SlideShare ist ein Scribd-Unternehmen logo
1 von 46
Chapter 8 Switching Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Figure 8.1  Switched network
Figure 8.2  Taxonomy of switched networks
8-1  CIRCUIT-SWITCHED NETWORKS A circuit-switched network consists of a set of switches connected by physical links. A connection between two stations is a dedicated path made of one or more links. However, each connection uses only one dedicated channel on each link. Each link is normally divided into n channels by using FDM or TDM. Three Phases Efficiency Delay Circuit-Switched Technology in Telephone Networks Topics discussed in this section:
A circuit-switched network is made of a set of switches connected by physical links, in which  each link is  divided into  n  channels. Note
Figure 8.3  A trivial circuit-switched network
In circuit switching, the resources need to be  reserved during the setup phase; the resources remain dedicated for the entire duration of data transfer until the teardown phase. Note
As a trivial example, let us use a circuit-switched network to connect eight telephones in a small area. Communication is through 4-kHz voice channels. We assume that each link uses FDM to connect a maximum of two voice channels. The bandwidth of each link is then 8 kHz. Figure 8.4 shows the situation. Telephone 1 is connected to telephone 7; 2 to 5; 3 to 8; and 4 to 6. Of course the situation may change when new connections are made. The switch controls the connections. Example 8.1
Figure 8.4  Circuit-switched network used in Example 8.1
As another example, consider a circuit-switched network that connects computers in two remote offices of a private company. The offices are connected using a T-1 line leased from a communication service provider. There are two 4 × 8 (4 inputs and 8 outputs) switches in this network. For each switch, four output ports are folded into the input ports to allow communication between computers in the same office. Four other output ports allow communication between the two offices. Figure 8.5 shows the situation. Example 8.2
Figure 8.5  Circuit-switched network used in Example 8.2
Figure 8.6  Delay in a circuit-switched network
Switching at the physical layer in the traditional telephone network uses the circuit-switching approach. Note
8-2  DATAGRAM NETWORKS In data communications, we need to send messages from one end system to another. If the message is going to pass through a packet-switched network, it needs to be divided into packets of fixed or variable size. The size of the packet is determined by the network and the governing protocol. Routing Table Efficiency Delay Datagram Networks in the Internet Topics discussed in this section:
In a packet-switched network, there  is no resource reservation; resources are allocated on demand. Note
Figure 8.7  A datagram network with four switches (routers)
Figure 8.8  Routing table in a datagram network
A switch in a datagram network uses a routing table that is based on the destination address. Note
The destination address in the header of a packet in a datagram network remains the same during the entire journey of the packet. Note
Figure 8.9  Delay in a datagram network
Switching in the Internet is done by using the datagram approach  to packet switching at  the network layer. Note
8-3  VIRTUAL-CIRCUIT NETWORKS A virtual-circuit network is a cross between a circuit-switched network and a datagram network. It has some characteristics of both. Addressing Three Phases Efficiency Delay Circuit-Switched Technology in WANs Topics discussed in this section:
Figure 8.10  Virtual-circuit network
Figure 8.11  Virtual-circuit identifier
Figure 8.12  Switch and tables in a virtual-circuit network
Figure 8.13  Source-to-destination data transfer in a virtual-circuit network
Figure 8.14  Setup request in a virtual-circuit network
Figure 8.15  Setup acknowledgment in a virtual-circuit network
In virtual-circuit switching, all packets belonging to the same source and  destination travel the same path; but the packets  may arrive at the destination with different delays  if resource allocation is on demand. Note
Figure 8.16  Delay in a virtual-circuit network
Switching at the data link layer in a switched WAN is normally implemented by using  virtual-circuit techniques. Note
8-4  STRUCTURE OF A SWITCH We use switches in circuit-switched and packet-switched networks. In this section, we discuss the structures of the switches used in each type of network. Structure of Circuit Switches Structure of Packet Switches Topics discussed in this section:
Figure 8.17  Crossbar switch with three inputs and four outputs
Figure 8.18  Multistage switch
In a three-stage switch, the total  number of crosspoints is  2kN + k(N/n) 2 which is much smaller than the number of crosspoints in a single-stage switch (N 2 ). Note
Design a three-stage, 200 × 200 switch (N = 200) with  k = 4 and n = 20. Solution In the first stage we have N/n or 10 crossbars, each of size 20 × 4. In the second stage, we have 4 crossbars, each of size 10 × 10. In the third stage, we have 10 crossbars, each of size 4 × 20. The total number of crosspoints is 2kN + k(N/n) 2 , or  2000  crosspoints. This is 5 percent of the number of crosspoints in a single-stage switch (200 × 200 = 40,000). Example 8.3
According to the Clos criterion: n  = (N/2) 1/2 k  > 2 n  – 1 Crosspoints ≥  4N [(2N) 1/2  – 1] Note
Redesign the previous three-stage, 200 × 200 switch, using the Clos criteria with a minimum number of crosspoints. Solution We let n = (200/2) 1/2 , or n = 10. We calculate k = 2n − 1 = 19. In the first stage, we have 200/10, or 20, crossbars, each with 10 × 19 crosspoints. In the second stage, we have 19 crossbars, each with 10 × 10 crosspoints. In the third stage, we have 20 crossbars each with 19 × 10 crosspoints. The total number of crosspoints is 20(10 × 19) + 19(10 × 10) + 20(19 ×10) =  9500 . Example 8.4
Figure 8.19  Time-slot interchange
Figure 8.20  Time-space-time switch
Figure 8.21  Packet switch components
Figure 8.22  Input port
Figure 8.23  Output port
Figure 8.24  A banyan switch
Figure 8.25  Examples of routing in a banyan switch
Figure 8.26  Batcher-banyan switch

