SlideShare ist ein Scribd-Unternehmen logo
1 von 235
O que é cromatografia líquida?
•http://chemkeys.com/br/2000/07/18/cromatografia-a-gas-curso-em-diapositivos/ 
CROMATOGRAFIA 
Histórico 
M. TSWEET (1903): Separação de misturas de 
pigmentos vegetais em colunas recheadas com 
adsorventes sólidos e solventes variados. 
éter de 
petróleo 
CaCO3 
mistura de 
pigmentos 
pigmentos 
separados 
Cromatografia = 
kroma [cor] + graph [escrever] 
(grego) 
http://chemkeys.com/br/2000/07/18/cromatografia-a-gas-curso-em-diapositivos/
“Xpомофиллы в растительном и животном мире” (Chromophils in plant and 
animal world) Doctor of Science dissertation,Warsaw, 1910, 380 pp. Reprinted from 
Chromatographic adsorption analysis, selected works of M. S. Tswet by Academy 
of Sciences of the USSR, 1946.
CROMATOGRAFIA 
Princípio Básico 
Separação de misturas por interação diferencial dos seus 
componentes entre uma FASE ESTACIONÁRIA (líquido ou 
sólido) e uma FASE MÓVEL (líquido ou gás).
CROMATOGRAFIA 
Modalidades e Classificação 
FM = Líquido 
FM = Gás 
Cromatografia 
Líquida 
Cromatografia 
Gasosa (CG) 
Em CG a FE 
pode ser: 
Sólida 
Líquida 
Cromatografia 
Gás-Sólido (CGS) 
Cromatografia 
Gás-Líquido (CGL)
O equipamento
http://www.pharmainfo.net/reviews/introduction-analytical-method-development-pharmaceutical- 
formulations
O injetor
http://community.asdlib.org/imageandvideoexchangeforum/2013/08/02/loop-injector-for-hplc/
Parâmetros cromatográficos que você deve conhecer, 
quando trabalha com cromatografia.
Cromatograma com as medidas relacionadas à determinação de parâmetros cromatográficos 
C.H. Collins, G.L. Braga, P.S. Bonato, 
Fundamentos de Cromatografia, 4ª 
edição .,:Editora da Unicamp, Campinas, 
2006. 
R 
M 
t t 
R M 
M 
t 
t 
t 
k 
' 
 
 
 
2 
1 
2 
   
1 
' 
R 
t 
' 
R 
t 
k 
k 
 
  
 
 
t t 
R R 
2 1 2 1,177 
  
s w w 
 
 
R R 
2 1 
 
 
   
 
 
  
 
 
 
 
1 2 
1 2 
h h 
b b 
t t 
w w 
R
Variação do volume de retenção (VM) da uracila e da tiouréia em função do tipo e da quantidade 
de modificador orgânico. Coluna: Restek Allure-C18 150 × 4,6 mm. VM = tM x F, onde F é a vazão 
da fase móvel Y. Kazakevich, R. Lobrutto, HPLC for Pharmaceutical Scientists, Wiley-Interscience 
Hoboken, 2005.
L 
N 
H  
2 2 
 
 
 
 
R 
R 
t 
t 
545 , 5 16   
 
  
 
   
 
  
 
 
h 
b 
w 
w 
N
Medida e cálculo do fator de assimetria do pico. A. Braithwaite, F.J.Smith, “Chromatographic 
Methods”, 4a. edição, Chapman and Hall, Londres, 1985.
Medida e cálculo do fator de alargamento do pico, segundo a USP
Efeito da retenção, da eficiência e da seletividade sobre a resolução (adaptado da referencia
C 
 
