SlideShare ist ein Scribd-Unternehmen logo
1 von 7
Downloaden Sie, um offline zu lesen
10_ch08_pre-calculas12_wncp_solution.qxd       5/23/12    4:23 PM     Page 25




                                                         Home                   Quit


              Lesson 8.6 Exercises, pages 743–749
               A

                3. Expand using Pascal’s triangle.
                   a) (x + 1)5
                     The exponent is 5, so use the terms in row 6 of Pascal’s triangle as
                     coefficients: 1, 5, 10, 10, 5, 1
                     (x ؉ 1)5 ‫(1 ؍‬x)5 ؉ 5(x)4(1) ؉ 10(x)3(1)2 ؉ 10(x)2(1)3 ؉ 5(x)1(1)4 ؉ 1(1)5
                              ‫ ؍‬x5 ؉ 5x4 ؉ 10x3 ؉ 10x2 ؉ 5x ؉ 1

                   b) (x - 1)6
                     The exponent is 6, so use the terms in row 7 of Pascal’s triangle as
                     coefficients: 1, 6, 15, 20, 15, 6, 1
                     (x ؊ 1)6 ‫(1 ؍‬x)6 ؉ 6(x)5(؊1) ؉ 15(x)4(؊1)2 ؉ 20(x)3(؊1)3
                                 ؉ 15(x)2(؊1)4 ؉ 6(x)(؊1)5 ؉ 1(؊1)6
                              ‫ ؍‬x6 ؊ 6x5 ؉ 15x4 ؊ 20x3 ؉ 15x2 ؊ 6x ؉ 1

                   c) (x + y)4
                     The exponent is 4, so use the terms in row 5 of Pascal’s triangle
                     as coefficients: 1, 4, 6, 4, 1
                     (x ؉ y)4 ‫(1 ؍‬x)4 ؉ 4(x)3(y) ؉ 6(x)2(y)2 ؉ 4(x)(y)3 ؉ 1(y)4
                              ‫ ؍‬x4 ؉ 4x3y ؉ 6x2y2 ؉ 4xy3 ؉ y4

                   d) (x - y)8
                     The exponent is 8, so use the terms in row 9 of Pascal’s triangle
                     as coefficients: 1, 8, 28, 56, 70, 56, 28, 8, 1
                     (x ؊ y)8 ‫(1 ؍‬x)8 ؉ 8(x)7(؊y) ؉ 28(x)6(؊y)2 ؉ 56(x)5(؊y)3 ؉ 70(x)4(؊y)4
                                 ؉ 56(x)3(؊y)5 ؉ 28(x)2(؊y)6 ؉ 8(x)(؊y)7 ؉ 1(؊y)8
                              ‫ ؍‬x8 ؊ 8x7y ؉ 28x6y2 ؊ 56x5y3 ؉ 70x4y4 ؊ 56x3y5
                                 ؉ 28x2y6 ؊ 8xy7 ؉ y8

                4. Determine each missing number in the expansion of (x + y)7.
                   x7 + nx6y + 21x5y2 + 35x ny3 + nx3y4 + 21x ny n + 7xy6 + y n
                   The exponent is 7, so the coefficients of the terms in the expansion
                   are the terms in row 8 of Pascal’s triangle: 1, 7, 21, 35, 35, 21, 7, 1
                   The exponents in each term must add to 7.
                   The exponents of the powers of x start at 7 and decrease by 1 each time.
                   The exponents of the powers of y start at 0 and increase by 1 each time.
                   So, the missing numbers are: 7, 4, 35, 2, 5, 7

                5. Determine the indicated term in each expansion.
                   a) the last term in (x + 1)9
                     The last term in the expansion of (x ؉ y)n is yn.
                     So, the last term in the expansion of (x ؉ 1)9 is 19, or 1.

                   b) the 1st term in (x - 1)12
                     The first term in the expansion of (x ؉ y)n is xn.
                     So, the first term in the expansion of (x ؊ 1)12 is x12.

              ©P DO NOT COPY.                                                          8.6 The Binomial Theorem—Solutions   25
10_ch08_pre-calculas12_wncp_solution.qxd          5/23/12      4:23 PM        Page 26




                                                             Home                       Quit


          B
           6. a) Multiply 4 factors of (x - 5).
                (x ؊ 5)4 ‫؍‬    (x ؊ 5)(x ؊ 5)(x ؊ 5)(x ؊ 5)
                         ‫؍‬    (x2 ؊ 10x ؉ 25)(x2 ؊ 10x ؉ 25)
                         ‫؍‬    x4 ؊ 10x3 ؉ 25x2 ؊ 10x3 ؉ 100x2 ؊ 250x ؉ 25x2 ؊ 250x ؉ 625
                         ‫؍‬    x4 ؊ 20x3 ؉ 150x2 ؊ 500x ؉ 625



              b) Use the binomial theorem to expand (x - 5)4.
                (x ؉ y)n ‫ ؍‬nC0xn ؉ nC1xn ؊ 1y ؉ nC2xn ؊ 2y2 ؉ . . . ؉ nCnyn
                Substitute: n ‫ ,4 ؍‬y ‫5؊ ؍‬
                (x ؊ 5)4 ‫4 ؍‬C0(x)4 ؉ 4C1(x)4 ؊ 1(؊5) ؉ 4C2(x)4 ؊ 2(؊5)2
                              ؉ 4C3(x)4 ؊ 3(؊5)3 ؉ 4C4(؊5)4
                          ‫(1 ؍‬x)4 ؉ 4(x)3(؊5) ؉ 6(x)2(25) ؉ 4(x)1(؊125) ؉ 1(625)
                          ‫ ؍‬x4 ؊ 20x3 ؉ 150x2 ؊ 500x ؉ 625



              c) Compare the two methods. What conclusions can you make?
                 I find it easier to use the binomial theorem; it saves time and it is less
                 cumbersome than multiplying 4 factors.



           7. Expand using the binomial theorem.
              a) (x + 2)6
                 (x ؉ y)n ‫ ؍‬nC0xn ؉ nC1xn ؊ 1y ؉ nC2x n ؊ 2y2 ؉ . . . ؉ nCnyn
                 Substitute: n ‫ ,6 ؍‬y ‫2 ؍‬
                 (x ؉ 2)6 ‫6 ؍‬C0(x)6 ؉ 6C1(x)6 ؊ 1(2) ؉ 6C2(x)6 ؊ 2(2)2 ؉ 6C3(x)6 ؊ 3(2)3
                              ؉ 6C4(x)6 ؊ 4(2)4 ؉ 6C5(x)6 ؊ 5(2)5 ؉ 6C6(2)6
                            ‫(1 ؍‬x)6 ؉ 6(x)5(2) ؉ 15(x)4(4) ؉ 20(x)3(8) ؉ 15(x)2(16)
                              ؉ 6(x)1(32) ؉ 1(64)
                            ‫ ؍‬x6 ؉ 12x5 ؉ 60x4 ؉ 160x3 ؉ 240x2 ؉ 192x ؉ 64



              b) (x2 - 3)5
                (x ؉ y)n ‫ ؍‬nC0xn ؉ nC1xn ؊ 1y ؉ nC2xn ؊ 2y2 ؉ . . . ؉ nCnyn
                Substitute: n ‫ ,5 ؍‬x ‫ ؍‬x2, y ‫3؊ ؍‬
                (x2 ؊ 3)5 ‫5 ؍‬C0(x2)5 ؉ 5C1(x2)4(؊3) ؉ 5C2(x2)3(؊3)2 ؉ 5C3(x2)2(؊3)3
                              ؉ 5C4(x2)1(؊3)4 ؉ 5C5(؊3)5
                            ‫(1 ؍‬x10) ؉ 5(x2)4(؊3) ؉ 10(x2)3(9) ؉ 10(x2)2(؊27)
                               ؉ 5(x2)1(81) ؉ 1(؊243)
                            ‫ ؍‬x10 ؊ 15x8 ؉ 90x6 ؊ 270x4 ؉ 405x2 ؊ 243