Weitere ähnliche Inhalte

Was ist angesagt?

Chapter 2 - Network Models
Chapter 2 - Network ModelsChapter 2 - Network Models
Chapter 2 - Network Models
Wayne Jones Jnr
 
Connection( less & oriented)
Connection( less & oriented)Connection( less & oriented)
Connection( less & oriented)
ymghorpade
 

Was ist angesagt? (20)

Chapter 10
Chapter 10Chapter 10
Chapter 10
 
2. data and signals
2. data and signals2. data and signals
2. data and signals
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Chapter 3: Data & Signals
Chapter 3: Data & SignalsChapter 3: Data & Signals
Chapter 3: Data & Signals
 
Framming data link layer
Framming data link layerFramming data link layer
Framming data link layer
 
Chapter 12
Chapter 12Chapter 12
Chapter 12
 
Chapter 7: Transmission Media
Chapter 7: Transmission MediaChapter 7: Transmission Media
Chapter 7: Transmission Media
 
Chapter 4
Chapter 4Chapter 4
Chapter 4
 
Computer Networks Unit 1 Introduction and Physical Layer
Computer Networks Unit 1 Introduction and Physical Layer Computer Networks Unit 1 Introduction and Physical Layer
Computer Networks Unit 1 Introduction and Physical Layer
 
Token ring
Token ringToken ring
Token ring
 
Computer network switching
Computer network switchingComputer network switching
Computer network switching
 
Chapter 2 - Network Models
Chapter 2 - Network ModelsChapter 2 - Network Models
Chapter 2 - Network Models
 
Chapter 23
Chapter 23Chapter 23
Chapter 23
 
Chapter 1: Introduction to Data Communication and Networks
Chapter 1: Introduction to Data Communication and NetworksChapter 1: Introduction to Data Communication and Networks
Chapter 1: Introduction to Data Communication and Networks
 
Computer networks chapter1
Computer networks chapter1Computer networks chapter1
Computer networks chapter1
 