B 
H  A  
 
L 
M t 
  
http://www.chromedia.org/chromedia?waxtrapp=yqegzCsHqnOxmOlIEcCbC&subNav=wnjedDs 
HqnOxmOlIEcCbCmF
R.M. Ornaf, M.W. Dong In S. Ahuja, M.W Dong (Eds) 6th Volume, Handbook of 
Pharmaceutical Analysis by HPLC, Elsevier Academic Press, Londres, 2005, pg 19-45.
Eddy difusio
푑푝 2휇 
퐷푀 
푣 = 
a) 
+ 푐푣 
b) 
퐻 = 퐴푑푝 + 
퐵퐷푀 
휇 
+ 퐶 
휇푑푝 
퐷푚 
ℎ = 
퐻 
푑푝 
ℎ = 푎 + 
푏 
푣 
a) Gráficos de van Deemter b) gráficos de Knox . Dm para a acetofenona é 1.2 × 10−9 
m2/s . Fase móvel 30/70 acetonitrile/água temperatura: 40 ◦C, Colunas Acquity BEH 
C18, 1.7 m, 10 cm × 2.1mm ID; XBridge C18, 3.5m, 15 cm×4.6mm ID; XBridge C18, 
5 m, 25 cm×4.6mm ID. de Villiers et al. / J. Chromatogr. A 1127 (2006) 60–69
Fekete et al., Journal of 
Chromatography A 1228 
(2012) 57-71
ΔP = (ηFL)/(K0πr2dp2) 
onde K0 é a permeabilidade específica, η 
é a viscosidade da FM, F é a vazão da FM, 
r é o raio interno da coluna e dp é o 
diâmetro médio das partículas da fase 
estacionária (FE) que recheiam a coluna
Quais são os principais modos de cromatografia?
http://www.chromedia.org/chromedia? 
waxtrapp=yqegzCsHqnOxmOlIEcCbC&su 
bNav=yarwnEsHqnOxmOlIEcCzBYT 
Different mechanisms of retardation in 
liquid chromatography (J.F. Rubinson, K.A. 
Rubinson, Contemporary Chemical 
Analysis, Prentice Hall, Upper Saddle 
River, 1998).
Normal-phase LC 
NP-LC is performed by using silica sorbents which or chemically 
modified with polar and/or hydrophilic functional groups and in 
combination with non-polar eluents.
http://www.expertsmind.com/topic/packing-material-or-stationary-phase/ 
adsorption-chromatography-913002.aspx
Typical chromatogram of a reaction mixture collected during the course of reaction of phthalic 
anhydride with benzene in the presence of AlCl3, as catalyst. Peaks: 1, benzene; 2, 
anthraquinone; 3, phthalic anhydride; 4, maleic anhydride; 5, unknown. Chromatographic 
conditions: Column: Spherisob silica, 250 × 4.6mm, 10μm; mobile phase, n-heptane–ethanol 
chloroform–acetic acid (89 : 5 : 5 : 1, v/v/v/v); flow rate, 1mL/ min; detection, UV at 254 nm; 
temperature, 27°C.
Reversed phase chromatography
Viscosity as a function of organic/water composition
(A) 30% MeCN: 70% 20mM Phosphate, pH 7. (B) 50% MeCN: 50% 20mM Phosphate, pH 7. (C) 
80% MeCN: 20% 20mM Phosphate, pH 7.
Retention of alkylbenzenes on Luna-C18 column from acetonitrile/water 
eluent.
%ACN tR(NB), min k(NB) tR(PP), min k(PP) α (PP/NB) 
100 1,02 0,28 1,02 0,28 1 
90 1,04 0,3 1,04 0,3 1 
80 1,18 0,48 1,12 0,39 0,83 
70 1,38 0,73 1,27 0,59 0,81 
60 1,73 1,16 1,57 0,96 0,83 
50 2,37 1,96 2,29 1,86 0,95 
40 3,73 3,66 3,73 3,66 1 
30 6,55 7,19 8,62 9,78 1,36 
25 9,25 10,56 15,35 18,19 1,72 
20 13,46 15,83 30,75 37,44 2,37 
%MeOH tR(NB),min k(NB) tR(PP), min k(PP) α (PP/NB) 
100 1,02 0,28 1,02 0,28 1 
90 1,08 0,35 1,08 0,35 1 
80 1,25 0,56 1,25 0,56 1 
70 1,5 0,88 1,68 1,1 1,26 
60 2,02 1,53 2,73 2,41 1,58 
50 3,05 2,81 5,65 6,06 2,16 
40 5,07 5,34 14,36 16,95 3,18 
30 8,91 10,14 41 50,25 4,96 
25 11,78 13,73 74 91,5 6,67 
Tempo de retenção (tR), fator de 
retenção (k) e seletividade (α) do 
nitrobenzeno (NB) e do 
propilparabeno (PP) em função 
da percentagem e do tipo de 
modificador orgânico. Coluna: 
Symmetry C18, 3 μm, 75 × 4,6 
mm, Waters. Vazão: 1mL/min. 
Temperatura 40 °C
Y. Kazakevich, R. Lobrutto, HPLC for Pharmaceutical Scientists, Wiley-Interscience Hoboken, 
2005.
Selectivity for steroids as a function of organic mobile-phase 
component. Chromatograms showing the elution order of all eight 
congeners as a function of organic modifier with 0.1% formic acid as 
the buffer phase on YMC ODS-AQ column at ambient temperature. 
(Top panel) 25% acetonitrile, 1.5-mL/min flow rate; (middle panel) 
45% methanol, 1.2-mL/min flow rate; (bottom panel) 20% 
tetrahydrofuran, 1.5- mL/min flow rate. (Reprinted from reference 
51, with permission.) P. Zhuang, R. Thompson, and T. O’Brien, J. Liq. 
Chrom. Rel. Technol. 28 (2005), 1345–1356.
Time (min) A (%) B (%) 
0 100 0 
4 55 45 
40 0 100 
45 0 100 
48 100 0 
A. Stafiej et al. / J. Biochem. Biophys. Methods 69 (2006) 
15–24
Y. Kazakevich, R. Lobrutto, HPLC for Pharmaceutical Scientists, Wiley-Interscience Hoboken, 
2005.
Theoretical retention versus pH profiles for acidic and a zwitterionic component. Chromatographic 
conditions: Column: 15-cm × 0.46-cm Phenoemenex Luna C18(2), 5μm; 70% 15mM K2HPO4 
adjusted pH 2–9 with phosphoric acid; 30% MeCN; flow rate, 1mL/min; temperature, 25°C. R. 
LoBrutto, A. Jones, Y. V. Kazakevich, and H. M. McNair, J. Chromatogr. A 913 (2001), 173–187
Y. Kazakevich, R. Lobrutto, HPLC for Pharmaceutical Scientists, Wiley-Interscience Hoboken, 
2005.
R. LoBrutto, A. Jones, Y. V. Kazakevich, and H. M. McNair, J. Chromatogr. A 913 (2001), 173–187
Y. Kazakevich, R. Lobrutto, HPLC for Pharmaceutical Scientists, Wiley-Interscience Hoboken, 
2005.
http://pubs.acs.org/cen/coverstory/86/8617cover.html acessada em 2 de fevereiro de 
2011.
Diferentes seletividades obtidas para uma mistura de compostos básicos com fases estacionárias preparadas com 
diferentes tipos de ligantes químicos sobre a mesma sílica. Colunas: 250 x 4,6 mm, dp 5 μm, todas da ACE. Fase 
móvel: metanol:tampão fosfato (pH 6; 25 mmol/L) 80:20 (v/v). Vazão: 1.5 mL/min. Identificação dos solutos: 1 = 
norefedrina; 2 = nortriptilina; 3 = tolueno; 4 = amitriptilina; 5 imipramina 
Dolan, J. W.; LCGC North Am. 2007, 25, 1014
J. Layne / J. Chromatogr. A 957 (2002) 149–164
H. Engelhardt, R. Grüner, M. Schererv 
Chromatographia, 53 (2001), pp. 