         26        8.6 The Binomial Theorem—Solutions                                          DO NOT COPY. ©P
10_ch08_pre-calculas12_wncp_solution.qxd         5/23/12   4:23 PM     Page 27




                                                           Home                     Quit


                   c) (3x - 2)4
                     (x ؉ y)n ‫ ؍‬nC0xn ؉ nC1xn ؊ 1y ؉ nC2xn ؊ 2y2 ؉ . . . ؉ nCnyn
                     Substitute: n ‫ ,4 ؍‬x ‫3 ؍‬x, y ‫2؊ ؍‬
                      (3x ؊ 2)4 ‫4 ؍‬C0(3x)4 ؉ 4C1(3x)3(؊2) ؉ 4C2(3x)2(؊2)2 ؉ 4C3(3x)(؊2)3
                                    ؉ 4C4(؊2)4
                                 ‫18(1 ؍‬x4) ؉ 4(27x3)(؊2) ؉ 6(9x2)(4) ؉ 4(3x)(؊8) ؉ 1(16)
                                 ‫18 ؍‬x4 ؊ 216x3 ؉ 216x2 ؊ 96x ؉ 16



                   d) (-2 + 2x)4
                     (x ؉ y)n ‫ ؍‬nC0xn ؉ nC1xn ؊ 1y ؉ nC2xn ؊ 2y2 ؉ . . . ؉ nCnyn
                     Substitute: n ‫ ,4 ؍‬x ‫ ,2؊ ؍‬y ‫2 ؍‬x
                      (؊2 ؉ 2x)4 ‫4 ؍‬C0(؊2)4 ؉ 4C1(؊2)3(2x) ؉ 4C2(؊2)2(2x)2
                                       ؉ 4C3(؊2)(2x)3 ؉ 4C4(2x)4
                                    ‫2()8؊(4 ؉ )61(1 ؍‬x) ؉ 6(4)(4x2) ؉ 4(؊2)(8x3) ؉ 1(16x4)
                                    ‫46 ؊ 61 ؍‬x ؉ 96x2 ؊ 64x3 ؉ 16x4



                   e) (-4 + 3x4)5
                      (x ؉ y)n ‫ ؍‬nC0xn ؉ nC1xn ؊ 1y ؉ nC2xn ؊ 2y2 ؉ . . . ؉ nCnyn
                     Substitute: n ‫ ,5 ؍‬x ‫ ,4؊ ؍‬y ‫3 ؍‬x4
                      (؊4 ؉ 3x4)5 ‫5 ؍‬C0(؊4)5 ؉ 5C1(؊4)4(3x4) ؉ 5C2(؊4)3(3x4)2 ؉ 5C3(؊4)2(3x4)3
                                        ؉ 5C4(؊4)(3x4)4 ؉ 5C5(3x4)5
                                     ‫3()652(5 ؉ )4201؊(1 ؍‬x4) ؉ 10(؊64)(9x8) ؉ 10(16)(27x12)
                                        ؉ 5(؊4)(81x16) ؉ 1(243x20)
                                     ‫0483 ؉ 4201؊ ؍‬x4 ؊ 5760x8 ؉ 4320x12 ؊ 1620x16 ؉ 243x20



                8. a) Write the terms in row 7 of Pascal’s triangle.
                      1, 6, 15, 20, 15, 6, 1



                   b) Use your answer to part a to write the first 3 terms in each
                      expansion.
                       i) (x - 3)6
                          The exponent is 6, so the terms in row 7 of Pascal’s triangle are the
                          coefficients of the terms in the expansion of the binomial.
                          So, (x ؉ y)6 ‫1 ؍‬x6 ؉ 6x5y ؉ 15x4y2 ؉ . . .
                          Substitute: y ‫3؊ ؍‬
                          (x ؊ 3)6 ‫1 ؍‬x6 ؉ 6x5(؊3) ؉ 15x4(؊3)2 ؉ . . .
                                    ‫ ؍‬x6 ؊ 18x5 ؉ 135x4 ؉ . . .
                          So, the first 3 terms in the expansion are: x6 ؊ 18x5 ؉ 135x4




              ©P DO NOT COPY.                                                              8.6 The Binomial Theorem—Solutions   27
10_ch08_pre-calculas12_wncp_solution.qxd            5/23/12   4:23 PM     Page 28




                                                              Home                  Quit


                 ii) (a + 4b)6
                     (x ؉ y)6 ‫1 ؍‬x6 ؉ 6x5y ؉ 15x4y2 ؉ . . .
                     Substitute: x ‫ ؍‬a, y ‫4 ؍‬b
                     (a ؉ 4b)6 ‫1 ؍‬a6 ؉ 6a5(4b) ؉ 15a4(4b)2 ؉ . . .
                                 ‫ ؍‬a6 ؉ 24a5b ؉ 240a4b2 ؉ . . .
                     So, the first 3 terms in the expansion are: a6 ؉ 24a5b ؉ 240a4b2



                iii) (-2a + 1)6
                     (x ؉ y)6 ‫1 ؍‬x6 ؉ 6x5y ؉ 15x4y2 ؉ . . .
                     Substitute: x ‫2؊ ؍‬a, y ‫1 ؍‬
                     (؊2a ؉ 1)6 ‫2؊(1 ؍‬a)6 ؉ 6(؊2a)5(1) ؉ 15(؊2a)4(1)2 ؉ . . .
                                   ‫46 ؍‬a6 ؊ 192a5 ؉ 240a4 ؉ . . .
                     So, the first 3 terms in the expansion are: 64a6 ؊ 192a5 ؉ 240a4



                iv) (2x + 5y2)6
                     (x ؉ y)6 ‫1 ؍‬x6 ؉ 6x5y ؉ 15x4y2 ؉ . . .
                     Substitute: x ‫2 ؍‬x, y ‫5 ؍‬y2
                     (2x ؉ 5y2)6 ‫2(1 ؍‬x)6 ؉ 6(2x)5(5y2) ؉ 15(2x)4(5y2)2 ؉ . . .
                                   ‫46 ؍‬x6 ؉ 960x5y2 ؉ 6000x4y4 ؉ . . .
                     So, the first 3 terms in the expansion are: 64x6 ؉ 960x5y2 ؉ 6000x4y4



           9. Determine the coefficient of each term.
              a) x5 in (x + 1)8                        b) x9 in (x + y)9
                 x5 is the 4th term in (x ؉ 1)8.          x9 is the first term in the expansion
                 The coefficient of the 4th term is:      of (x ؉ y)9.
                 8C4؊ 1 or 8C3                            So, the coefficient of x9 is 1.
                 8C3 ‫65 ؍‬
                 So, the coefficient of x5 is 56.



              c) x2y in (x + y)3                       d) x2y3 in (x + y)5
                 The coefficients of the terms            The coefficients of the terms
                 will be the terms in row 4 of            will be the terms in row 6 of
                 Pascal’s triangle: 1, 3, 3, 1            Pascal’s triangle: 1, 5, 10, 10, 5, 1
                 x2y is the 2nd term in the               x2y3 is the 4th term in the
                 expansion of (x ؉ y)3.                   expansion of (x ؉ y)5.
                 So, the coefficient of x2y is 3.         So, the coefficient of x2y3 is 10.




         28        8.6 The Binomial Theorem—Solutions                                             DO NOT COPY. ©P
10_ch08_pre-calculas12_wncp_solution.qxd       5/23/12    4:24 PM      Page 29




                                                         Home                     Quit


               10. Explain why the coefficients of the 3rd term and the 3rd-last term in
                   the expansion of (x + y)n, n ≥ 2, are the same.
                   Since each of x and y has coefficient 1, the coefficients of the terms in the
                   expansion of (x ؉ y)n correspond to the terms in row (n ؉ 1) of Pascal’s
                   triangle.
                   In any row of Pascal’s triangle, the 3rd term and 3rd-last term are the same.



