SlideShare ist ein Scribd-Unternehmen logo
1 von 30
Downloaden Sie, um offline zu lesen
CENTRO UNIVERSITÁRIO CENTRAL PAULISTA
CURSO SUPERIOR DE TECNOLOGIA EM RADIOLOGIA
NATHANAEL MELCHISEDECK BRANCAGLIONE
Modelo atômico de Bohr
SÃO CARLOS
2012
NATHANAEL MELCHISEDECK BRANCAGLIONE
Modelo atômico de Bohr
Trabalho apresentado ao Curso Superior de
Tecnologia em Radiologia UNICEP, como
requisito à obtenção de nota parcial referente à
segunda avaliação. Introdução a Física das
Radiações:
Prof. Dr. Mauro Massili.
SÃO CARLOS
2012
INDICE DE ILUSTRAÇÕES
FIGURA 1 MODELO PUDIM DE PASSAS ..........................................................................7
FIGURA 2 EXPRERIMENTO COM FOLHA DE OURO ......................................................8
FIGURA 3 MODELO PLANETÁRIO.....................................................................................9
FIGURA 4 ORIBITAS PERMITIDAS EM Aº.......................................................................12
FIGURA 5 AS CINCO PRIMEIRAS ORBITAS ...................................................................12
FIGURA 6 EMISSÃO DE LUZ VERMELHA ......................................................................13
FIGURA 7 EMISSÃO DE LUZ VERDE AZULADO...........................................................14
FIGURA 8 EMISSÃO DE LUZ AZUL..................................................................................14
FIGURA 9 EMISSÃO DE LUZ VIOLETA ...........................................................................15
FIGURA 10 DIFERENÇA D EENERGIA ENTRE AS ORBITAS........................................16
FIGURA 11 SALTO QUANTICO ..........................................................................................17
FIGURA 12 TESTE DA CHAMA...........................................................................................18
FIGURA 13 FOGOS DE ARTIFÍCIO.....................................................................................18
FIGURA 14 NEÔNICO E LÂMPADAS DE VAPOR............................................................19
FIGURA 15 FLUORESCNCIA^ .............................................................................................19
FIGURA 16 RAIO LASER......................................................................................................20
FIGURA 17 ORBITAS DE SOMMERFELD .........................................................................21
FIGURA 18 EQUAÇÃO DE DE BROGLIE...........................................................................22
FIGURA 19 ACELERADOR DE PARTICULAS ..................................................................25
FIGURA 20 TODAS AS FORMAS DE MATÉRIAS QUE EXISTE.....................................26
FIGURA 21 PARTÍCULAS DE MATÉRIA QUE TRANMITEM FORÇA ..........................27
FIGURA 22 ÁTOMO BÁSICO...............................................................................................27
FIGURA 23 MODELOATÔMICO DA NUVEM ELETRÔNICA.........................................28
SUMÁRIO
1 COMO SE IMAGINAVA O ÁTOMO ANTES DE NIELS BOHR.....................................4
1.1 Demócrito de Abdera........................................................................................................5
1.2 John Dalton.......................................................................................................................6
Cinco pontos principais da teoria atômica Dalton..............................................................6
1.3 Joseph John Thomson.......................................................................................................7
1.4 Ernest Rutherford .............................................................................................................8
2 COMO NIELS BOHR IMAGINOU O ATOMO .................................................................10
2.1 Histórico de Niels Bohr.................................................................................................10
2.1 Modelo Atômico de Bohr...............................................................................................11
2.1.2 Aplicações do modelo de Bohr....................................................................................17
2.2 O aperfeiçoamento do modelo de Bohr..........................................................................20
2.21 Dualidades onda partícula da material..........................................................................21
2.2.2 O Princípio da Incerteza Heisenberg...........................................................................22
2.2.3 Função da onde de Schodinger....................................................................................23
3. O QUE SABEMOS SOBRE O ÁTOMO HOJE..................................................................24
3.1 Trituradores de Átomos..................................................................................................24
FOTO DO V CONGRESSO DE SLVAY (1927)....................................................................28
4
1 COMO SE IMAGINAVA O ÁTOMO ANTES DE NIELS BOHR
5
1.1 Demócrito de Abdera
Foi discípulo e depois sucessor de Leucipo de Mileto. A fama de Demócrito decorre
do fato de ele ter sido o maior expoente da teoria atômica ou do atomismo. De acordo com
essa teoria, tudo o que existe é composto por elementos indivisíveis chamados átomos (do
grego, "a", negação e "tomo", divisível. Átomo= indivisível). Não há certeza se a teoria foi
concebida por ele ou por seu mestre Leucipo. A ligação estreita entre ambos dificulta a
identificação do que foi pensado por um ou por outro. Todavia, parece não haver dúvidas de
ter sido Demócrito quem de fato sistematizou o pensamento e a teoria atomista. Demócrito
avançou também o conceito de um universo infinito, onde existem muitos outros mundos
como o nosso. Na Grécia antiga, Protágoras de Abdera teria sido seu discípulo direto e,
posteriormente, o principal filósofo influenciado por ele foi Epicuro. No renascimento muitas
de suas idéias foram aceitas (por exemplo, Giordano Bruno), e tiveram um papel importante
durante o iluminismo. Muitos consideram que Demócrito é "o pai da ciência
moderna"Acreditava que átomos eram indivisíveis e a matéria era composta por essas
minúsculas partículas elementares, de várias formas e tamanhos. A prova disso seria a
infinidade de substâncias existentes na natureza, cada uma delas com formatos e
características diferentes (WIKIPEDIA, 2012).
Em suma, os filósofos atomistas conceberam o átomo como sendo peças de um
quebra- cabeça, as quais precisavam se unir de forma perfeita para formar estruturas mais
complexas. Segundo eles, cada substância possuía seu tipo de átomo e este variava de acordo
com as propriedades da mesma. Por exemplo, uma substância no estado líquido teria átomos
arredondados (por isso, escoavam) e no estado sólido se apresentaria como átomos
pontiagudos. E mais! Acreditavam que os átomos eram eternos. É claro que esta concepção já
foi ultrapassada. Hoje, temos conhecimento de que os átomos não são indivisíveis e nem tão
pouco eternos. Eles podem ser rompidos (fissão nuclear) e até mesmo destruídos.
Mas não podemos deixar de considerar esta linha de estudo traçada por nossos ancestrais, pois
ela permitiu à ciência dar seus primeiros passos até a Idade Moderna e chegar a um estágio
avançado, tal qual é atualmente (SOUZA, 2011).
6
1.2 John Dalton
John Dalton (6 de Setembro de 1766 Manchester, 27 de Julho de 1844), foi um
químico, meteorologista e físico inglês. Foi um dos primeiros cientistas a defender que a
matéria é feita de pequenas partículas, os átomos. É também um dos pioneiros na
meteorologia, iniciando suas observações em 1787 com instrumentos confeccionados por ele
mesmo e publicando, seis anos mais tarde, o livro Meteorological Observations and Essays
(Observações e Ensaios Meteorológicos), um dos primeiros concernentes à ciência
meteorológica. Suas observações experimentais permitiram-lhe elaborar teorias sobre o vapor
d'água e misturas de gases, apresentando em 1801 sua lei das pressões parciais: em uma
mistura de gases, cada componente exerce a mesma pressão como se estivesse solitária no
recipiente que a contém. Dalton concluiu que toda matéria, não apenas gases, deve se consistir
de diminutas partículas. Reviveu, assim, a antiga teoria atomista e elaborou a primeira tabela
de pesos atômicos, anunciando seus resultados em 1803. Ao fim de sua vida, sua teoria
atômica estava amplamente difundida entre a comunidade química e reconhecida pelo rei da
Inglaterra com a Medalha Real.
CINCO PONTOS PRINCIPAIS DA TEORIA ATÔMICA DALTON
Dalton atribuiu os fundamentos do átomo principalmente pela característica de cinco
pontos principais, eles dizem que:
i. Elementos são feitas de partículas minúsculas chamadas átomos.
ii. Todos os átomos de um dado elemento são idênticos.
iii. Os átomos de um dado elemento são diferentes das de qualquer outro elemento; os
átomos de diferentes elementos podem ser distinguidos uns dos outros por seus respectivos
pesos relativos.
iv. Átomos de um elemento podem combinar com átomos de outros elementos para
formar compostos; um determinado composto tem sempre a mesma relação do número de
tipos de átomos.
v. Átomos não podem ser criados, divididos em pequenas partículas, nem destruídos no
processo químico; uma reação química simplesmente muda a forma como átomos são
agrupados.
Dalton propôs mais uma "regra da maior simplicidade", que criaram controvérsia, uma
vez que não pôde ser confirmado independentemente. Apesar da incerteza no coração de
Dalton da teoria atômica, os princípios da teoria sobreviveram.
7
1.3 Joseph John Thomson
O britânico Joseph John Thomson descobriu os elétrons em 1897 por meio de
experimentos envolvendo raios catódicos em tubos de crookes. O tubo de crookes consiste-se
em uma ampola que contém apenas vácuo e um dispositivo elétrico que faz os elétrons de
qualquer material condutor saltar e formar feixes, que são os próprios raios catódicos.
Thomson, ao estudar os raios catódicos, descobriu que estes são afetados por campos elétricos
e magnéticos, e deduziu que a deflexão dos raios catódicos por estes campos são desvios de
trajetória de partículas muito pequenas de carga negativa, os elétrons. (WIKIPEDIA, 2012)
O Modelo atômico de Thomson (1897) propunha então que se o átomo não fosse
maciço (como havia afirmado John Dalton), mas sim um fluido com carga positiva
(homogêneo e quase esférico) no qual estavam dispersos (de maneira homogênea) os elétrons.
Podemos fazer a analogia desse modelo atômico com um "Panetone" ou com um pudim
recheado de uvas passas, em que a massa do panetone seria positiva e as passas seriam as
partículas negativas (PEREIRA, 2010).
FIGURA 1 MODELO PUDIM DE PASSAS
(PEREIRA, 2010)
8
1.4 Ernest Rutherford
Ernest Rutherford estudou matemática e física no Canterbury College, em
Christchurch e com o auxílio de uma bolsa de estudo, ingressou em 1895 no Cavendish
Laboratory, em Cambridge. Foi professor de física e química na McGill University (Canadá),
de 1898 a 1907 e na Manchester University (Inglaterra), de 1907 a 1919. Em 1919, sucedeu J.
J. Thomson na direcção do Cavendish Laboratory, cargo que exerceu até ao resto da sua vida
e onde realizou importantes investigações. Atualmente considerado o fundador da Física
Nuclear, Rutherford introduziu o conceito de núcleo atômico ao investigar a dispersão das
partículas alfa por folhas delgadas de metal. Rutherford verificou que a grande maioria das
partículas atravessava a folha sem se desviar e concluiu, com base nessas observações e em
cálculos, que os átomos de ouro e, por extensão, quaisquer átomos eram estruturas
praticamente vazias, e não esferas maciças. Rutherford também descobriu a existência dos
prótons, as partículas com carga positiva que se encontram no núcleo. (LOURENÇO, 2008)
Ernest Rutherford, em 1908, através de experimento bombardeou uma fina lâmina de ouro
com partículas α, núcleo do átomo de hélio. Notou, então, que uma pequena parte era
desviada de sua trajetória, porém uma maior parte das partículas atravessava a lâmina sem
sofrer desvio. Figura 2. Com base nesse experimento, ele pôde chegar à conclusão de que o
átomo possuía um pequeno núcleo e uma grande região vazia. Baseando-se no modelo do
sistema solar, onde os planetas giram em torno do Sol, Rutherford propôs um modelo
semelhante para o átomo de hidrogênio. Para ele, os elétrons possuíam cargas negativas;
enquanto no núcleo se encontravam as cargas positivas, Figura 3 (SILVA, 2010).
FIGURA 2 EXPRERIMENTO COM
FOLHA DE OURO
(SILVA, 2010)
9
Pelas suas investigações sobre a desintegração dos elementos e a química das
substâncias radioativas, obteve em 1908 o Prémio Nobel da Química. Foi também presidente
da Royal Society (1925-1930), e homenageado em 1931 com o título de primeiro barão de
Rutherford de Nelson e Cambridge. Falecendo em 1937 (LOURENÇO, 2008).
FIGURA 3MODELO PLANETÁRIO
(SILVA, 2010)
10
2 COMO NIELS BOHR IMAGINOU O ATOMO
2.1 Histórico de Niels Bohr
Niels Henrik David Bohr nasceu no dia 7 de Outubro de 1885, em Copenhaga. Em
1903, Niels matriculou-se na Escola Secundária de Gammelholm. Mais tarde, Bohr entrou
para a Universidade de Copenhaga, onde foi influenciado pelo Professor Christiansen, um