S154–S161 
Separation of tricyclic antidepressants on an (a) Prontosil C18 H and (b) Prontosil C 18 
ACE/EPS column (150 mm × 4.6 mm, dp 5 μm). Mobile phase 65:35 (v/v) 
methanol:phosphate buffer (20 mM, pH 7). Peaks: 1 = uracil, 2 = protriptyline, 3 = 
nortriptyline, 4 = doxepine, 5 = imipramine, 6 = amitryptyline, 7 = trimipramine, 8 = 
clomipramine.
O que acontece quando usamos partículas com 
diâmetro reduzido?
R.M. Ornaf, M.W. Dong In S. Ahuja, M.W Dong (Eds) 6th Volume, Handbook of 
Pharmaceutical Analysis by HPLC, Elsevier Academic Press, Londres, 2005, pg 19-45.
Experimental H–u plots of columns packed with 1.3, 1.7, 2.6 and 5 μm core–shell particles (peak 
widths were corrected for the extra-column band broadening). Test analyte: butylparaben. 
S. Fekete, D. Guillarme / J. Chromatogr. A 1308 (2013) 104– 113
Impurity profiling of α-estradiol. Peaks: α-estradiol (1), main impurity (2) and minor impurity (3). 
Columns: Phenomenex Kinetex 50 mm × 2.1 mm, 1.3, 1.7 and 2.6 μm. Mobile phase: water/ACN 
60/40 (v/v), flow rate: 0.5 mL/min, temperature: 25 °C, Vinj: 0.5 μL (25 μg/mL estradiol), 
λ = 210 nm (80 Hz). 
S. Fekete, D. Guillarme / J. Chromatogr. A 1308 (2013) 104– 113
Fast separation of cashew nut extract. Columns: Phenomenex Kinetex 50 mm × 2.1 mm, 1.3, 1.7 
and 2.6 μm. Mobile phase: water/ACN 14/86 (v/v), flow rate: 0.8 mL/min, temperature: 25 °C, 
Vinj: 0.3 μL, λ = 280 nm (80 Hz). 
S. Fekete, D. Guillarme / J. Chromatogr. A 1308 (2013) 104– 113
Transferência de método do HPLC para o UPLC, metodologia empregada para analisar uma formulação 
farmacêutica de composto 6 onde se encontram onze impurezas (a) método original para HPLC: coluna, 
XBridge C18 (150×4.6 mm, 5 μm); vazão: 1000 μL min−1; volume de injeção, 20 μL; tempo de gradiente, 45 
min. (b) método UHPLC transferido para HPLC: coluna, Acquity BEH C18 (50×2.1 mm, 1.7 μm); vazão, 
610 μL min−1; volume de injeção, 1.4 μL; tempo de gradiente, 5.1 min. (c) Otimização do método UHPLC: 
columa, Acquity BEH C18 (50×2.1 mm, 1.7 μm); vazão, 1000 μL min−1; volume de injeção, 1.4 μL; tempo 
total de gradiente, 3.1 min. Figura adaptada Guillarme et al. Anal Bioanal Chem (2010) 397:1069–1082.
Separation of a pharmaceutical 
formulation “Rapidocain” in 
isocratic mode. Experimental 
conditions: mobile phase 
containing ACN/phosphate buffer 
at pH 7.2 (40:60, v/v). A. Waters 
Xterra RP18, 150 × 4.6 mm, 
5 μm, F = 1000 μl/min,Vinj = 20 μl. 
B. Waters Acquity Shield RP18, 
50 × 2.1 mm, 1.7 μm, 
F = 613 μl/min, Vinj = 1.4 μl. C. 
Waters Acquity Shield RP18, 
50 × 2.1 mm, 1.7 μm, 
F = 1000 μl/min, Vinj = 1.4 μl. 1, 
methylparaben; 2, 2,6- 
dimethylanalinine; 3, 
propylparaben; 4, lidocaine. 
(http://www.rsc.org/shop/books/ 
2012/9781849733885.asp). 
S. Fekete et al. / Journal of 
Pharmaceutical and Biomedical 
Analysis 87 (2014) 105–119
Chromatograms for columns with 
different lengths. Conditions: 50, 100, 
and 150 mm BEH Shield C-18 columns 
packed with 1.7, 3.5, and 5.0 μm 
particles respectively; 2.1 mm internal 
diameter; flow rates for 50, 100, and 
150 mm lengths were 0.36, 0.24, and 
0.12 mL/min, respectively; the 
injection volumes for 50, 100, and 
150 mm lengths were 1.0, 2.0, and 
3 μL, respectively; the sample 
concentration was 0.1 mg/mL for each 
analyte;. Peak identifications: from left 
to right (1) uracil; (2) benzylalcohol; (3) 
acetophenone; (4) propiophenone; 
and (5) benzophenone 
N. Wu, A.C. Bradley / J. Chromatogr. A 
1261 (2012) 113–120
Chromatograms for columns with 
different lengths. Conditions: 50, 
100, and 150 mm BEH Shield C-18 
columns packed with 1.7, 3.5, and 
5.0 μm particles respectively; 
2.1 mm internal diameter; flow 
rates for 50, 100, and 150 mm 
lengths were 0.36, 0.24, and 
0.12 mL/min, respectively; the 
injection volumes for 50, 100, and 
150 mm lengths were 1.0, 2.0, and 
3 μL, respectively; the sample 
concentration was 0.1 mg/mL for 
each analyte;. Peak identifications: 
from left to right (1) uracil; (2) 
benzylalcohol; (3) acetophenone; 
(4) propiophenone; and (5) 
benzophenone.
Loss in efficiency at various retention factors for columns with different 
lengths. Conditions: 0.1 mg/mL uracil, benzylalcohol, acetophenone, 
propiophenone; and benzophenone were used as analytes. Keys: (♦) 
50 mm; (○) 100 mm; and (●) 150 mm.
Chromatograms obtained 
with a Kinetex® 
100 × 2.1 mm, 2.6 μm 
column with A. a 
conventional HPLC system 
without modification, and B. 
after optimization. 
https://phenomenex.blob.c 
ore.windows.net/document 
s/ad6882fd-5ad1-478a-ab0a- 
5ad746734529.pdf (06.02.2 
013).
Graphical representation of A. pressure tolerance and type of pumping system, and B. standard 
system dwell volume of all the UHPLC systems (ΔP > 600 bar) commercially available. In A., light 
red expresses low pressure system volume while dark blue represents high pressure system 
volume. It is important to notice that the standard dwell volume reported in this figure can be 
modified on a few instruments either by bypassing the damper and mixer, or by changing the 
volume of the mixing chamber. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)
Jul 1, 2012 
By: Fabrice Gritti, Georges Guiochon 
LCGC North America Volume 7, Issue 30
Distribuição do tamanho de 
partícula. (A) Zorbax-XDB- 
1.8 μm, (B) Acquity-BEH- 
1.7 μm, (C) Kinetex-1.7 
μm, and (D) EiS-150-1.7 
μm. (E) Sobreposição de 
todas as figuras. 
Omamogho & Glennon; 
Anal. Chem. 2011, 83, 
1547-1556
DA,B é o coeficiente de difusão de um soluto A em um solvente 
