SlideShare una empresa de Scribd logo
1 de 56
CONCEPTOS BÁSICOS DE
GENÉTICA
Orígenes de la genética
Existen diferentes patrones de herencia según las posibles
localizaciones de un gen:
- Herencia autosómica: basada en la variación de genes simples
en cromosomas regulares o autosomas (Mendel).
- Herencia ligada al sexo: basada en la variación de genes simples
en los cromosomas determinantes del sexo.
- Herencia citoplásmica: basada en la variación de genes simples
en cromosomas de organelas (herencia materna).
Patrones de herencia
 Gregorio Mendel propone por 1era vez el concepto de gen en 1865
 Existía el concepto de herencia mezclada: la descendencia muestra normalmente
características similares a las de ambos progenitores….pero, la descendencia no
siempre es una mezcla intermedia entre las características de sus parentales.
 Mendel propone la teoría de la herencia particulada: los caracteres están
determinados por unidades genéticas discretas que se transmiten de forma intacta a
través de las generaciones.
Carácter: propiedad específica de un organismo; característica o rasgo.
Modelo de estudio: planta de guisante Pisum sativum - amplia gama de variedades
fáciles de analizar
- puede autopolinizarse
Genética Mendeliana
Línea pura: población que produce descendencia homogénea para el carácter
particular en estudio; todos los descendientes producidos por autopolinización o
fecundación cruzada, dentro de la población, muestran el carácter de la misma forma.
Vaina inmadura verde o amarilla
Semilla lisa o rugosa
Semilla amarilla o verde
Pétalos púrpuras o
blancos
Vaina hinchada o hendida Tallo largo o cortoFloración axial o
terminal
Las 7 diferencias en un
carácter estudiadas por
Mendel
Generación parental (P)
1era Generación filial (F1)
Fenotipo: formas o variantes de un carácter. Deriv. griego: “lo que se
muestra”
Ej: Carácter: color de la flor, Fenotipo: púrpura o blanco
1er Exto:
Todas púrpuras!!
fenotipo B x fenotitpo A
Cruzamiento recípocro
fenotipo A x fenotipo B
Relación de carácteres en F2 siempre es 3:1!!
El fenotipo blanco está completamente ausente en la F1, pero reaparece (en su
forma original) en la cuarta parte de las plantas F2 difícil de explicar por
herencia mezclada.
Mendel: la capacidad para producir tanto el fenotipo púrpura como el blanco se
mantiene y transmite a través de las generaciones sin modificaciones.
Entonces…¿por qué no se expresa el fenotipo blanco en la F1?
Fenotipo dominante: aquel que aparece en la F1, tras el cruzamiento de 2
líneas puras.
Fenotipo púrpura es dominante sobre el blanco
Fenotipo blanco es recesivo sobre el púrpura
Fenotipo
parental
Cruza F1 F2
Relación
en F2
Lisa Semilla lisa x rugosa Todas lisas 5474 lisas;1850 rugosas 2,96:1
Amarilla Semilla amarilla x verde Todas amarillas 6022 amarillas;2001 verdes 3,01:1
Púrpura
Pétalos púpuras x
blancos
Todos púrpuras 705 púrpuras;224 blancos 3,15:1
Hinchada
Vaina hinchada x
hendida
Todas
hinchadas
882 hinchadas;299 hendidas 2,95:1
Verde Vaina verde x amarilla Todas verdes 428 verdes;152 amarillas 2,82: 1
Axial
Flores axiales x
terminales
Todas axiales 651 axiales;207 terminales 3,14: 1
Largo Tallo largo x corto Todos largos 787 largos;277 cortos 2,84: 1
Resultados de todos los cruzamientos de Mendel en los que los parentales difieren en un solo carácter
(autofecundación de F1)
P
F1
F2
F3
Autofecundación
(3:1)
(3:1, amarillas:verdes)
Autofecundación
Todas
Todas (= al parental verde)3/4 y ; 1/4
3/4 ;1/4
Semillas X
1/3 = al parental amarillo
2/3 = F1
Entonces: de F2
Exto autofecundación de F2
Proporción aparente 3:1 de F2 es 1:2:1
F2
Proporciones
fenotípicas
Proporciones
genotípicas
3/4 amarillos
1/4 verdes
1/4 amarillos puros
2/4 amarillos impuros
1/4 verdes puros
Postulado de Mendel para explicar
proporción 1:2:1
1- Existen determinantes
hereditarios de naturaleza
particulada genes.
2- Cada planta adulta tiene 2 genes,
una pareja génica. Las plantas de
la F1 tienen genes dominantes (A)
y recesivos (a).
3- Los miembros de cada pareja
génica se distribuyen de manera
igualitaria entre las gametas o
células sexuales.
4- Cada gameta es portadora de un
solo miembro de la pareja génica.
5- La unión de una gameta de cada
parental para formar un nuevo
descendiente se produce al azar.
Esquema de la generaciones P, F1 y F2 en el sistema de
Mendel que implica la diferencia en un carácter
determinado por la diferencia de un gen.
Corroboración del modelo por Cruzamiento prueba (cruzamiento con un homocigota
recesivo)
Obtiene: 58 amarillas (Yy)
52 verdes (yy)
Se confirma la segregación
igualitaria de Y e y en el
individuo de la F1
Primera Ley de Mendel. Los dos miembros de una pareja génica se
distribuyen separadamente entre las gametos (segregan), de forma que la mitad
de las gametos llevan un miembro de la pareja y la otra mitad lleva el otro
miembro de la pareja génica.
Carácter Fenotipos Genotipos Alelos Gen
Púrpura
(dominante)
CC (homocigota
dominante
Cc
(heterocigota)
C (dominante)
Color de la
flor
Gen del color
de la flor
c (recesivo)Blanco
(recesivo)
cc (homocigota
recesivo)
Individuos de una línea pura son homocigotas
Genotipo: constitución genética (o alélica) respecto de uno o varios caracteres en
estudio.
Alelos: distintas variantes de un gen
Cruzamiento dihíbrido: las líneas puras parentales difieren en dos genes que controlan
dos diferencias de caracteres distintos.
Las proporciones lisas:rugosas y
amarillas:verdes son ambas 3:1!!
Segunda Ley de Mendel. La
segregación de una pareja génica
durante la formación de las gametas se
produce de manera independiente de
las otras parejas génicas.
Por la primera Ley de Mendel:
gametas Y = gametas y = 1/2
gametas R = gametas r = 1/2
p (RY) = 1/2 x 1/2 =1/4
p (Ry) = 1/2 x 1/2 =1/4
p (rY) = 1/2 x 1/2 =1/4
p (ry) = 1/2 x 1/2 =1/4
Cuadrado de Punnet para predecir el
resultado de un cruzamiento dihíbrido
Distribución igualitaria Segregación independiente
a
Pareja génica
A
A
a
Parejas génicas
A a
B bA
B
a
b
a
B
Bb
aA
b
A
Gametas Gametas
Meiosis de una célula diploide con
genotipo A/a:B/b
Anafase I
Anafase II
Interfase
Telofase I
Metafase I
Telofase II
Profase
Teoría cromosómica de la herencia
(Sutton-Boveri): el paralelismo entre el
comportamiento de los genes (Mendel) y
los cromosomas llevó a pensar que los
genes están situados en cromosomas.
(luego se corrobora por herencia sexual)
Explica la distribución
igualitaria y la segregación
independiente
Símbolos utilizados en
análisis de pedrigrí
humanos
Pedigrí ilustrativo de un fenotipo recesivo
poco común
Análisis de pedigrí de desórdenes autosómicos recesivos
- Generalmente la enfermedad aparece
en la progenie de padres no afectados.
- La progenie afectada incluye tanto
mujeres como hombres.
Imp! Si bien las leyes de Mendel se cumplen, las
proporciones difícilmente se observan, ya que el n es
muy chico.
Ej. Fenilcetonuria, fibrosis
quística, albinismo
Análisis de pedigrí de desórdenes autosómicos dominantes
-El fenotipo tiende a aparecer
en todas las generaciones.
- Los progenitores afectados
transmiten su fenotipo a hijos e
hijas.
Imp! Siempre es mas común encontrar personas llevando una copia del alelo raro (A/a) que dos
copias (a/a). Como consecuencia es muy común encontrar una progenie 1:1 de personas afectadas
(A/a) y no afectadas (a/a).
Pedigrí ilustrativo de un fenotipo dominante poco común
Ej: Huntington,
pseudoacondroplasia,
polidactilia
Análisis de pedigrí de desórdenes autosómicos polimórficos
Polimorfismo: coexistencia de dos ó más fenotipos comunes de un carácter en una
población.
Pedigrí ilustrativo de un desórden polimórfico
Dado que ambos son alelos
comunes en la población, la
proporción de individuos
portadores del alelo recesivo (ya
sea en homo o heterocigosis) es
mucho mayor que en los
desórdenes recesivos poco
comunes.
Bases moleculares de la genética mendeliana
Alelos: variantes de un mismo gen.
Difieren en solo uno o unos pocos
nucleótidos entre sí.
Alelo “wild-type”: forma en la que cualquier gen particular es hallado en la naturaleza.
Ej. Color del pétalo de la planta de guisante. Alelo A es wild-type
Genotipo
A/A enzima activa pigmento púrpura pétalos púrpura
A/a enzima activa pigmento púrpura pétalos púrpura
a/a enzima inactiva no hay pigmento pétalos blancos
Imp! El fenotipo blanco puede darse por la inactivación de cualquiera de los genes
involucrados en la síntesis del pigmento.
Alelo nulo: aquel que lleva
a la ausencia del producto
génico normal (ej m6) o a la
desaparición fenotípica de la
función normal (ej m2 y
m3).
Los alelos nuevos formados por mutación pueden resultar en la
pérdida total o parcial de la función, o de la ganancia de más función
o incluso adquisición de una nueva función a nivel proteico.
Alelismo múltiple: existencia de varios alelos conocidos de un gen.
Serie alélica: conjunto de alelos de un gen.
Ej. PKU: enfermedad autosómica recesiva generada por el procesamiento anormal del
aa fenilalanina por parte de la enzima fenilalanina hidroxilasa (PAH).
Estructura de la PAH
y las mutaciones
encontradas
Ahora…por qué el alelo defectuoso de PAH es recesivo?
El gen PAH es haplosuficiente: una sola “dosis” del alelo wild-type es suficiente
para producir el fenotipo wild-type.
Tanto el genotipo P/P (dos dosis), como el P/p (una dosis) producen una cantidad
de PAH suficiente para el normal funcionamiento de la célula. Individuos p/p no
tienen actividad PAH.
La recesividad de un alelo mutante es generalmente el resultado de la
