 1o 0.5o
  • 66.
  • 67. Full power spectrum measurement from BOOMERanG (2002) -Geometry of the universe from location of first peak -Signature of inflation from amplitudes of 3 peaks and general slope
  • 68. In the primeval plasma, photons/baryons density perturbations start to oscillate only when the sound horizon becomes larger than their linear size . Small wavelength perturbations oscillate faster than large ones. multipole The angle subtended depends on the geometry of space Size of sound horizon v v v LSS 2nd dip C R size of perturbation (wavelength/2) v v 450 C R 2nd peak v v C 1st dip v 380000 ly 220 C 1st peak 0y time 300000 y Big-bang recombination Power Spectrum
  • 69. We can measure cosmological parameters with CMB ! Temperature Angular spectrum varies with Ωtot , Ωb , Ωc, Λ, τ, h, ns, …
  • 72. Normal Radiation Matter < 0.3% 4% Dark Matter 22% Dark Energy 74%
  • 73. Did Inflation really happen ? • We do not know. Inflation has not been proven yet. It is, however, a mechanism able to produce primordial fluctuations with the right characteristics. • Four of the basic predictions of inflation have been proven: – existence of super-horizon fluctuations – gaussianity of the fluctuations – flatness of the universe – scale invariance of the density perturbations • One more remains to be proved: the stochastic background of gravitational waves produced during the inflation phase. • CMB can help in this – see below.
  • 74. CMB polarization • CMB radiation is Thomson scattered at recombination. • If the local distribution of incoming radiation in the rest frame of the electron has a quadrupole moment, the scattered radiation acquires some degree of linear polarization. Last scatte ring surfa ce
  • 75. y y -10ppm +10ppm - + x x + - + - - - y - + x - = e- at last scattering
  • 76. If inflation really happened… • It stretched geometry of OK space to nearly Euclidean • It produced a nearly scale invariant spectrum of density OK fluctuations • It produced a stochastic background of gravitational waves. ?
  • 77. Quadrupole from P.G.W. • If inflation really happened: It stretched geometry of space to nearly Euclidean It produced a nearly scale invariant spectrum of gaussian density fluctuations It produced a stochastic background of gravitational waves: Primordial G.W. The background is so faint that even LISA will not be able to measure it. E-modes • Tensor perturbations also produce quadrupole anisotropy. They generate irrotational (E-modes) and rotational (B-modes) components in the CMB polarization field. • Since B-modes are not produced by scalar fluctuations, they represent a signature of inflation. B-modes
  • 78. B-modes from P.G.W. • The amplitude of this effect is very small, but depends on the Energy scale of inflation. In fact the amplitude of tensor modes normalized to the scalar ones is: 1/ 4 ⎛ C2 ⎞ Inflation potential 1/ 4 GW ⎛ T⎞ V 1/ 4 ⎜ ⎟ ≡ ⎜ Scalar ⎟ ⎜C ⎟ ≅ ⎝S⎠ ⎝ 2 ⎠ 3.7 ×1016 GeV • and l(l + 1) B ⎡ V 1/ 4 ⎤ cl max ≅ 0.1μK ⎢ ⎥ 2π ⎢ 2 ×10 GeV ⎥ ⎣ 16 ⎦ • There are theoretical arguments to expect that the energy scale of inflation is close to the scale of GUT i.e. around 1016 GeV. • The current upper limit on anisotropy at large scales gives T/S<0.5 (at 2σ) • A competing effect is lensing of E-modes, which is important at large multipoles.
  • 80. PSB devices & feed optics (Caltech + JPL) PSB Pair
  • 81. 145 GHz T map (Masi et al., 2005) the deepest CMB map ever [Masi et al. 2005]
  • 82. B03 TT Power Spectrum • Detection of anisotropy signals all the way up to l=1500 • Time and detector jacknife tests OK • Systematic effects negligible wrt noise & cosmic variance Jones et al. 2005
  • 83. 19/20 La mappa dell’ universo primordiale con sovrapposta la polarizzazione Realizzata dal gruppo di Cosmologia di Tor Vergata (Genn. 2005)
  • 84. TE Power Spectrum • Smaller signal, but detection evident (3.5σ) • NA and IT results consistent • Error bars dominated by cosmic variance • Time and detectors Piacentini et al. 2005 jacknife OK, i.e. systematics negligible • Data consistent with TT best fit model
  • 85. EE Power Spectrum • Signal extremely small, but detection evident for EE (non zero at 4.8σ). • No detection for BB nor for EB • Time and detectors jacknife OK, i.e. systematics negligible • Data consistent with TT best Montroy et al. 2005 fit model • Error bars dominated by detector noise. Montroy et al. 2005
  • 87. WMAP in L2 : sun, earth, moon are all well behind the solar shield.