B, (cm2 s−1), MB é a massa molecular do solvente B (g mol−1), 
T é a temperatura absoluta em (K), ηB é a viscosidade do 
solvente B (cP) a uma temperatura T, VA é o volume molar do 
soluto A (cm3 g−1 mol−1) e ϕB, é o coeficiente de associação do 
soluto com a fase móvel B (adimensional) (Guillarme et al / 
Journal of Chromatography A, 1052 (2004) 39–51)
Curvas H–u (curvas de van Deenter) de colunas 1.7 μm core–shell (Kinetex C18, 5 cm×2.1mm) e 1.7 μm 
totalmente porosas (Waters BEH C18, 5 cm×2.1mm). Fase móvel: 440/560/1 (para proteínas de 18.8 kDa), 
470/530/1 (para proteínas de 38.9 kDa) e 610/390/1 (para BSA, 66.3 kDa) acetonitrila/água/TFA, 
temperatura: 60 ◦C, injeção: 0.5 μl, analitos teste: proteínas. S. Fekete et al. / Journal of Pharmaceutical and 
Biomedical Analysis 54 (2011) 482–490.
Van Deemter plots das colunas Kinetex, Ascentis Express (2.7 μm), e sub-2 μm totalmente porosas. Fase 
móvel : (A) 48% acetonitrila–52% água para o estradiol e (B) 95% acetonitrila–5% água para a ivermectina. 
Temperatura: 35 °C, injeção: 0.5 μL, analito: (A) estradiol (B) ivermectina. (E. Olah et al. / J. Chromatogr. A 
1217 (2010) 3642–3653)
Waters Acquity BEH 50 × 2.1 mm, 1.7 μm, 
C18 column. The mobile phase containing 
a mixture of 0.01% aqueous trifluroacetic 
acid and acetonitrile in the ratio of 75:25 
(v/v) at a flow rate of 500 μl/min was used 
A Kromasil C18, 250 × 4.6 mm, 5 μm 
column was used for separation. 
Chromatographic separation was 
achieved in both the modes (isocratic and 
gradient). Mobile phase consisting of a 
mixture of A: 0.01% aqueous 
trifluroacetic acid and B: acetonitrile in 
the ratio 75:25 (v/v) for isocratic mode 
Journal of Pharmaceutical and Biomedical 
Analysis 46 (2008) 236–242 
Chemical structures of primaquine phosphate 
and impurities. (A) primaquine phosphate (B) 
impurity I: 8-(4-amino-4-methylbutyl amino)-6 
methoxyquinoline (C) impurity II: 8-nitro-6- 
methoxyquinoline.
The LOD and LOQ demonstrated for HPLC (isocratic mode) and UPLC.
O efeito da pressão na retenção.
Effect of pressure (generated 
by restrictor tubes at column 
outlet) on the retention of 
small analytes. Column: Acquity 
BEHC18 (50 mm × 2.1 mm), 
mobile phase: water (0.1% 
TFA) + acetonitrile (0.1% TFA): 
70 + 30 (v/v), flow-rate: 
100 μL/min, temperature: 
30 °C, injected volume: 0.5 μL, 
detection: 210 nm. Peaks: 
lidocaine (1), salicylic acid (2), 
bupivacaine (3), propranolol 
(4), propylparaben (5) and 
testosterone (6). 
S. Fekete et al. / J. 
Chromatogr. A 1270 (2012) 
127– 138
Effect of pressure (generated by 
restrictor tubes at column outlet) on 
the retention of related peptides 
(1–1.3 kDa). Column: Acquity 
BEH300 C18 (50 mm × 2.1 mm), 
mobile phase: water (0.1% 
TFA) + acetonitrile (0.1% TFA): 
73 + 27 (v/v), flow-rate: 100 μL/min, 
temperature: 40 °C, injected 
volume: 1 μL, detection: 
fluorescence ex.: 280 nm, em.: 
360 nm. Peaks: P-868 (1), P-866 (2), 
P-870 (3), and P-869 (4).
Effect of pressure 
(generated by restrictor 
tubes at column outlet) on 
the retention of insulin and 
related proteins. Column: 
Acquity BEH300 C18 
(50 mm × 2.1 mm), mobile 
phase: water (0.1% 
TFA) + acetonitrile (0.1% 
TFA): 69 + 31 (v/v), flow-rate: 
100 μL/min, 
temperature: 50 °C, injected 
volume: 1 μL, detection: 
fluorescence ex.: 280 nm, 
em.: 360 nm. Peaks: insulin 
(1), related proteins (2–4). 
Please note that time scale 
is normalized to the last 
eluted peak.
Effect of pressure (A) and the 
combination of pressure and 
mobile phase velocitiy (B) on 
the retention (relative 
change in k) of different size 
analytes (1.1 kDa peptide, 
5.7 kDa insulin, 12.3 kDa 
cytochrome C and 17 kDa 
myoglobin). Column: Acquity 
BEH300 C18 
(50 mm × 2.1 mm), mobile 
phase A: water (0.1% TFA), 
mobile phase B: acetonitrile 
(0.1% TFA). Detection: 
fluorescence ex.: 280 nm, 
em.: 360 nm. Investigated 
pressure range: 100– 
1100 bar.
Effect of very high 
pressure (generated by 
restrictor tubes at 
column outlet) on the 
retention (A) and peak 
shape (A and B) of 
cytochrome C. Column: 
Acquity BEH300 C18 
(50 mm × 2.1 mm), 
mobile phase: water 
(0.1% TFA) + acetonitrile 
(0.1% TFA): 70.5 + 29.5 
(v/v), flow-rate: 
200 μL/min, 
temperature: 65 °C, 
injected volume: 1 μL, 
detection: fluorescence 
ex.: 280 nm, em.: 
360 nm.
Effect of pressure on 
selectivity of separation of a 
diverse mixture of 
compounds Column: Ace 
Excel 5 C18, 5 cm × 0.21 cm 
I.D., 5 μm, mobile phase 25% 
ACN in 0.025 M phosphate 
buffer at pH 2.7. T = 30 °C, 
F = 0.3 mL/min, λ = 254 nm. 
Peak identities 1 = uracil, 
2 = aniline, 3 = 2- 
naphthalenesulfonic acid, 
4 = propranolol, 
5 = prednisone, 
6 = acetophenone, 
7 = diphenhydramine, 
8 = nitrobenzene. Results for 
this Figure obtained with the 
Acquity system. 
M.M. Fallas et al. / J. 
Chromatogr. A 1297 (2013) 
37– 45
Análise de Macro-moléculas
Wide-pore fused-core particles for protein 
separations. Left: cartoon of particle dimensions. 
Right: scanning electron micrograph of particles. 
S.A. Schuster et al. / J. Chromatogr. A 1315 
(2013) 118– 126
Focused ion beam scanning electron micrographs of wide-pore fused-core particles. 
Left: single particle showing porous outer shell. Right: particle cross-section showing 
shell thickness. 
S.A. Schuster et al. / J. Chromatogr. A 1315 
(2013) 118– 126
Plate height comparison. Columns 100 mm × 2.1 mm; mobile phase: 1.7 μm totally porous – 
40.5% acetonitrile/59.5% aqueous 0.1% (v/v) trifluoroacetic acid, = 3.4; 3.4 μm Halo 400 – 