Multiple access control protocol
Multiple access control protocol Multiple access control protocol
Multiple access control protocol
 
Chapter 13
Chapter 13Chapter 13
Chapter 13
 
Connection( less & oriented)
Connection( less & oriented)Connection( less & oriented)
Connection( less & oriented)
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Switching concepts Data communication and networks
Switching concepts Data communication and networksSwitching concepts Data communication and networks
Switching concepts Data communication and networks
 

Ähnlich wie Chapter 8

heloo mzdnvnjbszdjgfjkhadsgvbxczvznxbvmcxv
heloo mzdnvnjbszdjgfjkhadsgvbxczvznxbvmcxvheloo mzdnvnjbszdjgfjkhadsgvbxczvznxbvmcxv
heloo mzdnvnjbszdjgfjkhadsgvbxczvznxbvmcxv
JOHN35307
 
2b switching in networks
2b switching in networks2b switching in networks
2b switching in networks
kavish dani
 

Ähnlich wie Chapter 8 (20)

heloo mzdnvnjbszdjgfjkhadsgvbxczvznxbvmcxv
heloo mzdnvnjbszdjgfjkhadsgvbxczvznxbvmcxvheloo mzdnvnjbszdjgfjkhadsgvbxczvznxbvmcxv
heloo mzdnvnjbszdjgfjkhadsgvbxczvznxbvmcxv
 
Ch08
Ch08Ch08
Ch08
 
Network switching
Network switchingNetwork switching
Network switching
 
Ppt 01 10
Ppt 01 10Ppt 01 10
Ppt 01 10
 
Lecture-8 Data Communication ~www.fida.com.bd
Lecture-8 Data Communication ~www.fida.com.bdLecture-8 Data Communication ~www.fida.com.bd
Lecture-8 Data Communication ~www.fida.com.bd
 
Ch08
Ch08Ch08
Ch08
 
Ch08
Ch08Ch08
Ch08
 
Chapter 8 switching -computer_network
Chapter 8   switching -computer_networkChapter 8   switching -computer_network
Chapter 8 switching -computer_network
 
08 Switching
08 Switching08 Switching
08 Switching
 
08-Switching.ppt
08-Switching.ppt08-Switching.ppt
08-Switching.ppt
 
Ch8 Switching.pdf
Ch8 Switching.pdfCh8 Switching.pdf
Ch8 Switching.pdf
 
Data Communication and Computer Networks
Data Communication and Computer NetworksData Communication and Computer Networks
Data Communication and Computer Networks
 
Swiching
SwichingSwiching
Swiching
 
Ch08
Ch08Ch08
Ch08
 
Unit_I - 5
Unit_I - 5Unit_I - 5
Unit_I - 5
 
Ch08
Ch08Ch08
Ch08
 
Chapter10 switching
Chapter10 switchingChapter10 switching
Chapter10 switching
 
2b switching in networks
2b switching in networks2b switching in networks
2b switching in networks
 
Switching
SwitchingSwitching
Switching
 
Introduction to switching & circuit switching
Introduction to switching & circuit switchingIntroduction to switching & circuit switching
Introduction to switching & circuit switching
 

Mehr von Faisal Mehmood (20)

Indoor Comfort Index Monitoring System using KNN algorithm
Indoor Comfort Index Monitoring System using KNN algorithmIndoor Comfort Index Monitoring System using KNN algorithm
Indoor Comfort Index Monitoring System using KNN algorithm
 
Raspberry pi and Google Cloud
Raspberry pi and Google CloudRaspberry pi and Google Cloud
Raspberry pi and Google Cloud
 
Raspberry pi and Azure
Raspberry pi and AzureRaspberry pi and Azure
Raspberry pi and Azure
 
Raspberry pi and AWS
Raspberry pi and AWSRaspberry pi and AWS
Raspberry pi and AWS
 