haplosuficiencia del alelo wild-type de ese gen. Al contrario, la dominancia
de un alelo mutante es normalmente el resultado de la haploinsuficiencia del
alelo wild-type de ese gen particular.
Recesividad de un alelo mutante de un gen haplosuficiente
Bases moleculares del albinismo (enfermedad autosómica recesiva)
Extensiones del análisis mendeliano
Dominancia completa: el homocigota dominante no puede distinguirse
fenotípicamente del heterocigota.
Dominancia incompleta: el heterocigota muestra un fenotipo cuantitativamente
(aunque no exactamente) intermedio entre los fenotipos homocigotas
correspondientes.
P pétalos rojos x pétalos blancos
F1 pétalos rosas
1/4 pétalos rojos
F2 1/2 pétalos rosas
1/4 pétalos blancos
Ej. Planta Dondiego de noche
Codominancia: el
heterocigota expresa el
fenotipo de ambos
homocigotas por igual.
Aglutinación de
gl. rojos tipo AB
Aglutinación de
gl. rojos tipo A
Anticuerpos Anti-A
Antígeno A
Antígeno B
Anticuerpos Anti-A
No hay aglutinación de
gl. rojos tipo B
Anticuerpos Anti-AGlóbulos rojos de una
persona tipo AB
Glóbulos rojos de una
persona tipo B
Glóbulos rojos de una
persona tipo A
Ej. Grupos sanguíneos humanos ABO
alelo A ( IA
)
alelo B ( IB
)
alelo O (i)
Antígeno B;
reacciona con
anticuerpos anti-B
Antígeno A;
reacciona con
anticuerpos anti-A
Antígeno H; no
reacciona con
anticuerpos anti-A
ni anti-B
N-acetilgalactosamina
adicionada al precursor
Galactosa adicionada
al precursor
N-acetilglucosamina Galactosa N-acetilgalactosamina Fucosa
Carbohidrato precursor
Base bioquímica de los grupos ABO
Los alelos A y B
producen transferasas
distintas (que
modifican de distinta
manera la galactosa
terminal del
compuesto precursor)
y el alelo O no
produce ninguna.
Tipo sanguíneo Genotipo
A IA
IA
o IA
i
B IB
IB
o IB
i
AB IA
IB
O ii
El alelo i es nulo, es incapaz de
producir cualquier forma del
antígeno. Alelos A y B son
dominantes sobre el alelo i. Alelos
A y B son codominantes entre sí.
Grupo O es donante universal (no
contiene antígenos ni A ni B).
Grupo AB es receptor universal
(no produce anticuerpos contra el
antígeno A ni el antígeno B).
Ej. Grupo sanguíneo M-N (según posean antígenos en superficie de glóblulos rojos)
Son posibles 3 grupos sanguíneos: M, N y MN
Descendencia (proporciones)
Parentales M MN N
MMxMM Todos - -
MMxMN 1 1 -
MMxNN - Todos -
MNxMN 1 2 1
MNxNN - 1 1
NNxNN - - todos
Ej. Anemia falciforme humana
Tipo de Hb
presente
Origen
Genotipo Fenotipo
Migración
PortadorHbS
HbA
Anemia
falciformeHbS
HbS
NormalHbA
HbA
S
S y A
A
HbS
HbA
: No se produce anemia. Los gl. rojos se deforman
sólo a concentraciones de O2 anormalmente bajas.
HbA
HbA
: Normal. Los gl. rojos no se deforman nunca.
HbS
HbS
: Anemia grave, a menudo mortal. La Hb anormal
causa que los gl. rojos adquieran forma de hoz.
Respecto a la anemia: alelo
HbA
es dominante.
Respecto a la forma de los
glóbulos rojos: existe
dominancia incompleta de
HbA
Respecto a la síntesis de
Hb: hay codominancia.
Ojo!....El tipo de dominancia inferida de un estudio depende en gran
medida del nivel fenotípico en el cual el ensayo es realizado (organismo,
celular, molecular)
Alelos letales: alelos mutantes que pueden causarle la muerte a un organismo. Los
genes en los cuales ciertas mutaciones pueden ser letales son claramente genes
esenciales.
Alelos letales recesivos: en organismos diploides se mantienen en heterocigosis.
Ej. Alelo (A) del color de la piel del ratón Color normal (marrón) es línea pura.
P amarillo x wild type
F1 amarillos:normales 1:1
P Ay
A x Ay
A
F1 1/4 AA wild type
1/2 Ay
A amarillo
1/4 Ay
Ay
letal
Ratones amarillos son heterocigotas y
el amarillo es dominante
El alelo amarillo es letal en homocigosis
Alelo amarillo es dominante según el
color de pelo y además letal recesivo
(mueren antes de nacer)
amarillo x amarillo
2/3 amarillo: 1/3 color normal 2:1
Genes pleiotrópicos: genes de los que se sabe que tienen más de un efecto fenotípico
distinto
Varios genes afectan al mismo carácter
albinonaranjacamuflado negro
Albino parece rosa por
el color de la Hb de la
sangre
Ej. Color de la piel de las víboras
Epístasis: tipo de interacción génica en la cual un gen enmascara la expresión de otro
y expresa su propio fenotipo. Generalmente ambos genes se encuentran en una misma
ruta metabólica.
Ej. Color de pelo del ratón Gen B. alelo B: negro
alelo b: marrón
Gen C. alelo C: color
alelo c: ausencia de color
P BBcc (albino) x bbCC
(marrón)
o
BBCC (negro) x bbcc (albino)
F1 Todos BbCc (negro)
F2 9 B-C- (negro)
3 bbC- (marrón)
3 B-cc (albino)
1 bbcc (albino)
9
3
4
Ej. Epístasis recesiva en ruta metabólica
Complementación: dos alelos dominantes wild-type se unen para producir un fenotipo
específico, revirtiendo el fenotipo dado por dos alelos mutantes recesivos.
Ej. Color de pétalos Flor wild type: azul (pigmento antocianina)
Línea mutante 1: flor blanca
Línea mutante 2: flor blanca
P Línea blanca 1 x Línea blanca 2
AAbb x aaBB
F1 todas AaBb (azules)
F2 9 A-B- (azul)
3 A-bb (blanca)
3 aaB- (blanca)
1 aabb (blanca)
7
9
Supresión: alelo de un gen que anula la expresión de otro gen. El gen supresor puede
llevar asociado su propio fenotipo o no tener otro efecto detectable mas que el de la
supresión (ej maldivina).
Ej. Producción de malvidina
en plantas
Gen K: dominante, producción de malvidina.
Gen D: supresor no alélico dominante
P KKdd (malvidina) x kkDD (no malvidina)
F1 todas KkDd (no malvidina)
F2 9 K-D- (no malvidina)
3 kkD- (no malvidina)
1 kkdd (no malvidina)
3 K-dd (malvidina)
3
13
Genes duplicados: la presencia de al menos un alelo dominante de cualquiera de los
dos genes es suficiente para que se exprese el mismo fenotipo dominante.
Ej. Forma del fruto en la
planta bolsa del pastor
Gen A1: dominante, frutos redondeados
Gen A2: dominante, frutos redondeados
P A1A1A2A2 (redondeados) x a1a1a2a2 (estrechos)
F1 todos A1a1A2a2 (redondeados)
F2 9 A1-A2- (redondeados)
3 A1-a2a2 (redondeados)
3 a1a1A2- (redondeados)
1 a1a1a2a2 (estrechos) 1
15 En complementación
(9:7) son necesarios
ambos genes
dominantes para
producir el fenotipo
Penetrancia: el porcentaje de individuos con un genotipo dado que exhibe el fenotipo
asociado a dicho genotipo.
Causas:
1- Influencia del medio ambiente. Ej. El fenotipo de individuos mutantes en un
determinado ambiente puede ser igual al de un organismo wild type.
2- Influencia de otros genes. Ej. Genes modificadores, epistáticos, o supresores del resto
del genoma pueden influenciar la expresión de otro gen, modificando su fenotipo típico.
Expresividad: grado o intensidad con la que se expresa un genotipo determinado en un
individuo. Es una medida de la intensidad del fenotipo.
Expresión fenotípica
(cada círculo representa
un individuo)
Penetrancia y expresividad variables
Expresividad variable
Penetrancia variable
Pedigri de un alelo dominante que no es completamente penetrante
- El individuo Q no expresa el
fenotipo pero lo transmite a al
menos dos de su progenie.
- Dado que el alelo no es
completamente penetrante, el
resto de la progenie, ej R, puede
o no llevar el alelo dominante.
Imp!! La observación de proporciones mendelianas alteradas revelan que un
carácter está determinado por la interacción compleja de distintos genes.
Herencia Materna
- Las mitocondrias y los cloroplastos contienen pequeños cromosomas circulares que
codifican para un definido número de genes del genoma total de la célula.
-Las organelas no son genéticamente independientes, algunas funciones están a cargo de
genes nucleares.
-Cada organela está presente en varias copias por célula y cada una presenta una gran
cantidad de copias de sus cromosomas.
- Los genes de las organelas muestran herencia uniparental: sus genes son heredados
exclusivamente por uno de los progenitores las organelas residen en el citoplasma
y el óvulo contribuye con la mayoría del citoplasma (y sus organelas) a la célula cigota.
Heteroplasmonte: célula que posee
dos tipos genéticos de organelas
(normales y mutantes). En estas
células generalmente ocurre una
segregación citoplásmica de cada
tipo de organela en las diferentes
células hijas.
Rama toda blanca
Rama toda verde
Tallo principal variegado
Ej. Mutación en alelo que controla la
producción de clorofila en los
cloroplastos hojas blancas
Patrón de herencia citoplásmica:
Mutante x wild-type toda la progenie es mutante
Wild-type x mutante toda la progenie es wild-type
Excepción:
(no-viable)
Núcleo
Cloroplasto
Blanco
Verde
Blanco
cualquierBlanco
Verde
Variegado
cualquier
cualquier
Verde
Variegado
Huevo
tipo 2
Huevo
tipo 1
Huevo
tipo 3
Célula huevo
femenina (n)
Célula polen
masculina (n) Zigota (2n)
División celular
Segregación citoplásmica
Mutaciones citoplásmicas en humanos
Ej 1. Enfermedad causada por una mutación simple en DNA mitocondrial.
MERRF (myoclonic epilepsy and ragged red fiber), enferemdad muscular con
desórdenes auditivos y visuales.
Ej 2. Enfermedad causada por una pérdida de parte del DNA mitocondrial. Síndrome
de Kearns-Sayre, constelación de síndromes afectando ojos, corazón, músculos y
cerebro. En algunos casos las células del paciente presentan una mezcla de
cromosomas normales y mutantes (provenientes de mitocondrias distintas) y las
proporciones de cada uno pasados a la progenie puede variar como resultado de la
segregación citoplásmica. Incluso las proporciones de cromosomas mitocondriales
normales y mutantes en un mismo individuo enfermo pueden variar en los distintos
tejidos o con el tiempo.
-Transmisión de fenotipos raros sólo a través de mujeres y nunca de hombres.