               11. Determine the indicated term in each expansion.
                   a) the last term in (3x + 2)5          b) the 1st term in (-2x + 5)7
                      The last term in the expansion          The first term in the expansion
                      of (x ؉ y)n is yn.                      of (x ؉ y)n is xn.
                      Substitute: y ‫ ,2 ؍‬n ‫5 ؍‬                Substitute: x ‫2؊ ؍‬x, n ‫7 ؍‬
                      25 ‫23 ؍‬                                 (؊2x)7 ‫821؊ ؍‬x7
                      So, the last term is 32.                So, the 1st term is ؊128x7.



                   c) the 2nd term in (3x - 3)4           d) the 6th term in (4x + 1)8
                      The second term in the expansion       The kth term is: nCk ؊ 1xn ؊ (k ؊ 1)yk ؊ 1
                      of (x ؉ y)n is nxn ؊ 1y.               Substitute: n ‫ ,8 ؍‬k ‫ ,6 ؍‬x ‫4 ؍‬x,
                      Substitute: x ‫3 ؍‬x, y ‫,3؊ ؍‬            y‫1؍‬
                      n‫4؍‬                                     C (4x)3(1)5 ‫46(65 ؍‬x3)(1)
                                                             8 5
                      4(3x)3(؊3) ‫423؊ ؍‬x3
                                                                         ‫4853 ؍‬x3
                      So, the 2nd term is ؊324x3.
                                                             So, the 6th term is 3584x3.




               12. When will the coefficients of the terms in the expansion of (ax + b)n
                   be the same as the terms in row (n + 1) of Pascal’s triangle?
                   The coefficients of the terms in the expansion of (x ؉ y)n correspond
                   to the terms in row (n ؉ 1) of Pascal’s triangle. So, both a and b must
                   equal 1.



               13. Expand and simplify (x + 1)8 + (x - 1)8. What strategy did you use?
                   The coefficients of the terms in the expansion of (x ؉ 1)8 are the terms in
                   row 9 of Pascal’s triangle: 1, 8, 28, 56, 70, 56, 28, 8, 1
                   The coefficients of the terms in the expansion of (x ؊ 1)8 depend on
                   whether the term number is odd or even. When the term numbers are odd,
                   the coefficients are the terms in row 9 of Pascal’s triangle. When the term
                   numbers are even, the coefficients are the opposites of the terms in row 9.
                   So, the coefficients of the terms in the expansion of (x ؊ 1)8 are:
                   1, ؊8, 28, ؊56, 70, ؊56, 28, ؊8, 1
                   When the terms in the two expansions are added, every second term is
                   eliminated as the sum of the terms is 0.
                   (x ؉ 1)8 ؉ (x ؊ 1)8 ‫2 ؍‬x8 ؉ 56x6 ؉ 140x4 ؉ 56x2 ؉ 2




              ©P DO NOT COPY.                                                              8.6 The Binomial Theorem—Solutions   29
10_ch08_pre-calculas12_wncp_solution.qxd        5/23/12    4:24 PM     Page 30




                                                          Home                   Quit


          14. a) Show that the expansion of (-2x + 1)6 is the same as the
                 expansion of (2x - 1)6.
                 Use row 7 of Pascal’s triangle: 1, 6, 15, 20, 15, 6, 1
                 (؊2x ؉ 1)6 ‫2؊(1 ؍‬x)6 ؉ 6(؊2x)5(1) ؉ 15( ؊2x)4(1)2 ؉ 20( ؊2x)3(1)3
                                ؉ 15(؊2x)2(1)4 ؉ 6(؊2x)1(1)5 ؉ (1)6
                             ‫46 ؍‬x6 ؉ 6(؊32x5) ؉ 15(16x4) ؉ 20(؊8x3) ؉ 15(4x2) ؉ 6(؊2x) ؉ 1
                             ‫46 ؍‬x6 ؊ 192x5 ؉ 240x4 ؊ 160x3 ؉ 60x2 ؊ 12x ؉ 1
                   (2x ؊ 1)6 ‫2(1 ؍‬x)6 ؉ 6(2x)5(؊1) ؉ 15(2x)4(؊1)2 ؉ 20(2x)3(؊1)3
                               ؉ 15(2x)2(؊1)4 ؉ 6(2x)1(؊1)5 ؉ (؊1)6
                             ‫46 ؍‬x6 ؉ 6(32x5)(؊1) ؉ 15(16x4) ؉ 20(8x3)(؊1) ؉ 15(4x2)
                               ؉ 6(2x)(؊1) ؉ 1
                             ‫46 ؍‬x6 ؊ 192x5 ؉ 240x4 ؊ 160x3 ؉ 60x2 ؊ 12x ؉ 1



              b) Will (-ax + b)n always have the same expansion as (ax - b)n?
                 Explain.
                 No, when n is odd, the expansions will not be the same. For example,
                 look at the first terms in the expansions of (؊2x ؉ 1)3 and (2x ؊ 1)3.
                 For (؊2x ؉ 1)3: the 1st term in the expansion is: 1(؊2x)3 ‫8؊ ؍‬x3
                 For (2x ؊ 1)3: the 1st term in the expansion is: 1(2x)3 ‫8 ؍‬x3
                 Since the 1st terms are different, the expansions are not the same.



          15. Which binomial power when expanded results in
              16x4 - 32x3 + 24x2 - 8x + 1?
              What strategy did you use to find out?
              The first term is 16x 4. The exponent of x is 4, so the binomial has the form
              (ax ؉ b)4.
                                           √
              The coefficient a must be 4 16: a ‫ ,2 ؍‬or a ‫2؊ ؍‬
              The last term is 1, so b is either 1 or ؊1 because (؊1)4 ‫ ,41 ؍‬or 1.
              The terms alternate in sign, so the coefficients a and b must have
              different signs.
              The binomial power is either (؊2x ؉ 1)4 or (2x ؊ 1)4.



          16. Expand using the binomial theorem.
              a) (0.2x - 1.2y)5
                 (x ؉ y)n ‫ ؍‬nC0xn ؉ nC1xn ؊ 1y ؉ nC2xn ؊ 2y2 ؉ . . . ؉ nCnyn
                 Substitute: n ‫ ,5 ؍‬x ‫2.0 ؍‬x, y ‫2.1؊ ؍‬y
                 (0.2x ؊ 1.2y)5 ‫5 ؍‬C0(0.2x)5 ؉ 5C1(0.2x)4(؊1.2y) ؉ 5C2(0.2x)3(؊1.2y)2
                                  ؉ 5C3(0.2x)2(؊1.2y)3 ؉ 5C4(0.2x)(؊1.2y)4 ؉ 5C5(؊1.2y)5
                                ‫23 000.0(1 ؍‬x5) ؉ 5(0.0016x4)(؊1.2y) ؉ 10(0.008x3)(1.44y2)
                                  ؉ 10(0.04x2)(؊1.728y3) ؉ 5(0.2x)(2.0736y4) ؉ 1(؊2.488 32y5)
                                ‫23 000.0 ؍‬x5 ؊ 0.0096x4y ؉ 0.1152x3y2 ؊ 0.6912x2y3
                                  ؉ 2.0736xy4 ؊ 2.488 32y5




         30        8.6 The Binomial Theorem—Solutions                                           DO NOT COPY. ©P
10_ch08_pre-calculas12_wncp_solution.qxd                5/23/12          4:24 PM     Page 31




