SlideShare ist ein Scribd-Unternehmen logo
1 von 101
Inequalities
We associate each real number with a position on a line,
positive numbers to the right and negative numbers to the left.
Inequalities
We associate each real number with a position on a line,
positive numbers to the right and negative numbers to the left.
-2 20 1 3
+
-1-3
–
Inequalities
We associate each real number with a position on a line,
positive numbers to the right and negative numbers to the left.
-2 20 1 3
+
-1-3
–
2/3
Inequalities
We associate each real number with a position on a line,
positive numbers to the right and negative numbers to the left.
-2 20 1 3
+
-1-3
–
2/3 2½
Inequalities
We associate each real number with a position on a line,
positive numbers to the right and negative numbers to the left.
-2 20 1 3
+
-1-3
–
2/3 2½ π  3.14..
Inequalities
–π  –3.14..
We associate each real number with a position on a line,
positive numbers to the right and negative numbers to the left.
-2 20 1 3
+
-1-3
–
2/3 2½ π  3.14..
This line with each position addressed by a real number is
called the real (number) line.
Inequalities
–π  –3.14..
We associate each real number with a position on a line,
positive numbers to the right and negative numbers to the left.
-2 20 1 3
+
-1-3
–
2/3 2½ π  3.14..
This line with each position addressed by a real number is
called the real (number) line.
Inequalities
–π  –3.14..
Given two numbers corresponding to two points on the real
line, we define the number to the right to be greater than the
number to the left.
We associate each real number with a position on a line,
positive numbers to the right and negative numbers to the left.
-2 20 1 3
+
-1-3
–
2/3 2½ π  3.14..
This line with each position addressed by a real number is
called the real (number) line.
Inequalities
+–
RL
–π  –3.14..
Given two numbers corresponding to two points on the real
line, we define the number to the right to be greater than the
number to the left.
We associate each real number with a position on a line,
positive numbers to the right and negative numbers to the left.
-2 20 1 3
+
-1-3
–
2/3 2½ π  3.14..
This line with each position addressed by a real number is
called the real (number) line.
Inequalities
+–
R
We write this as L < R and called this the natural form because
it corresponds to their respective positions on the real line.
L
<
–π  –3.14..
Given two numbers corresponding to two points on the real
line, we define the number to the right to be greater than the
number to the left.
We associate each real number with a position on a line,
positive numbers to the right and negative numbers to the left.
-2 20 1 3
+
-1-3
–
2/3 2½ π  3.14..
This line with each position addressed by a real number is
called the real (number) line.
Inequalities
+–
R
We write this as L < R and called this the natural form because
it corresponds to their respective positions on the real line.
This relation may also be written as R > L (less preferable).
L
<
–π  –3.14..
Given two numbers corresponding to two points on the real
line, we define the number to the right to be greater than the
number to the left.
Example A. 2 < 4, –3< –2, 0 > –1 are true statements
Inequalities
Example A. 2 < 4, –3< –2, 0 > –1 are true statements
and –2 < –5 , 5 < 3 are false statements.
Inequalities
Example A. 2 < 4, –3< –2, 0 > –1 are true statements
and –2 < –5 , 5 < 3 are false statements.
Inequalities
If we want all the numbers greater than 5, we may denote them
as "all number x where 5 < x".
Example A. 2 < 4, –3< –2, 0 > –1 are true statements
and –2 < –5 , 5 < 3 are false statements.
Inequalities
If we want all the numbers greater than 5, we may denote them
as "all number x where 5 < x". In general, we write "a < x" for all
the numbers x greater than a (excluding a).
Example A. 2 < 4, –3< –2, 0 > –1 are true statements
and –2 < –5 , 5 < 3 are false statements.
Inequalities
If we want all the numbers greater than 5, we may denote them
as "all number x where 5 < x". In general, we write "a < x" for all
the numbers x greater than a (excluding a). In picture,
+–
a
open dot
a < x
Example A. 2 < 4, –3< –2, 0 > –1 are true statements
and –2 < –5 , 5 < 3 are false statements.
Inequalities
If we want all the numbers greater than 5, we may denote them
as "all number x where 5 < x". In general, we write "a < x" for all
the numbers x greater than a (excluding a). In picture,
+–
a
open dot
If we want all the numbers x greater than or equal to a
(including a), we write it as a < x.
a < x
Example A. 2 < 4, –3< –2, 0 > –1 are true statements
and –2 < –5 , 5 < 3 are false statements.
Inequalities
If we want all the numbers greater than 5, we may denote them
as "all number x where 5 < x". In general, we write "a < x" for all
the numbers x greater than a (excluding a). In picture,
+–
a
open dot
If we want all the numbers x greater than or equal to a
(including a), we write it as a < x. In picture
+–
a
solid dot
a < x
a < x
Example A. 2 < 4, –3< –2, 0 > –1 are true statements
and –2 < –5 , 5 < 3 are false statements.
Inequalities
If we want all the numbers greater than 5, we may denote them
as "all number x where 5 < x". In general, we write "a < x" for all
the numbers x greater than a (excluding a). In picture,
+–
a
open dot
If we want all the numbers x greater than or equal to a
(including a), we write it as a < x. In picture
+–
a
solid dot
a < x
a < x
The numbers x fit the description a < x < b where a < b are all
the numbers x between a and b.
Example A. 2 < 4, –3< –2, 0 > –1 are true statements
and –2 < –5 , 5 < 3 are false statements.
Inequalities
If we want all the numbers greater than 5, we may denote them
as "all number x where 5 < x". In general, we write "a < x" for all
the numbers x greater than a (excluding a). In picture,
+–
a
open dot
If we want all the numbers x greater than or equal to a
(including a), we write it as a < x. In picture
+–
a
solid dot
a < x
a < x
The numbers x fit the description a < x < b where a < b are all
the numbers x between a and b.
+–
a a < x < b b
Example A. 2 < 4, –3< –2, 0 > –1 are true statements
and –2 < –5 , 5 < 3 are false statements.
Inequalities
If we want all the numbers greater than 5, we may denote them
as "all number x where 5 < x". In general, we write "a < x" for all
the numbers x greater than a (excluding a). In picture,
+–
a
open dot
If we want all the numbers x greater than or equal to a
(including a), we write it as a < x. In picture
+–
a
solid dot
a < x
a < x
The numbers x fit the description a < x < b where a < b are all
the numbers x between a and b. A line segment as such is
called an interval.
+–
a a < x < b b
Example B.
a. Draw –1 < x < 3.
Inequalities
Example B.
a. Draw –1 < x < 3.
Inequalities
It’s in the natural form.
Example B.
a. Draw –1 < x < 3.
Inequalities
It’s in the natural form. Mark the numbers and x on the line
in order accordingly.
Example B.
a. Draw –1 < x < 3.
0 3
+
-1
– x
Inequalities
It’s in the natural form. Mark the numbers and x on the line
in order accordingly.
Example B.
a. Draw –1 < x < 3.
0 3
+
-1
– x
b. Draw 0 > x > –3
Inequalities
It’s in the natural form. Mark the numbers and x on the line
in order accordingly.
Example B.
a. Draw –1 < x < 3.
0 3
+
-1
– x
b. Draw 0 > x > –3
Inequalities
It’s in the natural form. Mark the numbers and x on the line
in order accordingly.
Put it in the natural form –3 < x < 0.
Example B.
a. Draw –1 < x < 3.
0 3
+
-1
– x
b. Draw 0 > x > –3
Inequalities
It’s in the natural form. Mark the numbers and x on the line
in order accordingly.
Put it in the natural form –3 < x < 0.
Then mark the numbers and x in order accordingly.
Example B.
a. Draw –1 < x < 3.
0 3
+
-1
– x
b. Draw 0 > x > –3
0
+
-3
–
x
Inequalities
It’s in the natural form. Mark the numbers and x on the line
in order accordingly.
Put it in the natural form –3 < x < 0.
Then mark the numbers and x in order accordingly.
Example B.
a. Draw –1 < x < 3.
0 3
+
-1
– x
b. Draw 0 > x > –3
0
+
-3
–
x
Expressions such as 2 < x > 3 or 2 < x < –3 do not have
any solution.
Inequalities
It’s in the natural form. Mark the numbers and x on the line
in order accordingly.
Put it in the natural form –3 < x < 0.
Then mark the numbers and x in order accordingly.
Example B.
a. Draw –1 < x < 3.
0 3
+
-1
– x
b. Draw 0 > x > –3
0
+
-3
–
x
Expressions such as 2 < x > 3 or 2 < x < –3 do not have
any solution.
Inequalities
Adding or subtracting the same quantity to both retains the
inequality sign,
It’s in the natural form. Mark the numbers and x on the line
in order accordingly.
Put it in the natural form –3 < x < 0.
Then mark the numbers and x in order accordingly.
Example B.
a. Draw –1 < x < 3.
0 3
+
-1
– x
b. Draw 0 > x > –3
0
+
-3
–
x
Expressions such as 2 < x > 3 or 2 < x < –3 do not have
any solution.
Inequalities
Adding or subtracting the same quantity to both retains the
inequality sign, i.e. if a < b, then a ± c < b ± c.
It’s in the natural form. Mark the numbers and x on the line
in order accordingly.
Put it in the natural form –3 < x < 0.
Then mark the numbers and x in order accordingly.
Example B.
a. Draw –1 < x < 3.
0 3
+
-1
– x
b. Draw 0 > x > –3
0
+
-3
–
x
Expressions such as 2 < x > 3 or 2 < x < –3 do not have
any solution.
Inequalities
For example 6 < 12, then 6 + 3 < 12 + 3.
Adding or subtracting the same quantity to both retains the
inequality sign, i.e. if a < b, then a ± c < b ± c.
It’s in the natural form. Mark the numbers and x on the line
in order accordingly.
Put it in the natural form –3 < x < 0.
Then mark the numbers and x in order accordingly.
Example B.
a. Draw –1 < x < 3.
0 3
+
-1
– x
b. Draw 0 > x > –3
0
+
-3
–
x
Expressions such as 2 < x > 3 or 2 < x < –3 do not have
any solution.
Inequalities
For example 6 < 12, then 6 + 3 < 12 + 3.
We use the this fact to solve inequalities.
Adding or subtracting the same quantity to both retains the
inequality sign, i.e. if a < b, then a ± c < b ± c.
It’s in the natural form. Mark the numbers and x on the line
in order accordingly.
Put it in the natural form –3 < x < 0.
Then mark the numbers and x in order accordingly.
Example C. Solve x – 3 < 12 and draw the solution.
Inequalities
Example C. Solve x – 3 < 12 and draw the solution.
x – 3 < 12 add 3 to both sides
x – 3 + 3 < 12 + 3
Inequalities
Example C. Solve x – 3 < 12 and draw the solution.