Raspbian Noobs
Raspbian NoobsRaspbian Noobs
Raspbian Noobs
 
Lecture 44
Lecture 44Lecture 44
Lecture 44
 
Lecture 37 cond prob
Lecture 37 cond probLecture 37 cond prob
Lecture 37 cond prob
 
Lecture 20 combinatorics o
Lecture 20 combinatorics oLecture 20 combinatorics o
Lecture 20 combinatorics o
 
Lecture 36 laws of prob
Lecture 36 laws of probLecture 36 laws of prob
Lecture 36 laws of prob
 
Lecture 36
Lecture 36 Lecture 36
Lecture 36
 
Lecture 35 prob
Lecture 35 probLecture 35 prob
Lecture 35 prob
 
Lecture 27
Lecture 27Lecture 27
Lecture 27
 
Lecture 26
Lecture 26Lecture 26
Lecture 26
 
Lecture 25
Lecture 25Lecture 25
Lecture 25
 
Lecture 24
Lecture 24Lecture 24
Lecture 24
 
Lecture 22
Lecture 22Lecture 22
Lecture 22
 
Lecture 21
Lecture 21Lecture 21
Lecture 21
 
Lecture 20
Lecture 20Lecture 20
Lecture 20
 
Lecture 19 counting
Lecture 19 countingLecture 19 counting
Lecture 19 counting
 
Lecture 18 recursion
Lecture 18 recursionLecture 18 recursion
Lecture 18 recursion
 

Kürzlich hochgeladen

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 

Kürzlich hochgeladen (20)