                                                                         Home                  Quit

                                       4
                   b) a8a + 6bb
                       3       1


                      (x ؉ y)n ‫ ؍‬nC0xn ؉ nC1xn ؊ 1y ؉ nC2xn ؊ 2y2 ؉ . . . ؉ nCnyn
                                                        3            1
                      Substitute: n ‫ ,4 ؍‬x ‫ ؍‬a, y ‫ ؍‬b
                                                        8            6
                                   4                4                    3                2      2
                      a a ؉ bb ‫4 ؍‬C0 a ab ؉ 4C1 a ab a bb ؉ 4C2 a ab a bb
                       3   1          3          3    1          3    1
                       8   6          8          8    6          8    6
                                                                 3               4
                                           ؉ 4C3 a ab a bb ؉ 4C4 a bb
                                                    3        1               1
                                                    8        6               6

                                       ‫1 ؍‬a       a b ؉ 4 a a3b a bb ؉ 6 a a2b a b2b
                                              81 4         27    1        9      1
                                             4096          512   6        64    36

                                           ؉ 4 a ab a           b b ؉ 1a     b4b
                                                3            1 3         1
                                                8           216         1296
                                          81 4    27 3     9 2 2    3          1 4
                                       ‫؍‬      a ؉     ab؉     ab ؉     ab3 ؉      b
                                         4096     768     384      432       1296
                                          81 4     9 3     3 2 2    1          1 4
                                       ‫؍‬      a ؉     ab؉     ab ؉     ab3 ؉      b
                                         4096     256     128      144       1296




               C

               17. Determine the 3rd term in the expansion of (x2 + 2x + 1)6.
                   (x2 ؉ 2x ؉ 1) ‫( ؍‬x ؉ 1)2
                   So, (x2 ؉ 2x ؉ 1)6 ‫(( ؍‬x ؉ 1)2)6
                                        ‫( ؍‬x ؉ 1)12
                   The coefficients in the expansion of (x ؉ 1)12 are the terms in row 13 of
                   Pascal’s triangle.
                   The 3rd term in row 13 is 66.
                   So, the 3rd term in the expansion of (x2 ؉ 2x ؉ 1)6 is: 66(x)10(1)2, or 66x10



               18. a) Show that nC0 + nC1 + nC2 + . . . + nCn - 1 + nCn = 2n

                      Express 2n as the binomial (1 ؉ 1)n and expand:
                      (1 ؉ 1)n ‫ ؍‬nC0(1)n ؉ nC1(1)n ؊ 1(1) ؉ nC2(1)n ؊ 2(1)2 ؉ . . .
                                       ؉ nCn ؊ 1(1)(1)n ؊ 1 ؉ nCn(1)n
                      So, 2 ‫ ؍‬nC0 ؉ nC1 ؉ nC2 ؉ . . . ؉ nCn ؊ 1 ؉ nCn
                           n




                   b) What does the relationship in part a indicate about the sum of
                      the terms in any row of Pascal’s triangle?
                      nC0 , nC1, nC2, . . . nCn ؊ 1, nCn are the terms in row (n ؉ 1) of the triangle.
                      From part a, the sum of these terms is 2n.
                      So, the sum of the terms in any row of Pascal’s triangle is a power of 2.




              ©P DO NOT COPY.                                                                         8.6 The Binomial Theorem—Solutions   31

Weitere ähnliche Inhalte

Was ist angesagt?

Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencialSIGIFREDO12222
 
01 derivadas
01   derivadas01   derivadas
01 derivadasklorofila
 
8-6 Solving Rational Functions
8-6 Solving Rational Functions8-6 Solving Rational Functions
8-6 Solving Rational Functionsrfrettig
 
Pc12 sol c04_4-4
Pc12 sol c04_4-4Pc12 sol c04_4-4
Pc12 sol c04_4-4Garden City
 
Punnett squares presentation teachership academy
Punnett squares presentation teachership academyPunnett squares presentation teachership academy
Punnett squares presentation teachership academyBeth819
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
Factoring GCF and Grouping
Factoring GCF and GroupingFactoring GCF and Grouping
Factoring GCF and Groupingswartzje
 
Solving polynomial equations in factored form
Solving polynomial equations in factored formSolving polynomial equations in factored form
Solving polynomial equations in factored formListeningDaisy
 
3.2 factoring polynomials
3.2   factoring polynomials3.2   factoring polynomials
3.2 factoring polynomialsNuch Pawida
 
Jacob's and Vlad's D.E.V. Project - 2012
Jacob's and Vlad's D.E.V. Project - 2012Jacob's and Vlad's D.E.V. Project - 2012
Jacob's and Vlad's D.E.V. Project - 2012Jacob_Evenson
 
Factoring and Box Method
Factoring and Box MethodFactoring and Box Method
Factoring and Box Methodswartzje
 
Formulas de taylor
Formulas de taylorFormulas de taylor
Formulas de taylorERICK CONDE
 
Ecuaciones de primer y de segundo grado
Ecuaciones de primer y de segundo gradoEcuaciones de primer y de segundo grado
Ecuaciones de primer y de segundo gradoterzaga
 
6.4 factoring and solving polynomial equations
6.4 factoring and solving polynomial equations6.4 factoring and solving polynomial equations
6.4 factoring and solving polynomial equationshisema01
 
Nov. 16 Quadratic Inequalities
Nov. 16 Quadratic InequalitiesNov. 16 Quadratic Inequalities
Nov. 16 Quadratic InequalitiesRyanWatt
 

Was ist angesagt? (20)

Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencial
 
01 derivadas
01   derivadas01   derivadas
01 derivadas
 
8-6 Solving Rational Functions
8-6 Solving Rational Functions8-6 Solving Rational Functions
8-6 Solving Rational Functions
 
Pc12 sol c04_4-4
Pc12 sol c04_4-4Pc12 sol c04_4-4
Pc12 sol c04_4-4
 
Polynomials
PolynomialsPolynomials
Polynomials
 
Binomial
BinomialBinomial
Binomial
 
Punnett squares presentation teachership academy
Punnett squares presentation teachership academyPunnett squares presentation teachership academy
Punnett squares presentation teachership academy
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Chapter 01
Chapter 01Chapter 01
Chapter 01
 
Factoring GCF and Grouping
Factoring GCF and GroupingFactoring GCF and Grouping
Factoring GCF and Grouping
 
Solving polynomial equations in factored form
Solving polynomial equations in factored formSolving polynomial equations in factored form
Solving polynomial equations in factored form
 
AMU - Mathematics - 2007
AMU - Mathematics  - 2007AMU - Mathematics  - 2007
AMU - Mathematics - 2007
 
3.2 factoring polynomials
3.2   factoring polynomials3.2   factoring polynomials
3.2 factoring polynomials
 
Jacob's and Vlad's D.E.V. Project - 2012
Jacob's and Vlad's D.E.V. Project - 2012Jacob's and Vlad's D.E.V. Project - 2012
Jacob's and Vlad's D.E.V. Project - 2012
 
Factoring and Box Method
Factoring and Box MethodFactoring and Box Method
Factoring and Box Method
 
Formulas de taylor
Formulas de taylorFormulas de taylor
Formulas de taylor
 
Ecuaciones de primer y de segundo grado
Ecuaciones de primer y de segundo gradoEcuaciones de primer y de segundo grado
Ecuaciones de primer y de segundo grado
 
6.4 factoring and solving polynomial equations
6.4 factoring and solving polynomial equations6.4 factoring and solving polynomial equations
6.4 factoring and solving polynomial equations
 
Nov. 16 Quadratic Inequalities
Nov. 16 Quadratic InequalitiesNov. 16 Quadratic Inequalities
Nov. 16 Quadratic Inequalities
 
1010n3a
1010n3a1010n3a
1010n3a
 

Ähnlich wie Pc12 sol c08_8-6

University of phoenix mat 117 week 9 quiz
University of phoenix mat 117 week 9 quizUniversity of phoenix mat 117 week 9 quiz
University of phoenix mat 117 week 9 quizOlivia Fournier
 