Más contenido relacionado

La actualidad más candente

Alelos multiples y herencia poligenica
Alelos multiples y herencia poligenicaAlelos multiples y herencia poligenica
Alelos multiples y herencia poligenicaBryan Fernando Reyes
 
Variacion en la expresion (Genetica Medica)
Variacion en la expresion (Genetica Medica)Variacion en la expresion (Genetica Medica)
Variacion en la expresion (Genetica Medica)Bryan Fernando Reyes
 
Clase 4 determinacion del sexo y herencia ligada al sexo
Clase 4 determinacion del sexo y herencia ligada al sexoClase 4 determinacion del sexo y herencia ligada al sexo
Clase 4 determinacion del sexo y herencia ligada al sexoElton Volitzki
 
La genética mendeliana 2014
La genética mendeliana 2014La genética mendeliana 2014
La genética mendeliana 2014Alberto Hernandez
 
Clase 6 herencia poligenica y multifactorial
Clase 6 herencia poligenica y multifactorialClase 6 herencia poligenica y multifactorial
Clase 6 herencia poligenica y multifactorialElton Volitzki
 
Herencia mendeliana
Herencia  mendelianaHerencia  mendeliana
Herencia mendelianaRosmakoch
 
Terminologia de la genetica
Terminologia de la geneticaTerminologia de la genetica
Terminologia de la geneticaRamiro Muñoz
 
Tema 10 genética y mutaciones
Tema  10 genética y mutacionesTema  10 genética y mutaciones
Tema 10 genética y mutacionesfatimaslideshare
 
Tema 3 las leyes de la herencia
Tema 3 las leyes de la herenciaTema 3 las leyes de la herencia
Tema 3 las leyes de la herenciaBiologiaciamaria
 
Ligamiento problemas resuletos 2
Ligamiento problemas resuletos 2Ligamiento problemas resuletos 2
Ligamiento problemas resuletos 2CiberGeneticaUNAM
 
Ejercicios de herencia ligada al sexo y ligamiento
Ejercicios de herencia ligada al sexo y ligamientoEjercicios de herencia ligada al sexo y ligamiento
Ejercicios de herencia ligada al sexo y ligamientoCiberGeneticaUNAM
 
Problemas árboles genealógicos
Problemas árboles genealógicosProblemas árboles genealógicos
Problemas árboles genealógicospilarduranperez
 
Cuadro de punnet (1)
Cuadro de punnet (1)Cuadro de punnet (1)
Cuadro de punnet (1)padilla2795
 

La actualidad más candente (20)

Alelos multiples y herencia poligenica
Alelos multiples y herencia poligenicaAlelos multiples y herencia poligenica
Alelos multiples y herencia poligenica
 
Variacion en la expresion (Genetica Medica)
Variacion en la expresion (Genetica Medica)Variacion en la expresion (Genetica Medica)
Variacion en la expresion (Genetica Medica)
 
Clase 4 determinacion del sexo y herencia ligada al sexo
Clase 4 determinacion del sexo y herencia ligada al sexoClase 4 determinacion del sexo y herencia ligada al sexo
Clase 4 determinacion del sexo y herencia ligada al sexo
 
Cuadros de punnet
Cuadros de punnetCuadros de punnet
Cuadros de punnet
 
La genética mendeliana 2014
La genética mendeliana 2014La genética mendeliana 2014
La genética mendeliana 2014
 
Clase 6 herencia poligenica y multifactorial
Clase 6 herencia poligenica y multifactorialClase 6 herencia poligenica y multifactorial
Clase 6 herencia poligenica y multifactorial
 
Leyes de mendel.
Leyes de mendel.Leyes de mendel.
Leyes de mendel.
 