x – 3 < 12 add 3 to both sides
x – 3 + 3 < 12 + 3
x < 15
Inequalities
Example C. Solve x – 3 < 12 and draw the solution.
x – 3 < 12 add 3 to both sides
x – 3 + 3 < 12 + 3
x < 15
0 15
+–
Inequalities
x
Example C. Solve x – 3 < 12 and draw the solution.
x – 3 < 12 add 3 to both sides
x – 3 + 3 < 12 + 3
x < 15
0 15
+–
Inequalities
x
A number c is positive means that 0 < c.
Example C. Solve x – 3 < 12 and draw the solution.
x – 3 < 12 add 3 to both sides
x – 3 + 3 < 12 + 3
x < 15
0 15
+–
Inequalities
x
A number c is positive means that 0 < c. We may multiply or
divide a positive number to the inequality and keep the same
inequality sign,
Example C. Solve x – 3 < 12 and draw the solution.
x – 3 < 12 add 3 to both sides
x – 3 + 3 < 12 + 3
x < 15
0 15
+–
Inequalities
x
A number c is positive means that 0 < c. We may multiply or
divide a positive number to the inequality and keep the same
inequality sign, i.e. if 0 < c and a < b
Example C. Solve x – 3 < 12 and draw the solution.
x – 3 < 12 add 3 to both sides
x – 3 + 3 < 12 + 3
x < 15
0 15
+–
Inequalities
x
A number c is positive means that 0 < c. We may multiply or
divide a positive number to the inequality and keep the same
inequality sign, i.e. if 0 < c and a < b, then ac < bc.
Example C. Solve x – 3 < 12 and draw the solution.
x – 3 < 12 add 3 to both sides
x – 3 + 3 < 12 + 3
x < 15
0 15
+–
Inequalities
x
A number c is positive means that 0 < c. We may multiply or
divide a positive number to the inequality and keep the same
inequality sign, i.e. if 0 < c and a < b, then ac < bc.
For example 6 < 12 is true,
Example C. Solve x – 3 < 12 and draw the solution.
x – 3 < 12 add 3 to both sides
x – 3 + 3 < 12 + 3
x < 15
0 15
+–
Inequalities
x
A number c is positive means that 0 < c. We may multiply or
divide a positive number to the inequality and keep the same
inequality sign, i.e. if 0 < c and a < b, then ac < bc.
For example 6 < 12 is true, then multiplying by 3
3*6 < 3*12
Example C. Solve x – 3 < 12 and draw the solution.
x – 3 < 12 add 3 to both sides
x – 3 + 3 < 12 + 3
x < 15
0 15
+–
Inequalities
x
A number c is positive means that 0 < c. We may multiply or
divide a positive number to the inequality and keep the same
inequality sign, i.e. if 0 < c and a < b, then ac < bc.
For example 6 < 12 is true, then multiplying by 3
3*6 < 3*12 or 18 < 36 is also true.
Example C. Solve x – 3 < 12 and draw the solution.
x – 3 < 12 add 3 to both sides
x – 3 + 3 < 12 + 3
x < 15
0 15
+–
Inequalities
x
A number c is positive means that 0 < c. We may multiply or
divide a positive number to the inequality and keep the same
inequality sign, i.e. if 0 < c and a < b, then ac < bc.
Example D. Solve 3x > 12 and draw the solution.
For example 6 < 12 is true, then multiplying by 3
3*6 < 3*12 or 18 < 36 is also true.
Example C. Solve x – 3 < 12 and draw the solution.
x – 3 < 12 add 3 to both sides
x – 3 + 3 < 12 + 3
x < 15
0 15
+–
Inequalities
x
A number c is positive means that 0 < c. We may multiply or
divide a positive number to the inequality and keep the same
inequality sign, i.e. if 0 < c and a < b, then ac < bc.
Example D. Solve 3x > 12 and draw the solution.
3x > 12
For example 6 < 12 is true, then multiplying by 3
3*6 < 3*12 or 18 < 36 is also true.
Example C. Solve x – 3 < 12 and draw the solution.
x – 3 < 12 add 3 to both sides
x – 3 + 3 < 12 + 3
x < 15
0 15
+–
Inequalities
x
A number c is positive means that 0 < c. We may multiply or
divide a positive number to the inequality and keep the same
inequality sign, i.e. if 0 < c and a < b, then ac < bc.
Example D. Solve 3x > 12 and draw the solution.
3x > 12 divide by 3 and keep the inequality sign
3x/3 > 12/3
For example 6 < 12 is true, then multiplying by 3
3*6 < 3*12 or 18 < 36 is also true.
Example C. Solve x – 3 < 12 and draw the solution.
x – 3 < 12 add 3 to both sides
x – 3 + 3 < 12 + 3
x < 15
0 15
+–
Inequalities
x
A number c is positive means that 0 < c. We may multiply or
divide a positive number to the inequality and keep the same
inequality sign, i.e. if 0 < c and a < b, then ac < bc.
Example D. Solve 3x > 12 and draw the solution.
3x > 12 divide by 3 and keep the inequality sign
3x/3 > 12/3
x > 4 or 4 < x
For example 6 < 12 is true, then multiplying by 3
3*6 < 3*12 or 18 < 36 is also true.
Example C. Solve x – 3 < 12 and draw the solution.
x – 3 < 12 add 3 to both sides
x – 3 + 3 < 12 + 3
x < 15
0 15
+–
Inequalities
x
A number c is positive means that 0 < c. We may multiply or
divide a positive number to the inequality and keep the same
inequality sign, i.e. if 0 < c and a < b, then ac < bc.
Example D. Solve 3x > 12 and draw the solution.
3x > 12 divide by 3 and keep the inequality sign
3x/3 > 12/3
x > 4 or 4 < x
40
+–
For example 6 < 12 is true, then multiplying by 3
3*6 < 3*12 or 18 < 36 is also true.
x
A number c is negative means c < 0.
Inequalities
A number c is negative means c < 0. Multiplying or dividing by
an negative number reverses the inequality sign,
Inequalities
A number c is negative means c < 0. Multiplying or dividing by
an negative number reverses the inequality sign,
i.e. if c < 0 and a < b then
Inequalities
A number c is negative means c < 0. Multiplying or dividing by
an negative number reverses the inequality sign,
i.e. if c < 0 and a < b then
ca > cb .
Inequalities
A number c is negative means c < 0. Multiplying or dividing by
an negative number reverses the inequality sign,
i.e. if c < 0 and a < b then
ca > cb .
Inequalities
For example 6 < 12 is true.
A number c is negative means c < 0. Multiplying or dividing by
an negative number reverses the inequality sign,
i.e. if c < 0 and a < b then
ca > cb .
Inequalities
For example 6 < 12 is true. If we multiply –1 to both sides then
(–1)6 > (–1)12
– 6 > –12 which is true.
A number c is negative means c < 0. Multiplying or dividing by
an negative number reverses the inequality sign,
i.e. if c < 0 and a < b then
ca > cb .
Inequalities
For example 6 < 12 is true. If we multiply –1 to both sides then
(–1)6 > (–1)12
– 6 > –12 which is true.
Multiplying by –1 switches the left-right positions of the originals.
A number c is negative means c < 0. Multiplying or dividing by
an negative number reverses the inequality sign,
i.e. if c < 0 and a < b then
ca > cb .
Inequalities
60
+–
12<
For example 6 < 12 is true. If we multiply –1 to both sides then
(–1)6 > (–1)12
– 6 > –12 which is true.
Multiplying by –1 switches the left-right positions of the originals.
A number c is negative means c < 0. Multiplying or dividing by
an negative number reverses the inequality sign,
i.e. if c < 0 and a < b then
ca > cb .
Inequalities
60
+–
12–6 <
For example 6 < 12 is true. If we multiply –1 to both sides then
(–1)6 > (–1)12
– 6 > –12 which is true.
Multiplying by –1 switches the left-right positions of the originals.
A number c is negative means c < 0. Multiplying or dividing by
an negative number reverses the inequality sign,
i.e. if c < 0 and a < b then
ca > cb .
Inequalities
60
+–
12–6–12 <<
For example 6 < 12 is true. If we multiply –1 to both sides then
(–1)6 > (–1)12
– 6 > –12 which is true.
Multiplying by –1 switches the left-right positions of the originals.
A number c is negative means c < 0. Multiplying or dividing by
an negative number reverses the inequality sign,
i.e. if c < 0 and a < b then
ca > cb .
Example E. Solve –x + 2 < 5 and draw the solution.
Inequalities
60
+–
12–6–12 <<
For example 6 < 12 is true. If we multiply –1 to both sides then
(–1)6 > (–1)12
– 6 > –12 which is true.
Multiplying by –1 switches the left-right positions of the originals.
A number c is negative means c < 0. Multiplying or dividing by
an negative number reverses the inequality sign,
i.e. if c < 0 and a < b then
ca > cb .
Example E. Solve –x + 2 < 5 and draw the solution.
–x + 2 < 5
Inequalities
60
+–
12–6–12 <<
For example 6 < 12 is true. If we multiply –1 to both sides then
(–1)6 > (–1)12
– 6 > –12 which is true.
Multiplying by –1 switches the left-right positions of the originals.
A number c is negative means c < 0. Multiplying or dividing by
an negative number reverses the inequality sign,
i.e. if c < 0 and a < b then
ca > cb .
Example E. Solve –x + 2 < 5 and draw the solution.
–x + 2 < 5 subtract 2 from both sides
–x < 3
Inequalities
60
+–
12–6–12 <<
For example 6 < 12 is true. If we multiply –1 to both sides then
(–1)6 > (–1)12
– 6 > –12 which is true.
Multiplying by –1 switches the left-right positions of the originals.
A number c is negative means c < 0. Multiplying or dividing by
an negative number reverses the inequality sign,
i.e. if c < 0 and a < b then
ca > cb .
Example E. Solve –x + 2 < 5 and draw the solution.
–x + 2 < 5 subtract 2 from both sides
–x < 3 multiply by –1 to get x, reverse the inequality
–(–x) > –3
x > –3
Inequalities
60
+–
12–6–12 <<
For example 6 < 12 is true. If we multiply –1 to both sides then
(–1)6 > (–1)12
– 6 > –12 which is true.
Multiplying by –1 switches the left-right positions of the originals.
A number c is negative means c < 0. Multiplying or dividing by
an negative number reverses the inequality sign,
i.e. if c < 0 and a < b then
ca > cb .
Example E. Solve –x + 2 < 5 and draw the solution.
–x + 2 < 5 subtract 2 from both sides
–x < 3 multiply by –1 to get x, reverse the inequality
–(–x) > –3
x > –3 or –3 < x
Inequalities
60
+–
12–6–12 <<
For example 6 < 12 is true. If we multiply –1 to both sides then
(–1)6 > (–1)12
– 6 > –12 which is true.
Multiplying by –1 switches the left-right positions of the originals.
A number c is negative means c < 0. Multiplying or dividing by
an negative number reverses the inequality sign,
i.e. if c < 0 and a < b then
ca > cb .
Example E. Solve –x + 2 < 5 and draw the solution.
–x + 2 < 5 subtract 2 from both sides
–x < 3 multiply by –1 to get x, reverse the inequality
–(–x) > –3
x > –3 or –3 < x
0
+
-3
–
Inequalities
60
+–
12–6–12 <<
For example 6 < 12 is true. If we multiply –1 to both sides then
(–1)6 > (–1)12
– 6 > –12 which is true.
Multiplying by –1 switches the left-right positions of the originals.
To solve inequalities:
1. Simplify both sides of the inequalities
Inequalities
To solve inequalities:
1. Simplify both sides of the inequalities
2. Gather the x-terms to one side and the number-terms to the
other sides
Inequalities
To solve inequalities:
1. Simplify both sides of the inequalities
