Herzlich Willkommen
Datenqualität - Voraussetzung
für ein funktionierendes
Qualitäts-Management-System
Datenqualität 04/16 │ LTL 1 │ Folie 1
Vorstellung ACT
ACT IT Holding GmbH
ACT
IT-Consulting & Services
AG
ACT
Development ...
Datenqualität 04/16 │ LTL 1 │ Folie 2
Zusammenhang Datenqualität & Entscheidungen
Entscheidungen gut
Annahmen richtig
Date...
Datenqualität 04/16 │ LTL 1 │ Folie 3
Definition
Datenqualität
Datenqualität beschreibt die Korrektheit, die Relevanz und ...
Datenqualität 04/16 │ LTL 1 │ Folie 4
15 Dimensionen der Informationsqualität
Zugänglichkeit Bearbeitbarkeit
Verständlichk...
Datenqualität 04/16 │ LTL 1 │ Folie 5
Datenqualitätskriterien
Korrektheit Konsistenz Zuverlässigkeit Vollständigkeit
Genau...
Datenqualität 04/16 │ LTL 1 │ Folie 6
Beispiel 1
Datenqualität 04/16 │ LTL 1 │ Folie 7
Beispiel 2
Datenqualität 04/16 │ LTL 1 │ Folie 8
Beispiel 3 (Handelsblatt)
Zu dem Fehler sei es
gekommen, weil eine
Mitarbeiterin sta...
Datenqualität 04/16 │ LTL 1 │ Folie 9
Schäden durch schlechte Datenqualität
› Datenqualitätsprobleme kosten die US-
Wirtsc...
Datenqualität 04/16 │ LTL 1 │ Folie 10
Internationale Studie zu Datenqualität (2014)
(Quelle: Datenqualität als kritischer...
Datenqualität 04/16 │ LTL 1 │ Folie 11
Studie zu BigData in der Industrie, 02/2015, MHP
Datenqualität eines der wichtigste...
Datenqualität 04/16 │ LTL 1 │ Folie 12
Warum Qualitätsmanagement (QM)?
Qualität ist die Erfüllung der Anforderungen!
Ergeb...
Datenqualität 04/16 │ LTL 1 │ Folie 13
Warum DQM/IQM?
wirtschaftliches
Interesse
freiwillig -> erkennbarer Nutzen
Complian...
Datenqualität 04/16 │ LTL 1 │ Folie 14
Compliance und Datenqualität
› CoBIT (Control Objectives for
Information and Relate...
Datenqualität 04/16 │ LTL 1 │ Folie 15
Umsetzungsleitfaden
ISO 8000
ISO 9001
Best Practice
wirtschaftlicher
Nutzen
Basel I...
Datenqualität 04/16 │ LTL 1 │ Folie 16
Aufbau und Struktur ISO/TS 8000
Part
100
Part
102
Part
110
Part
120
Part
130
Part
1...
Datenqualität 04/16 │ LTL 1 │ Folie 17
DQM/IQM integrierter Baustein im Management System
Anforderungen
Nutzen für den Kun...
Datenqualität 04/16 │ LTL 1 │ Folie 18
ISO 9000:2015 - Faktengestützte Entscheidungsfindung und
Datenqualität
Aussage
Ents...
Datenqualität 04/16 │ LTL 1 │ Folie 19
DIN EN ISO 9000:2015 - Begriffe
Daten 3.8.1
(Fakten über ein Objekt)
Objektiver Nac...
Datenqualität 04/16 │ LTL 1 │ Folie 20
Entwurf der ISO 9001:2015 - Risikobasiertes Denken
Umgang mit Risiken
Organisatione...
Datenqualität 04/16 │ LTL 1 │ Folie 21
Anforderungen aus Normen an die Organisation
Daten- u. Informationsqualität
Daten- ...
Datenqualität 04/16 │ LTL 1 │ Folie 22
Von den Daten zum Wissen zur Wettbewerbsfähigkeit
(Wissenstreppe n. North, 1998 + A...
Datenqualität 04/16 │ LTL 1 │ Folie 23
DQM – Best Practice
Definieren
Messen
Analysieren
Verbessern
Monitoren /
Steuern
Datenqualität 04/16 │ LTL 1 │ Folie 24
DQM Implementierungsprozess
Mit einem klar abgegrenzten und nutzenstiftenden Projek...
Datenqualität 04/16 │ LTL 1 │ Folie 25
Fazit und Empfehlung
› Daten u. Informationen sind Produkte (Vermögenswerte) und
er...
Datenqualität 04/16 │ LTL 1 │ Folie 26
Weitere Informationen
Prozessorientiertes Datenqualitätsmanagement
https://www.qz-o...
Datenqualität 04/16 │ LTL 1 │ Folie 27
HABEN SIE FRAGEN?
VIELEN DANK FÜR IHRE AUFMERKSAMKEIT.
Kontaktdaten
Deutsche Gesell...
Nächste SlideShare
Wird geladen in …5
×