Herencia mendeliana
Herencia  mendelianaHerencia  mendeliana
Herencia mendeliana
 
Terminologia de la genetica
Terminologia de la geneticaTerminologia de la genetica
Terminologia de la genetica
 
Ejercicios de Genética_4
Ejercicios de Genética_4Ejercicios de Genética_4
Ejercicios de Genética_4
 
Tema 10 genética y mutaciones
Tema  10 genética y mutacionesTema  10 genética y mutaciones
Tema 10 genética y mutaciones
 
Tema 3 las leyes de la herencia
Tema 3 las leyes de la herenciaTema 3 las leyes de la herencia
Tema 3 las leyes de la herencia
 
Ligamiento problemas resuletos 2
Ligamiento problemas resuletos 2Ligamiento problemas resuletos 2
Ligamiento problemas resuletos 2
 
3 genética
3 genética3 genética
3 genética
 
Ley de mendel
Ley de mendelLey de mendel
Ley de mendel
 
Mapa cromosómico
Mapa cromosómicoMapa cromosómico
Mapa cromosómico
 
Ejercicios de herencia ligada al sexo y ligamiento
Ejercicios de herencia ligada al sexo y ligamientoEjercicios de herencia ligada al sexo y ligamiento
Ejercicios de herencia ligada al sexo y ligamiento
 
Problemas árboles genealógicos
Problemas árboles genealógicosProblemas árboles genealógicos
Problemas árboles genealógicos
 
Cuadro de punnet (1)
Cuadro de punnet (1)Cuadro de punnet (1)
Cuadro de punnet (1)
 
3.3 Genetica
3.3 Genetica3.3 Genetica
3.3 Genetica
 

Destacado

1 principios
1 principios1 principios
1 principiosmirellqfb
 
Capitulo 7 f isiologia y genetica microbiana
Capitulo 7   f isiologia y genetica microbianaCapitulo 7   f isiologia y genetica microbiana
Capitulo 7 f isiologia y genetica microbianaClara Camacho
 
CONCEPTOS BASICOS DE GENETICA
CONCEPTOS BASICOS DE GENETICACONCEPTOS BASICOS DE GENETICA
CONCEPTOS BASICOS DE GENETICAAmeContreras
 
Conceptos básicos de genética
Conceptos básicos de genéticaConceptos básicos de genética
Conceptos básicos de genéticaSergio Alfonso
 
Ud 12. genética mendeliana
Ud 12. genética mendelianaUd 12. genética mendeliana
Ud 12. genética mendelianamartabiogeo
 
7 transcripción
7 transcripción7 transcripción
7 transcripciónmirellqfb
 
9 regulación
9 regulación9 regulación
9 regulaciónmirellqfb
 
Conceptos basicos de genetica
Conceptos basicos de geneticaConceptos basicos de genetica
Conceptos basicos de geneticamarianvillegas
 
Genetica Básica
Genetica BásicaGenetica Básica
Genetica BásicaHIJA
 
Conceptos básicos de Genética
Conceptos básicos de GenéticaConceptos básicos de Genética
Conceptos básicos de GenéticaLuGiBog
 

Destacado (20)

1 principios
1 principios1 principios
1 principios
 
Capitulo 7 f isiologia y genetica microbiana
Capitulo 7   f isiologia y genetica microbianaCapitulo 7   f isiologia y genetica microbiana
Capitulo 7 f isiologia y genetica microbiana
 
codigo genetico
codigo geneticocodigo genetico
codigo genetico
 
Genetica basica
Genetica basicaGenetica basica
Genetica basica
 
CONCEPTOS BASICOS DE GENETICA
CONCEPTOS BASICOS DE GENETICACONCEPTOS BASICOS DE GENETICA
CONCEPTOS BASICOS DE GENETICA
 
Conceptos básicos de genética
Conceptos básicos de genéticaConceptos básicos de genética
Conceptos básicos de genética
 
Genética básica
Genética básicaGenética básica
Genética básica
 
Tarea 1 epistasis
Tarea 1 epistasisTarea 1 epistasis
Tarea 1 epistasis
 
15. leyes mendel.
15. leyes mendel.15. leyes mendel.
15. leyes mendel.
 
Ud 12. genética mendeliana
Ud 12. genética mendelianaUd 12. genética mendeliana
Ud 12. genética mendeliana
 
4 dna
4 dna4 dna
4 dna
 
7 transcripción
7 transcripción7 transcripción
7 transcripción
 
9 regulación
9 regulación9 regulación
9 regulación
 
Nucleoi
NucleoiNucleoi
Nucleoi
 
Genética Conceptos básicos
Genética Conceptos básicosGenética Conceptos básicos
Genética Conceptos básicos
 
5 cromosoma
5 cromosoma5 cromosoma
5 cromosoma
 
Conceptos basicos de genetica
Conceptos basicos de geneticaConceptos basicos de genetica
Conceptos basicos de genetica
 
Genetica Básica
Genetica BásicaGenetica Básica
Genetica Básica
 
3 mat gen
3 mat gen3 mat gen
3 mat gen
 
Conceptos básicos de Genética
Conceptos básicos de GenéticaConceptos básicos de Genética
Conceptos básicos de Genética
 

Similar a Conceptos básicos de genética

RESUMEN DE GENÉTICA
RESUMEN DE GENÉTICARESUMEN DE GENÉTICA
RESUMEN DE GENÉTICAEliana Bigai
 
Clase_2_GeneticaMendeliana_Bach_2010.ppt
Clase_2_GeneticaMendeliana_Bach_2010.pptClase_2_GeneticaMendeliana_Bach_2010.ppt
Clase_2_GeneticaMendeliana_Bach_2010.pptcochachi
 
Clase_2_GeneticaMendeliana_Bach_2010.ppt
Clase_2_GeneticaMendeliana_Bach_2010.pptClase_2_GeneticaMendeliana_Bach_2010.ppt
Clase_2_GeneticaMendeliana_Bach_2010.pptcochachi
 
Clase_2_GeneticaMendeliana_Bach_2010.ppt
Clase_2_GeneticaMendeliana_Bach_2010.pptClase_2_GeneticaMendeliana_Bach_2010.ppt
Clase_2_GeneticaMendeliana_Bach_2010.pptH_Gue_Tu
 
Clase_2_GeneticaMendeliana_Bach_2010.ppt
Clase_2_GeneticaMendeliana_Bach_2010.pptClase_2_GeneticaMendeliana_Bach_2010.ppt
Clase_2_GeneticaMendeliana_Bach_2010.pptAXELDELACRUZJIMNEZ
 
cruza dihíbrida y problemas de dominancia completa
cruza dihíbrida y problemas de dominancia completacruza dihíbrida y problemas de dominancia completa
cruza dihíbrida y problemas de dominancia completajosedavidf114
 
Las leyes de la herencia
Las leyes de la herenciaLas leyes de la herencia
Las leyes de la herenciaMiriam Valle
 
T 14-genetica-09 10 (1)
T 14-genetica-09 10 (1)T 14-genetica-09 10 (1)
T 14-genetica-09 10 (1)Fatima Diaz
 
Cap. 11 - Citogenética.ppsx
Cap. 11 - Citogenética.ppsxCap. 11 - Citogenética.ppsx
Cap. 11 - Citogenética.ppsxMaria945443
 
PDV: Biologia Guía N°21 [4° Medio] (2012)
PDV: Biologia Guía N°21 [4° Medio] (2012)PDV: Biologia Guía N°21 [4° Medio] (2012)
PDV: Biologia Guía N°21 [4° Medio] (2012)PSU Informator
 
Mendelismo clásico, mecanismos de herencia autosómicos, ligados a X e Y.
Mendelismo clásico, mecanismos de herencia autosómicos, ligados a X e Y.Mendelismo clásico, mecanismos de herencia autosómicos, ligados a X e Y.
Mendelismo clásico, mecanismos de herencia autosómicos, ligados a X e Y.EdgardoLeonor
 
Genetica
GeneticaGenetica
Geneticarxazul
 
1 genetica mendeliana
1  genetica mendeliana1  genetica mendeliana
1 genetica mendelianascornelio
 
Genética I (BC21 - PDV 2013)
Genética I (BC21 - PDV 2013)Genética I (BC21 - PDV 2013)
Genética I (BC21 - PDV 2013)Matias Quintana
 
4 eso.t.3.herencia caracteres
4 eso.t.3.herencia caracteres4 eso.t.3.herencia caracteres
4 eso.t.3.herencia caracteresMaruja Ruiz
 
HERENCIA BIOLOGIA GENETICA LIGADA AL SEXO.pptx
HERENCIA BIOLOGIA GENETICA LIGADA AL SEXO.pptxHERENCIA BIOLOGIA GENETICA LIGADA AL SEXO.pptx
HERENCIA BIOLOGIA GENETICA LIGADA AL SEXO.pptxBoris Esparza
 
T 15 las leyes de la herencia
T 15 las leyes de la herenciaT 15 las leyes de la herencia
T 15 las leyes de la herenciaFsanperg
 

Similar a Conceptos básicos de genética (20)

RESUMEN DE GENÉTICA
RESUMEN DE GENÉTICARESUMEN DE GENÉTICA
RESUMEN DE GENÉTICA
 
Clase_2_GeneticaMendeliana_Bach_2010.ppt
Clase_2_GeneticaMendeliana_Bach_2010.pptClase_2_GeneticaMendeliana_Bach_2010.ppt
Clase_2_GeneticaMendeliana_Bach_2010.ppt
 