2. Gather the x-terms to one side and the number-terms to the
other sides (use the “change side-change sign” rule).
Inequalities
To solve inequalities:
1. Simplify both sides of the inequalities
2. Gather the x-terms to one side and the number-terms to the
other sides (use the “change side-change sign” rule).
3. Multiply or divide to get x.
Inequalities
To solve inequalities:
1. Simplify both sides of the inequalities
2. Gather the x-terms to one side and the number-terms to the
other sides (use the “change side-change sign” rule).
3. Multiply or divide to get x. If we multiply or divide by
negative numbers to both sides, the inequality sign must be
turned around.
Inequalities
To solve inequalities:
1. Simplify both sides of the inequalities
2. Gather the x-terms to one side and the number-terms to the
other sides (use the “change side-change sign” rule).
3. Multiply or divide to get x. If we multiply or divide by
negative numbers to both sides, the inequality sign must be
turned around. This rule can be avoided by keeping the
x-term positive.
Inequalities
To solve inequalities:
1. Simplify both sides of the inequalities
2. Gather the x-terms to one side and the number-terms to the
other sides (use the “change side-change sign” rule).
3. Multiply or divide to get x. If we multiply or divide by
negative numbers to both sides, the inequality sign must be
turned around. This rule can be avoided by keeping the
x-term positive.
Inequalities
Example F. Solve 3x + 5 > x + 9
To solve inequalities:
1. Simplify both sides of the inequalities
2. Gather the x-terms to one side and the number-terms to the
other sides (use the “change side-change sign” rule).
3. Multiply or divide to get x. If we multiply or divide by
negative numbers to both sides, the inequality sign must be
turned around. This rule can be avoided by keeping the
x-term positive.
Inequalities
Example F. Solve 3x + 5 > x + 9
3x + 5 > x + 9 move the x and 5, change side-change sign
To solve inequalities:
1. Simplify both sides of the inequalities
2. Gather the x-terms to one side and the number-terms to the
other sides (use the “change side-change sign” rule).
3. Multiply or divide to get x. If we multiply or divide by
negative numbers to both sides, the inequality sign must be
turned around. This rule can be avoided by keeping the
x-term positive.
Inequalities
Example F. Solve 3x + 5 > x + 9
3x + 5 > x + 9 move the x and 5, change side-change sign
3x – x > 9 – 5
To solve inequalities:
1. Simplify both sides of the inequalities
2. Gather the x-terms to one side and the number-terms to the
other sides (use the “change side-change sign” rule).
3. Multiply or divide to get x. If we multiply or divide by
negative numbers to both sides, the inequality sign must be
turned around. This rule can be avoided by keeping the
x-term positive.
Inequalities
Example F. Solve 3x + 5 > x + 9
3x + 5 > x + 9 move the x and 5, change side-change sign
3x – x > 9 – 5
2x > 4
To solve inequalities:
1. Simplify both sides of the inequalities
2. Gather the x-terms to one side and the number-terms to the
other sides (use the “change side-change sign” rule).
3. Multiply or divide to get x. If we multiply or divide by
negative numbers to both sides, the inequality sign must be
turned around. This rule can be avoided by keeping the
x-term positive.
Inequalities
Example F. Solve 3x + 5 > x + 9
3x + 5 > x + 9 move the x and 5, change side-change sign
3x – x > 9 – 5
2x > 4 div. 2
2x
2
4
2>
To solve inequalities:
1. Simplify both sides of the inequalities
2. Gather the x-terms to one side and the number-terms to the
other sides (use the “change side-change sign” rule).
3. Multiply or divide to get x. If we multiply or divide by
negative numbers to both sides, the inequality sign must be
turned around. This rule can be avoided by keeping the
x-term positive.
Inequalities
Example F. Solve 3x + 5 > x + 9
3x + 5 > x + 9 move the x and 5, change side-change sign
3x – x > 9 – 5
2x > 4 div. 2
2x
2
4
2>
x > 2 or 2 < x
To solve inequalities:
1. Simplify both sides of the inequalities
2. Gather the x-terms to one side and the number-terms to the
other sides (use the “change side-change sign” rule).
3. Multiply or divide to get x. If we multiply or divide by
negative numbers to both sides, the inequality sign must be
turned around. This rule can be avoided by keeping the
x-term positive.
Inequalities
Example F. Solve 3x + 5 > x + 9
3x + 5 > x + 9 move the x and 5, change side-change sign
3x – x > 9 – 5
2x > 4 div. 2
20
+–
2x
2
4
2>
x > 2 or 2 < x
Example G. Solve 3(2 – x) > 2(x + 9) – 2x
Inequalities
Example G. Solve 3(2 – x) > 2(x + 9) – 2x
3(2 – x) > 2(x + 9) – 2x simplify each side
Inequalities
Example G. Solve 3(2 – x) > 2(x + 9) – 2x
3(2 – x) > 2(x + 9) – 2x simplify each side
6 – 3x > 2x + 18 – 2x
Inequalities
Example G. Solve 3(2 – x) > 2(x + 9) – 2x
3(2 – x) > 2(x + 9) – 2x simplify each side
6 – 3x > 2x + 18 – 2x
6 – 3x > 18
Inequalities
Example G. Solve 3(2 – x) > 2(x + 9) – 2x
3(2 – x) > 2(x + 9) – 2x simplify each side
6 – 3x > 2x + 18 – 2x
6 – 3x > 18 move 18 and –3x (change sign)
6 – 18 > 3x
Inequalities
Example G. Solve 3(2 – x) > 2(x + 9) – 2x
3(2 – x) > 2(x + 9) – 2x simplify each side
6 – 3x > 2x + 18 – 2x
6 – 3x > 18 move 18 and –3x (change sign)
6 – 18 > 3x
– 12 > 3x
Inequalities
Example G. Solve 3(2 – x) > 2(x + 9) – 2x
3(2 – x) > 2(x + 9) – 2x simplify each side
6 – 3x > 2x + 18 – 2x
6 – 3x > 18 move 18 and –3x (change sign)
6 – 18 > 3x
– 12 > 3x
–12
3
3x
3
>
div. by 3 (no need to switch >)
Inequalities
Example G. Solve 3(2 – x) > 2(x + 9) – 2x
3(2 – x) > 2(x + 9) – 2x simplify each side
6 – 3x > 2x + 18 – 2x
6 – 3x > 18 move 18 and –3x (change sign)
6 – 18 > 3x
– 12 > 3x
–12
3
3x
3
>
–4 > x or x < –4
div. by 3 (no need to switch >)
Inequalities
Example G. Solve 3(2 – x) > 2(x + 9) – 2x
3(2 – x) > 2(x + 9) – 2x simplify each side
6 – 3x > 2x + 18 – 2x
6 – 3x > 18 move 18 and –3x (change sign)
6 – 18 > 3x
– 12 > 3x
0
+
–12
3
3x
3
>
-4
div. by 3 (no need to switch >)
Inequalities
–4 > x or x < –4
Example G. Solve 3(2 – x) > 2(x + 9) – 2x
3(2 – x) > 2(x + 9) – 2x simplify each side
6 – 3x > 2x + 18 – 2x
6 – 3x > 18 move 18 and –3x (change sign)
6 – 18 > 3x
– 12 > 3x
0
+
–12
3
3x
3
>
-4
div. by 3 (no need to switch >)
Inequalities
We also have inequalities in the form of intervals.
–4 > x or x < –4
Example G. Solve 3(2 – x) > 2(x + 9) – 2x
3(2 – x) > 2(x + 9) – 2x simplify each side
6 – 3x > 2x + 18 – 2x
6 – 3x > 18 move 18 and –3x (change sign)
6 – 18 > 3x
– 12 > 3x
0
+
–12
3
3x
3
>
-4
div. by 3 (no need to switch >)
Inequalities
We also have inequalities in the form of intervals. We solve
them by +, –, * , / to all three parts of the inequalities.
–4 > x or x < –4
Example G. Solve 3(2 – x) > 2(x + 9) – 2x
3(2 – x) > 2(x + 9) – 2x simplify each side
6 – 3x > 2x + 18 – 2x
6 – 3x > 18 move 18 and –3x (change sign)
6 – 18 > 3x
– 12 > 3x
0
+
–12
3
3x
3
>
-4
div. by 3 (no need to switch >)
Inequalities
We also have inequalities in the form of intervals. We solve
them by +, –, * , / to all three parts of the inequalities.
Again, we + or – remove the number term in the middle first,
–4 > x or x < –4
Example G. Solve 3(2 – x) > 2(x + 9) – 2x
3(2 – x) > 2(x + 9) – 2x simplify each side
6 – 3x > 2x + 18 – 2x
6 – 3x > 18 move 18 and –3x (change sign)
6 – 18 > 3x
– 12 > 3x
0
+
–12
3
3x
3
>
-4
div. by 3 (no need to switch >)
Inequalities
We also have inequalities in the form of intervals. We solve
them by +, –, * , / to all three parts of the inequalities.
Again, we + or – remove the number term in the middle first,
then divide or multiply to get x.
–4 > x or x < –4
Example G. Solve 3(2 – x) > 2(x + 9) – 2x
3(2 – x) > 2(x + 9) – 2x simplify each side
6 – 3x > 2x + 18 – 2x
6 – 3x > 18 move 18 and –3x (change sign)
6 – 18 > 3x
– 12 > 3x
0
+
–12
3
3x
3
>
-4
div. by 3 (no need to switch >)
Inequalities
We also have inequalities in the form of intervals. We solve
them by +, –, * , / to all three parts of the inequalities.
Again, we + or – remove the number term in the middle first,
then divide or multiply to get x. The answer is an interval of
numbers.
–4 > x or x < –4
Example H. (Interval Inequality)
Solve 12 > –2x + 6 > –4 and draw
Inequalities
Example H. (Interval Inequality)
Solve 12 > –2x + 6 > –4 and draw.
12 > –2x + 6 > –4 subtract 6
–6 –6 –6
Inequalities
Example H. (Interval Inequality)
Solve 12 > –2x + 6 > –4 and draw.
12 > –2x + 6 > –4 subtract 6
–6 –6 –6
6 > –2x > –10
Inequalities
Example H. (Interval Inequality)
Solve 12 > –2x + 6 > –4 and draw.
12 > –2x + 6 > –4 subtract 6
–6 –6 –6
6 > –2x > –10 div. by -2, switch inequality sign
6
-2
-2x
-2<
-10
-2
<
Inequalities
Example H. (Interval Inequality)
Solve 12 > –2x + 6 > –4 and draw.
12 > –2x + 6 > –4 subtract 6
–6 –6 –6
6 > –2x > –10
-3 < x < 5
div. by -2, switch inequality sign
6
-2
-2x
-2<
-10
-2
<
Inequalities
Example H. (Interval Inequality)
Solve 12 > –2x + 6 > –4 and draw.
12 > –2x + 6 > –4 subtract 6
–6 –6 –6
6 > –2x > –10
0
+
-3 < x < 5
5
div. by -2, switch inequality sign
6
-2
-2x
-2<
-10
-2
<
-3
Inequalities
Inequalities
Exercise. A. Draw the following Inequalities. Indicate clearly
whether the end points are included or not.
1. x < 3 2. –5 ≤ x 3. x < –8 4. x ≤ 12
B. Write in the natural form then draw them.
5. x ≥ 3 6. –5 > x 7. x ≥ –8 8. x > 12
C. Draw the following intervals, state so if it is impossible.
9. 6 > x ≥ 3 10. –5 < x ≤ 2 11. 1 > x ≥ –8 12. 4 < x ≤ 2
13. 6 > x ≥ 8 14. –5 > x ≤ 2 15. –7 ≤ x ≤ –3 16. –7 ≤ x ≤ –9
D. Solve the following Inequalities and draw the solution.
17. x + 5 < 3 18. –5 ≤ 2x + 3 19. 3x + 1 < –8
20. 2x + 3 ≤ 12 – x 21. –3x + 5 ≥ 1 – 4x
22. 2(x + 2) ≥ 5 – (x – 1) 23. 3(x – 1) + 2 ≤ – 2x – 9
24. –2(x – 3) > 2(–x – 1) + 3x 25. –(x + 4) – 2 ≤ 4(x – 1)
26. x + 2(x – 3) < 2(x – 1) – 2
27. –2(x – 3) + 3 ≥ 2(x – 1) + 3x + 13
Inequalities
F. Solve the following interval inequalities.
28. –4 ≤
2
x 29. 7 >
3
–x 30. < –4–x
E. Clear the denominator first then solve and draw the solution.
5
x2 3
1 2
3
2
+ ≥ x31. x4
–3
3
–4
– 1> x32.
x
2 8
3 3
4
5– ≤33. x
8 12
–5 7
1+ >34.
x
2 3
–3 2
3
4
4
1–+ x35. x4 6
5 5
3
–1
– 2+ < x36.
x
12 2
7 3
6
1
4
3–– ≥ x37.
≤
40. – 2 < x + 2 < 5 41. –1 ≥ 2x – 3 ≥ –11
42. –5 ≤ 1 – 3x < 10 43. 11 > –1 – 3x > –7
38. –6 ≤ 3x < 12 39. 8 > –2x > –4