  • 88. WMAP Hinshaw et al. 2006 astro-ph/0603451 Detailed Views of the 1o Recombination Epoch (z=1088, 13.7 Gyrs ago) BOOMERanG Masi et al. 2005 astro-ph/0507509
  • 89. 2006 Hinshaw et al. 2006
  • 90. Paradigm of CMB anisotropies Power spectrum k l smaller than Power Processed by of CMB causal effects like spectrum of temperature horizon Acoustic oscillations Scales perturbations Radiation pressure fluctuations Gaussian, from photons resists gravitational INFLATION adiabatic Quantum (density) compression fluctuations horizon horizon horizon in the early Universe (ΔT/T) = (Δρ/ρ) /3 + (Δφ/c2)/3 P(k)=Akn l( l+1) cl – (v/c)•n larger than horizon Scales Unperturbed plasma neutral 0 10-36s 3 min 300000 yrs Big-Bang Inflation Nucleosynthesis Recombination t
  • 91. Need for high angular resolution < 10’ 2006 Hinshaw et al. 2006
  • 92. Cosmological Parameters Assume an adiabatic inflationary model, and compare with same weak prior on 0.5<h<0.9 WMAP BOOMERanG (100% of the sky, <1% gain (4% of the sky, 10% gain calibration, <1% beam, calibration, 10% beam, multipole coverage 2-700) multipole coverage 50- 1000) Bennett et al. 2003 Ruhl et al. astro-ph/0212229 • Ωο =1.02+0.02 • Ωο = 1.03+0.05 • ns = 0.99+0.04 * • ns = 1.02+0.07 • Ωbh2 =0.022+0.001 • Ωbh2 =0.023+0.003 • Ωmh2 =0.14+0.02 • Ωmh2 =0.14+0.04 • T = 13.7+0.2 Gyr • T=14.5+1.5 Gyr • τrec= ? • τrec= 0.166+0.076
  • 93. 2009 Planck is a very ambitious experiment. It carries a complex CMB experiment (the state of the art, a few years ago) all the way to L2, improving the sensitivity wrt WMAP by at least a factor 10, extending the frequency coverage towards high frequencies by a factor about 10
  • 94. PLANCK ESA’s mission to map the Cosmic Microwave Background Image of the whole sky at wavelengths near the intensity peak of the CMB radiation, with • high instrument sensitivity (ΔT/T∼10-6) • high resolution (≈5 arcmin) • wide frequency coverage (25 GHz-950 GHz) • high control of systematics •Sensitivity to polarization Launch: 2009; payload module: 2 instruments + telescope • Low Frequency Instrument (LFI, uses HEMTs) • High Frequency Instrument (HFI, uses bolometers) • Telescope: primary (1.50x1.89 m ellipsoid)
  • 95.
  • 96. Galaxy CMB
  • 97. Galaxy CMB
  • 98. Galaxy CMB
  • 99. Two Instruments: Low Frequency (LFI) and High Frequency (HFI)
  • 100.
  • 101.
  • 102. Spider Web and PSB Bolometers • Ultra-sensitive Technology • Tested on BOOMERanG (Piacentini et al. 2002, Crill et al. 2004, Masi et al. 2006) for bolometers, filters, horns, scan at 0.3K and on Archeops at 0.1K (Benoit et al. 2004). • Crucial role of balloon missions to get important science results, but also to validate satellite technology.
  • 103. Measured performance of Planck HFI bolometers (0.1K) (Holmes et al., Appl. Optics, 47, 5997, 2008) Multi-moded = Photon noise limit
  • 106.
  • 107.
  • 108.
  • 109. Observing strategy The payload will work from L2, to avoid the emission of the Earth, of the Moon, of the Sun Boresight (85o from spin axis) Field of view rotates at 1 rpm M Ecliptic plane 1 o/day E L2
  • 110. Launch May 14th, 2009 Cruise May-June 2009 Calibrations, Scan start July 2009
  • 111.
  • 112. HFI Verification / Calibration Plan e plan s tem cal ht -sy FI fo SL) -flig b H su C in S, Main beam (IA LIGH, BEAM Far side lobes LIGH, BEAM Spectral response Time response LFER, SPIN Optical polarisation LIGH, POLC Thermo-optical coupling, bckgnd 01TO, 16TO, 4KTO Linearity 4KTO Absolute response LIGH Detection noise RW72, SPIN, NOIS Crosstalk XTLK Detection chain caract QECn, IVCF, IBTU, PHTU Numerical compression CPSE, CPVA Cryo chain setup 4KTU,16TU, 01TU Compatibility XTRA, NOIS Scanning ACMS [1.7arcmin] Solar AA SUNI [50%]
  • 113. 3 months after launch ● The launch was flawless and the transfer to final orbit was completed on 1 July ● All parts of the satellite survived launch and it is fully functional ● Coldest temperature (0.1 K) was reached on 3 July. The thermal behavior (static and dynamic) is as predicted from the ground. ● The instruments have been fully tuned and are in stable operations since 30 July ● All planned initial tests and measurements have been completed on 13 August ● Planck is now transitioning into routine operational mode Preview of data from the first-light survey (2 weeks of stable operation)
  • 114. The sky explored by Planck so far (First Light Survey, 2 weeks)
  • 115. The sky explored by Planck so far (First Light Survey, 2 weeks) Galactic Plane
  • 116.