Clase_2_GeneticaMendeliana_Bach_2010.ppt
Clase_2_GeneticaMendeliana_Bach_2010.pptClase_2_GeneticaMendeliana_Bach_2010.ppt
Clase_2_GeneticaMendeliana_Bach_2010.ppt
 
Clase_2_GeneticaMendeliana_Bach_2010.ppt
Clase_2_GeneticaMendeliana_Bach_2010.pptClase_2_GeneticaMendeliana_Bach_2010.ppt
Clase_2_GeneticaMendeliana_Bach_2010.ppt
 
Clase_2_GeneticaMendeliana_Bach_2010.ppt
Clase_2_GeneticaMendeliana_Bach_2010.pptClase_2_GeneticaMendeliana_Bach_2010.ppt
Clase_2_GeneticaMendeliana_Bach_2010.ppt
 
Clase herencia i (12 de julio) copia
Clase herencia i (12 de julio)   copiaClase herencia i (12 de julio)   copia
Clase herencia i (12 de julio) copia
 
cruza dihíbrida y problemas de dominancia completa
cruza dihíbrida y problemas de dominancia completacruza dihíbrida y problemas de dominancia completa
cruza dihíbrida y problemas de dominancia completa
 
variabilidad y herencia
variabilidad y herenciavariabilidad y herencia
variabilidad y herencia
 
Las leyes de la herencia
Las leyes de la herenciaLas leyes de la herencia
Las leyes de la herencia
 
T 14-genetica-09 10 (1)
T 14-genetica-09 10 (1)T 14-genetica-09 10 (1)
T 14-genetica-09 10 (1)
 
Cap. 11 - Citogenética.ppsx
Cap. 11 - Citogenética.ppsxCap. 11 - Citogenética.ppsx
Cap. 11 - Citogenética.ppsx
 
PDV: Biologia Guía N°21 [4° Medio] (2012)
PDV: Biologia Guía N°21 [4° Medio] (2012)PDV: Biologia Guía N°21 [4° Medio] (2012)
PDV: Biologia Guía N°21 [4° Medio] (2012)
 
Mendelismo clásico, mecanismos de herencia autosómicos, ligados a X e Y.
Mendelismo clásico, mecanismos de herencia autosómicos, ligados a X e Y.Mendelismo clásico, mecanismos de herencia autosómicos, ligados a X e Y.
Mendelismo clásico, mecanismos de herencia autosómicos, ligados a X e Y.
 
Genetica
GeneticaGenetica
Genetica
 
1 genetica mendeliana
1  genetica mendeliana1  genetica mendeliana
1 genetica mendeliana
 
Genética I (BC21 - PDV 2013)
Genética I (BC21 - PDV 2013)Genética I (BC21 - PDV 2013)
Genética I (BC21 - PDV 2013)
 
Genética
GenéticaGenética
Genética
 
4 eso.t.3.herencia caracteres
4 eso.t.3.herencia caracteres4 eso.t.3.herencia caracteres
4 eso.t.3.herencia caracteres
 
HERENCIA BIOLOGIA GENETICA LIGADA AL SEXO.pptx
HERENCIA BIOLOGIA GENETICA LIGADA AL SEXO.pptxHERENCIA BIOLOGIA GENETICA LIGADA AL SEXO.pptx
HERENCIA BIOLOGIA GENETICA LIGADA AL SEXO.pptx
 
T 15 las leyes de la herencia
T 15 las leyes de la herenciaT 15 las leyes de la herencia
T 15 las leyes de la herencia
 

Último

Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdf
Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdfGribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdf
Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdffrank0071
 
Características emociones y sentimientos
Características emociones y sentimientosCaracterísticas emociones y sentimientos
Características emociones y sentimientosFiorelaMondragon
 
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)s.calleja
 
TEST BETA III: APLICACIÓN E INTERPRETACIÓN.pptx
TEST BETA III: APLICACIÓN E INTERPRETACIÓN.pptxTEST BETA III: APLICACIÓN E INTERPRETACIÓN.pptx
TEST BETA III: APLICACIÓN E INTERPRETACIÓN.pptxXavierCrdenasGarca
 
Harris, Marvin. - Caníbales y reyes. Los orígenes de la cultura [ocr] [1986].pdf
Harris, Marvin. - Caníbales y reyes. Los orígenes de la cultura [ocr] [1986].pdfHarris, Marvin. - Caníbales y reyes. Los orígenes de la cultura [ocr] [1986].pdf
Harris, Marvin. - Caníbales y reyes. Los orígenes de la cultura [ocr] [1986].pdffrank0071
 
PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...
PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...
PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...ocanajuanpablo0
 
SEGUNDAS VANGUARDIAS ARTÍSTICAS DEL SIGLO XX.pdf
SEGUNDAS VANGUARDIAS ARTÍSTICAS DEL SIGLO XX.pdfSEGUNDAS VANGUARDIAS ARTÍSTICAS DEL SIGLO XX.pdf
SEGUNDAS VANGUARDIAS ARTÍSTICAS DEL SIGLO XX.pdfPC0121
 
inspeccion del pescado.pdfMedicinaveteri
inspeccion del pescado.pdfMedicinaveteriinspeccion del pescado.pdfMedicinaveteri
inspeccion del pescado.pdfMedicinaveteriManrriquezLujanYasbe
 
el amor en los tiempos del colera (resumen).pptx
el amor en los tiempos del colera (resumen).pptxel amor en los tiempos del colera (resumen).pptx
el amor en los tiempos del colera (resumen).pptxhectoralvarado79
 
RX DE TORAX normal jornadas .............
RX DE TORAX normal jornadas .............RX DE TORAX normal jornadas .............
RX DE TORAX normal jornadas .............claudiasilvera25
 
AA.VV. - Reinvención de la metrópoli: 1920-1940 [2024].pdf
AA.VV. - Reinvención de la metrópoli: 1920-1940 [2024].pdfAA.VV. - Reinvención de la metrópoli: 1920-1940 [2024].pdf
AA.VV. - Reinvención de la metrópoli: 1920-1940 [2024].pdffrank0071
 
Perfiles NEUROPSI Atención y Memoria 6 a 85 Años (AyM).pdf
Perfiles NEUROPSI Atención y Memoria 6 a 85 Años (AyM).pdfPerfiles NEUROPSI Atención y Memoria 6 a 85 Años (AyM).pdf
Perfiles NEUROPSI Atención y Memoria 6 a 85 Años (AyM).pdfPieroalex1
 
Plokhi, Serhii. - El último imperio. Los días finales de la Unión Soviética [...
Plokhi, Serhii. - El último imperio. Los días finales de la Unión Soviética [...Plokhi, Serhii. - El último imperio. Los días finales de la Unión Soviética [...
Plokhi, Serhii. - El último imperio. Los días finales de la Unión Soviética [...frank0071
 
Sucesión de hongos en estiércol de vaca experimento
Sucesión de hongos en estiércol de vaca experimentoSucesión de hongos en estiércol de vaca experimento
Sucesión de hongos en estiércol de vaca experimentoFriasMartnezAlanZuri
 
TEMA: ULTRASONOGRAFIA EN NUTRICION
TEMA:         ULTRASONOGRAFIA EN NUTRICIONTEMA:         ULTRASONOGRAFIA EN NUTRICION
TEMA: ULTRASONOGRAFIA EN NUTRICIONClaudiaIsabel36
 
Piccato, P. - Historia mínima de la violencia en México [2022].pdf
Piccato, P. - Historia mínima de la violencia en México [2022].pdfPiccato, P. - Historia mínima de la violencia en México [2022].pdf
Piccato, P. - Historia mínima de la violencia en México [2022].pdffrank0071
 
Diálisis peritoneal en los pacientes delicados de salud
Diálisis peritoneal en los pacientes delicados de saludDiálisis peritoneal en los pacientes delicados de salud
Diálisis peritoneal en los pacientes delicados de saludFernandoACamachoCher
 
PAE ARTITRIS- ENFERMERIA GERIATRICA.pptx
PAE ARTITRIS- ENFERMERIA GERIATRICA.pptxPAE ARTITRIS- ENFERMERIA GERIATRICA.pptx
PAE ARTITRIS- ENFERMERIA GERIATRICA.pptxrenegon1213
 
Codigo rojo manejo y tratamient 2022.pptx
Codigo rojo manejo y tratamient 2022.pptxCodigo rojo manejo y tratamient 2022.pptx
Codigo rojo manejo y tratamient 2022.pptxSergioSanto4
 
DESPOTISMO ILUSTRADOO - copia - copia - copia - copia.pdf
DESPOTISMO ILUSTRADOO - copia - copia - copia - copia.pdfDESPOTISMO ILUSTRADOO - copia - copia - copia - copia.pdf
DESPOTISMO ILUSTRADOO - copia - copia - copia - copia.pdfssuser6a4120
 

Último (20)

Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdf
Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdfGribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdf
Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdf
 
Características emociones y sentimientos
Características emociones y sentimientosCaracterísticas emociones y sentimientos
Características emociones y sentimientos
 
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)
 
TEST BETA III: APLICACIÓN E INTERPRETACIÓN.pptx
TEST BETA III: APLICACIÓN E INTERPRETACIÓN.pptxTEST BETA III: APLICACIÓN E INTERPRETACIÓN.pptx
TEST BETA III: APLICACIÓN E INTERPRETACIÓN.pptx
 
Harris, Marvin. - Caníbales y reyes. Los orígenes de la cultura [ocr] [1986].pdf
Harris, Marvin. - Caníbales y reyes. Los orígenes de la cultura [ocr] [1986].pdfHarris, Marvin. - Caníbales y reyes. Los orígenes de la cultura [ocr] [1986].pdf
Harris, Marvin. - Caníbales y reyes. Los orígenes de la cultura [ocr] [1986].pdf
 
PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...
PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...
PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...
 