Weitere ähnliche Inhalte

Was ist angesagt?

4.6 radical equations
4.6 radical equations4.6 radical equations
4.6 radical equationsmath123b
 
2 3linear equations ii
2 3linear equations ii2 3linear equations ii
2 3linear equations iimath123a
 
1 s2 addition and subtraction of signed numbers
1 s2 addition and subtraction of signed numbers1 s2 addition and subtraction of signed numbers
1 s2 addition and subtraction of signed numbersmath123a
 
1 s5 variables and evaluation
1 s5 variables and evaluation1 s5 variables and evaluation
1 s5 variables and evaluationmath123a
 
32 multiplication and division of decimals
32 multiplication and division of decimals32 multiplication and division of decimals
32 multiplication and division of decimalsalg1testreview
 
50 solving equations by factoring
50 solving equations by factoring50 solving equations by factoring
50 solving equations by factoringalg1testreview
 
1 f2 fractions
1 f2 fractions1 f2 fractions
1 f2 fractionsmath123a
 
4 3polynomial expressions
4 3polynomial expressions4 3polynomial expressions
4 3polynomial expressionsmath123a
 
2 the real line, inequalities and comparative phrases
2 the real line, inequalities and comparative phrases2 the real line, inequalities and comparative phrases
2 the real line, inequalities and comparative phraseselem-alg-sample
 
1 s3 multiplication and division of signed numbers
1 s3 multiplication and division of signed numbers1 s3 multiplication and division of signed numbers
1 s3 multiplication and division of signed numbersmath123a
 
1.2 algebraic expressions
1.2 algebraic expressions1.2 algebraic expressions
1.2 algebraic expressionsmath260
 
3 3 systems of linear equations 1
3 3 systems of linear equations 13 3 systems of linear equations 1
3 3 systems of linear equations 1math123a
 
6.1 system of linear equations and matrices
6.1 system of linear equations and matrices6.1 system of linear equations and matrices
6.1 system of linear equations and matricesmath260
 
5 2factoring trinomial i
5 2factoring trinomial i5 2factoring trinomial i
5 2factoring trinomial imath123a
 
22 multiplication and division of signed numbers
22 multiplication and division of signed numbers22 multiplication and division of signed numbers
22 multiplication and division of signed numbersalg1testreview
 
3 4 systems of linear equations 2
3 4 systems of linear equations 23 4 systems of linear equations 2
3 4 systems of linear equations 2math123a
 
12 prime factors and lcm
12 prime factors and lcm12 prime factors and lcm
12 prime factors and lcmalg1testreview
 

Was ist angesagt? (20)

42 linear equations
42 linear equations42 linear equations
42 linear equations
 
4.6 radical equations
4.6 radical equations4.6 radical equations
4.6 radical equations
 
2 3linear equations ii
2 3linear equations ii2 3linear equations ii
2 3linear equations ii
 
41 expressions
41 expressions41 expressions
41 expressions
 
1 s2 addition and subtraction of signed numbers
1 s2 addition and subtraction of signed numbers1 s2 addition and subtraction of signed numbers
1 s2 addition and subtraction of signed numbers
 
1 s5 variables and evaluation
1 s5 variables and evaluation1 s5 variables and evaluation
1 s5 variables and evaluation
 
32 multiplication and division of decimals
32 multiplication and division of decimals32 multiplication and division of decimals
32 multiplication and division of decimals
 
50 solving equations by factoring
50 solving equations by factoring50 solving equations by factoring
50 solving equations by factoring
 
1 f2 fractions
1 f2 fractions1 f2 fractions
1 f2 fractions
 
4 3polynomial expressions
4 3polynomial expressions4 3polynomial expressions
4 3polynomial expressions
 
2 the real line, inequalities and comparative phrases
2 the real line, inequalities and comparative phrases2 the real line, inequalities and comparative phrases
2 the real line, inequalities and comparative phrases
 
54 the number line
54 the number line54 the number line
54 the number line
 
1 s3 multiplication and division of signed numbers
1 s3 multiplication and division of signed numbers1 s3 multiplication and division of signed numbers
1 s3 multiplication and division of signed numbers
 
1.2 algebraic expressions
1.2 algebraic expressions1.2 algebraic expressions
1.2 algebraic expressions
 
3 3 systems of linear equations 1
3 3 systems of linear equations 13 3 systems of linear equations 1
3 3 systems of linear equations 1
 
6.1 system of linear equations and matrices
6.1 system of linear equations and matrices6.1 system of linear equations and matrices
6.1 system of linear equations and matrices
 
5 2factoring trinomial i
5 2factoring trinomial i5 2factoring trinomial i
5 2factoring trinomial i
 
22 multiplication and division of signed numbers
22 multiplication and division of signed numbers22 multiplication and division of signed numbers
22 multiplication and division of signed numbers
 
3 4 systems of linear equations 2
3 4 systems of linear equations 23 4 systems of linear equations 2
3 4 systems of linear equations 2
 
12 prime factors and lcm
12 prime factors and lcm12 prime factors and lcm
12 prime factors and lcm
 

Ähnlich wie 2 6 inequalities

3 1 the real line and linear inequalities-x
3 1 the real line and linear inequalities-x3 1 the real line and linear inequalities-x
3 1 the real line and linear inequalities-xmath123b
 
2 linear inequalities x
2 linear inequalities x2 linear inequalities x
2 linear inequalities xTzenma
 
41 interval notation and review on inequalities
41 interval notation and review on inequalities41 interval notation and review on inequalities
41 interval notation and review on inequalitiesmath126
 
Linear inequalities
Linear inequalitiesLinear inequalities
Linear inequalitiesMark Ryder
 
Linear Equations and Inequalities in One Variable
Linear Equations and Inequalities in One VariableLinear Equations and Inequalities in One Variable
Linear Equations and Inequalities in One Variablemisey_margarette
 
Project in math BY:Samuel Vasquez Balia
Project in math BY:Samuel Vasquez BaliaProject in math BY:Samuel Vasquez Balia
Project in math BY:Samuel Vasquez Baliasamuel balia
 
presentation-111004200224-phpapp02.pptx
presentation-111004200224-phpapp02.pptxpresentation-111004200224-phpapp02.pptx
presentation-111004200224-phpapp02.pptxJennilynBalusdan3
 
Fundamentals of AlgebraChu v. NguyenIntegral Exponents
Fundamentals of AlgebraChu v. NguyenIntegral ExponentsFundamentals of AlgebraChu v. NguyenIntegral Exponents
Fundamentals of AlgebraChu v. NguyenIntegral ExponentsDustiBuckner14
 
Numeros reales y plano numerico
Numeros reales y plano numericoNumeros reales y plano numerico
Numeros reales y plano numericoAnaRivero45
 
DIPIN PPT OF INTEGER
DIPIN PPT OF INTEGERDIPIN PPT OF INTEGER
DIPIN PPT OF INTEGERlenovo_123
 
Rational number for class VIII(Eight) by G R AHMED , K V KHANAPARA
Rational number for class VIII(Eight) by G R AHMED , K V KHANAPARARational number for class VIII(Eight) by G R AHMED , K V KHANAPARA
Rational number for class VIII(Eight) by G R AHMED , K V KHANAPARAMD. G R Ahmed
 
Maths integers
Maths integersMaths integers
Maths integers821234
 
นำเสนอจำนวนจริงเพิ่มเติม
นำเสนอจำนวนจริงเพิ่มเติมนำเสนอจำนวนจริงเพิ่มเติม
นำเสนอจำนวนจริงเพิ่มเติมNittaya Noinan
 