Chapter 6 taylor and maclaurin series
Chapter 6 taylor and maclaurin seriesChapter 6 taylor and maclaurin series
Chapter 6 taylor and maclaurin seriesIrfaan Bahadoor
 
Pc12 sol c04_ptest
Pc12 sol c04_ptestPc12 sol c04_ptest
Pc12 sol c04_ptestGarden City
 
PMR Form 3 Mathematics Algebraic Fractions
PMR Form 3 Mathematics Algebraic FractionsPMR Form 3 Mathematics Algebraic Fractions
PMR Form 3 Mathematics Algebraic FractionsSook Yen Wong
 
A2 Chapter 6 Study Guide
A2 Chapter 6 Study GuideA2 Chapter 6 Study Guide
A2 Chapter 6 Study Guidevhiggins1
 
Algebra Revision.ppt
Algebra Revision.pptAlgebra Revision.ppt
Algebra Revision.pptAaronChi5
 
binomial_theorem_notes.ppt
binomial_theorem_notes.pptbinomial_theorem_notes.ppt
binomial_theorem_notes.pptLokeshBabuDV
 
Module 1 polynomial functions
Module 1   polynomial functionsModule 1   polynomial functions
Module 1 polynomial functionsdionesioable
 
Polynomials with common monomial factors.pptx
Polynomials with common monomial factors.pptxPolynomials with common monomial factors.pptx
Polynomials with common monomial factors.pptxGeraldineArig2
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONSCarlon Baird
 
7.7 Solving Radical Equations
7.7 Solving Radical Equations7.7 Solving Radical Equations
7.7 Solving Radical Equationsswartzje
 
NTHU AI Reading Group: Improved Training of Wasserstein GANs
NTHU AI Reading Group: Improved Training of Wasserstein GANsNTHU AI Reading Group: Improved Training of Wasserstein GANs
NTHU AI Reading Group: Improved Training of Wasserstein GANsMark Chang
 
Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functionsdionesioable
 
Exam ii(practice)
Exam ii(practice)Exam ii(practice)
Exam ii(practice)PublicLeaks
 

Ähnlich wie Pc12 sol c08_8-6 (20)

Factoring
FactoringFactoring
Factoring
 
University of phoenix mat 117 week 9 quiz
University of phoenix mat 117 week 9 quizUniversity of phoenix mat 117 week 9 quiz
University of phoenix mat 117 week 9 quiz
 
Chapter 6 taylor and maclaurin series
Chapter 6 taylor and maclaurin seriesChapter 6 taylor and maclaurin series
Chapter 6 taylor and maclaurin series
 
Pc12 sol c04_ptest
Pc12 sol c04_ptestPc12 sol c04_ptest
Pc12 sol c04_ptest
 
PMR Form 3 Mathematics Algebraic Fractions
PMR Form 3 Mathematics Algebraic FractionsPMR Form 3 Mathematics Algebraic Fractions
PMR Form 3 Mathematics Algebraic Fractions
 
Unit2.polynomials.algebraicfractions
Unit2.polynomials.algebraicfractionsUnit2.polynomials.algebraicfractions
Unit2.polynomials.algebraicfractions
 
A2 ch6sg
A2 ch6sgA2 ch6sg
A2 ch6sg
 
A2 Chapter 6 Study Guide
A2 Chapter 6 Study GuideA2 Chapter 6 Study Guide
A2 Chapter 6 Study Guide
 
Algebra Revision.ppt
Algebra Revision.pptAlgebra Revision.ppt
Algebra Revision.ppt
 
binomial_theorem_notes.ppt
binomial_theorem_notes.pptbinomial_theorem_notes.ppt
binomial_theorem_notes.ppt
 
Calculo integral - Larson
Calculo integral - LarsonCalculo integral - Larson
Calculo integral - Larson
 
Module 1 polynomial functions
Module 1   polynomial functionsModule 1   polynomial functions
Module 1 polynomial functions
 
Polynomials with common monomial factors.pptx
Polynomials with common monomial factors.pptxPolynomials with common monomial factors.pptx
Polynomials with common monomial factors.pptx
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
 
7.7 Solving Radical Equations
7.7 Solving Radical Equations7.7 Solving Radical Equations
7.7 Solving Radical Equations
 
Quadraticequation
QuadraticequationQuadraticequation
Quadraticequation
 
NTHU AI Reading Group: Improved Training of Wasserstein GANs
NTHU AI Reading Group: Improved Training of Wasserstein GANsNTHU AI Reading Group: Improved Training of Wasserstein GANs
NTHU AI Reading Group: Improved Training of Wasserstein GANs
 
New stack
New stackNew stack
New stack
 
Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functions
 
Exam ii(practice)
Exam ii(practice)Exam ii(practice)
Exam ii(practice)
 

Mehr von Garden City

Mehr von Garden City (20)