SEGUNDAS VANGUARDIAS ARTÍSTICAS DEL SIGLO XX.pdf
SEGUNDAS VANGUARDIAS ARTÍSTICAS DEL SIGLO XX.pdfSEGUNDAS VANGUARDIAS ARTÍSTICAS DEL SIGLO XX.pdf
SEGUNDAS VANGUARDIAS ARTÍSTICAS DEL SIGLO XX.pdf
 
inspeccion del pescado.pdfMedicinaveteri
inspeccion del pescado.pdfMedicinaveteriinspeccion del pescado.pdfMedicinaveteri
inspeccion del pescado.pdfMedicinaveteri
 
el amor en los tiempos del colera (resumen).pptx
el amor en los tiempos del colera (resumen).pptxel amor en los tiempos del colera (resumen).pptx
el amor en los tiempos del colera (resumen).pptx
 
RX DE TORAX normal jornadas .............
RX DE TORAX normal jornadas .............RX DE TORAX normal jornadas .............
RX DE TORAX normal jornadas .............
 
AA.VV. - Reinvención de la metrópoli: 1920-1940 [2024].pdf
AA.VV. - Reinvención de la metrópoli: 1920-1940 [2024].pdfAA.VV. - Reinvención de la metrópoli: 1920-1940 [2024].pdf
AA.VV. - Reinvención de la metrópoli: 1920-1940 [2024].pdf
 
Perfiles NEUROPSI Atención y Memoria 6 a 85 Años (AyM).pdf
Perfiles NEUROPSI Atención y Memoria 6 a 85 Años (AyM).pdfPerfiles NEUROPSI Atención y Memoria 6 a 85 Años (AyM).pdf
Perfiles NEUROPSI Atención y Memoria 6 a 85 Años (AyM).pdf
 
Plokhi, Serhii. - El último imperio. Los días finales de la Unión Soviética [...
Plokhi, Serhii. - El último imperio. Los días finales de la Unión Soviética [...Plokhi, Serhii. - El último imperio. Los días finales de la Unión Soviética [...
Plokhi, Serhii. - El último imperio. Los días finales de la Unión Soviética [...
 
Sucesión de hongos en estiércol de vaca experimento
Sucesión de hongos en estiércol de vaca experimentoSucesión de hongos en estiércol de vaca experimento
Sucesión de hongos en estiércol de vaca experimento
 
TEMA: ULTRASONOGRAFIA EN NUTRICION
TEMA:         ULTRASONOGRAFIA EN NUTRICIONTEMA:         ULTRASONOGRAFIA EN NUTRICION
TEMA: ULTRASONOGRAFIA EN NUTRICION
 
Piccato, P. - Historia mínima de la violencia en México [2022].pdf
Piccato, P. - Historia mínima de la violencia en México [2022].pdfPiccato, P. - Historia mínima de la violencia en México [2022].pdf
Piccato, P. - Historia mínima de la violencia en México [2022].pdf
 
Diálisis peritoneal en los pacientes delicados de salud
Diálisis peritoneal en los pacientes delicados de saludDiálisis peritoneal en los pacientes delicados de salud
Diálisis peritoneal en los pacientes delicados de salud
 
PAE ARTITRIS- ENFERMERIA GERIATRICA.pptx
PAE ARTITRIS- ENFERMERIA GERIATRICA.pptxPAE ARTITRIS- ENFERMERIA GERIATRICA.pptx
PAE ARTITRIS- ENFERMERIA GERIATRICA.pptx
 
Codigo rojo manejo y tratamient 2022.pptx
Codigo rojo manejo y tratamient 2022.pptxCodigo rojo manejo y tratamient 2022.pptx
Codigo rojo manejo y tratamient 2022.pptx
 
DESPOTISMO ILUSTRADOO - copia - copia - copia - copia.pdf
DESPOTISMO ILUSTRADOO - copia - copia - copia - copia.pdfDESPOTISMO ILUSTRADOO - copia - copia - copia - copia.pdf
DESPOTISMO ILUSTRADOO - copia - copia - copia - copia.pdf
 