42.5% acetonitrile/57.5% aqueous 0.1% (v/v) trifluoroacetic acid, k = 3.6; solute: carbonic 
anhydrase (29 kDa), 0.1 mg/mL in 6 M urea/1.0% acetic acid; temperature: 60 °C
Reduced plate height comparison. Columns 100 mm × 2.1 mm; mobile phase: 1.7 μm totally 
porous – 40.5% acetonitrile/59.5% aqueous 0.1% (v/v) trifluoroacetic acid, = 3.4; 3.4 μm Halo 
400 – 42.5% acetonitrile/57.5% aqueous 0.1% (v/v) trifluoroacetic acid, k = 3.6; solute: carbonic 
anhydrase (29 kDa), 0.1 mg/mL in 6 M urea/1.0% acetic acid; temperature: 60 °C
Effect of temperature on protein separations. Column: 100 mm × 2.1 mm Halo Protein C4; 
gradient: 28–58% B in 10.0 min; mobile phase A: aqueous 0.1% trifluoroacetic acid; mobile 
phase B: acetonitrile with 0.1% trifluoroacetic acid; flow rate: 0.45 mL/min; instrument: Agilent 
1200 SL; injection volume, 2 μL; detection: 215 nm; temperatures as indicated; solutes, proteins 
as shown.
Effect of pore size on separation of small proteins. Columns: 100 mm×4.6 mm Halo C18 (90 Å 
pores) and 100 mm×4.6 mm Halo Peptide ES-C18 (160 Å pores); mobile phase: A=water/0.1% 
trifluoroacetic acid; B=acetonitrile/0.1% trifluoroacetic acid; gradient: 25–42% B in 10 min; flow 
rate: 1.5 mL/min; temperature: 30 °C; detection: 215 nm; and solutes in order of elution: (1) 
ribonuclease A, (2) bovine insulin, (3) human insulin, (4) cytochrome c, and (5) lysozyme. Peak 
widths in minutes above each peak. Journal of Pharmaceutical Analysis 2013;3(5):303–312
Fases estacionárias monolíticas
SEM photographs of monolithic silica rod columns prepared at different PEG concentrations in the starting 
reaction mixture. PEG: 9.4 g (a), 9.8 g (b), 10.2 g (c), and 10.4 g (d). Other starting reaction conditions: 
45 mL TMOS, 100 mL of 0.01 M aqueous acetic acid solution. Concentration of NH4OH used for controlling 
the mesopore size: 0.01 M. The skeleton size and through-pore size are indicated by black and white 
arrows, respectively, in (a). Journal of Chromatography A, 1191 (2008) 231–252
Experimental Van Deemter 
plots of 2.6 μm shell-type 
(Kinetex), 2.7 μm shell-type 
(Ascentis Express), sub- 
2 μm totally porous 
particles and a monolith 
column (peak widths were 
corrected for the extra-column 
broadening). 
Mobile phase: (A) 48% 
acetonitrile–52% water for 
estradiol and (B) 95% 
acetonitrile–5% water for 
ivermectin, temperature: 
35 °C, injection: 0.5 μL, 
analyte: (A) estradiol and 
(B) ivermectin. Journal of 
Chromatography A, 
Volume 1217, Issue 23, 
2010, 3642 - 3653
Structures and possible fragmentations of each analyte and IS. 
Yin Huang , Yuan Tian , Zunjian Zhang , Can Peng Journal of Chromatography B, 
Volume 905, 2012, 37 - 42
ZIC®-HILIC column (250 mm × 4.6 mm, 5 μm) from Merck (Darmstadt, Germany).The column temperature 
was maintained at 45 °C with an injection of 10 μL. Mobile phase A consisted of acetonitrile while mobile 
phase B onsisted of 10 mM ammonium acetate in redistilled water. The isocratic program was 70% A and 
30% B at a flow rate of 0.5 mL/min. Y. Huang et al. / J. Chromatogr. B 905 (2012) 37–42.
Effect of water content on the retention 
of hydrazines on a ZIC HILIC column. 
Column temperature was at 30 °C with a 
flow rate of 0.4 mL/min using a splitter 
and CLND. The CLND system was set at 
1050 °C combustion furnace, 50 mL/min 
argon, 280 mL/min oxygen, 75 mL/min 
makeup (argon), 30 mL/min ozone, 5 °C 
cooler, gain x1, 750 V on PMT. The 
analyte concentrations were about 30– 
70 μg/mL in water/EtOH (20/80, v/v). 
Acetonitrile at 0.1% (v/v) level in EtOH 
was used as a void time marker. Injection 
volume was 10 μL. (A) Chromatographic 
separation of hydrazines as a function of 
water content in the mobile phase– 
TFA/water/ethyl alcohol (0.1/50–10/50– 
90, v/v/v). 1: 1,2-Dimethylhydrazine, 2: 
1,1-dimethylhydrazine, 3: 
methylhydrazine and 4: hydrazine. (B) 
Effect of water content on k′ in the 
isocratic condition with the mobile 
phases–TFA/water/ethyl alcohol (0.1/50– 
10/50–90, v/v/v). Hydrazine (green), 
methylhydrazine (red), 1,1- 
dimethylhydrazine (pink) and 1,2- 
dimethylhydrazine (blue).
Chemical structures of SBD-F 
and thiols. (A) Structure 
of thiols: 1, Cys; 2, Hcy; 3, 
CA; 4, γ-GluCys; 5, CysGly; 6, 
GSH; 7, NAC; 8, MPG. (B) 
Reaction of SBD-F and thiols 
Analyst,2013, 138, 3802- 
3808.
Effect of the type of alcohols on the retention of hydrazines on a ZIC HILIC column. For each 
separation, isocratic run was performed in the mobile phase of TFA/water/alcohol (0.1/10/90, 
v/v/v), column temperature at 30 °C, flow rate at 0.4 mL/min with a splitter and CLND. 1: 1,2- 
Dimethylhydrazine, 2: 1,1-dimethylhydrazine, 3: methylhydrazine and 4: hydrazine.
Effect of the type of acid modifiers on the retention of hydrazines on a ZIC HILIC column. For 
each separation, isocratic elution was performed with acid/water/ethyl alcohol (0.1/30/70, 
v/v/v) as a mobile phase, column temperature at 30 °C, flow rate at 0.4 mL/min with a splitter 
and CLND. 1: 1,2-Dimethylhydrazine, 2: 1,1-dimethylhydrazine, 3: methylhydrazine and 4: 
hydrazine.
The separation of hydrazines on different columns. Column temperature was at 30 °C; flow rate 
was 0.4 mL/min with a splitter and CLND. Mobile phase was formic acid/water/ethyl alcohol 
(0.5/20/80, v/v/v). 0.1% ACN (v/v) in ethyl alcohol was used as a void volume marker. 1: 1,2- 
Dimethylhydrazine, 2: 1,1-dimethylhydrazine, 3: methylhydrazine and 4: hydrazine. (a) Zorbax 
NH2, (b) Diol, (c) Amide-80 and (d) ZIC HILIC.