  • 117.
  • 118.
  • 119.
  • 120.
  • 121.
  • 122.
  • 123.
  • 124.
  • 125. The sky explored by Planck in the First Light Survey, first 2 weeks High Galactic Latitude (CMB)
  • 126.
  • 127.
  • 128.
  • 129.
  • 130. After Planck • Planck will do many things but will not do: – Accurate measurement of B-Modes (gravitational waves from inflation) through polarization (unless we are very lucky …) – Measurements at high angular resolution – Deep surveys of clusters and superclusters of galaxies for SZ effect
  • 131. precision CMB measurements High Resolution Polarization Anisotropy λ-spectrum of the CMB and its anisotropy •Damping tail & param.s • Inflation • SZ & Clusters • SZ distortions • Reionization • Early Metals • nature of dark matter • Recombination lines • Magnetic fields • CII • neutrino physics •… • ….. •…..
  • 132. After Planck: CMB arrays • Once we get to the photon noise limit, the only way to improve the measurement is to improve the mapping speed, i.e. to produce large detector arrays. • The most important characteristic of future CMB detectors, in addition to be CMB noise limited, is the possibility to replicate detectors in large arrays at a reasonable cost. • Suitable detection methods: – TES bolometers arrays – Direct detection and KIDs arrays
  • 133. Bolometer Arrays • Once bolometers reach BLIP conditions (CMB BLIP), the mapping speed can only be increased by creating large bolometer arrays. • BOLOCAM and MAMBO are examples of large arrays with hybrid components (Si Bolocam Wafer (CSO) wafer + Ge sensors) • Techniques to build fully litographed arrays for the CMB are being developed. • TES offer the natural sensors. (A. Lee, D. Benford, A. Golding, F. Gatti …) MAMBO (MPIfR for IRAM)
  • 134.
  • 135. Now
  • 136. 295 bolometers LABOCA (345 GHz) Bonn APEX 12m telescope Atacama (ALMA site) 330 bolometers APEX-SZ (150 GHz) Berkeley
  • 137. Effect of a signal transmitted through the feed line past the resonator: Attenuation ≈ 0dB phase amplitude Which are the effects of incoming radiation? T<Tc • nQP Rs QP • nCP Lkin n′CP< nCP Zs changes CP hν >2DE Claudia Giordano
  • 138. KIDs testbench: cryogenic system and RF circuit KID SS-SS coax 300mK 1xDC block 1xDC block 1x10dB atten 2K SCN-CN coax 2xDC block 2xDC block 2x10dB atten SCN-CN coax 30K 36mm 300K 3x10dB atten amplifiers bias generator and Cryostat modified acquisition data system to have RF ports VNA : slower, easier, can give information on the sanity of the whole circuit. Ideal for the first runs. IQ mixers: faster, essential to measure noise, QP lifetime... Need fast acquisition system
  • 139. Array of 81 LKID built by the RIC (INFN gruppo V) collaboration (Dip. Fisica La Sapienza, FBK Trento, Dip. Fis. Perugia
  • 140. July 1st, 2009 First large balloon From Svalbards
  • 141. • European proposal recently B-Pol submitted to ESA (Cosmic Vision). (www.b-pol.org) • ESA encourages the development of technology and resubmission for next round • Detector Arrays development activities (KIDs in Rome, TES in Oxford, Genova etc.) • A balloon-borne payload being developed with ASI (B-B-Pol).
  • 142. Sensitivity and frequency coverage: the focal plane • Baseline technology: TES bolometers arrays Corrugated feedhorns Sub-K, 600 mm for polarization purity and beam symmetry
  • 143. .. Ancora moltissimo da fare Vedi anche: PdB - Osservare l’ Universo - Il Mulino (da Aprile)
  • 144. Per saperne di più… • Steven Weinberg “I primi tre minuti”, Oscar Mondadori (Milano, 1986). • Italo Mazzitelli “Tutti gli universi possibili e altri ancora”, Liguori Editore (Napoli, 2002), • Paolo de Bernardis “Osservare l’ Universo”, Il Mulino (Bologna, da Aprile 2010).