Conceptos básicos de genética

  • 2.
  • 3.
  • 4. Existen diferentes patrones de herencia según las posibles localizaciones de un gen: - Herencia autosómica: basada en la variación de genes simples en cromosomas regulares o autosomas (Mendel). - Herencia ligada al sexo: basada en la variación de genes simples en los cromosomas determinantes del sexo. - Herencia citoplásmica: basada en la variación de genes simples en cromosomas de organelas (herencia materna). Patrones de herencia
  • 5.  Gregorio Mendel propone por 1era vez el concepto de gen en 1865  Existía el concepto de herencia mezclada: la descendencia muestra normalmente características similares a las de ambos progenitores….pero, la descendencia no siempre es una mezcla intermedia entre las características de sus parentales.  Mendel propone la teoría de la herencia particulada: los caracteres están determinados por unidades genéticas discretas que se transmiten de forma intacta a través de las generaciones. Carácter: propiedad específica de un organismo; característica o rasgo. Modelo de estudio: planta de guisante Pisum sativum - amplia gama de variedades fáciles de analizar - puede autopolinizarse Genética Mendeliana
  • 6. Línea pura: población que produce descendencia homogénea para el carácter particular en estudio; todos los descendientes producidos por autopolinización o fecundación cruzada, dentro de la población, muestran el carácter de la misma forma. Vaina inmadura verde o amarilla Semilla lisa o rugosa Semilla amarilla o verde Pétalos púrpuras o blancos Vaina hinchada o hendida Tallo largo o cortoFloración axial o terminal Las 7 diferencias en un carácter estudiadas por Mendel
  • 7.
  • 8. Generación parental (P) 1era Generación filial (F1) Fenotipo: formas o variantes de un carácter. Deriv. griego: “lo que se muestra” Ej: Carácter: color de la flor, Fenotipo: púrpura o blanco 1er Exto: Todas púrpuras!! fenotipo B x fenotitpo A Cruzamiento recípocro fenotipo A x fenotipo B
  • 9.
  • 10. Relación de carácteres en F2 siempre es 3:1!! El fenotipo blanco está completamente ausente en la F1, pero reaparece (en su forma original) en la cuarta parte de las plantas F2 difícil de explicar por herencia mezclada. Mendel: la capacidad para producir tanto el fenotipo púrpura como el blanco se mantiene y transmite a través de las generaciones sin modificaciones. Entonces…¿por qué no se expresa el fenotipo blanco en la F1? Fenotipo dominante: aquel que aparece en la F1, tras el cruzamiento de 2 líneas puras. Fenotipo púrpura es dominante sobre el blanco Fenotipo blanco es recesivo sobre el púrpura
  • 11. Fenotipo parental Cruza F1 F2 Relación en F2 Lisa Semilla lisa x rugosa Todas lisas 5474 lisas;1850 rugosas 2,96:1 Amarilla Semilla amarilla x verde Todas amarillas 6022 amarillas;2001 verdes 3,01:1 Púrpura Pétalos púpuras x blancos Todos púrpuras 705 púrpuras;224 blancos 3,15:1 Hinchada Vaina hinchada x hendida Todas hinchadas 882 hinchadas;299 hendidas 2,95:1 Verde Vaina verde x amarilla Todas verdes 428 verdes;152 amarillas 2,82: 1 Axial Flores axiales x terminales Todas axiales 651 axiales;207 terminales 3,14: 1 Largo Tallo largo x corto Todos largos 787 largos;277 cortos 2,84: 1 Resultados de todos los cruzamientos de Mendel en los que los parentales difieren en un solo carácter (autofecundación de F1)
  • 12.
  • 13.
  • 14.
  • 15. P F1 F2 F3 Autofecundación (3:1) (3:1, amarillas:verdes) Autofecundación Todas Todas (= al parental verde)3/4 y ; 1/4 3/4 ;1/4 Semillas X 1/3 = al parental amarillo 2/3 = F1 Entonces: de F2 Exto autofecundación de F2
  • 16. Proporción aparente 3:1 de F2 es 1:2:1 F2 Proporciones fenotípicas Proporciones genotípicas 3/4 amarillos 1/4 verdes 1/4 amarillos puros 2/4 amarillos impuros 1/4 verdes puros
  • 17. Postulado de Mendel para explicar proporción 1:2:1 1- Existen determinantes hereditarios de naturaleza particulada genes. 2- Cada planta adulta tiene 2 genes, una pareja génica. Las plantas de la F1 tienen genes dominantes (A) y recesivos (a). 3- Los miembros de cada pareja génica se distribuyen de manera igualitaria entre las gametas o células sexuales. 4- Cada gameta es portadora de un solo miembro de la pareja génica. 5- La unión de una gameta de cada parental para formar un nuevo descendiente se produce al azar. Esquema de la generaciones P, F1 y F2 en el sistema de Mendel que implica la diferencia en un carácter determinado por la diferencia de un gen.
  • 18.
  • 19. Corroboración del modelo por Cruzamiento prueba (cruzamiento con un homocigota recesivo) Obtiene: 58 amarillas (Yy) 52 verdes (yy) Se confirma la segregación igualitaria de Y e y en el individuo de la F1 Primera Ley de Mendel. Los dos miembros de una pareja génica se distribuyen separadamente entre las gametos (segregan), de forma que la mitad de las gametos llevan un miembro de la pareja y la otra mitad lleva el otro miembro de la pareja génica.
  • 20. Carácter Fenotipos Genotipos Alelos Gen Púrpura (dominante) CC (homocigota dominante Cc (heterocigota) C (dominante) Color de la flor Gen del color de la flor c (recesivo)Blanco (recesivo) cc (homocigota recesivo) Individuos de una línea pura son homocigotas Genotipo: constitución genética (o alélica) respecto de uno o varios caracteres en estudio. Alelos: distintas variantes de un gen
  • 21.
  • 22. Cruzamiento dihíbrido: las líneas puras parentales difieren en dos genes que controlan dos diferencias de caracteres distintos. Las proporciones lisas:rugosas y amarillas:verdes son ambas 3:1!! Segunda Ley de Mendel. La segregación de una pareja génica durante la formación de las gametas se produce de manera independiente de las otras parejas génicas.
  • 23. Por la primera Ley de Mendel: gametas Y = gametas y = 1/2 gametas R = gametas r = 1/2 p (RY) = 1/2 x 1/2 =1/4 p (Ry) = 1/2 x 1/2 =1/4 p (rY) = 1/2 x 1/2 =1/4 p (ry) = 1/2 x 1/2 =1/4 Cuadrado de Punnet para predecir el resultado de un cruzamiento dihíbrido
  • 24. Distribución igualitaria Segregación independiente a Pareja génica A A a Parejas génicas A a B bA B a b a B Bb aA b A Gametas Gametas
  • 25. Meiosis de una célula diploide con genotipo A/a:B/b Anafase I Anafase II Interfase Telofase I Metafase I Telofase II Profase Teoría cromosómica de la herencia (Sutton-Boveri): el paralelismo entre el comportamiento de los genes (Mendel) y los cromosomas llevó a pensar que los genes están situados en cromosomas. (luego se corrobora por herencia sexual) Explica la distribución igualitaria y la segregación independiente
  • 26. Símbolos utilizados en análisis de pedrigrí humanos
  • 27. Pedigrí ilustrativo de un fenotipo recesivo poco común Análisis de pedigrí de desórdenes autosómicos recesivos - Generalmente la enfermedad aparece en la progenie de padres no afectados. - La progenie afectada incluye tanto mujeres como hombres. Imp! Si bien las leyes de Mendel se cumplen, las proporciones difícilmente se observan, ya que el n es muy chico. Ej. Fenilcetonuria, fibrosis quística, albinismo
  • 28. Análisis de pedigrí de desórdenes autosómicos dominantes -El fenotipo tiende a aparecer en todas las generaciones. - Los progenitores afectados transmiten su fenotipo a hijos e hijas. Imp! Siempre es mas común encontrar personas llevando una copia del alelo raro (A/a) que dos copias (a/a). Como consecuencia es muy común encontrar una progenie 1:1 de personas afectadas (A/a) y no afectadas (a/a). Pedigrí ilustrativo de un fenotipo dominante poco común Ej: Huntington, pseudoacondroplasia, polidactilia
  • 29. Análisis de pedigrí de desórdenes autosómicos polimórficos Polimorfismo: coexistencia de dos ó más fenotipos comunes de un carácter en una población. Pedigrí ilustrativo de un desórden polimórfico Dado que ambos son alelos comunes en la población, la proporción de individuos portadores del alelo recesivo (ya sea en homo o heterocigosis) es mucho mayor que en los desórdenes recesivos poco comunes.
  • 30. Bases moleculares de la genética mendeliana Alelos: variantes de un mismo gen. Difieren en solo uno o unos pocos nucleótidos entre sí. Alelo “wild-type”: forma en la que cualquier gen particular es hallado en la naturaleza. Ej. Color del pétalo de la planta de guisante. Alelo A es wild-type Genotipo A/A enzima activa pigmento púrpura pétalos púrpura A/a enzima activa pigmento púrpura pétalos púrpura a/a enzima inactiva no hay pigmento pétalos blancos Imp! El fenotipo blanco puede darse por la inactivación de cualquiera de los genes involucrados en la síntesis del pigmento.
  • 31. Alelo nulo: aquel que lleva a la ausencia del producto génico normal (ej m6) o a la desaparición fenotípica de la función normal (ej m2 y m3). Los alelos nuevos formados por mutación pueden resultar en la pérdida total o parcial de la función, o de la ganancia de más función o incluso adquisición de una nueva función a nivel proteico.
  • 32. Alelismo múltiple: existencia de varios alelos conocidos de un gen. Serie alélica: conjunto de alelos de un gen. Ej. PKU: enfermedad autosómica recesiva generada por el procesamiento anormal del aa fenilalanina por parte de la enzima fenilalanina hidroxilasa (PAH). Estructura de la PAH y las mutaciones encontradas
  • 33. Ahora…por qué el alelo defectuoso de PAH es recesivo? El gen PAH es haplosuficiente: una sola “dosis” del alelo wild-type es suficiente para producir el fenotipo wild-type. Tanto el genotipo P/P (dos dosis), como el P/p (una dosis) producen una cantidad de PAH suficiente para el normal funcionamiento de la célula. Individuos p/p no tienen actividad PAH. La recesividad de un alelo mutante es generalmente el resultado de la haplosuficiencia del alelo wild-type de ese gen. Al contrario, la dominancia de un alelo mutante es normalmente el resultado de la haploinsuficiencia del alelo wild-type de ese gen particular.