físico profundamente original e altamente dotado, e acabou o seu mestrado em física em 1909
e o seu doutoramento em 1911. Quando ainda era estudante, um anúncio, da Academia de
Ciências de Copenhaga, de um prêmio para quem resolvesse um determinado problema
científico levou-o a realizar uma investigação teórica e experimental sobre a tensão da
superfície provocada pela oscilação de jactos fluídos. Este trabalho, levado a cabo no
laboratório do seu pai, ganhou o prêmio (a medalha de ouro) e foi publicado em “Transactions
of the Royal Society”, em 1908 (OLIVEIRA, 2012).
Bohr continuou as suas investigações e a sua tese de doutoramento incidiu sobre as
propriedades dos metais com a ajuda da teoria dos elétrons que ainda hoje é um clássico no
campo da física. Nesta pesquisa Bohr confrontou-se com as implicações da teoria quântica de
Planck. No Outono de 1911, Bohr mudou-se para Cambridge, onde trabalhou no Laboratório
Cavendish sob a orientação de J. J. Thomson. Na Primavera de 1912.Niels Bohr passou a
trabalhar no Laboratório do Professor Rutherford, em Manchester (OLIVEIRA, 2012).
Em 1950, Bohr escreveu a “Carta Aberta” às Nações Unidas em defesa da preservação
da paz, por ele considerada como condição indispensável para a liberdade de pensamento e de
pesquisa (OLIVEIRA, 2012)
Em 1955, escreveu o livro “The Unity of Knowledge”. Em 1957, Niels Bohr recebeu o
Prêmio Átomos para a Paz. Ao mesmo tempo, o Instituto de Física Teórica, por ele dirigido
desde 1920, afirmou-se como um dos principais centros intelectuais da Europa.
A ocupação da Dinamarca pelo exército alemão (1940), a ascendência judia e suas
atividades antinazistas obrigaram-no a viajar para a Inglaterra e mais tarde para os Estados
Unidos, onde colaborou na produção da bomba atômica, projeto que abandonou (1944) para
iniciar uma intensa atividade em favor da utilização pacífica de energia nuclear. Foi agraciado
com o primeiro prêmio Átomos para a Paz (1957) e morreu em sua cidade natal em 18 de
Novembro de 1962, vítima de uma trombose, aos 77 anos de idade (ALMEIDA, BEZERRA,
et al., 2011)
11
2.1 Modelo Atômico de Bohr
O cientista dinamarquês especializado em Física, Niels Bohr, realizou algumas
observações referentes ao estudo da luz e, baseado em suas conclusões, ele pôde aprimorar o
modelo atômico de Rutherford. O modelo atômico de Rutherford-Bohr ficou assim conhecido
porque Bohr manteve as principais características do modelo de Rutherford, porém
acrescentou mais informações sobre os elétrons que ficavam ao redor do núcleo (FOGAÇA,
2010).
Naquela época, questionou-se que se o elétron emitisse energia continuamente,
“fecharia” sua trajetória até atingir o núcleo e isso poderia gerar um colapso. Mas mais tarde
esse questionamento foi reformulado pelo cientista Louis de Broglie, que diz que os elétrons
giram ao redor do núcleo, mas não em órbitas definidas como tinha afirmado Bohr (SILVA,
2010).
A partir dessa suposição, e baseando-se na teoria dos quanta de Max Planck e na
explicação de Einstein para o efeito fotoelétrico, que consideram que a energia se propaga na
forma de pacotes (quanta), Bohr postulou que, no átomo, os elétrons estão confinados em
certos níveis estáveis de energia. Esses níveis estáveis de energia foram chamados estados
estacionários de energia (ALMEIDA, BEZERRA, et al., 2011).
Os problemas com o modelo do átomo de Rutherford foram resolvidos de uma forma
surpreendente pelo jovem físico dinamarquês Niels Bohr. Em 1912, Bohr determinou
algumas leis para explicar o modelo pelo qual os elétrons giram em órbita ao redor do núcleo
atômico. O que tornou a sua abordagem especialmente interessante foi que ele não tentou
justificar as suas leis ou encontrar razões para elas. As leis faziam muito pouco sentido,
quando comparadas com as teorias já bem estabelecidas da Física. Bohr começou por
presumir que os elétrons em órbita não descreviam movimento em espiral em direção ao
núcleo. Isto contradizia tudo que se conhecia de eletricidade e magnetismo, mas adaptava-se
ao modo pelo qual as coisas aconteciam. Nesta ocasião Bohr determinou as suas duas leis
para o que realmente ocorre (OLIVEIRA, 2012).
Primeira Lei: os elétrons podem girar em órbita somente a determinadas distâncias
permitidas do núcleo. Considere o átomo de hidrogênio, por exemplo, que possui apenas um
elétron girando ao redor do núcleo. Os cálculos de Bohr mostraram quais as órbitas possíveis.
A Figura 4 mostra as cinco primeiras destas órbitas permitidas. A primeira órbita
situa-se um pouco além de um Ângstron do núcleo (0,529 Ângstron). A segunda órbita
permitida situa-se em um pouco mais de que 2 Ângstron do núcleo (2,116 Ângstron).
12
FIGURA 4 Oribitas permitidas em Aº
(OLIVEIRA, 2012)
Embora a Figura 5 mostre apenas as cinco primeiras órbitas, não existe limite para o
número de órbitas teoricamente possíveis. Por exemplo, a centésima órbita de Bohr para o
átomo de hidrogênio estaria dez mil vezes mais afastadas do núcleo do que a primeira órbita,
a uma distância de 5.290 Ângstron. Órbitas de Bohr para o átomo de hidrogênio.
Entretanto, as órbitas extremamente distantes, tais como a décima, a vigésima ou a
centésima órbita, são improváveis. É bastante provável que um elétron em uma órbita distante
fosse perdido pelo átomo. Em outras palavras outro átomo o arrebataria, ou uma onda de
energia eletromagnética o deixaria como um “elétron livre” movendo-se através do espaço
FIGURA 5 AS CINCO PRIMEIRAS ORBITAS
(OLIVEIRA, 2012)
13
entre os átomos. Por conseguinte, as órbitas mais importantes, aquelas que desempenham um
papel principal na produção do espectro linear de um átomo, são as órbitas mais internas.
É uma lei bastante estranha esta de os elétrons poderem ocupar apenas determinadas
órbitas fixas. Isto significa dizer que a maioria das órbitas seria impossível. Um elétron de
hidrogênio não poderia girar numa órbita a 0,250, 1,000 ou 2,150 Ângstron; as únicas órbitas
permitidas são as enumeradas na Figura 4 (OLIVEIRA, 2012).
Este é um comportamento muito diferente daquele dos objetos que nos cercam.
Suponha que uma bola arremessada de uma sala só pudesse seguir 2 ou 3 trajetos
determinados, em vez das centenas de trajeto diferentes que ela realmente pode seguir. Seria
como se a sala tivesse trajetos invisíveis orientando à bola. Assim, a lei de Bohr afirma que os
elétrons agem como se o espaço ao redor do núcleo atômico possuísse trajetos invisíveis. Mas
Bohr não deu justificativa para esta estranha situação. Neste ponto chegamos à Segunda lei de
Bohr (OLIVEIRA, 2012)
Segunda Lei: um átomo irradia energia quando um elétron salta de uma órbita de
maior energia para uma de menor energia. Além disso, um átomo absorve energia quando um
elétron é deslocado de uma órbita de menor energia para uma órbita de maior energia.
Em outras palavras, os elétrons saltam de uma órbita permitida para outra à medida
que os átomos irradiam ou absorve energia. As órbitas externas do átomo possuem mais
energia do que as órbitas internas. Por consequencia, se um elétron salta da órbita 3 para a
órbita 2 orbita. Há emissão de luz, por outro lado, se luz de energia adequada atingir o átomo,
esta é capaz de impelir um elétron da órbita 2 para a órbita 3. Neste processo, a luz é
absorvida (OLIVEIRA, 2012).
FIGURA 6 EMISSÃO DE
LUZ VERMELHA
(OLIVEIRA, 2012)
14
A linha vermelha no espectro atômico é causada por elétrons que saltam da terceira
órbita para a segunda órbita.
A linha verde-azulada no espectro atômico é causada por elétrons que saltam da quarta
órbita para a segunda órbita.
A linha azul no espectro atômico é causada por elétrons que saltam da quinta órbita
para a segunda órbita.
FIGURA 7 EMISSÃO DE LUZ VERDE AZULADO
(OLIVEIRA, 2012)
FIGURA 8 EMISSÃO DE LUZ AZUL
(OLIVEIRA, 2012)
15
A linha violeta mais brilhante no espectro atômico é causada por elétrons que saltam
da sexta órbita para a segunda órbita.
É interessante notar que os comprimentos de onda da luz encontrada no espectro do
hidrogênio correspondem a diferentes órbitas. (O comprimento de onda estabelece uma
relação com a energia. Os menores comprimentos de onda de luz significam vibrações mais
rápidas e maior energia). Por exemplo, a linha verde-azulada no espectro linear do hidrogênio
é causada por elétrons que saltam da Quarta órbita para a Segunda órbita. A figura mostra
como cada linha no espectro resulta de um determinado salto de elétrons.
Observe que todos os saltos na figura são de órbitas de maior nível para a órbita O
salto de mais baixa energia é o da terceira órbita para a segunda, e este salto produz a linha
vermelha a 6,563 Ângstron. Finalmente, existe uma série de linhas na extremidade violeta do
espectro, produzida por elétrons que saltam de órbitas externas distantes para a Segunda
órbita.
No caso dos átomos de hidrogênio, somente os saltos para a Segunda órbita produzem
linhas espectrais na parte visível do espectro. Os saltos para a primeira órbita produzem
irradiação ultravioleta ondas mais curtas do que as luminosas, ao passo que os saltos para a
Terceira, Quarta e Quinta órbita produzem irradiação infravermelha (ondas mais longas do
que as luminosas).
As órbitas determinadas por Bohr e a forma pela qual os elétrons saltam entre estas
destruíram a antiga imagem dos elétrons girando em espiral em direção do núcleo. Também
FIGURA 9EMISSÃO DE LUZ VIOLETA
(OLIVEIRA, 2012)
16
anulara a existência de radiação atômica ser um espectro luminoso contínuo, e responsável
pelo espectro linear.
O estado de menor energia em que um elétron se encontra é denominado estado
fundamental. Esse elétron só poderá passar para um estado de maior energia, ou seja, para
uma órbita mais externa ao núcleo, se ele receber a quantidade necessária de energia. Se isso
ocorrer, ele estará no seu estado excitado, que é muito mais instável (FOGAÇA, 2010).
Para Bohr, cada estado estacionário de energia seria associado a um nível de energia,
que em geral varia de 1 n a 7 n, sendo n um número inteiro. Os níveis de energia dos átomos
atualmente conhecidos no seu estado de mais baixa energia, nível fundamental, exigem que n
assuma um valor de 1 até 7. Cada um desses níveis seria descrito por uma órbita ao redor do
núcleo. As órbitas mais próximas do núcleo corresponderiam a níveis menores de energia. A
freqüência da radiação emitida ou absorvida será dada pela diferença de energia entre os dois
estados (ALMEIDA, BEZERRA, et al., 2011).
Para a concepção desse modelo, Bohr elaborou seis postulados e, através destes, foi
possível calcular teoricamente os espectros do átomo neutro de hidrogênio e do átomo de
hélio ionizado. São eles:
Postulado 1. Em um átomo são permitidas somente algumas órbitas circulares ao
elétron, sendo que em cada uma dessas órbitas o elétron apresenta energia constante.
Postulado 2. Um elétron não pode assumir qualquer valor de energia, mas somente
determinados valores que correspondam às órbitas permitidas, tendo, assim, determinados
níveis de energia ou camadas energéticas.
Postulado 3. Um elétron, quando localizado em uma dessas órbitas, não perde nem
ganha energia espontaneamente. Por isso, diz-se que, nesse caso, ele assume um estado
estacionário.
FIGURA 10 DIFERENÇA D EENERGIA ENTRE AS ORBITAS
(ALMEIDA, BEZERRA, et al., 2011)
17
Postulado 4. Um elétron pode absorver energia de uma fonte externa somente em
unidades discretas (pequenas), chamadas quanta (forma singular: quantum).
Postulado 5. Quando um elétron absorve um quantum de energia, ele salta de uma
órbita mais energética, ligeiramente mais afastada do núcleo. Dizemos que o elétron realizou
um salto quântico e atingiu um estado excitado.
Postulado 6. Quando o elétron retorna a órbita menos energética, ele perde, na forma
de onda eletromagnética, uma quantidade de energia que corresponde à diferença de energia
existente entre órbitas envolvidas no movimento do elétron.
2.1.2 Aplicações do modelo de Bohr
Teste da chama com CuSO Figura 12, uma das mais importantes propriedades dos
elétrons é que suas energias são "quantizadas",ou seja, um elétron ocupa sempre um nível
energético bem definido e não um valor qualquer de energia. Se no entanto um elétron for
submetido a um fonte de enrgia adequada (calor, luz, etc.), pode sofrer uma mudança de um
nível mais baixo para outro de energia mais alto (excitação). O estado excitado é um estado
meta-estável (de curtíssima duração) e, portanto, o elétron retorna imediatamente ao seu
estado fundamental. A energia ganha durante a excitação é então emitida na forma de
radiação visível do espectro eletromagnético que o olho humano é capaz de detectar ou não.
Como o elemento emite uma radiação característica, ela pode ser usada como método
analítico (RIBEIRO, 2012)
FIGURA 11 SALTO QUANTICO
(ALMEIDA, BEZERRA, et al., 2011)
18
Cores emitidas pelos átomos de alguns elementos no teste da chama.
Elemento Cor
Sódo Laranja
Potássio Violeta
Cálcio Vermelho- tijolo
Estrôncio Vermelho- carmin
Bário Verde
Cobre Azul- esverdeado
Césio Azul- claro
Fogos de artifício
FIGURA 12 TESTE DA CHAMA
(RIBEIRO, 2012)
FIGURA 13 FOGOS DE ARTIFÍCIO
(RIBEIRO, 2012)
19
FOGOS DE ARTIFÍCIO: Os fogos de artifício modernos empregam perclorato,
substâncias orgânicas como amido ou açúcar, produtos do petróleo e pequenas quantidades de