Datenqualität (DQ) - Voraussetzung für ein funktionierendes Qualitäts Management System (QMS)

500 Aufrufe

Veröffentlicht am

Vortrag von der Control 2016 im Rahmen der DGQ-Foren.

Veröffentlicht in: Business
0 Kommentare
0 Gefällt mir
Statistik
Notizen
  • Als Erste(r) kommentieren

  • Gehören Sie zu den Ersten, denen das gefällt!

Keine Downloads
Aufrufe
Aufrufe insgesamt
500
Auf SlideShare
0
Aus Einbettungen
0
Anzahl an Einbettungen
100
Aktionen
Geteilt
0
Downloads
0
Kommentare
0
Gefällt mir
0
Einbettungen 0
Keine Einbettungen

Keine Notizen für die Folie

Datenqualität (DQ) - Voraussetzung für ein funktionierendes Qualitäts Management System (QMS)

  1. 1. Herzlich Willkommen Datenqualität - Voraussetzung für ein funktionierendes Qualitäts-Management-System
  2. 2. Datenqualität 04/16 │ LTL 1 │ Folie 1 Vorstellung ACT ACT IT Holding GmbH ACT IT-Consulting & Services AG ACT Development & Integration GmbH ACT Expert Services GmbH IT-Business Consulting IT-Infrastruktur Korrespondenz- und Outputmanagement IT-Operations Governance Methoden Vertrieb Marketing Administration Recruiting ACT Training Center Mitarbeiter: 170 Ø Umsatz: 18 Mio. € Sitz: Niederkassel bei Bonn Gesellschafter: ACT Management, keine Fremdbeteiligung Kunden: Namhafte Kunden in Deutschland, Österreich, Schweiz Portfolio: Business Analytics & Durchsatzmanagement; IT-Infrastruktur, Planung u. Projekte; Output Management u. Software Engineering; IT-Betrieb u. Sourcing; Seminare: PRINCE2, PMI, CCPM, ITIL, ISO/IEC 20000, Datenqualitätsmanagement (DQM)
  3. 3. Datenqualität 04/16 │ LTL 1 │ Folie 2 Zusammenhang Datenqualität & Entscheidungen Entscheidungen gut Annahmen richtig Daten- u. Informationen korrekt Daten-/Informationsqualität hoch Grundsatz DIN EN ISO9000:2015 Faktengestützte Entscheidungsfindung
  4. 4. Datenqualität 04/16 │ LTL 1 │ Folie 3 Definition Datenqualität Datenqualität beschreibt die Korrektheit, die Relevanz und die Verlässlichkeit von Daten, abhängig vom Zweck, die die Daten in einem bestimmten Zusammenhang erfüllen sollen. Datenqualitätsmanagement Datenqualitätsmanagement bezeichnet alle Maßnahmen, die eine vermögenswertorientierte Betrachtung , Steuerung und Qualitätssicherung von Daten in einer Organisation ermöglichen. (vgl. http://www.enzyklopaedie-der-wirtschaftsinformatik.de/wi-enzyklopaedie/lexikon/daten- wissen/Datenmanagement/Datenmanagement--Konzepte-des/Datenqualitatsmanagement)
  5. 5. Datenqualität 04/16 │ LTL 1 │ Folie 4 15 Dimensionen der Informationsqualität Zugänglichkeit Bearbeitbarkeit Verständlichkeit Übersichtlichkeit Einheitliche Darstellung eindeutige Auslegbarkeit systemunterstützt inhärent zweck- abhängig Hohes Ansehen Fehlerfreiheit Objektivität Glaub- würdigkeit darstellungsbezogen Aktualität Wertschöpfung Vollständigkeit Relevanz IQ Quelle: DGIQ e.V.
  6. 6. Datenqualität 04/16 │ LTL 1 │ Folie 5 Datenqualitätskriterien Korrektheit Konsistenz Zuverlässigkeit Vollständigkeit Genauigkeit Aktualität Redundanzfreiheit Relevanz Einheitlichkeit Eindeutigkeit Verständlichkeit
  7. 7. Datenqualität 04/16 │ LTL 1 │ Folie 6 Beispiel 1
  8. 8. Datenqualität 04/16 │ LTL 1 │ Folie 7 Beispiel 2
  9. 9. Datenqualität 04/16 │ LTL 1 │ Folie 8 Beispiel 3 (Handelsblatt) Zu dem Fehler sei es gekommen, weil eine Mitarbeiterin statt der zu zahlenden Summe eine Kundennummer in das Formular kopiert hatte.