Simplifying Expressions and Solving Linear Equations
Simplifying Expressions and Solving Linear EquationsSimplifying Expressions and Solving Linear Equations
Simplifying Expressions and Solving Linear Equationswbgillamjr
 

Ähnlich wie 2 6 inequalities (20)

3 1 the real line and linear inequalities-x
3 1 the real line and linear inequalities-x3 1 the real line and linear inequalities-x
3 1 the real line and linear inequalities-x
 
2 linear inequalities x
2 linear inequalities x2 linear inequalities x
2 linear inequalities x
 
53 the real line
53 the real line53 the real line
53 the real line
 
41 interval notation and review on inequalities
41 interval notation and review on inequalities41 interval notation and review on inequalities
41 interval notation and review on inequalities
 
Real numbers
Real numbersReal numbers
Real numbers
 
Linear inequalities
Linear inequalitiesLinear inequalities
Linear inequalities
 
Linear Equations and Inequalities in One Variable
Linear Equations and Inequalities in One VariableLinear Equations and Inequalities in One Variable
Linear Equations and Inequalities in One Variable
 
Project in math BY:Samuel Vasquez Balia
Project in math BY:Samuel Vasquez BaliaProject in math BY:Samuel Vasquez Balia
Project in math BY:Samuel Vasquez Balia
 
Project in math
Project in mathProject in math
Project in math
 
presentation-111004200224-phpapp02.pptx
presentation-111004200224-phpapp02.pptxpresentation-111004200224-phpapp02.pptx
presentation-111004200224-phpapp02.pptx
 
Fundamentals of AlgebraChu v. NguyenIntegral Exponents
Fundamentals of AlgebraChu v. NguyenIntegral ExponentsFundamentals of AlgebraChu v. NguyenIntegral Exponents
Fundamentals of AlgebraChu v. NguyenIntegral Exponents
 
Real-Number-System.pptx
Real-Number-System.pptxReal-Number-System.pptx
Real-Number-System.pptx
 
Numeros reales y plano numerico
Numeros reales y plano numericoNumeros reales y plano numerico
Numeros reales y plano numerico
 
DIPIN PPT OF INTEGER
DIPIN PPT OF INTEGERDIPIN PPT OF INTEGER
DIPIN PPT OF INTEGER
 
Rational number for class VIII(Eight) by G R AHMED , K V KHANAPARA
Rational number for class VIII(Eight) by G R AHMED , K V KHANAPARARational number for class VIII(Eight) by G R AHMED , K V KHANAPARA
Rational number for class VIII(Eight) by G R AHMED , K V KHANAPARA
 
Algebra
AlgebraAlgebra
Algebra
 
Maths integers
Maths integersMaths integers
Maths integers
 
นำเสนอจำนวนจริงเพิ่มเติม
นำเสนอจำนวนจริงเพิ่มเติมนำเสนอจำนวนจริงเพิ่มเติม
นำเสนอจำนวนจริงเพิ่มเติม
 
Integers
IntegersIntegers
Integers
 
Simplifying Expressions and Solving Linear Equations
Simplifying Expressions and Solving Linear EquationsSimplifying Expressions and Solving Linear Equations
Simplifying Expressions and Solving Linear Equations
 

Mehr von math123a

1 numbers and factors eq
1 numbers and factors eq1 numbers and factors eq
1 numbers and factors eqmath123a
 
38 equations of lines-x
38 equations of lines-x38 equations of lines-x
38 equations of lines-xmath123a
 
37 more on slopes-x
37 more on slopes-x37 more on slopes-x
37 more on slopes-xmath123a
 
36 slopes of lines-x
36 slopes of lines-x36 slopes of lines-x
36 slopes of lines-xmath123a
 
123a ppt-all-2
123a ppt-all-2123a ppt-all-2
123a ppt-all-2math123a
 
7 inequalities ii exp
7 inequalities ii exp7 inequalities ii exp
7 inequalities ii expmath123a
 
115 ans-ii
115 ans-ii115 ans-ii
115 ans-iimath123a
 
14 2nd degree-equation word problems
14 2nd degree-equation word problems14 2nd degree-equation word problems
14 2nd degree-equation word problemsmath123a
 
Soluiton i
Soluiton iSoluiton i
Soluiton imath123a
 
123a test4-sample
123a test4-sample123a test4-sample
123a test4-samplemath123a
 
Sample fin
Sample finSample fin
Sample finmath123a
 
12 4- sample
12 4- sample12 4- sample
12 4- samplemath123a
 
F12 2 -ans
F12 2 -ansF12 2 -ans
F12 2 -ansmath123a
 
F12 1-ans-jpg
F12 1-ans-jpgF12 1-ans-jpg
F12 1-ans-jpgmath123a
 
Sample1 v2-jpg-form
Sample1 v2-jpg-formSample1 v2-jpg-form
Sample1 v2-jpg-formmath123a
 
1exponents
1exponents1exponents
1exponentsmath123a
 
3 6 introduction to sets-optional
3 6 introduction to sets-optional3 6 introduction to sets-optional
3 6 introduction to sets-optionalmath123a
 
1 f5 addition and subtraction of fractions
1 f5 addition and subtraction of fractions1 f5 addition and subtraction of fractions
1 f5 addition and subtraction of fractionsmath123a
 
1 f4 lcm and lcd
1 f4 lcm and lcd1 f4 lcm and lcd
1 f4 lcm and lcdmath123a
 
1 f2 fractions
1 f2 fractions1 f2 fractions
1 f2 fractionsmath123a
 

Mehr von math123a (20)

1 numbers and factors eq
1 numbers and factors eq1 numbers and factors eq
1 numbers and factors eq
 
38 equations of lines-x
38 equations of lines-x38 equations of lines-x
38 equations of lines-x
 
37 more on slopes-x
37 more on slopes-x37 more on slopes-x
37 more on slopes-x
 
36 slopes of lines-x
36 slopes of lines-x36 slopes of lines-x
36 slopes of lines-x
 
123a ppt-all-2
123a ppt-all-2123a ppt-all-2
123a ppt-all-2
 
7 inequalities ii exp
7 inequalities ii exp7 inequalities ii exp
7 inequalities ii exp
 
115 ans-ii
115 ans-ii115 ans-ii
115 ans-ii
 
14 2nd degree-equation word problems
14 2nd degree-equation word problems14 2nd degree-equation word problems
14 2nd degree-equation word problems
 
Soluiton i
Soluiton iSoluiton i
Soluiton i
 
123a test4-sample
123a test4-sample123a test4-sample
123a test4-sample
 
Sample fin
Sample finSample fin
Sample fin
 
12 4- sample
12 4- sample12 4- sample
12 4- sample
 
F12 2 -ans
F12 2 -ansF12 2 -ans
F12 2 -ans
 
F12 1-ans-jpg
F12 1-ans-jpgF12 1-ans-jpg
F12 1-ans-jpg
 
Sample1 v2-jpg-form
Sample1 v2-jpg-formSample1 v2-jpg-form
Sample1 v2-jpg-form
 
1exponents
1exponents1exponents
1exponents
 
3 6 introduction to sets-optional
3 6 introduction to sets-optional3 6 introduction to sets-optional
3 6 introduction to sets-optional
 
1 f5 addition and subtraction of fractions
1 f5 addition and subtraction of fractions1 f5 addition and subtraction of fractions
1 f5 addition and subtraction of fractions
 
1 f4 lcm and lcd
1 f4 lcm and lcd1 f4 lcm and lcd
1 f4 lcm and lcd
 
1 f2 fractions
1 f2 fractions1 f2 fractions
1 f2 fractions
 

Kürzlich hochgeladen

Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksSoftradix Technologies
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?XfilesPro
 

Kürzlich hochgeladen (20)

Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food Manufacturing
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other Frameworks
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping Elbows
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?
 