6th october 2014
6th october 20146th october 2014
6th october 2014
 
3rd october 2014
3rd october 20143rd october 2014
3rd october 2014
 
2nd october 2014
2nd october 20142nd october 2014
2nd october 2014
 
1st october 2014
1st october 20141st october 2014
1st october 2014
 
30th sept 2014
30th sept 201430th sept 2014
30th sept 2014
 
25th sept 2014
25th sept 201425th sept 2014
25th sept 2014
 
25th sept 2014
25th sept 201425th sept 2014
25th sept 2014
 
24th sept 2014
24th sept 201424th sept 2014
24th sept 2014
 
23rd sept. 2014
23rd sept. 201423rd sept. 2014
23rd sept. 2014
 
22nd sept 2014
22nd sept 201422nd sept 2014
22nd sept 2014
 
18th sept 2014
18th sept 201418th sept 2014
18th sept 2014
 
17th sept 2014
17th sept 201417th sept 2014
17th sept 2014
 
16th sept 2014
16th sept 201416th sept 2014
16th sept 2014
 
11th sept 2014
11th sept 201411th sept 2014
11th sept 2014
 
9th sept 2014
9th sept 20149th sept 2014
9th sept 2014
 
23rd sept. 2014
23rd sept. 201423rd sept. 2014
23rd sept. 2014
 
22nd sept 2014
22nd sept 201422nd sept 2014
22nd sept 2014
 
18th sept 2014
18th sept 201418th sept 2014
18th sept 2014
 
17th sept 2014
17th sept 201417th sept 2014
17th sept 2014
 
16th sept 2014
16th sept 201416th sept 2014
16th sept 2014
 

Pc12 sol c08_8-6

  • 1. 10_ch08_pre-calculas12_wncp_solution.qxd 5/23/12 4:23 PM Page 25 Home Quit Lesson 8.6 Exercises, pages 743–749 A 3. Expand using Pascal’s triangle. a) (x + 1)5 The exponent is 5, so use the terms in row 6 of Pascal’s triangle as coefficients: 1, 5, 10, 10, 5, 1 (x ؉ 1)5 ‫(1 ؍‬x)5 ؉ 5(x)4(1) ؉ 10(x)3(1)2 ؉ 10(x)2(1)3 ؉ 5(x)1(1)4 ؉ 1(1)5 ‫ ؍‬x5 ؉ 5x4 ؉ 10x3 ؉ 10x2 ؉ 5x ؉ 1 b) (x - 1)6 The exponent is 6, so use the terms in row 7 of Pascal’s triangle as coefficients: 1, 6, 15, 20, 15, 6, 1 (x ؊ 1)6 ‫(1 ؍‬x)6 ؉ 6(x)5(؊1) ؉ 15(x)4(؊1)2 ؉ 20(x)3(؊1)3 ؉ 15(x)2(؊1)4 ؉ 6(x)(؊1)5 ؉ 1(؊1)6 ‫ ؍‬x6 ؊ 6x5 ؉ 15x4 ؊ 20x3 ؉ 15x2 ؊ 6x ؉ 1 c) (x + y)4 The exponent is 4, so use the terms in row 5 of Pascal’s triangle as coefficients: 1, 4, 6, 4, 1 (x ؉ y)4 ‫(1 ؍‬x)4 ؉ 4(x)3(y) ؉ 6(x)2(y)2 ؉ 4(x)(y)3 ؉ 1(y)4 ‫ ؍‬x4 ؉ 4x3y ؉ 6x2y2 ؉ 4xy3 ؉ y4 d) (x - y)8 The exponent is 8, so use the terms in row 9 of Pascal’s triangle as coefficients: 1, 8, 28, 56, 70, 56, 28, 8, 1 (x ؊ y)8 ‫(1 ؍‬x)8 ؉ 8(x)7(؊y) ؉ 28(x)6(؊y)2 ؉ 56(x)5(؊y)3 ؉ 70(x)4(؊y)4 ؉ 56(x)3(؊y)5 ؉ 28(x)2(؊y)6 ؉ 8(x)(؊y)7 ؉ 1(؊y)8 ‫ ؍‬x8 ؊ 8x7y ؉ 28x6y2 ؊ 56x5y3 ؉ 70x4y4 ؊ 56x3y5 ؉ 28x2y6 ؊ 8xy7 ؉ y8 4. Determine each missing number in the expansion of (x + y)7. x7 + nx6y + 21x5y2 + 35x ny3 + nx3y4 + 21x ny n + 7xy6 + y n The exponent is 7, so the coefficients of the terms in the expansion are the terms in row 8 of Pascal’s triangle: 1, 7, 21, 35, 35, 21, 7, 1 The exponents in each term must add to 7. The exponents of the powers of x start at 7 and decrease by 1 each time. The exponents of the powers of y start at 0 and increase by 1 each time. So, the missing numbers are: 7, 4, 35, 2, 5, 7 5. Determine the indicated term in each expansion. a) the last term in (x + 1)9 The last term in the expansion of (x ؉ y)n is yn. So, the last term in the expansion of (x ؉ 1)9 is 19, or 1. b) the 1st term in (x - 1)12 The first term in the expansion of (x ؉ y)n is xn. So, the first term in the expansion of (x ؊ 1)12 is x12. ©P DO NOT COPY. 8.6 The Binomial Theorem—Solutions 25
  • 2. 10_ch08_pre-calculas12_wncp_solution.qxd 5/23/12 4:23 PM Page 26 Home Quit B 6. a) Multiply 4 factors of (x - 5). (x ؊ 5)4 ‫؍‬ (x ؊ 5)(x ؊ 5)(x ؊ 5)(x ؊ 5) ‫؍‬ (x2 ؊ 10x ؉ 25)(x2 ؊ 10x ؉ 25) ‫؍‬ x4 ؊ 10x3 ؉ 25x2 ؊ 10x3 ؉ 100x2 ؊ 250x ؉ 25x2 ؊ 250x ؉ 625 ‫؍‬ x4 ؊ 20x3 ؉ 150x2 ؊ 500x ؉ 625 b) Use the binomial theorem to expand (x - 5)4. (x ؉ y)n ‫ ؍‬nC0xn ؉ nC1xn ؊ 1y ؉ nC2xn ؊ 2y2 ؉ . . . ؉ nCnyn Substitute: n ‫ ,4 ؍‬y ‫5؊ ؍‬ (x ؊ 5)4 ‫4 ؍‬C0(x)4 ؉ 4C1(x)4 ؊ 1(؊5) ؉ 4C2(x)4 ؊ 2(؊5)2 ؉ 4C3(x)4 ؊ 3(؊5)3 ؉ 4C4(؊5)4 ‫(1 ؍‬x)4 ؉ 4(x)3(؊5) ؉ 6(x)2(25) ؉ 4(x)1(؊125) ؉ 1(625) ‫ ؍‬x4 ؊ 20x3 ؉ 150x2 ؊ 500x ؉ 625 c) Compare the two methods. What conclusions can you make? I find it easier to use the binomial theorem; it saves time and it is less cumbersome than multiplying 4 factors. 7. Expand using the binomial theorem. a) (x + 2)6 (x ؉ y)n ‫ ؍‬nC0xn ؉ nC1xn ؊ 1y ؉ nC2x n ؊ 2y2 ؉ . . . ؉ nCnyn Substitute: n ‫ ,6 ؍‬y ‫2 ؍‬ (x ؉ 2)6 ‫6 ؍‬C0(x)6 ؉ 6C1(x)6 ؊ 1(2) ؉ 6C2(x)6 ؊ 2(2)2 ؉ 6C3(x)6 ؊ 3(2)3 ؉ 6C4(x)6 ؊ 4(2)4 ؉ 6C5(x)6 ؊ 5(2)5 ؉ 6C6(2)6 ‫(1 ؍‬x)6 ؉ 6(x)5(2) ؉ 15(x)4(4) ؉ 20(x)3(8) ؉ 15(x)2(16) ؉ 6(x)1(32) ؉ 1(64) ‫ ؍‬x6 ؉ 12x5 ؉ 60x4 ؉ 160x3 ؉ 240x2 ؉ 192x ؉ 64 b) (x2 - 3)5 (x ؉ y)n ‫ ؍‬nC0xn ؉ nC1xn ؊ 1y ؉ nC2xn ؊ 2y2 ؉ . . . ؉ nCnyn Substitute: n ‫ ,5 ؍‬x ‫ ؍‬x2, y ‫3؊ ؍‬ (x2 ؊ 3)5 ‫5 ؍‬C0(x2)5 ؉ 5C1(x2)4(؊3) ؉ 5C2(x2)3(؊3)2 ؉ 5C3(x2)2(؊3)3 ؉ 5C4(x2)1(؊3)4 ؉ 5C5(؊3)5 ‫(1 ؍‬x10) ؉ 5(x2)4(؊3) ؉ 10(x2)3(9) ؉ 10(x2)2(؊27) ؉ 5(x2)1(81) ؉ 1(؊243) ‫ ؍‬x10 ؊ 15x8 ؉ 90x6 ؊ 270x4 ؉ 405x2 ؊ 243 26 8.6 The Binomial Theorem—Solutions DO NOT COPY. ©P