  10. 10. Datenqualität 04/16 │ LTL 1 │ Folie 9 Schäden durch schlechte Datenqualität › Datenqualitätsprobleme kosten die US- Wirtschaft jährlich mehr als 600 Mrd. Dollar* › Fehlerhafte Warenpreise in Artikel-DB des US-Einzelhandels - Kosten für Konsumenten: 2.5 Mrd $ / Jahr* › nach Meta Group: 35% aller IT-Projekte scheitern an mangelnder Datenqualität* › US-Finanzbehörde 1992: knapp 100.000 Steuererstattungsbescheide nicht zustellbar** › US-Post 2004: von 100.000 Massen-Postsendungen bis zu 7.000 aufgrund von Adressfehlern nicht zustellbar ** * (2004) Prof. Dr. Klaus Kruczynski, Hochschule für Technik, Wirtschaft und Kultur Leipzig ** (2005) Kai-Uwe Sattler, TU Ilmenau (10. Datenbank-Tutorientage Karlsruhe)
  11. 11. Datenqualität 04/16 │ LTL 1 │ Folie 10 Internationale Studie zu Datenqualität (2014) (Quelle: Datenqualität als kritischer Erfolgsfaktor, Experian Marketing Services) Parameter zur Studie Teilnehmer: 1200 Branchen: Finanzindustrie, öffentlicher Sektor, Einzelhandel, Produktionsindustrie, Dienstleistungsbranche, Bildungssektor. Positionen: oberste Führungskräfte, Vice Presidents, Geschäftsführer, Manager und Mitarbeiter im Bereich Datenverwaltung und Datenmanagement.
  12. 12. Datenqualität 04/16 │ LTL 1 │ Folie 11 Studie zu BigData in der Industrie, 02/2015, MHP Datenqualität eines der wichtigsten Zukunftsaufgaben im BIG-DATA- Management › Nutzen von Big Data › Kundenansprache (58%): Big Data ermöglicht es, die Kunden besser zu verstehen und dann gezielter anzusprechen. › Prognosen (48%): Mithilfe von Big Data lassen sich genauere Prognosen erstellen. › Entwicklung (46%): Mit Big Data können Auswertungen erstellt werden, deren Ergebnisse in die Entwicklung von Produkten und Dienstleistungen einfließen. › Ergebnisse zu Datenqualitätsmanagement › etwa 40% der Befragten (254) gaben an, dass die Datenqualität im Unternehmen unzureichend oder schlecht sei. › Unternehmen, die der Spitzengruppe (24% der Befragten Unternehmen) zugeordnet wurden, haben ein ausgeprägtes Bewusstsein für den Wert einer hohen Datenqualität entwickelt, im Gegensatz zu der Verfolgergruppe. Quelle: MHP, a Porsche Company, http://www.mhp.com/de/studien/ Fazit Um Big-Data-Initiativen erfolgreich zum Ziel zu führen, bedarf es einerseits einer klaren Strategie und anderseits einer qualitativ hochwertigen Datenaufbereitung. Diese beiden Maßnahmen machen erfahrungsgemäß bereits 80% des Gesamtaufwandes, aber auch den Erfolg von Big-Data-Projekten aus.
  13. 13. Datenqualität 04/16 │ LTL 1 │ Folie 12 Warum Qualitätsmanagement (QM)? Qualität ist die Erfüllung der Anforderungen! Ergebnis: Produkte, Dienstleistungen und Informationen in der geforderten Qualität. Wer stellt die Anforderungen? Kunde, Organisation, Gesetzgeber, Eigentümer, Lieferanten, Mitarbeiter
  14. 14. Datenqualität 04/16 │ LTL 1 │ Folie 13 Warum DQM/IQM? wirtschaftliches Interesse freiwillig -> erkennbarer Nutzen Compliance (Regelkonformität) unfreiwillig -> auferlegter Nutzen