  • 34. Recesividad de un alelo mutante de un gen haplosuficiente
  • 35. Bases moleculares del albinismo (enfermedad autosómica recesiva)
  • 36. Extensiones del análisis mendeliano Dominancia completa: el homocigota dominante no puede distinguirse fenotípicamente del heterocigota. Dominancia incompleta: el heterocigota muestra un fenotipo cuantitativamente (aunque no exactamente) intermedio entre los fenotipos homocigotas correspondientes. P pétalos rojos x pétalos blancos F1 pétalos rosas 1/4 pétalos rojos F2 1/2 pétalos rosas 1/4 pétalos blancos Ej. Planta Dondiego de noche
  • 37. Codominancia: el heterocigota expresa el fenotipo de ambos homocigotas por igual. Aglutinación de gl. rojos tipo AB Aglutinación de gl. rojos tipo A Anticuerpos Anti-A Antígeno A Antígeno B Anticuerpos Anti-A No hay aglutinación de gl. rojos tipo B Anticuerpos Anti-AGlóbulos rojos de una persona tipo AB Glóbulos rojos de una persona tipo B Glóbulos rojos de una persona tipo A Ej. Grupos sanguíneos humanos ABO
  • 38. alelo A ( IA ) alelo B ( IB ) alelo O (i) Antígeno B; reacciona con anticuerpos anti-B Antígeno A; reacciona con anticuerpos anti-A Antígeno H; no reacciona con anticuerpos anti-A ni anti-B N-acetilgalactosamina adicionada al precursor Galactosa adicionada al precursor N-acetilglucosamina Galactosa N-acetilgalactosamina Fucosa Carbohidrato precursor Base bioquímica de los grupos ABO Los alelos A y B producen transferasas distintas (que modifican de distinta manera la galactosa terminal del compuesto precursor) y el alelo O no produce ninguna.
  • 39. Tipo sanguíneo Genotipo A IA IA o IA i B IB IB o IB i AB IA IB O ii El alelo i es nulo, es incapaz de producir cualquier forma del antígeno. Alelos A y B son dominantes sobre el alelo i. Alelos A y B son codominantes entre sí. Grupo O es donante universal (no contiene antígenos ni A ni B). Grupo AB es receptor universal (no produce anticuerpos contra el antígeno A ni el antígeno B).
  • 40. Ej. Grupo sanguíneo M-N (según posean antígenos en superficie de glóblulos rojos) Son posibles 3 grupos sanguíneos: M, N y MN Descendencia (proporciones) Parentales M MN N MMxMM Todos - - MMxMN 1 1 - MMxNN - Todos - MNxMN 1 2 1 MNxNN - 1 1 NNxNN - - todos
  • 41. Ej. Anemia falciforme humana Tipo de Hb presente Origen Genotipo Fenotipo Migración PortadorHbS HbA Anemia falciformeHbS HbS NormalHbA HbA S S y A A HbS HbA : No se produce anemia. Los gl. rojos se deforman sólo a concentraciones de O2 anormalmente bajas. HbA HbA : Normal. Los gl. rojos no se deforman nunca. HbS HbS : Anemia grave, a menudo mortal. La Hb anormal causa que los gl. rojos adquieran forma de hoz. Respecto a la anemia: alelo HbA es dominante. Respecto a la forma de los glóbulos rojos: existe dominancia incompleta de HbA Respecto a la síntesis de Hb: hay codominancia.
  • 42. Ojo!....El tipo de dominancia inferida de un estudio depende en gran medida del nivel fenotípico en el cual el ensayo es realizado (organismo, celular, molecular)
  • 43. Alelos letales: alelos mutantes que pueden causarle la muerte a un organismo. Los genes en los cuales ciertas mutaciones pueden ser letales son claramente genes esenciales. Alelos letales recesivos: en organismos diploides se mantienen en heterocigosis. Ej. Alelo (A) del color de la piel del ratón Color normal (marrón) es línea pura. P amarillo x wild type F1 amarillos:normales 1:1 P Ay A x Ay A F1 1/4 AA wild type 1/2 Ay A amarillo 1/4 Ay Ay letal Ratones amarillos son heterocigotas y el amarillo es dominante El alelo amarillo es letal en homocigosis Alelo amarillo es dominante según el color de pelo y además letal recesivo (mueren antes de nacer) amarillo x amarillo 2/3 amarillo: 1/3 color normal 2:1 Genes pleiotrópicos: genes de los que se sabe que tienen más de un efecto fenotípico distinto
  • 44. Varios genes afectan al mismo carácter albinonaranjacamuflado negro Albino parece rosa por el color de la Hb de la sangre Ej. Color de la piel de las víboras
  • 45. Epístasis: tipo de interacción génica en la cual un gen enmascara la expresión de otro y expresa su propio fenotipo. Generalmente ambos genes se encuentran en una misma ruta metabólica. Ej. Color de pelo del ratón Gen B. alelo B: negro alelo b: marrón Gen C. alelo C: color alelo c: ausencia de color P BBcc (albino) x bbCC (marrón) o BBCC (negro) x bbcc (albino) F1 Todos BbCc (negro) F2 9 B-C- (negro) 3 bbC- (marrón) 3 B-cc (albino) 1 bbcc (albino) 9 3 4
  • 46. Ej. Epístasis recesiva en ruta metabólica
  • 47. Complementación: dos alelos dominantes wild-type se unen para producir un fenotipo específico, revirtiendo el fenotipo dado por dos alelos mutantes recesivos. Ej. Color de pétalos Flor wild type: azul (pigmento antocianina) Línea mutante 1: flor blanca Línea mutante 2: flor blanca P Línea blanca 1 x Línea blanca 2 AAbb x aaBB F1 todas AaBb (azules) F2 9 A-B- (azul) 3 A-bb (blanca) 3 aaB- (blanca) 1 aabb (blanca) 7 9
  • 48. Supresión: alelo de un gen que anula la expresión de otro gen. El gen supresor puede llevar asociado su propio fenotipo o no tener otro efecto detectable mas que el de la supresión (ej maldivina). Ej. Producción de malvidina en plantas Gen K: dominante, producción de malvidina. Gen D: supresor no alélico dominante P KKdd (malvidina) x kkDD (no malvidina) F1 todas KkDd (no malvidina) F2 9 K-D- (no malvidina) 3 kkD- (no malvidina) 1 kkdd (no malvidina) 3 K-dd (malvidina) 3 13
  • 49. Genes duplicados: la presencia de al menos un alelo dominante de cualquiera de los dos genes es suficiente para que se exprese el mismo fenotipo dominante. Ej. Forma del fruto en la planta bolsa del pastor Gen A1: dominante, frutos redondeados Gen A2: dominante, frutos redondeados P A1A1A2A2 (redondeados) x a1a1a2a2 (estrechos) F1 todos A1a1A2a2 (redondeados) F2 9 A1-A2- (redondeados) 3 A1-a2a2 (redondeados) 3 a1a1A2- (redondeados) 1 a1a1a2a2 (estrechos) 1 15 En complementación (9:7) son necesarios ambos genes dominantes para producir el fenotipo
  • 50.
  • 51. Penetrancia: el porcentaje de individuos con un genotipo dado que exhibe el fenotipo asociado a dicho genotipo. Causas: 1- Influencia del medio ambiente. Ej. El fenotipo de individuos mutantes en un determinado ambiente puede ser igual al de un organismo wild type. 2- Influencia de otros genes. Ej. Genes modificadores, epistáticos, o supresores del resto del genoma pueden influenciar la expresión de otro gen, modificando su fenotipo típico. Expresividad: grado o intensidad con la que se expresa un genotipo determinado en un individuo. Es una medida de la intensidad del fenotipo. Expresión fenotípica (cada círculo representa un individuo) Penetrancia y expresividad variables Expresividad variable Penetrancia variable
  • 52. Pedigri de un alelo dominante que no es completamente penetrante - El individuo Q no expresa el fenotipo pero lo transmite a al menos dos de su progenie. - Dado que el alelo no es completamente penetrante, el resto de la progenie, ej R, puede o no llevar el alelo dominante. Imp!! La observación de proporciones mendelianas alteradas revelan que un carácter está determinado por la interacción compleja de distintos genes.
  • 53. Herencia Materna - Las mitocondrias y los cloroplastos contienen pequeños cromosomas circulares que codifican para un definido número de genes del genoma total de la célula. -Las organelas no son genéticamente independientes, algunas funciones están a cargo de genes nucleares. -Cada organela está presente en varias copias por célula y cada una presenta una gran cantidad de copias de sus cromosomas. - Los genes de las organelas muestran herencia uniparental: sus genes son heredados exclusivamente por uno de los progenitores las organelas residen en el citoplasma y el óvulo contribuye con la mayoría del citoplasma (y sus organelas) a la célula cigota.
  • 54. Heteroplasmonte: célula que posee dos tipos genéticos de organelas (normales y mutantes). En estas células generalmente ocurre una segregación citoplásmica de cada tipo de organela en las diferentes células hijas. Rama toda blanca Rama toda verde Tallo principal variegado Ej. Mutación en alelo que controla la producción de clorofila en los cloroplastos hojas blancas Patrón de herencia citoplásmica: Mutante x wild-type toda la progenie es mutante Wild-type x mutante toda la progenie es wild-type Excepción:
  • 55. (no-viable) Núcleo Cloroplasto Blanco Verde Blanco cualquierBlanco Verde Variegado cualquier cualquier Verde Variegado Huevo tipo 2 Huevo tipo 1 Huevo tipo 3 Célula huevo femenina (n) Célula polen masculina (n) Zigota (2n) División celular Segregación citoplásmica
  • 56. Mutaciones citoplásmicas en humanos Ej 1. Enfermedad causada por una mutación simple en DNA mitocondrial. MERRF (myoclonic epilepsy and ragged red fiber), enferemdad muscular con desórdenes auditivos y visuales. Ej 2. Enfermedad causada por una pérdida de parte del DNA mitocondrial. Síndrome de Kearns-Sayre, constelación de síndromes afectando ojos, corazón, músculos y cerebro. En algunos casos las células del paciente presentan una mezcla de cromosomas normales y mutantes (provenientes de mitocondrias distintas) y las proporciones de cada uno pasados a la progenie puede variar como resultado de la segregación citoplásmica. Incluso las proporciones de cromosomas mitocondriales normales y mutantes en un mismo individuo enfermo pueden variar en los distintos tejidos o con el tiempo. -Transmisión de fenotipos raros sólo a través de mujeres y nunca de hombres.