  • 3. 10_ch08_pre-calculas12_wncp_solution.qxd 5/23/12 4:23 PM Page 27 Home Quit c) (3x - 2)4 (x ؉ y)n ‫ ؍‬nC0xn ؉ nC1xn ؊ 1y ؉ nC2xn ؊ 2y2 ؉ . . . ؉ nCnyn Substitute: n ‫ ,4 ؍‬x ‫3 ؍‬x, y ‫2؊ ؍‬ (3x ؊ 2)4 ‫4 ؍‬C0(3x)4 ؉ 4C1(3x)3(؊2) ؉ 4C2(3x)2(؊2)2 ؉ 4C3(3x)(؊2)3 ؉ 4C4(؊2)4 ‫18(1 ؍‬x4) ؉ 4(27x3)(؊2) ؉ 6(9x2)(4) ؉ 4(3x)(؊8) ؉ 1(16) ‫18 ؍‬x4 ؊ 216x3 ؉ 216x2 ؊ 96x ؉ 16 d) (-2 + 2x)4 (x ؉ y)n ‫ ؍‬nC0xn ؉ nC1xn ؊ 1y ؉ nC2xn ؊ 2y2 ؉ . . . ؉ nCnyn Substitute: n ‫ ,4 ؍‬x ‫ ,2؊ ؍‬y ‫2 ؍‬x (؊2 ؉ 2x)4 ‫4 ؍‬C0(؊2)4 ؉ 4C1(؊2)3(2x) ؉ 4C2(؊2)2(2x)2 ؉ 4C3(؊2)(2x)3 ؉ 4C4(2x)4 ‫2()8؊(4 ؉ )61(1 ؍‬x) ؉ 6(4)(4x2) ؉ 4(؊2)(8x3) ؉ 1(16x4) ‫46 ؊ 61 ؍‬x ؉ 96x2 ؊ 64x3 ؉ 16x4 e) (-4 + 3x4)5 (x ؉ y)n ‫ ؍‬nC0xn ؉ nC1xn ؊ 1y ؉ nC2xn ؊ 2y2 ؉ . . . ؉ nCnyn Substitute: n ‫ ,5 ؍‬x ‫ ,4؊ ؍‬y ‫3 ؍‬x4 (؊4 ؉ 3x4)5 ‫5 ؍‬C0(؊4)5 ؉ 5C1(؊4)4(3x4) ؉ 5C2(؊4)3(3x4)2 ؉ 5C3(؊4)2(3x4)3 ؉ 5C4(؊4)(3x4)4 ؉ 5C5(3x4)5 ‫3()652(5 ؉ )4201؊(1 ؍‬x4) ؉ 10(؊64)(9x8) ؉ 10(16)(27x12) ؉ 5(؊4)(81x16) ؉ 1(243x20) ‫0483 ؉ 4201؊ ؍‬x4 ؊ 5760x8 ؉ 4320x12 ؊ 1620x16 ؉ 243x20 8. a) Write the terms in row 7 of Pascal’s triangle. 1, 6, 15, 20, 15, 6, 1 b) Use your answer to part a to write the first 3 terms in each expansion. i) (x - 3)6 The exponent is 6, so the terms in row 7 of Pascal’s triangle are the coefficients of the terms in the expansion of the binomial. So, (x ؉ y)6 ‫1 ؍‬x6 ؉ 6x5y ؉ 15x4y2 ؉ . . . Substitute: y ‫3؊ ؍‬ (x ؊ 3)6 ‫1 ؍‬x6 ؉ 6x5(؊3) ؉ 15x4(؊3)2 ؉ . . . ‫ ؍‬x6 ؊ 18x5 ؉ 135x4 ؉ . . . So, the first 3 terms in the expansion are: x6 ؊ 18x5 ؉ 135x4 ©P DO NOT COPY. 8.6 The Binomial Theorem—Solutions 27
  • 4. 10_ch08_pre-calculas12_wncp_solution.qxd 5/23/12 4:23 PM Page 28 Home Quit ii) (a + 4b)6 (x ؉ y)6 ‫1 ؍‬x6 ؉ 6x5y ؉ 15x4y2 ؉ . . . Substitute: x ‫ ؍‬a, y ‫4 ؍‬b (a ؉ 4b)6 ‫1 ؍‬a6 ؉ 6a5(4b) ؉ 15a4(4b)2 ؉ . . . ‫ ؍‬a6 ؉ 24a5b ؉ 240a4b2 ؉ . . . So, the first 3 terms in the expansion are: a6 ؉ 24a5b ؉ 240a4b2 iii) (-2a + 1)6 (x ؉ y)6 ‫1 ؍‬x6 ؉ 6x5y ؉ 15x4y2 ؉ . . . Substitute: x ‫2؊ ؍‬a, y ‫1 ؍‬ (؊2a ؉ 1)6 ‫2؊(1 ؍‬a)6 ؉ 6(؊2a)5(1) ؉ 15(؊2a)4(1)2 ؉ . . . ‫46 ؍‬a6 ؊ 192a5 ؉ 240a4 ؉ . . . So, the first 3 terms in the expansion are: 64a6 ؊ 192a5 ؉ 240a4 iv) (2x + 5y2)6 (x ؉ y)6 ‫1 ؍‬x6 ؉ 6x5y ؉ 15x4y2 ؉ . . . Substitute: x ‫2 ؍‬x, y ‫5 ؍‬y2 (2x ؉ 5y2)6 ‫2(1 ؍‬x)6 ؉ 6(2x)5(5y2) ؉ 15(2x)4(5y2)2 ؉ . . . ‫46 ؍‬x6 ؉ 960x5y2 ؉ 6000x4y4 ؉ . . . So, the first 3 terms in the expansion are: 64x6 ؉ 960x5y2 ؉ 6000x4y4 9. Determine the coefficient of each term. a) x5 in (x + 1)8 b) x9 in (x + y)9 x5 is the 4th term in (x ؉ 1)8. x9 is the first term in the expansion The coefficient of the 4th term is: of (x ؉ y)9. 8C4؊ 1 or 8C3 So, the coefficient of x9 is 1. 8C3 ‫65 ؍‬ So, the coefficient of x5 is 56. c) x2y in (x + y)3 d) x2y3 in (x + y)5 The coefficients of the terms The coefficients of the terms will be the terms in row 4 of will be the terms in row 6 of Pascal’s triangle: 1, 3, 3, 1 Pascal’s triangle: 1, 5, 10, 10, 5, 1 x2y is the 2nd term in the x2y3 is the 4th term in the expansion of (x ؉ y)3. expansion of (x ؉ y)5. So, the coefficient of x2y is 3. So, the coefficient of x2y3 is 10. 28 8.6 The Binomial Theorem—Solutions DO NOT COPY. ©P
  • 5. 10_ch08_pre-calculas12_wncp_solution.qxd 5/23/12 4:24 PM Page 29 Home Quit 10. Explain why the coefficients of the 3rd term and the 3rd-last term in the expansion of (x + y)n, n ≥ 2, are the same. Since each of x and y has coefficient 1, the coefficients of the terms in the expansion of (x ؉ y)n correspond to the terms in row (n ؉ 1) of Pascal’s triangle. In any row of Pascal’s triangle, the 3rd term and 3rd-last term are the same. 11. Determine the indicated term in each expansion. a) the last term in (3x + 2)5 b) the 1st term in (-2x + 5)7 The last term in the expansion The first term in the expansion of (x ؉ y)n is yn. of (x ؉ y)n is xn. Substitute: y ‫ ,2 ؍‬n ‫5 ؍‬ Substitute: x ‫2؊ ؍‬x, n ‫7 ؍‬ 25 ‫23 ؍‬ (؊2x)7 ‫821؊ ؍‬x7 So, the last term is 32. So, the 1st term is ؊128x7. c) the 2nd term in (3x - 3)4 d) the 6th term in (4x + 1)8 The second term in the expansion The kth term is: nCk ؊ 1xn ؊ (k ؊ 1)yk ؊ 1 of (x ؉ y)n is nxn ؊ 1y. Substitute: n ‫ ,8 ؍‬k ‫ ,6 ؍‬x ‫4 ؍‬x, Substitute: x ‫3 ؍‬x, y ‫,3؊ ؍‬ y‫1؍‬ n‫4؍‬ C (4x)3(1)5 ‫46(65 ؍‬x3)(1) 8 5 4(3x)3(؊3) ‫423؊ ؍‬x3 ‫4853 ؍‬x3 So, the 2nd term is ؊324x3. So, the 6th term is 3584x3. 