  15. 15. Datenqualität 04/16 │ LTL 1 │ Folie 14 Compliance und Datenqualität › CoBIT (Control Objectives for Information and Related Technology) › ITIL (Information Technology Infrastructure Library) › GoBD (Grundsätze zur ordnungsmäßigen Führung und Aufbewahrung von Büchern, Aufzeichnungen und Unterlagen in elektronischer Form sowie zum Datenzugriff) › Basel III › Solvency II › DIN EN ISO 9000:2015 › DIN EN ISO 9001:2015 Daten, … generieren einen Wert für das Unternehmen ... Genauigkeit, Verfügbarkeit, Aktualität und Qualität von Daten Prüfung und Verbesserung der Datenqualität „Lückenlose“ progressive und retrograde Auswertbarkeit Daten prüfen und sicherstellen, dass die Daten konsistent sind … … darauf zu achten, die Eignung und Angemessenheit der erhobenen Daten auch zu bewerten und formal festzustellen.
  16. 16. Datenqualität 04/16 │ LTL 1 │ Folie 15 Umsetzungsleitfaden ISO 8000 ISO 9001 Best Practice wirtschaftlicher Nutzen Basel III Solvency II GoBD ITIL Normen
  17. 17. Datenqualität 04/16 │ LTL 1 │ Folie 16 Aufbau und Struktur ISO/TS 8000 Part 100 Part 102 Part 110 Part 120 Part 130 Part 140 Einführung Metriken Abkürzungen Definitionen Beschreibungen Qualitäts- managementsystem DIN EN ISO 9001 Konzeptionelles Datenmodell Fehlerfreiheit im Rahmen von Datenaustausch- formaten (Schnittstellen) Vollständigkeit
  18. 18. Datenqualität 04/16 │ LTL 1 │ Folie 17 DQM/IQM integrierter Baustein im Management System Anforderungen Nutzen für den Kunden*2 realisieren!€*1 Zuverlässigkeit Politik / Strategie Ziele Kunde*2 Eigentümer*1 Gesellschaft Mitarbeiter LieferantDQM/IQM Relevant für Entscheidungs- Transparenz Daten + Informationen Abbildung der Realität QMS Risikobetrachtung/-bewertung (DIN EN ISO 9001:2015)
  19. 19. Datenqualität 04/16 │ LTL 1 │ Folie 18 ISO 9000:2015 - Faktengestützte Entscheidungsfindung und Datenqualität Aussage Entscheidungen auf Grundlage der Analyse u. Auswertung v. Daten u. Informationen führen wahrscheinlich eher zu den gewünschten Ergebnissen. Begründung Tatsachen, Nachweise u. Datenanalyse führen zu größerer Objektivität u. Vertrauen in die Entscheidungsfindung. Maßnahmen Sicherstellen, dass Daten u. Informationen ausreichend präzise, verlässlich u. sicher sind.
  20. 20. Datenqualität 04/16 │ LTL 1 │ Folie 19 DIN EN ISO 9000:2015 - Begriffe Daten 3.8.1 (Fakten über ein Objekt) Objektiver Nachweis 3.8.3 (Daten, welche die Existenz oder Wahrheit von etwas bestätigen) Leistung 3.7.8 (messbares Ergebnis) metrologisches Merkmal 3.7.8 (Merkmal, das die Messergebnisse beeinflussen kann) Merkmal = schlechte Datenqualität Faktengestützte Entscheidungsfindung
  21. 21. Datenqualität 04/16 │ LTL 1 │ Folie 20 Entwurf der ISO 9001:2015 - Risikobasiertes Denken Umgang mit Risiken Organisationen müssen Risiken und Chancen bestimmen und behandeln, die das Erreichen von Produkt- und Prozesszielen beeinflussen können. Das Unternehmen muss Maßnahmen planen, um Risiken entgegenzutreten und Chancen zu ergreifen sowie die Wirksamkeit bewerten. (Kap. 6.1) Schlussfolgerung Wenn Daten- und Informationsqualität als Risiko identifiziert ist und das Erreichen von Produkt- und Prozesszielen beeinflusst, so muss das Unternehmen Maßnahmen planen und umsetzen, um diesen Risiken entgegenzutreten und die Wirksamkeit bewerten!
  22. 22. Datenqualität 04/16 │ LTL 1 │ Folie 21 Anforderungen aus Normen an die Organisation Daten- u. Informationsqualität Daten- und Informationslogistik Prozesse Produkt- und Prozessentwicklung Lessons Learn Ergebnis: Produkt Organisation Anforderungen • ISO 9001 (Qualitätsmgt.) • ISO 14001 (Umweltmgt.) • TS 16949 (Qualitätsmgt. Automobilindustrie) • ISO 27001 (Informations-Sicherheits-Mgt.) • ISO 31000 (Risikomgt.) • SPICE ISO/IEC 15504-5 (Softwareentw.)