metais para dar cor. O funcionamento fundamenta-se na excitação dos elétrons que, ao
retornarem a sua órbita original, emitem luz com cores diferentes. Aqui, uma exibição de
fogos de artifício na cidade de Nova York (RIBEIRO, 2012).
Luminosos e lâmpadas (neônio e lâmpadas de vapor de Na ou Hg)
Fluorescência se define como as propriedades das substâncias de adquirirem
luminescência ao serem submetidas aos raios ultravioletas, ou seja, quando são iluminadas
(RIBEIRO, 2012).
FIGURA 14 NEÔNICO E LÂMPADAS DE VAPOR
(RIBEIRO, 2012)
FIGURA 15 FLUORESCNCIA^
(RIBEIRO, 2012)
20
O raio laser é um tipo de radiação eletromagnética visível ao olho humano. O laser
hoje é muito aplicado como, por exemplo, nas cirurgias médicas, em pesquisas científicas, na
holografia, nos leitores de CD e DVD como também no laser pointer utilizado para
apresentação de slides. Na indústria o laser de dióxido de carbono tem sido muito utilizado,
pois possibilita um processo rápido de corte e solda de materiais (RIBEIRO, 2012).
2.2 O aperfeiçoamento do modelo de Bohr
Mas a partir do modelo de Bohr não era possível prever os espectros dos átomos com
números atômicos maiores. Isso implicava na necessidade de se aperfeiçoar esse modelo.
Um primeiro ajuste foi proposto em 1916, pelo físico e matemático alemão Arnold
Sommerfeld. Análises espectroscópicas refinadas mostraram que as linhas espectrais não são
simples. Elas apresentam o que é chamado de estrutura fina isto é, consistem em várias linhas
componentes que ficam bem próximas. Isso indicava que para um mesmo estado estacionário
de energia, níveis de energia deveriam existir sub-níveis de energia (ALMEIDA, BEZERRA,
et al., 2011).
FIGURA 16 RAIO LASER
(RIBEIRO, 2012)
21
Sommerfeld propôs que em vez de descrever órbitas circulares, os elétrons
descreveriam órbitas elípticas e o núcleo do átomo estaria localizado num dos focos da elipse.
Em seu tratamento matemático, ele concluiu que em uma camada eletrônica havia uma órbita
circular e (n -1) órbitas elípticas, em que n é o número de camadas. O elétron teria uma
quantidade de energia determinada pela distância que tem do núcleo e outra, pelo tipo de
órbita descrita. Esse novo modelo ficou conhecido como Bohr – Sommerfeld. Figura
Apesar de boas explicações para a estrutura fina, este modelo ainda não explicava os
átomos com maior número de elétrons. Outras variáveis ainda precisariam ser levadas em
conta.
2.21 Dualidades onda partícula da material
Um dos problemas que os físicos enfrentavam era o fato do comportamento da luz
poder ser explicado tanto por uma teoria ondulatória como por outra que a considerava uma
partícula. Afinal a luz é uma onda ou uma partícula? O que parecia óbvio era que para
explicar os fenômenos de difração e interferência da luz devia-se levar em conta o modelo
ondulatório, e para explicar o efeito fotoelétrico tinha de ser levado em conta o modelo de
fóton. Bohr em seus estudos, já havia considerado que um modelo era complementar ao outro
e ambos deveriam ser considerados no estudo quântico. Essa ideia foi ampliada, em 1924, por
Louis De Broglie8 que propôs que não apenas os fótons apresentam características de onda e
FIGURA 17 ORBITAS DE SOMMERFELD
(ALMEIDA, BEZERRA, et al., 2011)
22
de partícula, mas sim todas as formas de matéria. De Broglie sugeriu que toda partícula está
associada a um comprimento de onda l, que poderia ser determinado pela equação:
Com essa equação, De Broglie representava sua hipótese da natureza dual da matéria.
O caráter ondulatório estaria representado pelo comprimento de onda lambida e o caráter
corpuscular, pela quantidade de movimento m. v. Até aquela época ainda não havia dados
experimentais que demonstrassem a natureza dual dos elétrons, mas após a hipótese de De
Broglie dois físicos norte-americanos, Clinton Joseph Davisson e Lester Halbert Germer, o
fizeram. Estava colocada a base para uma nova Física. As equações clássicas que descreviam
o movimento dos corpos deveriam ser acrescidas do fator ondulatório. Essa nova mecânica
passou a ser chamada de Mecânica Quântica. Mas ainda outros fatores precisavam ser
incorporados a esta Mecânica, como:
2.2.2 O Princípio da Incerteza Heisenberg
O desenvolvimento desse novo modelo deve-se a várias cientistas, dentre eles o
francês De Broglie e o alemão Heisenberg. Em 1926, Werner Karl Heisenberg demonstrou,
usando os conceitos quânticos (mecânica quântica), que é impossível determinar,
simultaneamente, com absoluta precisão, a velocidade e a posição de um elétron em um
átomo. Este princípio, conhecido por Princípio da Incerteza, estabelece que, quanto mais
precisamente conhecemos a posição do elétron, menos precisamente conhecemos a sua
FIGURA 18 EQUAÇÃO DE DE BROGLIE
(ALMEIDA, BEZERRA, et al., 2011)
23
velocidade. De acordo com o Princípio da Incerteza, não se pode afirmar que exista uma
órbita definida para o elétron. O mais adequado é considerar que existam regiões,
denominadas orbitais, considerados nuvens, em torno do núcleo onde é máxima a
probabilidade de se encontrar um elétron (ALMEIDA, BEZERRA, et al., 2011).
Quando se quer encontrar a posição de um elétron, por exemplo, é necessário fazê-lo
interagir com algum instrumento de medida, direta ou indiretamente. Por exemplo, faz-se
incidir sobre ele algum tipo de radiação. Tanto faz aqui que se considere a radiação do modo
clássico - constituída por ondas eletromagnéticas - ou do modo quântico - constituída por
fótons. Se se quer determinar a posição do elétron, é necessário que a radiação tenha
comprimento de onda da ordem da incerteza com que se quer determinar a posição. Neste
caso, quanto menor for o comprimento de onda (maior freqüência) maior é a precisão.
Contudo, maior será a energia cedida pela radiação (onda ou fóton) em virtude da relação de
Planck entre energia e freqüência da radiação (WIKIPEDIA, 2012).
2.2.3 Função da onde de Schodinger
Os cálculos de energia dos elétrons não poderiam ser mais desenvolvidos pela equação
de Maxwell, havia a necessidade de desenvolver uma nova equação matemática que
incorporasse os princípios já conhecidos: a quantização do elétron em níveis e subníveis de
energia, o seu caráter ondapartícula e o Princípio da Incerteza.
A equação de Schrödinger foi aperfeiçoada também pelo físico norte-americano Paul
Adrien Maurice Dirac. Nas soluções numéricas para a função de onda, proposta por Dirac, ele
incorporou números que identificam o nível energético do elétron, denominados números
quânticos. A caracterização de cada elétron no átomo é feita por meio de quatro números
quânticos: principal, secundário (ou azimutal), magnético e spin. Sendo que num mesmo
átomo, não existem dois elétrons com os mesmos números quânticos (ALMEIDA,
BEZERRA, et al., 2011).
A energia de um fóton emitido por um átomo de hidrogênio é determinado pela
diferença de dois níveis de energia de hidrogênio (WIKIPEDIA, 2012).
24
Onde ni é o nível inicial , e nf é o nível final de energia. Uma vez que a energia de um
fóton está
O comprimento de onda do fóton emitido é dada pela
Isto é conhecido como a fórmula de Rydberg, e os R da constante Rydberg é , ou em
unidades naturais. (WIKIPEDIA, 2012)
3. O QUE SABEMOS SOBRE O ÁTOMO HOJE
3.1 Trituradores de Átomos
O nome próprio é portentoso: Grande Colisor Elétron-Pósitron. O nome de família não
é menos respeitável: superacelerador de partículas. Trata-se do maior instrumento de pesquisa
do mundo. Serve para estudar a vida íntima do átomo e a origem do Cosmo.
Cerca de 100 metros abaixo do solo, na periferia da cidade de Genebra, na Suíça,
funciona o maior complexo científico já construído no planeta. Na superfície, a paisagem da
região de fronteira com a França é de um sossegado cartão-postal de outros tempos: pequenos
bosques, pastagens e a cordilheira do Jura, que separa os dois países. Mas, ao tomar num dos
oito pontos de acesso construídos no campo o que em circunstâncias normais seria
apropriadamente chamado elevador, o visitante mergulha de repente num mundo de vertigem
- uma espécie de catedral subterrânea feita de aço e governada por dispositivos eletrônicos.
São os controladores do LEP, iniciais em inglês de Grande (Colisor) Elétron-Pósitron, um
túnel em formato de anel de 27 quilômetros de circunferência e 7 metros de diâmetro
(RIBEIRO, 2012).
25
Trata-se da jóia da coroa de um dos mais renomados estabelecimentos de pesquisa do
século, o CERN, sigla que originalmente designava em francês o Centro Europeu de
Investigações Nucleares, depois rebatizado Laboratório Europeu de Física de Partículas,
exemplo de bem-sucedida colaboração internacional em ciência. Inaugurado há apenas quatro
meses, o LEP nasceu para ajudar a conhecer mais de perto algumas das frações ínfimas de
matéria do Universo. É um paradoxo: para devassar essas partículas que não medem mais de
1 bilionésimo de milésimo de milímetro, os físicos europeus tiveram de construir uma
estrutura gigantesca.
Componentes dos átomos com carga elétrica negativa se precipitam em desvairada
corrida. Em sentido contrário precipitam-se as antipartículas pósitrons - elétrons com carga
positiva. Nesse proposital curso de colisão, milhares e milhares de partículas e antipartículas,
deslocando-se quase à velocidade da luz, acabam por se aniquilar mutuamente, liberando
energia equivalente à fissão de quinhentos núcleos de átomos de urânio. Mas esse é apenas
um valor teórico: não se trata ali de experiências atômicas, ao menos no sentido comum da
expressão. Os físicos pretendiam com os choques que planejaram é servir-se depois de uma
salada de partículas básicas, coisa ainda menor que o elétron e que sua imagem espelhada, o
pósitron. De fato, com a ajuda dos aceleradores se descobriu que tudo o que existe -
rigorosamente tudo - é feito apenas de três famílias de partículas elementares indivisíveis:
quarks, léptons e bósons. Os quarks fazem os nêutrons e prótons no núcleo dos átomos. Os
FIGURA 19ACELERADOR DE PARTICULAS
(RIBEIRO, 2012)
26
léptons fazem os elétrons, entre outras coisas. Os bósons formam uma classe especial de
partículas mensageiras, responsáveis pelas interações entre as outras famílias.
Tais forças, como se sabe, são a gravitacional, o eletromagnetismo e as interações
fortes (responsável pela coesão do núcleo atômico) e fracas (que rege os fenômenos da
radioatividade). Desde Einstein, na década de 30, os físicos acreditam que essas forças
poderiam ser manifestações de uma força única que agiu somente nos instantes que se
seguiram ao Big Ban. A explosão que teria originado o Universo.
A descoberta do elétron inaugurou a era das partículas elementares. Depois de 100
anos de pesquisa, conhecemos cerca de 10 diferentes partículas elementares e temos um
modelo, como Modelo Padrão, que descreve com extraordinária precisão o comportamento
dessas partículas, Figura 20, (RIBEIRO, 2012)
FIGURA 20 TODAS AS FORMAS DE MATÉRIAS QUE EXISTE
(RIBEIRO, 2012)
27
Podemos concluir que a matéria é constituída por pequenos núcleos, altamente densos
onde se concentra a massa do átomo, carregados positivamente, constituídos de prótons (p) e
nêutrons (n), cercados por regiões praticamente vazias denominadas de eletrosfera, onde se
encontram os elétrons (e), de carga negativa (RIBEIRO, 2012). Modelo básico Figura 21.
FIGURA 21PARTÍCULAS DE MATÉRIA QUE TRANMITEM FORÇA
(RIBEIRO, 2012)
FIGURA 22ÁTOMO BÁSICO
(RIBEIRO, 2012)
28
Modelo atual
Os cientistas abandonaram a idéia de que o elétron descrevia uma trajetória definida
em torno do núcleo e passaram a admitir que existam zonas onde há maior probabilidade de
encontrar os elétrons, designadas por orbitais (RIBEIRO, 2012).
FOTO DO V CONGRESSO DE SLVAY (1927)
FIM
FIGURA 23 MODELOATÔMICO DA NUVEM ELETRÔNICA
(RIBEIRO, 2012)
29
BIBLIOGRAFIA
ALMEIDA, A. C. D. et al. Alunos online.com.br. Alunos online, 2011. Disponivel em:
<http://www.ebah.com.br/content/ABAAAAqqMAB/>. Acesso em: 30 nov. 2012.
FOGAÇA, J. R. V. alunosonline.com.br. Alunos online, 2010. Disponivel em:
<http://www.alunosonline.com.br/quimica/modelo-atomico-rutherford-bohr.html>. Acesso
em: 22 nov. 2012.
LOURENÇO, D. ebah.com.b. Ebah, 2008. Disponivel em:
<http://www.ebah.com.br/content/ABAAAfW0EAI/biografia-ernest-rutherford#>. Acesso
em: 26 nov. 2012.
OLIVEIRA, J. ebah. ebah.com.br, 2012. Disponivel em:
<http://www.ebah.com.br/content/ABAAAAqqMAB/historia-atomo-niels-bohr#>. Acesso
em: 23 nov. 2012.
PEREIRA, A. D. M. Aprendendo Química com a 2108. quimicacoma2108.blogspot.com.br,
2010. Disponivel em: <http://quimicacoma2108.blogspot.com.br/2010/03/modelo-atomico-
de-joseph-john-thomson.html>. Acesso em: 24 nov. 2012.
RIBEIRO, T. quimicaeletro.blogspot.com.b. Eletroquímica, 2012. Disponivel em:
<http://quimicaeletro.blogspot.com.br/p/aplicacoes-do-modelo-de-bohr.html>. Acesso em: 22
nov. 2012.
SILVA, D. C. M. D. alunosonline.com.br. Alunos online, 2010. Disponivel em:
<http://www.alunosonline.com.br/fisica/modelos-atomicos.html>. Acesso em: 20 nov. 2012.
SOUZA, L. A. D. Mundoeducacao.com.br. Mundoeducacao, 2011. Disponivel em:
<http://www.mundoeducacao.com.br/quimica/leucipo-democritofilosofando-sobre-
atomos.htm>. Acesso em: 29 nov. 2012.
WIKIPEDIA. wikipedia.org. Demócrito de Abdera, 2012. Disponivel em:
<http://pt.wikipedia.org/wiki/Dem%C3%B3crito_de_Abdera>. Acesso em: 30 nov. 2012.