2 6 inequalities

  • 2. We associate each real number with a position on a line, positive numbers to the right and negative numbers to the left. Inequalities
  • 3. We associate each real number with a position on a line, positive numbers to the right and negative numbers to the left. -2 20 1 3 + -1-3 – Inequalities
  • 4. We associate each real number with a position on a line, positive numbers to the right and negative numbers to the left. -2 20 1 3 + -1-3 – 2/3 Inequalities
  • 5. We associate each real number with a position on a line, positive numbers to the right and negative numbers to the left. -2 20 1 3 + -1-3 – 2/3 2½ Inequalities
  • 6. We associate each real number with a position on a line, positive numbers to the right and negative numbers to the left. -2 20 1 3 + -1-3 – 2/3 2½ π  3.14.. Inequalities –π  –3.14..
  • 7. We associate each real number with a position on a line, positive numbers to the right and negative numbers to the left. -2 20 1 3 + -1-3 – 2/3 2½ π  3.14.. This line with each position addressed by a real number is called the real (number) line. Inequalities –π  –3.14..
  • 8. We associate each real number with a position on a line, positive numbers to the right and negative numbers to the left. -2 20 1 3 + -1-3 – 2/3 2½ π  3.14.. This line with each position addressed by a real number is called the real (number) line. Inequalities –π  –3.14.. Given two numbers corresponding to two points on the real line, we define the number to the right to be greater than the number to the left.
  • 9. We associate each real number with a position on a line, positive numbers to the right and negative numbers to the left. -2 20 1 3 + -1-3 – 2/3 2½ π  3.14.. This line with each position addressed by a real number is called the real (number) line. Inequalities +– RL –π  –3.14.. Given two numbers corresponding to two points on the real line, we define the number to the right to be greater than the number to the left.
  • 10. We associate each real number with a position on a line, positive numbers to the right and negative numbers to the left. -2 20 1 3 + -1-3 – 2/3 2½ π  3.14.. This line with each position addressed by a real number is called the real (number) line. Inequalities +– R We write this as L < R and called this the natural form because it corresponds to their respective positions on the real line. L < –π  –3.14.. Given two numbers corresponding to two points on the real line, we define the number to the right to be greater than the number to the left.
  • 11. We associate each real number with a position on a line, positive numbers to the right and negative numbers to the left. -2 20 1 3 + -1-3 – 2/3 2½ π  3.14.. This line with each position addressed by a real number is called the real (number) line. Inequalities +– R We write this as L < R and called this the natural form because it corresponds to their respective positions on the real line. This relation may also be written as R > L (less preferable). L < –π  –3.14.. Given two numbers corresponding to two points on the real line, we define the number to the right to be greater than the number to the left.
  • 12. Example A. 2 < 4, –3< –2, 0 > –1 are true statements Inequalities
  • 13. Example A. 2 < 4, –3< –2, 0 > –1 are true statements and –2 < –5 , 5 < 3 are false statements. Inequalities
  • 14. Example A. 2 < 4, –3< –2, 0 > –1 are true statements and –2 < –5 , 5 < 3 are false statements. Inequalities If we want all the numbers greater than 5, we may denote them as "all number x where 5 < x".
  • 15. Example A. 2 < 4, –3< –2, 0 > –1 are true statements and –2 < –5 , 5 < 3 are false statements. Inequalities If we want all the numbers greater than 5, we may denote them as "all number x where 5 < x". In general, we write "a < x" for all the numbers x greater than a (excluding a).
  • 16. Example A. 2 < 4, –3< –2, 0 > –1 are true statements and –2 < –5 , 5 < 3 are false statements. Inequalities If we want all the numbers greater than 5, we may denote them as "all number x where 5 < x". In general, we write "a < x" for all the numbers x greater than a (excluding a). In picture, +– a open dot a < x
  • 17. Example A. 2 < 4, –3< –2, 0 > –1 are true statements and –2 < –5 , 5 < 3 are false statements. Inequalities If we want all the numbers greater than 5, we may denote them as "all number x where 5 < x". In general, we write "a < x" for all the numbers x greater than a (excluding a). In picture, +– a open dot If we want all the numbers x greater than or equal to a (including a), we write it as a < x. a < x
  • 18. Example A. 2 < 4, –3< –2, 0 > –1 are true statements and –2 < –5 , 5 < 3 are false statements. Inequalities If we want all the numbers greater than 5, we may denote them as "all number x where 5 < x". In general, we write "a < x" for all the numbers x greater than a (excluding a). In picture, +– a open dot If we want all the numbers x greater than or equal to a (including a), we write it as a < x. In picture +– a solid dot a < x a < x
  • 19. Example A. 2 < 4, –3< –2, 0 > –1 are true statements and –2 < –5 , 5 < 3 are false statements. Inequalities If we want all the numbers greater than 5, we may denote them as "all number x where 5 < x". In general, we write "a < x" for all the numbers x greater than a (excluding a). In picture, +– a open dot If we want all the numbers x greater than or equal to a (including a), we write it as a < x. In picture +– a solid dot a < x a < x The numbers x fit the description a < x < b where a < b are all the numbers x between a and b.
  • 20. Example A. 2 < 4, –3< –2, 0 > –1 are true statements and –2 < –5 , 5 < 3 are false statements. Inequalities If we want all the numbers greater than 5, we may denote them as "all number x where 5 < x". In general, we write "a < x" for all the numbers x greater than a (excluding a). In picture, +– a open dot If we want all the numbers x greater than or equal to a (including a), we write it as a < x. In picture +– a solid dot a < x a < x The numbers x fit the description a < x < b where a < b are all the numbers x between a and b. +– a a < x < b b
  • 21. Example A. 2 < 4, –3< –2, 0 > –1 are true statements and –2 < –5 , 5 < 3 are false statements. Inequalities If we want all the numbers greater than 5, we may denote them as "all number x where 5 < x". In general, we write "a < x" for all the numbers x greater than a (excluding a). In picture, +– a open dot If we want all the numbers x greater than or equal to a (including a), we write it as a < x. In picture +– a solid dot a < x a < x The numbers x fit the description a < x < b where a < b are all the numbers x between a and b. A line segment as such is called an interval. +– a a < x < b b
  • 22. Example B. a. Draw –1 < x < 3. Inequalities
  • 23. Example B. a. Draw –1 < x < 3. Inequalities It’s in the natural form.
  • 24. Example B. a. Draw –1 < x < 3. Inequalities It’s in the natural form. Mark the numbers and x on the line in order accordingly.
  • 25. Example B. a. Draw –1 < x < 3. 0 3 + -1 – x Inequalities It’s in the natural form. Mark the numbers and x on the line in order accordingly.
  • 26. Example B. a. Draw –1 < x < 3. 0 3 + -1 – x b. Draw 0 > x > –3 Inequalities It’s in the natural form. Mark the numbers and x on the line in order accordingly.
  • 27. Example B. a. Draw –1 < x < 3. 0 3 + -1 – x b. Draw 0 > x > –3 Inequalities It’s in the natural form. Mark the numbers and x on the line in order accordingly. Put it in the natural form –3 < x < 0.
  • 28. Example B. a. Draw –1 < x < 3. 0 3 + -1 – x b. Draw 0 > x > –3 Inequalities It’s in the natural form. Mark the numbers and x on the line in order accordingly. Put it in the natural form –3 < x < 0. Then mark the numbers and x in order accordingly.
  • 29. Example B. a. Draw –1 < x < 3. 0 3 + -1 – x b. Draw 0 > x > –3 0 + -3 – x Inequalities It’s in the natural form. Mark the numbers and x on the line in order accordingly. Put it in the natural form –3 < x < 0. Then mark the numbers and x in order accordingly.
  • 30. Example B. a. Draw –1 < x < 3. 0 3 + -1 – x b. Draw 0 > x > –3 0 + -3 – x Expressions such as 2 < x > 3 or 2 < x < –3 do not have any solution. Inequalities It’s in the natural form. Mark the numbers and x on the line in order accordingly. Put it in the natural form –3 < x < 0. Then mark the numbers and x in order accordingly.
  • 31. Example B. a. Draw –1 < x < 3. 0 3 + -1 – x b. Draw 0 > x > –3 0 + -3 – x Expressions such as 2 < x > 3 or 2 < x < –3 do not have any solution. Inequalities Adding or subtracting the same quantity to both retains the inequality sign, It’s in the natural form. Mark the numbers and x on the line in order accordingly. Put it in the natural form –3 < x < 0. Then mark the numbers and x in order accordingly.
  • 32. Example B. a. Draw –1 < x < 3. 0 3 + -1 – x b. Draw 0 > x > –3 0 + -3 – x Expressions such as 2 < x > 3 or 2 < x < –3 do not have any solution. Inequalities Adding or subtracting the same quantity to both retains the inequality sign, i.e. if a < b, then a ± c < b ± c. It’s in the natural form. Mark the numbers and x on the line in order accordingly. Put it in the natural form –3 < x < 0. Then mark the numbers and x in order accordingly.
  • 33. Example B. a. Draw –1 < x < 3. 0 3 + -1 – x b. Draw 0 > x > –3 0 + -3 – x Expressions such as 2 < x > 3 or 2 < x < –3 do not have any solution. Inequalities For example 6 < 12, then 6 + 3 < 12 + 3. Adding or subtracting the same quantity to both retains the inequality sign, i.e. if a < b, then a ± c < b ± c. It’s in the natural form. Mark the numbers and x on the line in order accordingly. Put it in the natural form –3 < x < 0. Then mark the numbers and x in order accordingly.
  • 34. Example B. a. Draw –1 < x < 3. 0 3 + -1 – x b. Draw 0 > x > –3 0 + -3 – x Expressions such as 2 < x > 3 or 2 < x < –3 do not have any solution. Inequalities For example 6 < 12, then 6 + 3 < 12 + 3. We use the this fact to solve inequalities. Adding or subtracting the same quantity to both retains the inequality sign, i.e. if a < b, then a ± c < b ± c. It’s in the natural form. Mark the numbers and x on the line in order accordingly. Put it in the natural form –3 < x < 0. Then mark the numbers and x in order accordingly.
  • 35. Example C. Solve x – 3 < 12 and draw the solution. Inequalities
  • 36. Example C. Solve x – 3 < 12 and draw the solution. x – 3 < 12 add 3 to both sides x – 3 + 3 < 12 + 3 Inequalities
  • 37. Example C. Solve x – 3 < 12 and draw the solution. x – 3 < 12 add 3 to both sides x – 3 + 3 < 12 + 3 x < 15 Inequalities