  23. 23. Datenqualität 04/16 │ LTL 1 │ Folie 22 Von den Daten zum Wissen zur Wettbewerbsfähigkeit (Wissenstreppe n. North, 1998 + Auer Consulting & Partner, 2009) + Syntax + Semantik + Kontext + Anwendungsbezug + Wollen + Handlungseffizienz Zeichen Daten Information Wissen Können Handeln Kompetenz Wettbewerbsfähigkeit + Einzigartigkeit Explizites Wissen Implizites Wissen Intellektuelles Kapital Informationsmanagement Wissens-Evolution bzw. Wissensarbeit DQ & IQ Management
  24. 24. Datenqualität 04/16 │ LTL 1 │ Folie 23 DQM – Best Practice Definieren Messen Analysieren Verbessern Monitoren / Steuern
  25. 25. Datenqualität 04/16 │ LTL 1 │ Folie 24 DQM Implementierungsprozess Mit einem klar abgegrenzten und nutzenstiftenden Projekt starten. Laufzeit ca. 3 - 6 Monate! KVP •Rules Mgt. •Process Mgt. •Analyse •Controling / Monitoring Transition Datenqualität (Prüfen, Verbessern, Monitoren) Prozess- Management Change Management Projekt Management DIN EN ISO 9001 + ISO 8000 + DQM Best Practice Data & Information Governance Anforderungs- Analyse
  26. 26. Datenqualität 04/16 │ LTL 1 │ Folie 25 Fazit und Empfehlung › Daten u. Informationen sind Produkte (Vermögenswerte) und ergebnisrelevant für die Prozessqualität. › Die Daten- u. Informationsqualität ist einer Risikobewertung zu unterziehen. › Die Daten- u. Informationsqualität ist integraler Bestandteil der Anforderungen an ein Qualitätsmanagementsystem z.B. nach DIN EN ISO 9001. › Für die Umsetzung eines Daten- u. Informations-Qualitätsmanagement- System ist es sinnvoll die Regeln der DIN EN ISO 9001 als etablierte Norm und die ISO 8000 heranzuziehen. › Best Practice Ansätze von DQM/IQM dienen der Nachhaltigkeit. › Grundsätzlich fördert die Einbeziehung der Daten- u. Informationsqualität in das QM-System eine Zertifizierung nach anerkannten Regelwerken.
  27. 27. Datenqualität 04/16 │ LTL 1 │ Folie 26 Weitere Informationen Prozessorientiertes Datenqualitätsmanagement https://www.qz-online.de/qualitaets-management/qm- basics/massnahmen/datenqualitaetsmanagement/artikel/prozessorientiertes- datenqualitaetsmanagement-1136859.html Datenqualitätsmanagement wird unumgänglich http://www.qz-online.de/qualitaets-management/qm- basics/massnahmen/datenqualitaetsmanagement/artikel/datenqualitaetsmanagement-wird- unumgaenglich-985779.html Datenqualität sichert den Erfolg http://www.qz-online.de/qualitaets-management/qm- basics/massnahmen/datenqualitaetsmanagement/artikel/datenqualitaet-sichert-den-erfolg- 1029994.html Datenqualitätsmanagement und DIN EN ISO 9001: Ist die Revision schon jetzt überholt? http://www.qz-online.de/qz-zeitschrift/archiv/artikel/datenqualitaetsmanagement-und-din-en-iso-9001--- ist-die-revision-schon-jetzt-ueberholt--1020846.html Blog: Business Information Excellence http://www.business-information-excellence.de/ Seminar „Managen von Datenqualität“ http://www.dgq.de/produkte/managen-von-datenqualitaet/ http://www.actgruppe.de/seminare/managen-von-datenqualitaet/
  28. 28. Datenqualität 04/16 │ LTL 1 │ Folie 27 HABEN SIE FRAGEN? VIELEN DANK FÜR IHRE AUFMERKSAMKEIT. Kontaktdaten Deutsche Gesellschaft für Qualität August-Schanz-Straße 21A 60433 Frankfurt am Main M mar@dgq.de T + 49(0)69-954 24-182 F + 49(0)69-954 24-297

×