HILIC columns Functional group Chemical structure 
Inertsil SIL Bare silica 
Inertsil Amide Amide 
Inertsil Diol Diol 
TSKgel NH2-100 Amino 
PC HILIC Phosphorylcholine 
ZIC-HILIC Sulfobetaine
Retention time of 
SBD–thiols on 
five HILIC columns. 
Columns: Inertsil Diol, 
●; Inertsil SIL, ◇; 
PCHILIC, ▲; 
Inertsil Amide, ; ZIC-HILIC, 
◆. Column 
temperature: 35 
°C. Mobile 
phase: acetonitrile–10 
mmol l−1 ammonium 
formate buffer (pH 3.0) 
= 75/25 (v/v). Linear 
velocity: 58 mm 
min−1. Fluorescence 
detection: ex; 375 nm, 
em; 510 nm.
Effect of (A) acetonitrile content, 
(B) pH of ammonium 
formate buffer and (C) 
concentration ofammonium 
formate buffer on retention time 
of SBD–thiols. Symbols: SBD– 
MPG, ●; SBD–NAC,◇; SBD– 
CA, ▲; SBD–Hcy, ; SBD–Cys, 
◆; SBD–CysGly, ○; SBD–GSH, 
■; SBD–γ-GluCys, △. Column: 
ZIC-HILIC (150 mm × 2.1 mm 
i.d., 5 μm, Merck). Column 
temperature: 35 °C. Mobile phase: 
(A) acetonitrile–10 mmol 
l−1 ammonium formate buffer (pH 
3.0), (B) acetonitrile–10 mmol 
l−1 ammonium formate buffer = 
75/25 (v/v), and (C) acetonitrile– 
ammonium formate buffer (pH 
3.0) = 75/25. Flow rate: 0.2 ml 
min−1. Fluorescence detection: ex 
375 nm, em 510 nm. Injection 
sample: 5 μl, containing 
90%acetonitrile.
Comparison of five HILIC columns: amide, hybrid silica, diol, bare silica and zwitterionic phase, 
for the separation of a test mixture of acidic compounds: (AT) coumachlor, (BJ) 
hydrochlorothiazide, (BP) ketoprofen, (AY) diclofenac, (AD) acetylsalicylic acid, (BH) 
furosemide. Column dimensions: 2.1 mm × 50 mm, 1.7 μm, except for RRHD 1.8 μm. Flow rate 
of 0.5 mL/min, λ = 230 nm, injected volume = 1 μL. Condition: ammonium formate (50 mmol/L, 
pH 4), gradient profile: 95%ACN for 1 min, then 95–65%ACN in 3 min with T = 30 °C.
Comparison of five HILIC columns: amide, hybrid silica, diol, bare silica and zwitterionic phase, for the 
separation of a mixture of basic compounds: (CJ) noscapine, (AF) alprazolam, (BI) heroin, (CV) sotalol, 
(AS) codeine, (BK) hydromorphone, (AZ) dihydrocodeine. Column dimensions: 2.1 mm × 50 mm, 
1.7 μm, except for RRHD 1.8 μm. Flow rate of 0.5 mL/min, λ = 249 nm, injected volume = 1 μL. 
Condition: ammonium formate (50 mmol/L, pH 4), gradient profile: 95% ACN for 1 min, then 95–65% 
ACN in 3 min with T = 30 °C.
Effect of pH on selectivity. 
Column: bare silica 
(2.1 mm × 50 mm, 
1.8 μm), flow rate of 
0.5 mL/min., λ = 249 nm, 
injected volume = 1 μL. 
Condition: pH 3 
ammonium formate 
50 mmol/L, pH 4 
ammonium formate 
50 mmol/L, pH 5 
ammonium acetate 
50 mmol/L, pH 6 
ammonium acetate 
50 mmol/L, gradient 
profile: 95% ACN for 
1 min, then 95–65% ACN 
in 3 min withT = 30 °C. 
Peak label: (CL) oxazepam, 
(AY) diclofenac, (BQ) 
lidocaine, (CP) pindolol, 
(CZ) thebaine, (BK) 
hydromorphone, (AZ) 
dihydrocodeine
Effect of organic modifier on 
selectivity: ACN, ACN/IPA 80:20 
v/v, and ACN/MeOH 80:20 v/v. 
Column: silica bare, flow rate of 
0.5 mL/min, λ = 249 nm, 
injected volume = 1 μL. 
Condition: ammonium formate 
(50 mmol/L, pH 4), gradient 
profile: 5% buffer for 1 min, 
then 5–35% buffer in 3 min 
with T = 30 °C. Peak label: (CL) 
oxazepam, (AY) diclofenac, (BQ) 
lidocaine, (CP) pindolol, (CZ) 
thebaine, (BK) hydromorphone, 
(AZ) dihydrocodeine.
Performance comparison of two HILIC columns: (A) an Acquity BEH HILIC (2.1 mm id × 150 mm, 
1.7 μm) and (B) an Acquity HILIC amide (2.1 mm id × 150 mm, 1.7 μm) for the analysis of a 
mixture of hypoxanthine (1: 80 μg/mL), cytosine (2: 10 μg/mL), nicotinic acid (3: 30 μg/mL) and 
procainamide (4: 30 μg/mL) dissolved in pure ACN. Conditions: mobile phase: ammonium 
formate (50 mM, pH 3.14) modified with ACN, gradient profile: 95% ACN for 6 min, then 95– 
75% ACN in 5 min for (A) and isocratic conditions: 94% ACN for (B), flow rate of 
500 μL/min, λ = 214 nm, volume injected = 5 μL, T = 30 °C.
Comparison of the chromatographic performance obtained by (A) RPLC vs. (B) HILIC for the analysis of a 
mixture of 9 peptides: (1) lysine vasopressin (20 μg/mL), (2) arginine vasopressin (12 μg/mL), (3) peptide D 
(20 μg/mL), (4) triptorelin (5 μg/mL), (5) peptide A (20 μg/mL), (6) insulin (60 μg/mL), (7) peptide B 
(6 μg/mL), (8) peptide E (25 μg/mL), (9) peptide C (6 μg/mL) dissolved in water for (A) and in IPA for (B); the 
star (*) designates an impurity present in synthetic peptides. Conditions: (A) Column Acquity BEH C18 
(2.1 mm id × 150 mm, 1.7 μm), flow rate of 400 μL/min, λ = 214 nm, volume injected = 5 μL, gradient profile: 
10–90% ACN in 20 min with T = 30 °C, (B) Column Acquity HILIC amide (2.1 mm id × 150 mm, 1.7 μm), flow 
rate of 500 μL/min, λ = 214 nm, volume injected = 5 μL, gradient profile: 90% ACN for 3 min, then 90–62% 
ACN in 9 min with T = 30 °C.
size exclusion chromatography
Illustrative description of 
separation in SEC
HONG, Paula; KOZA, Stephan; BOUVIER, Edouard SP. A REVIEW SIZE-EXCLUSION 
CHROMATOGRAPHY FOR THE ANALYSIS OF PROTEIN 
BIOTHERAPEUTICS AND THEIR AGGREGATES. Journal of liquid 
chromatography & related technologies, v. 35, n. 20, p. 2923-2950, 2012. 
FEKETE, Szabolcs et al. Theory and practice of Size Exclusion 
Chromatography for the analysis of protein aggregates. Journal of 
Pharmaceutical and Biomedical Analysis, 2014.
The free energy change of a chromatographic process can be described by, where ΔG 0, ΔH 0, 
and ΔS 0 are the standard free energy, enthalpy, and entropy differences, respectively; R is the 
gas constant: T is absolute temperature, and k is the partition coefficient. For most 