  • 38. Example C. Solve x – 3 < 12 and draw the solution. x – 3 < 12 add 3 to both sides x – 3 + 3 < 12 + 3 x < 15 0 15 +– Inequalities x
  • 39. Example C. Solve x – 3 < 12 and draw the solution. x – 3 < 12 add 3 to both sides x – 3 + 3 < 12 + 3 x < 15 0 15 +– Inequalities x A number c is positive means that 0 < c.
  • 40. Example C. Solve x – 3 < 12 and draw the solution. x – 3 < 12 add 3 to both sides x – 3 + 3 < 12 + 3 x < 15 0 15 +– Inequalities x A number c is positive means that 0 < c. We may multiply or divide a positive number to the inequality and keep the same inequality sign,
  • 41. Example C. Solve x – 3 < 12 and draw the solution. x – 3 < 12 add 3 to both sides x – 3 + 3 < 12 + 3 x < 15 0 15 +– Inequalities x A number c is positive means that 0 < c. We may multiply or divide a positive number to the inequality and keep the same inequality sign, i.e. if 0 < c and a < b
  • 42. Example C. Solve x – 3 < 12 and draw the solution. x – 3 < 12 add 3 to both sides x – 3 + 3 < 12 + 3 x < 15 0 15 +– Inequalities x A number c is positive means that 0 < c. We may multiply or divide a positive number to the inequality and keep the same inequality sign, i.e. if 0 < c and a < b, then ac < bc.
  • 43. Example C. Solve x – 3 < 12 and draw the solution. x – 3 < 12 add 3 to both sides x – 3 + 3 < 12 + 3 x < 15 0 15 +– Inequalities x A number c is positive means that 0 < c. We may multiply or divide a positive number to the inequality and keep the same inequality sign, i.e. if 0 < c and a < b, then ac < bc. For example 6 < 12 is true,
  • 44. Example C. Solve x – 3 < 12 and draw the solution. x – 3 < 12 add 3 to both sides x – 3 + 3 < 12 + 3 x < 15 0 15 +– Inequalities x A number c is positive means that 0 < c. We may multiply or divide a positive number to the inequality and keep the same inequality sign, i.e. if 0 < c and a < b, then ac < bc. For example 6 < 12 is true, then multiplying by 3 3*6 < 3*12
  • 45. Example C. Solve x – 3 < 12 and draw the solution. x – 3 < 12 add 3 to both sides x – 3 + 3 < 12 + 3 x < 15 0 15 +– Inequalities x A number c is positive means that 0 < c. We may multiply or divide a positive number to the inequality and keep the same inequality sign, i.e. if 0 < c and a < b, then ac < bc. For example 6 < 12 is true, then multiplying by 3 3*6 < 3*12 or 18 < 36 is also true.
  • 46. Example C. Solve x – 3 < 12 and draw the solution. x – 3 < 12 add 3 to both sides x – 3 + 3 < 12 + 3 x < 15 0 15 +– Inequalities x A number c is positive means that 0 < c. We may multiply or divide a positive number to the inequality and keep the same inequality sign, i.e. if 0 < c and a < b, then ac < bc. Example D. Solve 3x > 12 and draw the solution. For example 6 < 12 is true, then multiplying by 3 3*6 < 3*12 or 18 < 36 is also true.
  • 47. Example C. Solve x – 3 < 12 and draw the solution. x – 3 < 12 add 3 to both sides x – 3 + 3 < 12 + 3 x < 15 0 15 +– Inequalities x A number c is positive means that 0 < c. We may multiply or divide a positive number to the inequality and keep the same inequality sign, i.e. if 0 < c and a < b, then ac < bc. Example D. Solve 3x > 12 and draw the solution. 3x > 12 For example 6 < 12 is true, then multiplying by 3 3*6 < 3*12 or 18 < 36 is also true.
  • 48. Example C. Solve x – 3 < 12 and draw the solution. x – 3 < 12 add 3 to both sides x – 3 + 3 < 12 + 3 x < 15 0 15 +– Inequalities x A number c is positive means that 0 < c. We may multiply or divide a positive number to the inequality and keep the same inequality sign, i.e. if 0 < c and a < b, then ac < bc. Example D. Solve 3x > 12 and draw the solution. 3x > 12 divide by 3 and keep the inequality sign 3x/3 > 12/3 For example 6 < 12 is true, then multiplying by 3 3*6 < 3*12 or 18 < 36 is also true.
  • 49. Example C. Solve x – 3 < 12 and draw the solution. x – 3 < 12 add 3 to both sides x – 3 + 3 < 12 + 3 x < 15 0 15 +– Inequalities x A number c is positive means that 0 < c. We may multiply or divide a positive number to the inequality and keep the same inequality sign, i.e. if 0 < c and a < b, then ac < bc. Example D. Solve 3x > 12 and draw the solution. 3x > 12 divide by 3 and keep the inequality sign 3x/3 > 12/3 x > 4 or 4 < x For example 6 < 12 is true, then multiplying by 3 3*6 < 3*12 or 18 < 36 is also true.
  • 50. Example C. Solve x – 3 < 12 and draw the solution. x – 3 < 12 add 3 to both sides x – 3 + 3 < 12 + 3 x < 15 0 15 +– Inequalities x A number c is positive means that 0 < c. We may multiply or divide a positive number to the inequality and keep the same inequality sign, i.e. if 0 < c and a < b, then ac < bc. Example D. Solve 3x > 12 and draw the solution. 3x > 12 divide by 3 and keep the inequality sign 3x/3 > 12/3 x > 4 or 4 < x 40 +– For example 6 < 12 is true, then multiplying by 3 3*6 < 3*12 or 18 < 36 is also true. x
  • 51. A number c is negative means c < 0. Inequalities
  • 52. A number c is negative means c < 0. Multiplying or dividing by an negative number reverses the inequality sign, Inequalities
  • 53. A number c is negative means c < 0. Multiplying or dividing by an negative number reverses the inequality sign, i.e. if c < 0 and a < b then Inequalities
  • 54. A number c is negative means c < 0. Multiplying or dividing by an negative number reverses the inequality sign, i.e. if c < 0 and a < b then ca > cb . Inequalities
  • 55. A number c is negative means c < 0. Multiplying or dividing by an negative number reverses the inequality sign, i.e. if c < 0 and a < b then ca > cb . Inequalities For example 6 < 12 is true.
  • 56. A number c is negative means c < 0. Multiplying or dividing by an negative number reverses the inequality sign, i.e. if c < 0 and a < b then ca > cb . Inequalities For example 6 < 12 is true. If we multiply –1 to both sides then (–1)6 > (–1)12 – 6 > –12 which is true.
  • 57. A number c is negative means c < 0. Multiplying or dividing by an negative number reverses the inequality sign, i.e. if c < 0 and a < b then ca > cb . Inequalities For example 6 < 12 is true. If we multiply –1 to both sides then (–1)6 > (–1)12 – 6 > –12 which is true. Multiplying by –1 switches the left-right positions of the originals.
  • 58. A number c is negative means c < 0. Multiplying or dividing by an negative number reverses the inequality sign, i.e. if c < 0 and a < b then ca > cb . Inequalities 60 +– 12< For example 6 < 12 is true. If we multiply –1 to both sides then (–1)6 > (–1)12 – 6 > –12 which is true. Multiplying by –1 switches the left-right positions of the originals.
  • 59. A number c is negative means c < 0. Multiplying or dividing by an negative number reverses the inequality sign, i.e. if c < 0 and a < b then ca > cb . Inequalities 60 +– 12–6 < For example 6 < 12 is true. If we multiply –1 to both sides then (–1)6 > (–1)12 – 6 > –12 which is true. Multiplying by –1 switches the left-right positions of the originals.
  • 60. A number c is negative means c < 0. Multiplying or dividing by an negative number reverses the inequality sign, i.e. if c < 0 and a < b then ca > cb . Inequalities 60 +– 12–6–12 << For example 6 < 12 is true. If we multiply –1 to both sides then (–1)6 > (–1)12 – 6 > –12 which is true. Multiplying by –1 switches the left-right positions of the originals.
  • 61. A number c is negative means c < 0. Multiplying or dividing by an negative number reverses the inequality sign, i.e. if c < 0 and a < b then ca > cb . Example E. Solve –x + 2 < 5 and draw the solution. Inequalities 60 +– 12–6–12 << For example 6 < 12 is true. If we multiply –1 to both sides then (–1)6 > (–1)12 – 6 > –12 which is true. Multiplying by –1 switches the left-right positions of the originals.
  • 62. A number c is negative means c < 0. Multiplying or dividing by an negative number reverses the inequality sign, i.e. if c < 0 and a < b then ca > cb . Example E. Solve –x + 2 < 5 and draw the solution. –x + 2 < 5 Inequalities 60 +– 12–6–12 << For example 6 < 12 is true. If we multiply –1 to both sides then (–1)6 > (–1)12 – 6 > –12 which is true. Multiplying by –1 switches the left-right positions of the originals.
  • 63. A number c is negative means c < 0. Multiplying or dividing by an negative number reverses the inequality sign, i.e. if c < 0 and a < b then ca > cb . Example E. Solve –x + 2 < 5 and draw the solution. –x + 2 < 5 subtract 2 from both sides –x < 3 Inequalities 60 +– 12–6–12 << For example 6 < 12 is true. If we multiply –1 to both sides then (–1)6 > (–1)12 – 6 > –12 which is true. Multiplying by –1 switches the left-right positions of the originals.
  • 64. A number c is negative means c < 0. Multiplying or dividing by an negative number reverses the inequality sign, i.e. if c < 0 and a < b then ca > cb . Example E. Solve –x + 2 < 5 and draw the solution. –x + 2 < 5 subtract 2 from both sides –x < 3 multiply by –1 to get x, reverse the inequality –(–x) > –3 x > –3 Inequalities 60 +– 12–6–12 << For example 6 < 12 is true. If we multiply –1 to both sides then (–1)6 > (–1)12 – 6 > –12 which is true. Multiplying by –1 switches the left-right positions of the originals.
  • 65. A number c is negative means c < 0. Multiplying or dividing by an negative number reverses the inequality sign, i.e. if c < 0 and a < b then ca > cb . Example E. Solve –x + 2 < 5 and draw the solution. –x + 2 < 5 subtract 2 from both sides –x < 3 multiply by –1 to get x, reverse the inequality –(–x) > –3 x > –3 or –3 < x Inequalities 60 +– 12–6–12 << For example 6 < 12 is true. If we multiply –1 to both sides then (–1)6 > (–1)12 – 6 > –12 which is true. Multiplying by –1 switches the left-right positions of the originals.
  • 66. A number c is negative means c < 0. Multiplying or dividing by an negative number reverses the inequality sign, i.e. if c < 0 and a < b then ca > cb . Example E. Solve –x + 2 < 5 and draw the solution. –x + 2 < 5 subtract 2 from both sides –x < 3 multiply by –1 to get x, reverse the inequality –(–x) > –3 x > –3 or –3 < x 0 + -3 – Inequalities 60 +– 12–6–12 << For example 6 < 12 is true. If we multiply –1 to both sides then (–1)6 > (–1)12 – 6 > –12 which is true. Multiplying by –1 switches the left-right positions of the originals.
  • 67. To solve inequalities: 1. Simplify both sides of the inequalities Inequalities
  • 68. To solve inequalities: 1. Simplify both sides of the inequalities 2. Gather the x-terms to one side and the number-terms to the other sides Inequalities