12. When will the coefficients of the terms in the expansion of (ax + b)n be the same as the terms in row (n + 1) of Pascal’s triangle? The coefficients of the terms in the expansion of (x ؉ y)n correspond to the terms in row (n ؉ 1) of Pascal’s triangle. So, both a and b must equal 1. 13. Expand and simplify (x + 1)8 + (x - 1)8. What strategy did you use? The coefficients of the terms in the expansion of (x ؉ 1)8 are the terms in row 9 of Pascal’s triangle: 1, 8, 28, 56, 70, 56, 28, 8, 1 The coefficients of the terms in the expansion of (x ؊ 1)8 depend on whether the term number is odd or even. When the term numbers are odd, the coefficients are the terms in row 9 of Pascal’s triangle. When the term numbers are even, the coefficients are the opposites of the terms in row 9. So, the coefficients of the terms in the expansion of (x ؊ 1)8 are: 1, ؊8, 28, ؊56, 70, ؊56, 28, ؊8, 1 When the terms in the two expansions are added, every second term is eliminated as the sum of the terms is 0. (x ؉ 1)8 ؉ (x ؊ 1)8 ‫2 ؍‬x8 ؉ 56x6 ؉ 140x4 ؉ 56x2 ؉ 2 ©P DO NOT COPY. 8.6 The Binomial Theorem—Solutions 29
  • 6. 10_ch08_pre-calculas12_wncp_solution.qxd 5/23/12 4:24 PM Page 30 Home Quit 14. a) Show that the expansion of (-2x + 1)6 is the same as the expansion of (2x - 1)6. Use row 7 of Pascal’s triangle: 1, 6, 15, 20, 15, 6, 1 (؊2x ؉ 1)6 ‫2؊(1 ؍‬x)6 ؉ 6(؊2x)5(1) ؉ 15( ؊2x)4(1)2 ؉ 20( ؊2x)3(1)3 ؉ 15(؊2x)2(1)4 ؉ 6(؊2x)1(1)5 ؉ (1)6 ‫46 ؍‬x6 ؉ 6(؊32x5) ؉ 15(16x4) ؉ 20(؊8x3) ؉ 15(4x2) ؉ 6(؊2x) ؉ 1 ‫46 ؍‬x6 ؊ 192x5 ؉ 240x4 ؊ 160x3 ؉ 60x2 ؊ 12x ؉ 1 (2x ؊ 1)6 ‫2(1 ؍‬x)6 ؉ 6(2x)5(؊1) ؉ 15(2x)4(؊1)2 ؉ 20(2x)3(؊1)3 ؉ 15(2x)2(؊1)4 ؉ 6(2x)1(؊1)5 ؉ (؊1)6 ‫46 ؍‬x6 ؉ 6(32x5)(؊1) ؉ 15(16x4) ؉ 20(8x3)(؊1) ؉ 15(4x2) ؉ 6(2x)(؊1) ؉ 1 ‫46 ؍‬x6 ؊ 192x5 ؉ 240x4 ؊ 160x3 ؉ 60x2 ؊ 12x ؉ 1 b) Will (-ax + b)n always have the same expansion as (ax - b)n? Explain. No, when n is odd, the expansions will not be the same. For example, look at the first terms in the expansions of (؊2x ؉ 1)3 and (2x ؊ 1)3. For (؊2x ؉ 1)3: the 1st term in the expansion is: 1(؊2x)3 ‫8؊ ؍‬x3 For (2x ؊ 1)3: the 1st term in the expansion is: 1(2x)3 ‫8 ؍‬x3 Since the 1st terms are different, the expansions are not the same. 15. Which binomial power when expanded results in 16x4 - 32x3 + 24x2 - 8x + 1? What strategy did you use to find out? The first term is 16x 4. The exponent of x is 4, so the binomial has the form (ax ؉ b)4. √ The coefficient a must be 4 16: a ‫ ,2 ؍‬or a ‫2؊ ؍‬ The last term is 1, so b is either 1 or ؊1 because (؊1)4 ‫ ,41 ؍‬or 1. The terms alternate in sign, so the coefficients a and b must have different signs. The binomial power is either (؊2x ؉ 1)4 or (2x ؊ 1)4. 16. Expand using the binomial theorem. a) (0.2x - 1.2y)5 (x ؉ y)n ‫ ؍‬nC0xn ؉ nC1xn ؊ 1y ؉ nC2xn ؊ 2y2 ؉ . . . ؉ nCnyn Substitute: n ‫ ,5 ؍‬x ‫2.0 ؍‬x, y ‫2.1؊ ؍‬y (0.2x ؊ 1.2y)5 ‫5 ؍‬C0(0.2x)5 ؉ 5C1(0.2x)4(؊1.2y) ؉ 5C2(0.2x)3(؊1.2y)2 ؉ 5C3(0.2x)2(؊1.2y)3 ؉ 5C4(0.2x)(؊1.2y)4 ؉ 5C5(؊1.2y)5 ‫23 000.0(1 ؍‬x5) ؉ 5(0.0016x4)(؊1.2y) ؉ 10(0.008x3)(1.44y2) ؉ 10(0.04x2)(؊1.728y3) ؉ 5(0.2x)(2.0736y4) ؉ 1(؊2.488 32y5) ‫23 000.0 ؍‬x5 ؊ 0.0096x4y ؉ 0.1152x3y2 ؊ 0.6912x2y3 ؉ 2.0736xy4 ؊ 2.488 32y5 30 8.6 The Binomial Theorem—Solutions DO NOT COPY. ©P
  • 7. 10_ch08_pre-calculas12_wncp_solution.qxd 5/23/12 4:24 PM Page 31 Home Quit 4 b) a8a + 6bb 3 1 (x ؉ y)n ‫ ؍‬nC0xn ؉ nC1xn ؊ 1y ؉ nC2xn ؊ 2y2 ؉ . . . ؉ nCnyn 3 1 Substitute: n ‫ ,4 ؍‬x ‫ ؍‬a, y ‫ ؍‬b 8 6 4 4 3 2 2 a a ؉ bb ‫4 ؍‬C0 a ab ؉ 4C1 a ab a bb ؉ 4C2 a ab a bb 3 1 3 3 1 3 1 8 6 8 8 6 8 6 3 4 ؉ 4C3 a ab a bb ؉ 4C4 a bb 3 1 1 8 6 6 ‫1 ؍‬a a b ؉ 4 a a3b a bb ؉ 6 a a2b a b2b 81 4 27 1 9 1 4096 512 6 64 36 ؉ 4 a ab a b b ؉ 1a b4b 3 1 3 1 8 216 1296 81 4 27 3 9 2 2 3 1 4 ‫؍‬ a ؉ ab؉ ab ؉ ab3 ؉ b 4096 768 384 432 1296 81 4 9 3 3 2 2 1 1 4 ‫؍‬ a ؉ ab؉ ab ؉ ab3 ؉ b 4096 256 128 144 1296 C 17. Determine the 3rd term in the expansion of (x2 + 2x + 1)6. (x2 ؉ 2x ؉ 1) ‫( ؍‬x ؉ 1)2 So, (x2 ؉ 2x ؉ 1)6 ‫(( ؍‬x ؉ 1)2)6 ‫( ؍‬x ؉ 1)12 The coefficients in the expansion of (x ؉ 1)12 are the terms in row 13 of Pascal’s triangle. The 3rd term in row 13 is 66. So, the 3rd term in the expansion of (x2 ؉ 2x ؉ 1)6 is: 66(x)10(1)2, or 66x10 18. a) Show that nC0 + nC1 + nC2 + . . . + nCn - 1 + nCn = 2n Express 2n as the binomial (1 ؉ 1)n and expand: (1 ؉ 1)n ‫ ؍‬nC0(1)n ؉ nC1(1)n ؊ 1(1) ؉ nC2(1)n ؊ 2(1)2 ؉ . . . ؉ nCn ؊ 1(1)(1)n ؊ 1 ؉ nCn(1)n So, 2 ‫ ؍‬nC0 ؉ nC1 ؉ nC2 ؉ . . . ؉ nCn ؊ 1 ؉ nCn n b) What does the relationship in part a indicate about the sum of the terms in any row of Pascal’s triangle? nC0 , nC1, nC2, . . . nCn ؊ 1, nCn are the terms in row (n ؉ 1) of the triangle. From part a, the sum of these terms is 2n. So, the sum of the terms in any row of Pascal’s triangle is a power of 2. ©P DO NOT COPY. 8.6 The Binomial Theorem—Solutions 31