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 

Chapter 8

  • 1. Chapter 8 Switching Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
  • 2. Figure 8.1 Switched network
  • 3. Figure 8.2 Taxonomy of switched networks
  • 4. 8-1 CIRCUIT-SWITCHED NETWORKS A circuit-switched network consists of a set of switches connected by physical links. A connection between two stations is a dedicated path made of one or more links. However, each connection uses only one dedicated channel on each link. Each link is normally divided into n channels by using FDM or TDM. Three Phases Efficiency Delay Circuit-Switched Technology in Telephone Networks Topics discussed in this section:
  • 5. A circuit-switched network is made of a set of switches connected by physical links, in which each link is divided into n channels. Note
  • 6. Figure 8.3 A trivial circuit-switched network
  • 7. In circuit switching, the resources need to be reserved during the setup phase; the resources remain dedicated for the entire duration of data transfer until the teardown phase. Note
  • 8. As a trivial example, let us use a circuit-switched network to connect eight telephones in a small area. Communication is through 4-kHz voice channels. We assume that each link uses FDM to connect a maximum of two voice channels. The bandwidth of each link is then 8 kHz. Figure 8.4 shows the situation. Telephone 1 is connected to telephone 7; 2 to 5; 3 to 8; and 4 to 6. Of course the situation may change when new connections are made. The switch controls the connections. Example 8.1
  • 9. Figure 8.4 Circuit-switched network used in Example 8.1
  • 10. As another example, consider a circuit-switched network that connects computers in two remote offices of a private company. The offices are connected using a T-1 line leased from a communication service provider. There are two 4 × 8 (4 inputs and 8 outputs) switches in this network. For each switch, four output ports are folded into the input ports to allow communication between computers in the same office. Four other output ports allow communication between the two offices. Figure 8.5 shows the situation. Example 8.2
  • 11. Figure 8.5 Circuit-switched network used in Example 8.2
  • 12. Figure 8.6 Delay in a circuit-switched network
  • 13. Switching at the physical layer in the traditional telephone network uses the circuit-switching approach. Note
  • 14. 8-2 DATAGRAM NETWORKS In data communications, we need to send messages from one end system to another. If the message is going to pass through a packet-switched network, it needs to be divided into packets of fixed or variable size. The size of the packet is determined by the network and the governing protocol. Routing Table Efficiency Delay Datagram Networks in the Internet Topics discussed in this section:
  • 15. In a packet-switched network, there is no resource reservation; resources are allocated on demand. Note
  • 16. Figure 8.7 A datagram network with four switches (routers)
  • 17. Figure 8.8 Routing table in a datagram network
  • 18. A switch in a datagram network uses a routing table that is based on the destination address. Note
  • 19. The destination address in the header of a packet in a datagram network remains the same during the entire journey of the packet. Note
  • 20. Figure 8.9 Delay in a datagram network
  • 21. Switching in the Internet is done by using the datagram approach to packet switching at the network layer. Note
  • 22. 8-3 VIRTUAL-CIRCUIT NETWORKS A virtual-circuit network is a cross between a circuit-switched network and a datagram network. It has some characteristics of both. Addressing Three Phases Efficiency Delay Circuit-Switched Technology in WANs Topics discussed in this section:
  • 23. Figure 8.10 Virtual-circuit network
  • 24. Figure 8.11 Virtual-circuit identifier
  • 25. Figure 8.12 Switch and tables in a virtual-circuit network
  • 26. Figure 8.13 Source-to-destination data transfer in a virtual-circuit network
  • 27. Figure 8.14 Setup request in a virtual-circuit network
  • 28. Figure 8.15 Setup acknowledgment in a virtual-circuit network
  • 29. In virtual-circuit switching, all packets belonging to the same source and destination travel the same path; but the packets may arrive at the destination with different delays if resource allocation is on demand. Note
  • 30. Figure 8.16 Delay in a virtual-circuit network
  • 31. Switching at the data link layer in a switched WAN is normally implemented by using virtual-circuit techniques. Note
  • 32. 8-4 STRUCTURE OF A SWITCH We use switches in circuit-switched and packet-switched networks. In this section, we discuss the structures of the switches used in each type of network. Structure of Circuit Switches Structure of Packet Switches Topics discussed in this section:
  • 33. Figure 8.17 Crossbar switch with three inputs and four outputs
  • 34. Figure 8.18 Multistage switch
  • 35. In a three-stage switch, the total number of crosspoints is 2kN + k(N/n) 2 which is much smaller than the number of crosspoints in a single-stage switch (N 2 ). Note
  • 36. Design a three-stage, 200 × 200 switch (N = 200) with k = 4 and n = 20. Solution In the first stage we have N/n or 10 crossbars, each of size 20 × 4. In the second stage, we have 4 crossbars, each of size 10 × 10. In the third stage, we have 10 crossbars, each of size 4 × 20. The total number of crosspoints is 2kN + k(N/n) 2 , or 2000 crosspoints. This is 5 percent of the number of crosspoints in a single-stage switch (200 × 200 = 40,000). Example 8.3
  • 37. According to the Clos criterion: n = (N/2) 1/2 k > 2 n – 1 Crosspoints ≥ 4N [(2N) 1/2 – 1] Note
  • 38. Redesign the previous three-stage, 200 × 200 switch, using the Clos criteria with a minimum number of crosspoints. Solution We let n = (200/2) 1/2 , or n = 10. We calculate k = 2n − 1 = 19. In the first stage, we have 200/10, or 20, crossbars, each with 10 × 19 crosspoints. In the second stage, we have 19 crossbars, each with 10 × 10 crosspoints. In the third stage, we have 20 crossbars each with 19 × 10 crosspoints. The total number of crosspoints is 20(10 × 19) + 19(10 × 10) + 20(19 ×10) = 9500 . Example 8.4
  • 39. Figure 8.19 Time-slot interchange
  • 40. Figure 8.20 Time-space-time switch
  • 41. Figure 8.21 Packet switch components
  • 42. Figure 8.22 Input port
  • 43. Figure 8.23 Output port
  • 44. Figure 8.24 A banyan switch
  • 45. Figure 8.25 Examples of routing in a banyan switch
  • 46. Figure 8.26 Batcher-banyan switch