chromatographic modes of separation, the enthalpy of adsorption is the dominant contributor 
to the overall change in free energy. SEC is unique in that partitioning is driven entirely by 
entropic processes as there ideally is no adsorption, ΔH = 0. Thus the previous equation 
becomes: where K D is the thermodynamic retention factor in SEC. Thus, in SEC separations, 
temperature should have no impact on retention. In practice, temperature can indirectly impact 
retention to a small degree by altering the conformation of the proteins, as well as by affecting 
mobile phase viscosity and analyte diffusivity.
The thermodynamic SEC retention factor is the fraction of intraparticle pore 
volume that is accessible to the analyte: where V R , V 0, and V i are the respective 
retention volumes of the analyte of interest, the interstitial volume, and the intra-particle 
volume. K D will range from a value of 0 where the analyte is fully excluded 
from the pores of the stationary phase, to a value of 1 where the analyte fully 
accesses the intraparticle pores.
Separation of (1) thyroglobulin, (2) IgG, (3) BSA, (4) Myoglobin, and (5) Uracil on a Waters 
ACQUITY UPLC BEH200 SEC, 1.7 μ, 4.6 × 150 mm. Mobile phase: 100 mM sodium phosphate, 
pH 6.8. Flow rate: 0.3 mL/min. Temperature: 30°C (black), 40°C (blue), 50°C (red). Reproduced 
with permission from Waters Corporation, Milford, MA
Typical SEC calibration curve
Theoretically expected impact of the particle size and mobile phase temperature on column 
performance. (For the calculations, a 50 kDa protein was assumed.).
Effect of linear velocity on plate height for (a) ribonuclease A (red) and (b) a monoclonal 
antibody (blue) on two columns varying in particle size. The 4.6 × 150 mm columns were packed 
with either 1.7 micron (solid line) or 2.6 micron particles (dashed line). Pore size of stationary 
phase sorbent: 200 Å. Mobile phase consisted of 100 mM sodium phosphate, pH 6.8. 
Reproduced with permission from Waters Corporation, Milford, MA.
Comparison of Columns: Effect of Particle Size on Efficiency and Resolution for a Reduced 
Antibody 
Theoretical Plates 
[-17pt] 
Columns 
Dimension 
s (m i.d. × 
mm length) 
Particle 
size (μm) 
Pore sizes 
(Å) HC LC Resolution 
TSKgel 
G3000SW 
7.5 × 300 10 250 1980 3845 3 
TSKgel 
G3000SWxl 
7.8 × 300 5 250 5060 10674 4 
Shodex 
KW-804 
8.0 × 300 7 250 4952 8859 2 
Protein-Pak 
300SW 
7.5 × 300 10 250 2078 4271 3 
BioSuite 
250 
7.8 × 300 5 250 5149 9403 3
The drug aprotinin (Trasylol, previously Bayer and now Nordic Group 
pharmaceuticals), is the small protein bovine pancreatic trypsin inhibitor, 
or BPTI, which inhibits trypsin and related proteolytic enzymes. Under the 
trade name Trasylol, aprotinin was used as a medication administered 
by injection to reduce bleeding during complex surgery, such as heart and liver 
surgery. Its main effect is the slowing down of fibrinolysis, the process that 
leads to the breakdown of blood clots. The aim in its use was to decrease the 
need for blood transfusions during surgery, as well as end-organ damage due 
to hypotension (low blood pressure) as a result of marked blood loss. The drug 
was temporarily withdrawn worldwide in 2007 after studies suggested that its 
use increased the risk of complications or death
Schematic representation of some of the key steps in non-native aggregation
Plate heights (HETP) vs. 
linear velocity (u0) plots 
of Panitumumab (A), 
chicken ovalbumin (B) 
and β-lactoglobulin (C). 
Columns: Acquity UPLC 
BEH200 SEC 1.7 μm, 
150 mm × 4.6 mm 
(operated at 30, and 
60 °C), YMC-Pack-Diol- 
200 5 μm, 
300 mm × 6 mm and 
Phenomenex Yarra SEC- 
3000 3 μm, 
300 mm × 4.6 mm 
(operated at 30 and 
50 °C). Mobile phase: 
20 mM disodium 
hydrogen-phosphate 
buffer of pH = 6.8. 
Journal of 
Pharmaceutical and 
Biomedical Analysis 78– 
79 (2013) 141– 149
Effect of pressure (A) and temperature (B) 
on the observed aggregates. Column: 
Acquity UPLC BEH200 SEC 1.7 μm, 
150 mm × 4.6 mm. Mobile phase: 20 mM 
disodium hydrogen-phosphate buffer of 
pH = 6.8. Flow rate: 200 μl/min, detection: 
FL (Ex: 280 nm, Em: 360 nm). The column 
pressure (head pressure) was varied by 
adding restrictor capillaries to the column 
outlet (131, 271, 406 and 465 bar were 
generated, including the column pressure) 
on (A). Sample: heat stressed 
panitumumab.
Representative chromatograms on the effect of column temperature (A) and pressure (B) on the 
observed amount of antibody aggregates
Representative chromatograms on BEH 1.7 μm column (A) and on YMC diol 5 μm column (B) 
obtained by injecting the same sample (native panitumumab). Mobile phase: 20 mM disodium 
hydrogen-phosphate buffer of pH = 6.8. Flow rate: 500 μl/min, detection: FL (Ex: 280 nm, Em: 
360 nm), mobile phase temperature: 30 °C. The generated pressure was 274 bar (A) and 73 bar 
(B).
Fast separation of the aggregate and native form of β-lactoglobulin (A) and of chicken egg 
ovalbumin (B). Column: Acquity UPLC BEH200 SEC 1.7 μm, 150 mm × 4.6 mm. Mobile phase: 
20 mM disodium hydrogen-phosphate buffer of pH = 6.8. For β-lactoglobulin: flow rate: 
700 μl/min, mobile phase temperature: 45 °C and for egg ovalbumin: flow rate: 850 μl/min, 
mobile phase temperature: 60 °C. Detection: FL (Ex: 280 nm, Em: 360 nm) for both cases. Peaks: 
1, 2 and 3: high molecular weight species.
C. Wong et al. / J. Chromatogr. A 1270 (2012) 153– 161 
SE-HPLC chromatogram profile at 280 nm showing fronting shoulder on monomer of a drug 