Weitere ähnliche Inhalte

Was ist angesagt?

Processos de transmissão de calor
Processos de transmissão de calorProcessos de transmissão de calor
Processos de transmissão de calor
O mundo da FÍSICA
 
Modelos atômicos ( 9 ano)
Modelos atômicos ( 9 ano)Modelos atômicos ( 9 ano)
Modelos atômicos ( 9 ano)
Karol Maia
 
Leis De Kepler
Leis De KeplerLeis De Kepler
Leis De Kepler
ISJ
 
Espectros, radiação e energia
Espectros, radiação e energiaEspectros, radiação e energia
Espectros, radiação e energia
ct-esma
 
1 método científico - power point
1  método científico - power point1  método científico - power point
1 método científico - power point
margaridabt
 
Modelos atomicos 9ano
Modelos atomicos 9anoModelos atomicos 9ano
Modelos atomicos 9ano
joana bolsi
 

Was ist angesagt? (20)

Processos de transmissão de calor
Processos de transmissão de calorProcessos de transmissão de calor
Processos de transmissão de calor
 
Física - Lançamento Vertical
Física - Lançamento VerticalFísica - Lançamento Vertical
Física - Lançamento Vertical
 
Modelos atômicos ( 9 ano)
Modelos atômicos ( 9 ano)Modelos atômicos ( 9 ano)
Modelos atômicos ( 9 ano)
 
Leis De Kepler
Leis De KeplerLeis De Kepler
Leis De Kepler
 
Espectros, radiação e energia
Espectros, radiação e energiaEspectros, radiação e energia
Espectros, radiação e energia
 
Artigo conedu aceito ( BEATRIZ)
Artigo conedu aceito  ( BEATRIZ)Artigo conedu aceito  ( BEATRIZ)
Artigo conedu aceito ( BEATRIZ)
 
Evolução dos modelos atômicos
Evolução dos modelos atômicosEvolução dos modelos atômicos
Evolução dos modelos atômicos
 
Modelos atômicos
Modelos atômicosModelos atômicos
Modelos atômicos
 
Aula 20: O átomo de hidrogênio
Aula 20: O átomo de hidrogênioAula 20: O átomo de hidrogênio
Aula 20: O átomo de hidrogênio
 
Modelos atômicos
Modelos atômicosModelos atômicos
Modelos atômicos
 
Modelo atômico de bohr
Modelo atômico de bohrModelo atômico de bohr
Modelo atômico de bohr
 
1 método científico - power point
1  método científico - power point1  método científico - power point
1 método científico - power point
 
Analise espectro eletromagnética
Analise espectro eletromagnéticaAnalise espectro eletromagnética
Analise espectro eletromagnética
 
Modelos atômicos böhr - sommerfeld - pauling
Modelos atômicos   böhr - sommerfeld - paulingModelos atômicos   böhr - sommerfeld - pauling
Modelos atômicos böhr - sommerfeld - pauling
 
Aula Digital de Química - Ácidos e Bases
Aula Digital de Química - Ácidos e BasesAula Digital de Química - Ácidos e Bases
Aula Digital de Química - Ácidos e Bases
 
Modelos atomicos 9ano
Modelos atomicos 9anoModelos atomicos 9ano
Modelos atomicos 9ano
 
Resumo conceitos fundamentais e teorias atomicas
Resumo   conceitos fundamentais e teorias atomicasResumo   conceitos fundamentais e teorias atomicas
Resumo conceitos fundamentais e teorias atomicas
 
Fundamentos da óptica geométrica
Fundamentos da óptica geométricaFundamentos da óptica geométrica
Fundamentos da óptica geométrica
 
Aula 008 energia cinetica
Aula 008 energia cineticaAula 008 energia cinetica
Aula 008 energia cinetica
 
Balanceamento
BalanceamentoBalanceamento
Balanceamento
 

Andere mochten auch

Modelo de bohr e aplicações atualizado
Modelo de bohr e aplicações   atualizadoModelo de bohr e aplicações   atualizado
Modelo de bohr e aplicações atualizado
profaugustosergio
 
Evolução dos modelos atómicos
Evolução dos modelos atómicosEvolução dos modelos atómicos
Evolução dos modelos atómicos
Patrícia Morais
 
Slides evolução do modelo atômico
Slides  evolução do modelo atômicoSlides  evolução do modelo atômico
Slides evolução do modelo atômico
elismarafernandes
 
Espectro eletromagnético
Espectro eletromagnéticoEspectro eletromagnético
Espectro eletromagnético
Fagner Aquino
 
Atomodehidrogenio
AtomodehidrogenioAtomodehidrogenio
Atomodehidrogenio
Pelo Siro
 
Ensino de Física: Átomo de Bohr e Espectroscopia
Ensino de Física: Átomo de Bohr e EspectroscopiaEnsino de Física: Átomo de Bohr e Espectroscopia
Ensino de Física: Átomo de Bohr e Espectroscopia
Josilene
 
Modelo atomico de bohr
Modelo atomico de bohrModelo atomico de bohr
Modelo atomico de bohr
kp2kp2kp2
 

Andere mochten auch (20)

Niels Böhr
Niels BöhrNiels Böhr
Niels Böhr
 
Modelo de bohr e aplicações atualizado
Modelo de bohr e aplicações   atualizadoModelo de bohr e aplicações   atualizado
Modelo de bohr e aplicações atualizado
 
Átomo de hidrogénio
Átomo de hidrogénioÁtomo de hidrogénio
Átomo de hidrogénio
 
Modelo de bohr
Modelo de bohrModelo de bohr
Modelo de bohr
 
Evolução dos modelos atómicos
Evolução dos modelos atómicosEvolução dos modelos atómicos
Evolução dos modelos atómicos
 
Slides evolução do modelo atômico
Slides  evolução do modelo atômicoSlides  evolução do modelo atômico
Slides evolução do modelo atômico
 
Pp 1ª Aula ÁTomo H
Pp 1ª Aula ÁTomo HPp 1ª Aula ÁTomo H
Pp 1ª Aula ÁTomo H
 
Niels bohr
Niels  bohrNiels  bohr
Niels bohr
 
Espectro eletromagnético
Espectro eletromagnéticoEspectro eletromagnético
Espectro eletromagnético
 
Espectro eletromagnético
Espectro eletromagnéticoEspectro eletromagnético
Espectro eletromagnético
 
Modelo atómico de Bohr
Modelo atómico de BohrModelo atómico de Bohr
Modelo atómico de Bohr
 
7. níveis de energia
7. níveis de energia7. níveis de energia
7. níveis de energia
 
Relatividade apresentacao
Relatividade apresentacaoRelatividade apresentacao
Relatividade apresentacao
 
De Bohr a Schrodinger
De Bohr a SchrodingerDe Bohr a Schrodinger
De Bohr a Schrodinger
 
Atomodehidrogenio
AtomodehidrogenioAtomodehidrogenio
Atomodehidrogenio
 
7 atomo hidrogénio
7   atomo hidrogénio7   atomo hidrogénio
7 atomo hidrogénio
 
Ensino de Física: Átomo de Bohr e Espectroscopia
Ensino de Física: Átomo de Bohr e EspectroscopiaEnsino de Física: Átomo de Bohr e Espectroscopia
Ensino de Física: Átomo de Bohr e Espectroscopia
 
Modelo atomico de bohr
Modelo atomico de bohrModelo atomico de bohr
Modelo atomico de bohr
 
Modelo atual 2013
Modelo atual 2013Modelo atual 2013
Modelo atual 2013
 
Apresentação Equação de Schrodinger
Apresentação  Equação de SchrodingerApresentação  Equação de Schrodinger
Apresentação Equação de Schrodinger
 

Ähnlich wie Atomo de bohr

Modelo AtôMico De Dalton E Thomson
Modelo AtôMico De Dalton E ThomsonModelo AtôMico De Dalton E Thomson
Modelo AtôMico De Dalton E Thomson
guestddc80fe
 
Modelo AtôMico De Dalton E Thomson
Modelo AtôMico De Dalton E ThomsonModelo AtôMico De Dalton E Thomson
Modelo AtôMico De Dalton E Thomson
guestddc80fe
 
Apostilamoderna 091013123707-phpapp02
Apostilamoderna 091013123707-phpapp02Apostilamoderna 091013123707-phpapp02
Apostilamoderna 091013123707-phpapp02
Paulo Souto
 
Modelo atomico
Modelo atomicoModelo atomico
Modelo atomico
lilCroocK
 
Professor autor química-química ι 1º ano ι médio-estudo do átomo e suas p...
Professor autor química-química  ι  1º ano  ι  médio-estudo do átomo e suas p...Professor autor química-química  ι  1º ano  ι  médio-estudo do átomo e suas p...
Professor autor química-química ι 1º ano ι médio-estudo do átomo e suas p...
Cazimiro Saldanha
 
Aula 4 modelos atômicos
Aula 4 modelos atômicosAula 4 modelos atômicos
Aula 4 modelos atômicos
Colegio CMC
 
Aula 4 modelos atômicos
Aula 4 modelos atômicosAula 4 modelos atômicos
Aula 4 modelos atômicos
Colegio CMC
 

Ähnlich wie Atomo de bohr (20)

Os principais modelos atômicos (física)
Os principais modelos atômicos (física)Os principais modelos atômicos (física)
Os principais modelos atômicos (física)
 