  • 69. To solve inequalities: 1. Simplify both sides of the inequalities 2. Gather the x-terms to one side and the number-terms to the other sides (use the “change side-change sign” rule). Inequalities
  • 70. To solve inequalities: 1. Simplify both sides of the inequalities 2. Gather the x-terms to one side and the number-terms to the other sides (use the “change side-change sign” rule). 3. Multiply or divide to get x. Inequalities
  • 71. To solve inequalities: 1. Simplify both sides of the inequalities 2. Gather the x-terms to one side and the number-terms to the other sides (use the “change side-change sign” rule). 3. Multiply or divide to get x. If we multiply or divide by negative numbers to both sides, the inequality sign must be turned around. Inequalities
  • 72. To solve inequalities: 1. Simplify both sides of the inequalities 2. Gather the x-terms to one side and the number-terms to the other sides (use the “change side-change sign” rule). 3. Multiply or divide to get x. If we multiply or divide by negative numbers to both sides, the inequality sign must be turned around. This rule can be avoided by keeping the x-term positive. Inequalities
  • 73. To solve inequalities: 1. Simplify both sides of the inequalities 2. Gather the x-terms to one side and the number-terms to the other sides (use the “change side-change sign” rule). 3. Multiply or divide to get x. If we multiply or divide by negative numbers to both sides, the inequality sign must be turned around. This rule can be avoided by keeping the x-term positive. Inequalities Example F. Solve 3x + 5 > x + 9
  • 74. To solve inequalities: 1. Simplify both sides of the inequalities 2. Gather the x-terms to one side and the number-terms to the other sides (use the “change side-change sign” rule). 3. Multiply or divide to get x. If we multiply or divide by negative numbers to both sides, the inequality sign must be turned around. This rule can be avoided by keeping the x-term positive. Inequalities Example F. Solve 3x + 5 > x + 9 3x + 5 > x + 9 move the x and 5, change side-change sign
  • 75. To solve inequalities: 1. Simplify both sides of the inequalities 2. Gather the x-terms to one side and the number-terms to the other sides (use the “change side-change sign” rule). 3. Multiply or divide to get x. If we multiply or divide by negative numbers to both sides, the inequality sign must be turned around. This rule can be avoided by keeping the x-term positive. Inequalities Example F. Solve 3x + 5 > x + 9 3x + 5 > x + 9 move the x and 5, change side-change sign 3x – x > 9 – 5
  • 76. To solve inequalities: 1. Simplify both sides of the inequalities 2. Gather the x-terms to one side and the number-terms to the other sides (use the “change side-change sign” rule). 3. Multiply or divide to get x. If we multiply or divide by negative numbers to both sides, the inequality sign must be turned around. This rule can be avoided by keeping the x-term positive. Inequalities Example F. Solve 3x + 5 > x + 9 3x + 5 > x + 9 move the x and 5, change side-change sign 3x – x > 9 – 5 2x > 4
  • 77. To solve inequalities: 1. Simplify both sides of the inequalities 2. Gather the x-terms to one side and the number-terms to the other sides (use the “change side-change sign” rule). 3. Multiply or divide to get x. If we multiply or divide by negative numbers to both sides, the inequality sign must be turned around. This rule can be avoided by keeping the x-term positive. Inequalities Example F. Solve 3x + 5 > x + 9 3x + 5 > x + 9 move the x and 5, change side-change sign 3x – x > 9 – 5 2x > 4 div. 2 2x 2 4 2>
  • 78. To solve inequalities: 1. Simplify both sides of the inequalities 2. Gather the x-terms to one side and the number-terms to the other sides (use the “change side-change sign” rule). 3. Multiply or divide to get x. If we multiply or divide by negative numbers to both sides, the inequality sign must be turned around. This rule can be avoided by keeping the x-term positive. Inequalities Example F. Solve 3x + 5 > x + 9 3x + 5 > x + 9 move the x and 5, change side-change sign 3x – x > 9 – 5 2x > 4 div. 2 2x 2 4 2> x > 2 or 2 < x
  • 79. To solve inequalities: 1. Simplify both sides of the inequalities 2. Gather the x-terms to one side and the number-terms to the other sides (use the “change side-change sign” rule). 3. Multiply or divide to get x. If we multiply or divide by negative numbers to both sides, the inequality sign must be turned around. This rule can be avoided by keeping the x-term positive. Inequalities Example F. Solve 3x + 5 > x + 9 3x + 5 > x + 9 move the x and 5, change side-change sign 3x – x > 9 – 5 2x > 4 div. 2 20 +– 2x 2 4 2> x > 2 or 2 < x
  • 80. Example G. Solve 3(2 – x) > 2(x + 9) – 2x Inequalities
  • 81. Example G. Solve 3(2 – x) > 2(x + 9) – 2x 3(2 – x) > 2(x + 9) – 2x simplify each side Inequalities
  • 82. Example G. Solve 3(2 – x) > 2(x + 9) – 2x 3(2 – x) > 2(x + 9) – 2x simplify each side 6 – 3x > 2x + 18 – 2x Inequalities
  • 83. Example G. Solve 3(2 – x) > 2(x + 9) – 2x 3(2 – x) > 2(x + 9) – 2x simplify each side 6 – 3x > 2x + 18 – 2x 6 – 3x > 18 Inequalities
  • 84. Example G. Solve 3(2 – x) > 2(x + 9) – 2x 3(2 – x) > 2(x + 9) – 2x simplify each side 6 – 3x > 2x + 18 – 2x 6 – 3x > 18 move 18 and –3x (change sign) 6 – 18 > 3x Inequalities
  • 85. Example G. Solve 3(2 – x) > 2(x + 9) – 2x 3(2 – x) > 2(x + 9) – 2x simplify each side 6 – 3x > 2x + 18 – 2x 6 – 3x > 18 move 18 and –3x (change sign) 6 – 18 > 3x – 12 > 3x Inequalities
  • 86. Example G. Solve 3(2 – x) > 2(x + 9) – 2x 3(2 – x) > 2(x + 9) – 2x simplify each side 6 – 3x > 2x + 18 – 2x 6 – 3x > 18 move 18 and –3x (change sign) 6 – 18 > 3x – 12 > 3x –12 3 3x 3 > div. by 3 (no need to switch >) Inequalities
  • 87. Example G. Solve 3(2 – x) > 2(x + 9) – 2x 3(2 – x) > 2(x + 9) – 2x simplify each side 6 – 3x > 2x + 18 – 2x 6 – 3x > 18 move 18 and –3x (change sign) 6 – 18 > 3x – 12 > 3x –12 3 3x 3 > –4 > x or x < –4 div. by 3 (no need to switch >) Inequalities
  • 88. Example G. Solve 3(2 – x) > 2(x + 9) – 2x 3(2 – x) > 2(x + 9) – 2x simplify each side 6 – 3x > 2x + 18 – 2x 6 – 3x > 18 move 18 and –3x (change sign) 6 – 18 > 3x – 12 > 3x 0 + –12 3 3x 3 > -4 div. by 3 (no need to switch >) Inequalities –4 > x or x < –4
  • 89. Example G. Solve 3(2 – x) > 2(x + 9) – 2x 3(2 – x) > 2(x + 9) – 2x simplify each side 6 – 3x > 2x + 18 – 2x 6 – 3x > 18 move 18 and –3x (change sign) 6 – 18 > 3x – 12 > 3x 0 + –12 3 3x 3 > -4 div. by 3 (no need to switch >) Inequalities We also have inequalities in the form of intervals. –4 > x or x < –4
  • 90. Example G. Solve 3(2 – x) > 2(x + 9) – 2x 3(2 – x) > 2(x + 9) – 2x simplify each side 6 – 3x > 2x + 18 – 2x 6 – 3x > 18 move 18 and –3x (change sign) 6 – 18 > 3x – 12 > 3x 0 + –12 3 3x 3 > -4 div. by 3 (no need to switch >) Inequalities We also have inequalities in the form of intervals. We solve them by +, –, * , / to all three parts of the inequalities. –4 > x or x < –4
  • 91. Example G. Solve 3(2 – x) > 2(x + 9) – 2x 3(2 – x) > 2(x + 9) – 2x simplify each side 6 – 3x > 2x + 18 – 2x 6 – 3x > 18 move 18 and –3x (change sign) 6 – 18 > 3x – 12 > 3x 0 + –12 3 3x 3 > -4 div. by 3 (no need to switch >) Inequalities We also have inequalities in the form of intervals. We solve them by +, –, * , / to all three parts of the inequalities. Again, we + or – remove the number term in the middle first, –4 > x or x < –4
  • 92. Example G. Solve 3(2 – x) > 2(x + 9) – 2x 3(2 – x) > 2(x + 9) – 2x simplify each side 6 – 3x > 2x + 18 – 2x 6 – 3x > 18 move 18 and –3x (change sign) 6 – 18 > 3x – 12 > 3x 0 + –12 3 3x 3 > -4 div. by 3 (no need to switch >) Inequalities We also have inequalities in the form of intervals. We solve them by +, –, * , / to all three parts of the inequalities. Again, we + or – remove the number term in the middle first, then divide or multiply to get x. –4 > x or x < –4
  • 93. Example G. Solve 3(2 – x) > 2(x + 9) – 2x 3(2 – x) > 2(x + 9) – 2x simplify each side 6 – 3x > 2x + 18 – 2x 6 – 3x > 18 move 18 and –3x (change sign) 6 – 18 > 3x – 12 > 3x 0 + –12 3 3x 3 > -4 div. by 3 (no need to switch >) Inequalities We also have inequalities in the form of intervals. We solve them by +, –, * , / to all three parts of the inequalities. Again, we + or – remove the number term in the middle first, then divide or multiply to get x. The answer is an interval of numbers. –4 > x or x < –4
  • 94. Example H. (Interval Inequality) Solve 12 > –2x + 6 > –4 and draw Inequalities
  • 95. Example H. (Interval Inequality) Solve 12 > –2x + 6 > –4 and draw. 12 > –2x + 6 > –4 subtract 6 –6 –6 –6 Inequalities
  • 96. Example H. (Interval Inequality) Solve 12 > –2x + 6 > –4 and draw. 12 > –2x + 6 > –4 subtract 6 –6 –6 –6 6 > –2x > –10 Inequalities
  • 97. Example H. (Interval Inequality) Solve 12 > –2x + 6 > –4 and draw. 12 > –2x + 6 > –4 subtract 6 –6 –6 –6 6 > –2x > –10 div. by -2, switch inequality sign 6 -2 -2x -2< -10 -2 < Inequalities
  • 98. Example H. (Interval Inequality) Solve 12 > –2x + 6 > –4 and draw. 12 > –2x + 6 > –4 subtract 6 –6 –6 –6 6 > –2x > –10 -3 < x < 5 div. by -2, switch inequality sign 6 -2 -2x -2< -10 -2 < Inequalities
  • 99. Example H. (Interval Inequality) Solve 12 > –2x + 6 > –4 and draw. 12 > –2x + 6 > –4 subtract 6 –6 –6 –6 6 > –2x > –10 0 + -3 < x < 5 5 div. by -2, switch inequality sign 6 -2 -2x -2< -10 -2 < -3 Inequalities
  • 100. Inequalities Exercise. A. Draw the following Inequalities. Indicate clearly whether the end points are included or not. 1. x < 3 2. –5 ≤ x 3. x < –8 4. x ≤ 12 B. Write in the natural form then draw them. 5. x ≥ 3 6. –5 > x 7. x ≥ –8 8. x > 12 C. Draw the following intervals, state so if it is impossible. 9. 6 > x ≥ 3 10. –5 < x ≤ 2 11. 1 > x ≥ –8 12. 4 < x ≤ 2 13. 6 > x ≥ 8 14. –5 > x ≤ 2 15. –7 ≤ x ≤ –3 16. –7 ≤ x ≤ –9 D. Solve the following Inequalities and draw the solution. 17. x + 5 < 3 18. –5 ≤ 2x + 3 19. 3x + 1 < –8 20. 2x + 3 ≤ 12 – x 21. –3x + 5 ≥ 1 – 4x 22. 2(x + 2) ≥ 5 – (x – 1) 23. 3(x – 1) + 2 ≤ – 2x – 9 24. –2(x – 3) > 2(–x – 1) + 3x 25. –(x + 4) – 2 ≤ 4(x – 1) 26. x + 2(x – 3) < 2(x – 1) – 2 27. –2(x – 3) + 3 ≥ 2(x – 1) + 3x + 13
  • 101. Inequalities F. Solve the following interval inequalities. 28. –4 ≤ 2 x 29. 7 > 3 –x 30. < –4–x E. Clear the denominator first then solve and draw the solution. 5 x2 3 1 2 3 2 + ≥ x31. x4 –3 3 –4 – 1> x32. x 2 8 3 3 4 5– ≤33. x 8 12 –5 7 1+ >34. x 2 3 –3 2 3 4 4 1–+ x35. x4 6 5 5 3 –1 – 2+ < x36. x 12 2 7 3 6 1 4 3–– ≥ x37. ≤ 40. – 2 < x + 2 < 5 41. –1 ≥ 2x – 3 ≥ –11 42. –5 ≤ 1 – 3x < 10 43. 11 > –1 – 3x > –7 38. –6 ≤ 3x < 12 39. 8 > –2x > –4