Modelo AtôMico De Dalton E Thomson
Modelo AtôMico De Dalton E ThomsonModelo AtôMico De Dalton E Thomson
Modelo AtôMico De Dalton E Thomson
 
Modelo AtôMico De Dalton E Thomson
Modelo AtôMico De Dalton E ThomsonModelo AtôMico De Dalton E Thomson
Modelo AtôMico De Dalton E Thomson
 
AULA 11_ Modelos Atômicos _ Química 1º Ano.pdf
AULA 11_ Modelos Atômicos _ Química 1º Ano.pdfAULA 11_ Modelos Atômicos _ Química 1º Ano.pdf
AULA 11_ Modelos Atômicos _ Química 1º Ano.pdf
 
Apostilamoderna 091013123707-phpapp02
Apostilamoderna 091013123707-phpapp02Apostilamoderna 091013123707-phpapp02
Apostilamoderna 091013123707-phpapp02
 
2. a constituição da matéria átomo
2. a constituição da matéria   átomo2. a constituição da matéria   átomo
2. a constituição da matéria átomo
 
Modelo atômico de dalton
Modelo atômico de daltonModelo atômico de dalton
Modelo atômico de dalton
 
2021_EnsMédio_ Química_1ª Série_Slides_Aula 16.pptx
2021_EnsMédio_ Química_1ª Série_Slides_Aula 16.pptx2021_EnsMédio_ Química_1ª Série_Slides_Aula 16.pptx
2021_EnsMédio_ Química_1ª Série_Slides_Aula 16.pptx
 
Modelo atomico
Modelo atomicoModelo atomico
Modelo atomico
 
Luisa ometto dal prete materiais
Luisa ometto dal prete materiaisLuisa ometto dal prete materiais
Luisa ometto dal prete materiais
 
Apresentacao 1 anos - Modelo atomico de Dalton
Apresentacao 1 anos - Modelo atomico de DaltonApresentacao 1 anos - Modelo atomico de Dalton
Apresentacao 1 anos - Modelo atomico de Dalton
 
Modelos Atômicos
Modelos AtômicosModelos Atômicos
Modelos Atômicos
 
Capítulo 1 efeito fotoelétrico
Capítulo 1   efeito fotoelétricoCapítulo 1   efeito fotoelétrico
Capítulo 1 efeito fotoelétrico
 
Modelos atômicos 2013 coc
Modelos  atômicos 2013   cocModelos  atômicos 2013   coc
Modelos atômicos 2013 coc
 
Professor autor química-química ι 1º ano ι médio-estudo do átomo e suas p...
Professor autor química-química  ι  1º ano  ι  médio-estudo do átomo e suas p...Professor autor química-química  ι  1º ano  ι  médio-estudo do átomo e suas p...
Professor autor química-química ι 1º ano ι médio-estudo do átomo e suas p...
 
Cursinho COC - Franca - Modelos Atômicos 2012
Cursinho COC - Franca - Modelos  Atômicos 2012Cursinho COC - Franca - Modelos  Atômicos 2012
Cursinho COC - Franca - Modelos Atômicos 2012
 
Modelos atômicos 2012
Modelos  atômicos 2012Modelos  atômicos 2012
Modelos atômicos 2012
 
Estudo do átomo e modelos (1).pptx
Estudo do átomo e modelos (1).pptxEstudo do átomo e modelos (1).pptx
Estudo do átomo e modelos (1).pptx
 
Aula 4 modelos atômicos
Aula 4 modelos atômicosAula 4 modelos atômicos
Aula 4 modelos atômicos
 
Aula 4 modelos atômicos
Aula 4 modelos atômicosAula 4 modelos atômicos
Aula 4 modelos atômicos
 

Mehr von Nathanael Melchisedeck Brancaglione

Mehr von Nathanael Melchisedeck Brancaglione (11)

Avaliação do disco intervertebral por imagem radiográfica
Avaliação do disco intervertebral por imagem radiográficaAvaliação do disco intervertebral por imagem radiográfica
Avaliação do disco intervertebral por imagem radiográfica
 
Avaliação do disco intervertebral por imagens radiográficas Tcc 2012 (14)
Avaliação do disco intervertebral por imagens radiográficas Tcc 2012 (14)Avaliação do disco intervertebral por imagens radiográficas Tcc 2012 (14)
Avaliação do disco intervertebral por imagens radiográficas Tcc 2012 (14)
 
Aula 05 proteção e higiene das radiações
Aula 05 proteção e higiene das radiaçõesAula 05 proteção e higiene das radiações
Aula 05 proteção e higiene das radiações
 
Aula 03 proteção radológica
Aula 03 proteção radológicaAula 03 proteção radológica
Aula 03 proteção radológica
 
Aula 02 proteção radiológica
Aula 02 proteção radiológicaAula 02 proteção radiológica
Aula 02 proteção radiológica
 
Aula 01 proteção radiológica
Aula 01  proteção radiológicaAula 01  proteção radiológica
Aula 01 proteção radiológica
 
Aula 06 densitometria
Aula 06 densitometriaAula 06 densitometria
Aula 06 densitometria
 
Aula 04 proteção e higiene das radiações
Aula 04 proteção e higiene das radiaçõesAula 04 proteção e higiene das radiações
Aula 04 proteção e higiene das radiações
 
Angiografia por Ressonância Magnética. Gadolínio e Tc
Angiografia por Ressonância Magnética. Gadolínio e TcAngiografia por Ressonância Magnética. Gadolínio e Tc
Angiografia por Ressonância Magnética. Gadolínio e Tc
 
Radiografia industrial
Radiografia industrialRadiografia industrial
Radiografia industrial
 
Proteção e Higiene das Radiações
Proteção e Higiene das RadiaçõesProteção e Higiene das Radiações
Proteção e Higiene das Radiações
 

Kürzlich hochgeladen

Sistema articular aula 4 (1).pdf articulações e junturas
Sistema articular aula 4 (1).pdf articulações e junturasSistema articular aula 4 (1).pdf articulações e junturas
Sistema articular aula 4 (1).pdf articulações e junturas
rfmbrandao
 
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdfatividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
Autonoma
 
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
azulassessoria9
 
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
PatriciaCaetano18
 
ATIVIDADE 3 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 3 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024ATIVIDADE 3 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 3 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
azulassessoria9
 

Kürzlich hochgeladen (20)

Sistema articular aula 4 (1).pdf articulações e junturas
Sistema articular aula 4 (1).pdf articulações e junturasSistema articular aula 4 (1).pdf articulações e junturas
Sistema articular aula 4 (1).pdf articulações e junturas
 
INTERTEXTUALIDADE atividade muito boa para
INTERTEXTUALIDADE   atividade muito boa paraINTERTEXTUALIDADE   atividade muito boa para
INTERTEXTUALIDADE atividade muito boa para
 
Sopa de letras | Dia da Europa 2024 (nível 2)
Sopa de letras | Dia da Europa 2024 (nível 2)Sopa de letras | Dia da Europa 2024 (nível 2)
Sopa de letras | Dia da Europa 2024 (nível 2)
 
aula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.pptaula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.ppt
 
Sopa de letras | Dia da Europa 2024 (nível 1)
Sopa de letras | Dia da Europa 2024 (nível 1)Sopa de letras | Dia da Europa 2024 (nível 1)
Sopa de letras | Dia da Europa 2024 (nível 1)
 
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdfatividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
 
Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM POLÍGON...
Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM  POLÍGON...Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM  POLÍGON...
Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM POLÍGON...
 
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
 
Monoteísmo, Politeísmo, Panteísmo 7 ANO2.pptx
Monoteísmo, Politeísmo, Panteísmo 7 ANO2.pptxMonoteísmo, Politeísmo, Panteísmo 7 ANO2.pptx
Monoteísmo, Politeísmo, Panteísmo 7 ANO2.pptx
 
Novena de Pentecostes com textos de São João Eudes
Novena de Pentecostes com textos de São João EudesNovena de Pentecostes com textos de São João Eudes
Novena de Pentecostes com textos de São João Eudes
 
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...
 
apostila filosofia 1 ano 1s (1).pdf 1 ANO DO ENSINO MEDIO . CONCEITOSE CARAC...
apostila filosofia 1 ano  1s (1).pdf 1 ANO DO ENSINO MEDIO . CONCEITOSE CARAC...apostila filosofia 1 ano  1s (1).pdf 1 ANO DO ENSINO MEDIO . CONCEITOSE CARAC...
apostila filosofia 1 ano 1s (1).pdf 1 ANO DO ENSINO MEDIO . CONCEITOSE CARAC...
 
O desenvolvimento é um conceito mais amplo, pode ter um contexto biológico ou...
O desenvolvimento é um conceito mais amplo, pode ter um contexto biológico ou...O desenvolvimento é um conceito mais amplo, pode ter um contexto biológico ou...
O desenvolvimento é um conceito mais amplo, pode ter um contexto biológico ou...
 
O que é arte. Definição de arte. História da arte.
O que é arte. Definição de arte. História da arte.O que é arte. Definição de arte. História da arte.
O que é arte. Definição de arte. História da arte.
 
Historia de Portugal - Quarto Ano - 2024
Historia de Portugal - Quarto Ano - 2024Historia de Portugal - Quarto Ano - 2024
Historia de Portugal - Quarto Ano - 2024
 
Tema de redação - As dificuldades para barrar o casamento infantil no Brasil ...
Tema de redação - As dificuldades para barrar o casamento infantil no Brasil ...Tema de redação - As dificuldades para barrar o casamento infantil no Brasil ...
Tema de redação - As dificuldades para barrar o casamento infantil no Brasil ...
 
Currículo - Ícaro Kleisson - Tutor acadêmico.pdf
Currículo - Ícaro Kleisson - Tutor acadêmico.pdfCurrículo - Ícaro Kleisson - Tutor acadêmico.pdf
Currículo - Ícaro Kleisson - Tutor acadêmico.pdf
 
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
 
ATIVIDADE 3 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 3 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024ATIVIDADE 3 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 3 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
 
Camadas da terra -Litosfera conteúdo 6º ano
Camadas da terra -Litosfera  conteúdo 6º anoCamadas da terra -Litosfera  conteúdo 6º ano
Camadas da terra -Litosfera conteúdo 6º ano
 

Atomo de bohr

  • 1. CENTRO UNIVERSITÁRIO CENTRAL PAULISTA CURSO SUPERIOR DE TECNOLOGIA EM RADIOLOGIA NATHANAEL MELCHISEDECK BRANCAGLIONE Modelo atômico de Bohr SÃO CARLOS 2012
  • 2. NATHANAEL MELCHISEDECK BRANCAGLIONE Modelo atômico de Bohr Trabalho apresentado ao Curso Superior de Tecnologia em Radiologia UNICEP, como requisito à obtenção de nota parcial referente à segunda avaliação. Introdução a Física das Radiações: Prof. Dr. Mauro Massili. SÃO CARLOS 2012
  • 3. INDICE DE ILUSTRAÇÕES FIGURA 1 MODELO PUDIM DE PASSAS ..........................................................................7 FIGURA 2 EXPRERIMENTO COM FOLHA DE OURO ......................................................8 FIGURA 3 MODELO PLANETÁRIO.....................................................................................9 FIGURA 4 ORIBITAS PERMITIDAS EM Aº.......................................................................12 FIGURA 5 AS CINCO PRIMEIRAS ORBITAS ...................................................................12 FIGURA 6 EMISSÃO DE LUZ VERMELHA ......................................................................13 FIGURA 7 EMISSÃO DE LUZ VERDE AZULADO...........................................................14 FIGURA 8 EMISSÃO DE LUZ AZUL..................................................................................14 FIGURA 9 EMISSÃO DE LUZ VIOLETA ...........................................................................15 FIGURA 10 DIFERENÇA D EENERGIA ENTRE AS ORBITAS........................................16 FIGURA 11 SALTO QUANTICO ..........................................................................................17 FIGURA 12 TESTE DA CHAMA...........................................................................................18 FIGURA 13 FOGOS DE ARTIFÍCIO.....................................................................................18 FIGURA 14 NEÔNICO E LÂMPADAS DE VAPOR............................................................19 FIGURA 15 FLUORESCNCIA^ .............................................................................................19 FIGURA 16 RAIO LASER......................................................................................................20 FIGURA 17 ORBITAS DE SOMMERFELD .........................................................................21 FIGURA 18 EQUAÇÃO DE DE BROGLIE...........................................................................22 FIGURA 19 ACELERADOR DE PARTICULAS ..................................................................25 FIGURA 20 TODAS AS FORMAS DE MATÉRIAS QUE EXISTE.....................................26 FIGURA 21 PARTÍCULAS DE MATÉRIA QUE TRANMITEM FORÇA ..........................27 FIGURA 22 ÁTOMO BÁSICO...............................................................................................27 FIGURA 23 MODELOATÔMICO DA NUVEM ELETRÔNICA.........................................28
  • 4. SUMÁRIO 1 COMO SE IMAGINAVA O ÁTOMO ANTES DE NIELS BOHR.....................................4 1.1 Demócrito de Abdera........................................................................................................5 1.2 John Dalton.......................................................................................................................6 Cinco pontos principais da teoria atômica Dalton..............................................................6 1.3 Joseph John Thomson.......................................................................................................7 1.4 Ernest Rutherford .............................................................................................................8 2 COMO NIELS BOHR IMAGINOU O ATOMO .................................................................10 2.1 Histórico de Niels Bohr.................................................................................................10 2.1 Modelo Atômico de Bohr...............................................................................................11 2.1.2 Aplicações do modelo de Bohr....................................................................................17 2.2 O aperfeiçoamento do modelo de Bohr..........................................................................20 2.21 Dualidades onda partícula da material..........................................................................21 2.2.2 O Princípio da Incerteza Heisenberg...........................................................................22 2.2.3 Função da onde de Schodinger....................................................................................23 3. O QUE SABEMOS SOBRE O ÁTOMO HOJE..................................................................24 3.1 Trituradores de Átomos..................................................................................................24 FOTO DO V CONGRESSO DE SLVAY (1927)....................................................................28
  • 5. 4 1 COMO SE IMAGINAVA O ÁTOMO ANTES DE NIELS BOHR
  • 6. 5 1.1 Demócrito de Abdera Foi discípulo e depois sucessor de Leucipo de Mileto. A fama de Demócrito decorre do fato de ele ter sido o maior expoente da teoria atômica ou do atomismo. De acordo com essa teoria, tudo o que existe é composto por elementos indivisíveis chamados átomos (do grego, "a", negação e "tomo", divisível. Átomo= indivisível). Não há certeza se a teoria foi concebida por ele ou por seu mestre Leucipo. A ligação estreita entre ambos dificulta a identificação do que foi pensado por um ou por outro. Todavia, parece não haver dúvidas de ter sido Demócrito quem de fato sistematizou o pensamento e a teoria atomista. Demócrito avançou também o conceito de um universo infinito, onde existem muitos outros mundos como o nosso. Na Grécia antiga, Protágoras de Abdera teria sido seu discípulo direto e, posteriormente, o principal filósofo influenciado por ele foi Epicuro. No renascimento muitas de suas idéias foram aceitas (por exemplo, Giordano Bruno), e tiveram um papel importante durante o iluminismo. Muitos consideram que Demócrito é "o pai da ciência moderna"Acreditava que átomos eram indivisíveis e a matéria era composta por essas minúsculas partículas elementares, de várias formas e tamanhos. A prova disso seria a infinidade de substâncias existentes na natureza, cada uma delas com formatos e características diferentes (WIKIPEDIA, 2012). Em suma, os filósofos atomistas conceberam o átomo como sendo peças de um quebra- cabeça, as quais precisavam se unir de forma perfeita para formar estruturas mais complexas. Segundo eles, cada substância possuía seu tipo de átomo e este variava de acordo com as propriedades da mesma. Por exemplo, uma substância no estado líquido teria átomos arredondados (por isso, escoavam) e no estado sólido se apresentaria como átomos pontiagudos. E mais! Acreditavam que os átomos eram eternos. É claro que esta concepção já foi ultrapassada. Hoje, temos conhecimento de que os átomos não são indivisíveis e nem tão pouco eternos. Eles podem ser rompidos (fissão nuclear) e até mesmo destruídos. Mas não podemos deixar de considerar esta linha de estudo traçada por nossos ancestrais, pois ela permitiu à ciência dar seus primeiros passos até a Idade Moderna e chegar a um estágio avançado, tal qual é atualmente (SOUZA, 2011).
  • 7. 6 1.2 John Dalton John Dalton (6 de Setembro de 1766 Manchester, 27 de Julho de 1844), foi um químico, meteorologista e físico inglês. Foi um dos primeiros cientistas a defender que a matéria é feita de pequenas partículas, os átomos. É também um dos pioneiros na meteorologia, iniciando suas observações em 1787 com instrumentos confeccionados por ele mesmo e publicando, seis anos mais tarde, o livro Meteorological Observations and Essays (Observações e Ensaios Meteorológicos), um dos primeiros concernentes à ciência meteorológica. Suas observações experimentais permitiram-lhe elaborar teorias sobre o vapor d'água e misturas de gases, apresentando em 1801 sua lei das pressões parciais: em uma mistura de gases, cada componente exerce a mesma pressão como se estivesse solitária no recipiente que a contém. Dalton concluiu que toda matéria, não apenas gases, deve se consistir de diminutas partículas. Reviveu, assim, a antiga teoria atomista e elaborou a primeira tabela de pesos atômicos, anunciando seus resultados em 1803. Ao fim de sua vida, sua teoria atômica estava amplamente difundida entre a comunidade química e reconhecida pelo rei da Inglaterra com a Medalha Real. CINCO PONTOS PRINCIPAIS DA TEORIA ATÔMICA DALTON Dalton atribuiu os fundamentos do átomo principalmente pela característica de cinco pontos principais, eles dizem que: i. Elementos são feitas de partículas minúsculas chamadas átomos. ii. Todos os átomos de um dado elemento são idênticos. iii. Os átomos de um dado elemento são diferentes das de qualquer outro elemento; os átomos de diferentes elementos podem ser distinguidos uns dos outros por seus respectivos pesos relativos. iv. Átomos de um elemento podem combinar com átomos de outros elementos para formar compostos; um determinado composto tem sempre a mesma relação do número de tipos de átomos. v. Átomos não podem ser criados, divididos em pequenas partículas, nem destruídos no processo químico; uma reação química simplesmente muda a forma como átomos são agrupados. Dalton propôs mais uma "regra da maior simplicidade", que criaram controvérsia, uma vez que não pôde ser confirmado independentemente. Apesar da incerteza no coração de Dalton da teoria atômica, os princípios da teoria sobreviveram.
  • 8. 7 1.3 Joseph John Thomson O britânico Joseph John Thomson descobriu os elétrons em 1897 por meio de experimentos envolvendo raios catódicos em tubos de crookes. O tubo de crookes consiste-se em uma ampola que contém apenas vácuo e um dispositivo elétrico que faz os elétrons de qualquer material condutor saltar e formar feixes, que são os próprios raios catódicos. Thomson, ao estudar os raios catódicos, descobriu que estes são afetados por campos elétricos e magnéticos, e deduziu que a deflexão dos raios catódicos por estes campos são desvios de trajetória de partículas muito pequenas de carga negativa, os elétrons. (WIKIPEDIA, 2012) O Modelo atômico de Thomson (1897) propunha então que se o átomo não fosse maciço (como havia afirmado John Dalton), mas sim um fluido com carga positiva (homogêneo e quase esférico) no qual estavam dispersos (de maneira homogênea) os elétrons. Podemos fazer a analogia desse modelo atômico com um "Panetone" ou com um pudim recheado de uvas passas, em que a massa do panetone seria positiva e as passas seriam as partículas negativas (PEREIRA, 2010). FIGURA 1 MODELO PUDIM DE PASSAS (PEREIRA, 2010)
  • 9. 8 1.4 Ernest Rutherford Ernest Rutherford estudou matemática e física no Canterbury College, em Christchurch e com o auxílio de uma bolsa de estudo, ingressou em 1895 no Cavendish Laboratory, em Cambridge. Foi professor de física e química na McGill University (Canadá), de 1898 a 1907 e na Manchester University (Inglaterra), de 1907 a 1919. Em 1919, sucedeu J. J. Thomson na direcção do Cavendish Laboratory, cargo que exerceu até ao resto da sua vida e onde realizou importantes investigações. Atualmente considerado o fundador da Física Nuclear, Rutherford introduziu o conceito de núcleo atômico ao investigar a dispersão das partículas alfa por folhas delgadas de metal. Rutherford verificou que a grande maioria das partículas atravessava a folha sem se desviar e concluiu, com base nessas observações e em cálculos, que os átomos de ouro e, por extensão, quaisquer átomos eram estruturas praticamente vazias, e não esferas maciças. Rutherford também descobriu a existência dos prótons, as partículas com carga positiva que se encontram no núcleo. (LOURENÇO, 2008) Ernest Rutherford, em 1908, através de experimento bombardeou uma fina lâmina de ouro com partículas α, núcleo do átomo de hélio. Notou, então, que uma pequena parte era desviada de sua trajetória, porém uma maior parte das partículas atravessava a lâmina sem sofrer desvio. Figura 2. Com base nesse experimento, ele pôde chegar à conclusão de que o átomo possuía um pequeno núcleo e uma grande região vazia. Baseando-se no modelo do sistema solar, onde os planetas giram em torno do Sol, Rutherford propôs um modelo semelhante para o átomo de hidrogênio. Para ele, os elétrons possuíam cargas negativas; enquanto no núcleo se encontravam as cargas positivas, Figura 3 (SILVA, 2010). FIGURA 2 EXPRERIMENTO COM FOLHA DE OURO (SILVA, 2010)
  • 10. 9 Pelas suas investigações sobre a desintegração dos elementos e a química das substâncias radioativas, obteve em 1908 o Prémio Nobel da Química. Foi também presidente da Royal Society (1925-1930), e homenageado em 1931 com o título de primeiro barão de Rutherford de Nelson e Cambridge. Falecendo em 1937 (LOURENÇO, 2008). FIGURA 3MODELO PLANETÁRIO (SILVA, 2010)
  • 11. 10 2 COMO NIELS BOHR IMAGINOU O ATOMO 2.1 Histórico de Niels Bohr Niels Henrik David Bohr nasceu no dia 7 de Outubro de 1885, em Copenhaga. Em 1903, Niels matriculou-se na Escola Secundária de Gammelholm. Mais tarde, Bohr entrou para a Universidade de Copenhaga, onde foi influenciado pelo Professor Christiansen, um físico profundamente original e altamente dotado, e acabou o seu mestrado em física em 1909 e o seu doutoramento em 1911. Quando ainda era estudante, um anúncio, da Academia de Ciências de Copenhaga, de um prêmio para quem resolvesse um determinado problema científico levou-o a realizar uma investigação teórica e experimental sobre a tensão da superfície provocada pela oscilação de jactos fluídos. Este trabalho, levado a cabo no laboratório do seu pai, ganhou o prêmio (a medalha de ouro) e foi publicado em “Transactions of the Royal Society”, em 1908 (OLIVEIRA, 2012). Bohr continuou as suas investigações e a sua tese de doutoramento incidiu sobre as propriedades dos metais com a ajuda da teoria dos elétrons que ainda hoje é um clássico no campo da física. Nesta pesquisa Bohr confrontou-se com as implicações da teoria quântica de Planck. No Outono de 1911, Bohr mudou-se para Cambridge, onde trabalhou no Laboratório Cavendish sob a orientação de J. J. Thomson. Na Primavera de 1912.Niels Bohr passou a trabalhar no Laboratório do Professor Rutherford, em Manchester (OLIVEIRA, 2012). Em 1950, Bohr escreveu a “Carta Aberta” às Nações Unidas em defesa da preservação da paz, por ele considerada como condição indispensável para a liberdade de pensamento e de pesquisa (OLIVEIRA, 2012) Em 1955, escreveu o livro “The Unity of Knowledge”. Em 1957, Niels Bohr recebeu o Prêmio Átomos para a Paz. Ao mesmo tempo, o Instituto de Física Teórica, por ele dirigido desde 1920, afirmou-se como um dos principais centros intelectuais da Europa. A ocupação da Dinamarca pelo exército alemão (1940), a ascendência judia e suas atividades antinazistas obrigaram-no a viajar para a Inglaterra e mais tarde para os Estados Unidos, onde colaborou na produção da bomba atômica, projeto que abandonou (1944) para iniciar uma intensa atividade em favor da utilização pacífica de energia nuclear. Foi agraciado com o primeiro prêmio Átomos para a Paz (1957) e morreu em sua cidade natal em 18 de Novembro de 1962, vítima de uma trombose, aos 77 anos de idade (ALMEIDA, BEZERRA, et al., 2011)
  • 12. 11 2.1 Modelo Atômico de Bohr O cientista dinamarquês especializado em Física, Niels Bohr, realizou algumas observações referentes ao estudo da luz e, baseado em suas conclusões, ele pôde aprimorar o modelo atômico de Rutherford. O modelo atômico de Rutherford-Bohr ficou assim conhecido porque Bohr manteve as principais características do modelo de Rutherford, porém acrescentou mais informações sobre os elétrons que ficavam ao redor do núcleo (FOGAÇA, 2010). Naquela época, questionou-se que se o elétron emitisse energia continuamente, “fecharia” sua trajetória até atingir o núcleo e isso poderia gerar um colapso. Mas mais tarde esse questionamento foi reformulado pelo cientista Louis de Broglie, que diz que os elétrons giram ao redor do núcleo, mas não em órbitas definidas como tinha afirmado Bohr (SILVA, 2010). A partir dessa suposição, e baseando-se na teoria dos quanta de Max Planck e na explicação de Einstein para o efeito fotoelétrico, que consideram que a energia se propaga na forma de pacotes (quanta), Bohr postulou que, no átomo, os elétrons estão confinados em certos níveis estáveis de energia. Esses níveis estáveis de energia foram chamados estados estacionários de energia (ALMEIDA, BEZERRA, et al., 2011). Os problemas com o modelo do átomo de Rutherford foram resolvidos de uma forma surpreendente pelo jovem físico dinamarquês Niels Bohr. Em 1912, Bohr determinou algumas leis para explicar o modelo pelo qual os elétrons giram em órbita ao redor do núcleo atômico. O que tornou a sua abordagem especialmente interessante foi que ele não tentou justificar as suas leis ou encontrar razões para elas. As leis faziam muito pouco sentido, quando comparadas com as teorias já bem estabelecidas da Física. Bohr começou por presumir que os elétrons em órbita não descreviam movimento em espiral em direção ao núcleo. Isto contradizia tudo que se conhecia de eletricidade e magnetismo, mas adaptava-se ao modo pelo qual as coisas aconteciam. Nesta ocasião Bohr determinou as suas duas leis para o que realmente ocorre (OLIVEIRA, 2012). Primeira Lei: os elétrons podem girar em órbita somente a determinadas distâncias permitidas do núcleo. Considere o átomo de hidrogênio, por exemplo, que possui apenas um elétron girando ao redor do núcleo. Os cálculos de Bohr mostraram quais as órbitas possíveis. A Figura 4 mostra as cinco primeiras destas órbitas permitidas. A primeira órbita situa-se um pouco além de um Ângstron do núcleo (0,529 Ângstron). A segunda órbita permitida situa-se em um pouco mais de que 2 Ângstron do núcleo (2,116 Ângstron).
  • 13. 12 FIGURA 4 Oribitas permitidas em Aº (OLIVEIRA, 2012) Embora a Figura 5 mostre apenas as cinco primeiras órbitas, não existe limite para o número de órbitas teoricamente possíveis. Por exemplo, a centésima órbita de Bohr para o átomo de hidrogênio estaria dez mil vezes mais afastadas do núcleo do que a primeira órbita, a uma distância de 5.290 Ângstron. Órbitas de Bohr para o átomo de hidrogênio. Entretanto, as órbitas extremamente distantes, tais como a décima, a vigésima ou a centésima órbita, são improváveis. É bastante provável que um elétron em uma órbita distante fosse perdido pelo átomo. Em outras palavras outro átomo o arrebataria, ou uma onda de energia eletromagnética o deixaria como um “elétron livre” movendo-se através do espaço FIGURA 5 AS CINCO PRIMEIRAS ORBITAS (OLIVEIRA, 2012)
  • 14. 13 entre os átomos. Por conseguinte, as órbitas mais importantes, aquelas que desempenham um papel principal na produção do espectro linear de um átomo, são as órbitas mais internas. É uma lei bastante estranha esta de os elétrons poderem ocupar apenas determinadas órbitas fixas. Isto significa dizer que a maioria das órbitas seria impossível. Um elétron de hidrogênio não poderia girar numa órbita a 0,250, 1,000 ou 2,150 Ângstron; as únicas órbitas permitidas são as enumeradas na Figura 4 (OLIVEIRA, 2012). Este é um comportamento muito diferente daquele dos objetos que nos cercam. Suponha que uma bola arremessada de uma sala só pudesse seguir 2 ou 3 trajetos determinados, em vez das centenas de trajeto diferentes que ela realmente pode seguir. Seria como se a sala tivesse trajetos invisíveis orientando à bola. Assim, a lei de Bohr afirma que os elétrons agem como se o espaço ao redor do núcleo atômico possuísse trajetos invisíveis. Mas Bohr não deu justificativa para esta estranha situação. Neste ponto chegamos à Segunda lei de Bohr (OLIVEIRA, 2012) Segunda Lei: um átomo irradia energia quando um elétron salta de uma órbita de maior energia para uma de menor energia. Além disso, um átomo absorve energia quando um elétron é deslocado de uma órbita de menor energia para uma órbita de maior energia. Em outras palavras, os elétrons saltam de uma órbita permitida para outra à medida que os átomos irradiam ou absorve energia. As órbitas externas do átomo possuem mais energia do que as órbitas internas. Por consequencia, se um elétron salta da órbita 3 para a órbita 2 orbita. Há emissão de luz, por outro lado, se luz de energia adequada atingir o átomo, esta é capaz de impelir um elétron da órbita 2 para a órbita 3. Neste processo, a luz é absorvida (OLIVEIRA, 2012). FIGURA 6 EMISSÃO DE LUZ VERMELHA (OLIVEIRA, 2012)
  • 15. 14 A linha vermelha no espectro atômico é causada por elétrons que saltam da terceira órbita para a segunda órbita. A linha verde-azulada no espectro atômico é causada por elétrons que saltam da quarta órbita para a segunda órbita. A linha azul no espectro atômico é causada por elétrons que saltam da quinta órbita para a segunda órbita. FIGURA 7 EMISSÃO DE LUZ VERDE AZULADO (OLIVEIRA, 2012) FIGURA 8 EMISSÃO DE LUZ AZUL (OLIVEIRA, 2012)
  • 16. 15 A linha violeta mais brilhante no espectro atômico é causada por elétrons que saltam da sexta órbita para a segunda órbita. É interessante notar que os comprimentos de onda da luz encontrada no espectro do hidrogênio correspondem a diferentes órbitas. (O comprimento de onda estabelece uma relação com a energia. Os menores comprimentos de onda de luz significam vibrações mais rápidas e maior energia). Por exemplo, a linha verde-azulada no espectro linear do hidrogênio é causada por elétrons que saltam da Quarta órbita para a Segunda órbita. A figura mostra como cada linha no espectro resulta de um determinado salto de elétrons. Observe que todos os saltos na figura são de órbitas de maior nível para a órbita O salto de mais baixa energia é o da terceira órbita para a segunda, e este salto produz a linha vermelha a 6,563 Ângstron. Finalmente, existe uma série de linhas na extremidade violeta do espectro, produzida por elétrons que saltam de órbitas externas distantes para a Segunda órbita. No caso dos átomos de hidrogênio, somente os saltos para a Segunda órbita produzem linhas espectrais na parte visível do espectro. Os saltos para a primeira órbita produzem irradiação ultravioleta ondas mais curtas do que as luminosas, ao passo que os saltos para a Terceira, Quarta e Quinta órbita produzem irradiação infravermelha (ondas mais longas do que as luminosas). As órbitas determinadas por Bohr e a forma pela qual os elétrons saltam entre estas destruíram a antiga imagem dos elétrons girando em espiral em direção do núcleo. Também FIGURA 9EMISSÃO DE LUZ VIOLETA (OLIVEIRA, 2012)
  • 17. 16 anulara a existência de radiação atômica ser um espectro luminoso contínuo, e responsável pelo espectro linear. O estado de menor energia em que um elétron se encontra é denominado estado fundamental. Esse elétron só poderá passar para um estado de maior energia, ou seja, para uma órbita mais externa ao núcleo, se ele receber a quantidade necessária de energia. Se isso ocorrer, ele estará no seu estado excitado, que é muito mais instável (FOGAÇA, 2010). Para Bohr, cada estado estacionário de energia seria associado a um nível de energia, que em geral varia de 1 n a 7 n, sendo n um número inteiro. Os níveis de energia dos átomos atualmente conhecidos no seu estado de mais baixa energia, nível fundamental, exigem que n assuma um valor de 1 até 7. Cada um desses níveis seria descrito por uma órbita ao redor do núcleo. As órbitas mais próximas do núcleo corresponderiam a níveis menores de energia. A freqüência da radiação emitida ou absorvida será dada pela diferença de energia entre os dois estados (ALMEIDA, BEZERRA, et al., 2011). Para a concepção desse modelo, Bohr elaborou seis postulados e, através destes, foi possível calcular teoricamente os espectros do átomo neutro de hidrogênio e do átomo de hélio ionizado. São eles: Postulado 1. Em um átomo são permitidas somente algumas órbitas circulares ao elétron, sendo que em cada uma dessas órbitas o elétron apresenta energia constante. Postulado 2. Um elétron não pode assumir qualquer valor de energia, mas somente determinados valores que correspondam às órbitas permitidas, tendo, assim, determinados níveis de energia ou camadas energéticas. Postulado 3. Um elétron, quando localizado em uma dessas órbitas, não perde nem ganha energia espontaneamente. Por isso, diz-se que, nesse caso, ele assume um estado estacionário. FIGURA 10 DIFERENÇA D EENERGIA ENTRE AS ORBITAS (ALMEIDA, BEZERRA, et al., 2011)
  • 18. 17 Postulado 4. Um elétron pode absorver energia de uma fonte externa somente em unidades discretas (pequenas), chamadas quanta (forma singular: quantum). Postulado 5. Quando um elétron absorve um quantum de energia, ele salta de uma órbita mais energética, ligeiramente mais afastada do núcleo. Dizemos que o elétron realizou um salto quântico e atingiu um estado excitado. Postulado 6. Quando o elétron retorna a órbita menos energética, ele perde, na forma de onda eletromagnética, uma quantidade de energia que corresponde à diferença de energia existente entre órbitas envolvidas no movimento do elétron. 2.1.2 Aplicações do modelo de Bohr Teste da chama com CuSO Figura 12, uma das mais importantes propriedades dos elétrons é que suas energias são "quantizadas",ou seja, um elétron ocupa sempre um nível energético bem definido e não um valor qualquer de energia. Se no entanto um elétron for submetido a um fonte de enrgia adequada (calor, luz, etc.), pode sofrer uma mudança de um nível mais baixo para outro de energia mais alto (excitação). O estado excitado é um estado meta-estável (de curtíssima duração) e, portanto, o elétron retorna imediatamente ao seu estado fundamental. A energia ganha durante a excitação é então emitida na forma de radiação visível do espectro eletromagnético que o olho humano é capaz de detectar ou não. Como o elemento emite uma radiação característica, ela pode ser usada como método analítico (RIBEIRO, 2012) FIGURA 11 SALTO QUANTICO (ALMEIDA, BEZERRA, et al., 2011)
  • 19. 18 Cores emitidas pelos átomos de alguns elementos no teste da chama. Elemento Cor Sódo Laranja Potássio Violeta Cálcio Vermelho- tijolo Estrôncio Vermelho- carmin Bário Verde Cobre Azul- esverdeado Césio Azul- claro Fogos de artifício FIGURA 12 TESTE DA CHAMA (RIBEIRO, 2012) FIGURA 13 FOGOS DE ARTIFÍCIO (RIBEIRO, 2012)
  • 20. 19 FOGOS DE ARTIFÍCIO: Os fogos de artifício modernos empregam perclorato, substâncias orgânicas como amido ou açúcar, produtos do petróleo e pequenas quantidades de metais para dar cor. O funcionamento fundamenta-se na excitação dos elétrons que, ao retornarem a sua órbita original, emitem luz com cores diferentes. Aqui, uma exibição de fogos de artifício na cidade de Nova York (RIBEIRO, 2012). Luminosos e lâmpadas (neônio e lâmpadas de vapor de Na ou Hg) Fluorescência se define como as propriedades das substâncias de adquirirem luminescência ao serem submetidas aos raios ultravioletas, ou seja, quando são iluminadas (RIBEIRO, 2012). FIGURA 14 NEÔNICO E LÂMPADAS DE VAPOR (RIBEIRO, 2012) FIGURA 15 FLUORESCNCIA^ (RIBEIRO, 2012)
  • 21. 20 O raio laser é um tipo de radiação eletromagnética visível ao olho humano. O laser hoje é muito aplicado como, por exemplo, nas cirurgias médicas, em pesquisas científicas, na holografia, nos leitores de CD e DVD como também no laser pointer utilizado para apresentação de slides. Na indústria o laser de dióxido de carbono tem sido muito utilizado, pois possibilita um processo rápido de corte e solda de materiais (RIBEIRO, 2012). 2.2 O aperfeiçoamento do modelo de Bohr Mas a partir do modelo de Bohr não era possível prever os espectros dos átomos com números atômicos maiores. Isso implicava na necessidade de se aperfeiçoar esse modelo. Um primeiro ajuste foi proposto em 1916, pelo físico e matemático alemão Arnold Sommerfeld. Análises espectroscópicas refinadas mostraram que as linhas espectrais não são simples. Elas apresentam o que é chamado de estrutura fina isto é, consistem em várias linhas componentes que ficam bem próximas. Isso indicava que para um mesmo estado estacionário de energia, níveis de energia deveriam existir sub-níveis de energia (ALMEIDA, BEZERRA, et al., 2011). FIGURA 16 RAIO LASER (RIBEIRO, 2012)
  • 22. 21 Sommerfeld propôs que em vez de descrever órbitas circulares, os elétrons descreveriam órbitas elípticas e o núcleo do átomo estaria localizado num dos focos da elipse. Em seu tratamento matemático, ele concluiu que em uma camada eletrônica havia uma órbita circular e (n -1) órbitas elípticas, em que n é o número de camadas. O elétron teria uma quantidade de energia determinada pela distância que tem do núcleo e outra, pelo tipo de órbita descrita. Esse novo modelo ficou conhecido como Bohr – Sommerfeld. Figura Apesar de boas explicações para a estrutura fina, este modelo ainda não explicava os átomos com maior número de elétrons. Outras variáveis ainda precisariam ser levadas em conta. 2.21 Dualidades onda partícula da material Um dos problemas que os físicos enfrentavam era o fato do comportamento da luz poder ser explicado tanto por uma teoria ondulatória como por outra que a considerava uma partícula. Afinal a luz é uma onda ou uma partícula? O que parecia óbvio era que para explicar os fenômenos de difração e interferência da luz devia-se levar em conta o modelo ondulatório, e para explicar o efeito fotoelétrico tinha de ser levado em conta o modelo de fóton. Bohr em seus estudos, já havia considerado que um modelo era complementar ao outro e ambos deveriam ser considerados no estudo quântico. Essa ideia foi ampliada, em 1924, por Louis De Broglie8 que propôs que não apenas os fótons apresentam características de onda e FIGURA 17 ORBITAS DE SOMMERFELD (ALMEIDA, BEZERRA, et al., 2011)
  • 23. 22 de partícula, mas sim todas as formas de matéria. De Broglie sugeriu que toda partícula está associada a um comprimento de onda l, que poderia ser determinado pela equação: Com essa equação, De Broglie representava sua hipótese da natureza dual da matéria. O caráter ondulatório estaria representado pelo comprimento de onda lambida e o caráter corpuscular, pela quantidade de movimento m. v. Até aquela época ainda não havia dados experimentais que demonstrassem a natureza dual dos elétrons, mas após a hipótese de De Broglie dois físicos norte-americanos, Clinton Joseph Davisson e Lester Halbert Germer, o fizeram. Estava colocada a base para uma nova Física. As equações clássicas que descreviam o movimento dos corpos deveriam ser acrescidas do fator ondulatório. Essa nova mecânica passou a ser chamada de Mecânica Quântica. Mas ainda outros fatores precisavam ser incorporados a esta Mecânica, como: 2.2.2 O Princípio da Incerteza Heisenberg O desenvolvimento desse novo modelo deve-se a várias cientistas, dentre eles o francês De Broglie e o alemão Heisenberg. Em 1926, Werner Karl Heisenberg demonstrou, usando os conceitos quânticos (mecânica quântica), que é impossível determinar, simultaneamente, com absoluta precisão, a velocidade e a posição de um elétron em um átomo. Este princípio, conhecido por Princípio da Incerteza, estabelece que, quanto mais precisamente conhecemos a posição do elétron, menos precisamente conhecemos a sua FIGURA 18 EQUAÇÃO DE DE BROGLIE (ALMEIDA, BEZERRA, et al., 2011)
  • 24. 23 velocidade. De acordo com o Princípio da Incerteza, não se pode afirmar que exista uma órbita definida para o elétron. O mais adequado é considerar que existam regiões, denominadas orbitais, considerados nuvens, em torno do núcleo onde é máxima a probabilidade de se encontrar um elétron (ALMEIDA, BEZERRA, et al., 2011). Quando se quer encontrar a posição de um elétron, por exemplo, é necessário fazê-lo interagir com algum instrumento de medida, direta ou indiretamente. Por exemplo, faz-se incidir sobre ele algum tipo de radiação. Tanto faz aqui que se considere a radiação do modo clássico - constituída por ondas eletromagnéticas - ou do modo quântico - constituída por fótons. Se se quer determinar a posição do elétron, é necessário que a radiação tenha comprimento de onda da ordem da incerteza com que se quer determinar a posição. Neste caso, quanto menor for o comprimento de onda (maior freqüência) maior é a precisão. Contudo, maior será a energia cedida pela radiação (onda ou fóton) em virtude da relação de Planck entre energia e freqüência da radiação (WIKIPEDIA, 2012). 2.2.3 Função da onde de Schodinger Os cálculos de energia dos elétrons não poderiam ser mais desenvolvidos pela equação de Maxwell, havia a necessidade de desenvolver uma nova equação matemática que incorporasse os princípios já conhecidos: a quantização do elétron em níveis e subníveis de energia, o seu caráter ondapartícula e o Princípio da Incerteza. A equação de Schrödinger foi aperfeiçoada também pelo físico norte-americano Paul Adrien Maurice Dirac. Nas soluções numéricas para a função de onda, proposta por Dirac, ele incorporou números que identificam o nível energético do elétron, denominados números quânticos. A caracterização de cada elétron no átomo é feita por meio de quatro números quânticos: principal, secundário (ou azimutal), magnético e spin. Sendo que num mesmo átomo, não existem dois elétrons com os mesmos números quânticos (ALMEIDA, BEZERRA, et al., 2011). A energia de um fóton emitido por um átomo de hidrogênio é determinado pela diferença de dois níveis de energia de hidrogênio (WIKIPEDIA, 2012).
  • 25. 24 Onde ni é o nível inicial , e nf é o nível final de energia. Uma vez que a energia de um fóton está O comprimento de onda do fóton emitido é dada pela Isto é conhecido como a fórmula de Rydberg, e os R da constante Rydberg é , ou em unidades naturais. (WIKIPEDIA, 2012) 3. O QUE SABEMOS SOBRE O ÁTOMO HOJE 3.1 Trituradores de Átomos O nome próprio é portentoso: Grande Colisor Elétron-Pósitron. O nome de família não é menos respeitável: superacelerador de partículas. Trata-se do maior instrumento de pesquisa do mundo. Serve para estudar a vida íntima do átomo e a origem do Cosmo. Cerca de 100 metros abaixo do solo, na periferia da cidade de Genebra, na Suíça, funciona o maior complexo científico já construído no planeta. Na superfície, a paisagem da região de fronteira com a França é de um sossegado cartão-postal de outros tempos: pequenos bosques, pastagens e a cordilheira do Jura, que separa os dois países. Mas, ao tomar num dos oito pontos de acesso construídos no campo o que em circunstâncias normais seria apropriadamente chamado elevador, o visitante mergulha de repente num mundo de vertigem - uma espécie de catedral subterrânea feita de aço e governada por dispositivos eletrônicos. São os controladores do LEP, iniciais em inglês de Grande (Colisor) Elétron-Pósitron, um túnel em formato de anel de 27 quilômetros de circunferência e 7 metros de diâmetro (RIBEIRO, 2012).
  • 26. 25 Trata-se da jóia da coroa de um dos mais renomados estabelecimentos de pesquisa do século, o CERN, sigla que originalmente designava em francês o Centro Europeu de Investigações Nucleares, depois rebatizado Laboratório Europeu de Física de Partículas, exemplo de bem-sucedida colaboração internacional em ciência. Inaugurado há apenas quatro meses, o LEP nasceu para ajudar a conhecer mais de perto algumas das frações ínfimas de matéria do Universo. É um paradoxo: para devassar essas partículas que não medem mais de 1 bilionésimo de milésimo de milímetro, os físicos europeus tiveram de construir uma estrutura gigantesca. Componentes dos átomos com carga elétrica negativa se precipitam em desvairada corrida. Em sentido contrário precipitam-se as antipartículas pósitrons - elétrons com carga positiva. Nesse proposital curso de colisão, milhares e milhares de partículas e antipartículas, deslocando-se quase à velocidade da luz, acabam por se aniquilar mutuamente, liberando energia equivalente à fissão de quinhentos núcleos de átomos de urânio. Mas esse é apenas um valor teórico: não se trata ali de experiências atômicas, ao menos no sentido comum da expressão. Os físicos pretendiam com os choques que planejaram é servir-se depois de uma salada de partículas básicas, coisa ainda menor que o elétron e que sua imagem espelhada, o pósitron. De fato, com a ajuda dos aceleradores se descobriu que tudo o que existe - rigorosamente tudo - é feito apenas de três famílias de partículas elementares indivisíveis: quarks, léptons e bósons. Os quarks fazem os nêutrons e prótons no núcleo dos átomos. Os FIGURA 19ACELERADOR DE PARTICULAS (RIBEIRO, 2012)
  • 27. 26 léptons fazem os elétrons, entre outras coisas. Os bósons formam uma classe especial de partículas mensageiras, responsáveis pelas interações entre as outras famílias. Tais forças, como se sabe, são a gravitacional, o eletromagnetismo e as interações fortes (responsável pela coesão do núcleo atômico) e fracas (que rege os fenômenos da radioatividade). Desde Einstein, na década de 30, os físicos acreditam que essas forças poderiam ser manifestações de uma força única que agiu somente nos instantes que se seguiram ao Big Ban. A explosão que teria originado o Universo. A descoberta do elétron inaugurou a era das partículas elementares. Depois de 100 anos de pesquisa, conhecemos cerca de 10 diferentes partículas elementares e temos um modelo, como Modelo Padrão, que descreve com extraordinária precisão o comportamento dessas partículas, Figura 20, (RIBEIRO, 2012) FIGURA 20 TODAS AS FORMAS DE MATÉRIAS QUE EXISTE (RIBEIRO, 2012)
  • 28. 27 Podemos concluir que a matéria é constituída por pequenos núcleos, altamente densos onde se concentra a massa do átomo, carregados positivamente, constituídos de prótons (p) e nêutrons (n), cercados por regiões praticamente vazias denominadas de eletrosfera, onde se encontram os elétrons (e), de carga negativa (RIBEIRO, 2012). Modelo básico Figura 21. FIGURA 21PARTÍCULAS DE MATÉRIA QUE TRANMITEM FORÇA (RIBEIRO, 2012) FIGURA 22ÁTOMO BÁSICO (RIBEIRO, 2012)
  • 29. 28 Modelo atual Os cientistas abandonaram a idéia de que o elétron descrevia uma trajetória definida em torno do núcleo e passaram a admitir que existam zonas onde há maior probabilidade de encontrar os elétrons, designadas por orbitais (RIBEIRO, 2012). FOTO DO V CONGRESSO DE SLVAY (1927) FIM FIGURA 23 MODELOATÔMICO DA NUVEM ELETRÔNICA (RIBEIRO, 2012)
  • 30. 29 BIBLIOGRAFIA ALMEIDA, A. C. D. et al. Alunos online.com.br. Alunos online, 2011. Disponivel em: <http://www.ebah.com.br/content/ABAAAAqqMAB/>. Acesso em: 30 nov. 2012. FOGAÇA, J. R. V. alunosonline.com.br. Alunos online, 2010. Disponivel em: <http://www.alunosonline.com.br/quimica/modelo-atomico-rutherford-bohr.html>. Acesso em: 22 nov. 2012. LOURENÇO, D. ebah.com.b. Ebah, 2008. Disponivel em: <http://www.ebah.com.br/content/ABAAAfW0EAI/biografia-ernest-rutherford#>. Acesso em: 26 nov. 2012. OLIVEIRA, J. ebah. ebah.com.br, 2012. Disponivel em: <http://www.ebah.com.br/content/ABAAAAqqMAB/historia-atomo-niels-bohr#>. Acesso em: 23 nov. 2012. PEREIRA, A. D. M. Aprendendo Química com a 2108. quimicacoma2108.blogspot.com.br, 2010. Disponivel em: <http://quimicacoma2108.blogspot.com.br/2010/03/modelo-atomico- de-joseph-john-thomson.html>. Acesso em: 24 nov. 2012. RIBEIRO, T. quimicaeletro.blogspot.com.b. Eletroquímica, 2012. Disponivel em: <http://quimicaeletro.blogspot.com.br/p/aplicacoes-do-modelo-de-bohr.html>. Acesso em: 22 nov. 2012. SILVA, D. C. M. D. alunosonline.com.br. Alunos online, 2010. Disponivel em: <http://www.alunosonline.com.br/fisica/modelos-atomicos.html>. Acesso em: 20 nov. 2012. SOUZA, L. A. D. Mundoeducacao.com.br. Mundoeducacao, 2011. Disponivel em: <http://www.mundoeducacao.com.br/quimica/leucipo-democritofilosofando-sobre- atomos.htm>. Acesso em: 29 nov. 2012. WIKIPEDIA. wikipedia.org. Demócrito de Abdera, 2012. Disponivel em: <http://pt.wikipedia.org/wiki/Dem%C3%B3crito_de_Abdera>. Acesso em: 30 nov. 2012.