product at time zero (red) and 40 °C 2 months stability sample (black). Column TSKgel BioAsisst 
G3SWXL
Representative chromatograms of formulated bulk separation using 0.25 M NaCl (black), 0.5 M 
NaCl (blue), 0.75 M NaCl (green), 1.0 M NaCl (cyan), 1.25 M NaCl (magenta), 1.5 M NaCl 
(purple), and 1.7 M NaCl (red) sodium chloride in 20 mM sodium phosphate, pH 7.0 mobile 
phase, and Waters Acquity BHE200 4.6 mm × 300 mm column shown at 280 nm. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web 
version of the article.)
Representative 
chromatogram of (A) 
formulated bulk material 
(blue) and purified monomer 
fraction (black), and (B) 40 °C, 
9 months stability sample 
(blue) and purified pre-peak 
fraction (black) using the final 
mixed mode UPLC method at 
280 nm. 
Mobile phase containing 
20 mM sodium phosphate at 
pH 7.0 and a flow rate of 
0.15 mL/min showed the best 
separation for the mixed mode 
UPLC method. The pre-peak 
and the monomer peak were 
fractionated using the final 
mixed mode UPLC method for 
characterization
J. Sep. Sci. 2013, 36, 2718–2727 
Chromatograms of PS standard (Mp ∼ 11 600 g/mol, -D- ∼ 1.03) obtained on XBridge(TM) C18 
and ACQUITY R C18 columns (4.6 × 150 mm) packed with different size particles: 10, 5, 3.5, and 
1.7 m. Mobile phase, THF; flow rate, 1 mL/min; detection, UV at 254 nm.
Stacked chromatograms of SEC separation of two proprietary polymers on BEH 45 unbonded 
and BEH 45 TMS columns, 4.6 × 150mmin THF at 1 mL/min using UV detection at 254 nm. (A) 
Polymer A on BEH 45 unbonded; (B) polymer B on BEH 45 unbonded; (C) polymer A on BEH 
45 TMS; (D) polymer B on BEH 45 TMS
Chromatograms of PS 
standards on (A) BEH 200 
diol, 4.6 × 150 mm, 
detection, UV at 254 nm; 
(B) same as (A), but with 
ELS detection. Five 
replicate injections are 
shown, demonstrating 
repeatability; (C) 5 m 
PLgel MiniMix D (4.6 × 
250 mm); detection, UV 
at 254 nm. In all cases, 
mobile phase was THF 
and flow rate was 1 
mL/min.
Chromatograms of (A) fourteencomponent mixture of PS standards obtained on two 4.6 × 150 
mm columns connected in series. First column, 1.7 m BEH diol 200 A° ; second column, 1.7 m 
BEH diol 450 A° . Mobile phase, THF; flow rate, 1 mL/min; detection, ELS, (B) twelve-component 
PS standards obtained on three PL gel SEC columns (7.5 × 300 mm each) packed with 5 m 
Psdivinylbenzene particles with pore sizes labeled as 10E2, 10E3, and 10E4 A° . Mobile phase, 
THF; flow rate, 1 mL/min; detection, RI.
Chromatograms of PMMA standards and corresponding calibration curve (fifth-order fit). Mobile 
phase, THF; flow rate, 0.4 mL/min; column, 4.6 × 150 mm, packed with 1.7 mdiol-bonded 
particles with amean pore size of 200 A° ; detection, ELS.
Efeito do contra ion e de sua 
concentração na retenção de β- 
bloqueadores.
FLIEGER, J. The effect of chaotropic mobile phase additives on the separation of selected 
alkaloids in reversed-phase high-performance liquid chromatography. Journal of 
Chromatography A, v. 1113, n. 1, p. 37-44, 2006.
Chromatograms of a 
mixtures of alkaloids 
(A—caffenine, B— 
laudanozine, C— 
colchicine, D—boldine, 
E—strychnine, F— 
cinchonine, G—quinine) 
with different organic 
anions in the mobile 
phase.
Effect of anionic additive type on the retention of investigated alkaloids. (*) For emetine and 
berberine the strongest retention was observed when hexafluorophosphate salt was added to 
the mobile phase. Their retention factors were higher than 25.
The effect of different anionic additives on retention, peak symmetry and efficiency of 
narcotine.
Jones, Alan, Rosario LoBrutto, and Yuri Kazakevich. "Effect of the counter-anion type and 
concentration on the liquid chromatography retention of β-blockers." Journal of 
Chromatography A 964.1 (2002): 179-187.
Dependence of the retention factors for labetolol, acebutolol, and nadolol versus the 
concentration of perchlorate counter-anion in the mobile phase. Chromatographic 
conditions: column: Zorbax Eclipse XDB-C18 (150×4.6 mm), mobile phase: aqueous 
adjusted with perchloric acid and/or sodium perchlorate (pH 3.0)–acetonitrile (70:30), 
flow-rate: 1 ml/min, detection: UV at 225 nm.
Dependence of the retention factors for metoprolol, pindolol, and nadolol versus the 
concentration of perchlorate counter-anion in the mobile phase. Chromatographic 
conditions: column: Zorbax Eclipse XDB-C18 (150×4.6 mm), mobile phase: aqueous 
adjusted with perchloric acid and/or sodium perchlorate (pH 3.0)–acetonitrile (70:30), 
flow-rate: 1 ml/min, detection: UV at 225 nm.
Plot of the acebutolol retention factors versus counter-anion concentration in the mobile phase 
for different counter-anions used. Chromatographic conditions: column: Zorbax Eclipse XDB-C18 
(150×4.6 mm), mobile phase: aqueous (pH 3.0)–acetonitrile (70:30), flow-rate: 1 ml/min, 
detection: UV at 225 nm.
Plot of the acebutolol retention factors versus counter-anion concentration in the mobile phase 
for different counter-anions used. Chromatographic conditions: column: Zorbax Eclipse XDB-C18 
(150×4.6 mm), mobile phase: aqueous (pH 3.0)–acetonitrile (70:30), flow-rate: 1 ml/min, 
detection: UV at 225 nm.
Chromatograms of a mixture of β-blockers and o-chloroaniline analyzed at constant pH and 
increasing perchlorate concentration.. Chromatographic conditions: column: Zorbax Eclipse XDB-C18 
(150×4.6 mm), mobile phase: aqueous (pH 3.0)–acetonitrile (70:30), flow-rate: 1 ml/min, 
detection: UV at 225 nm.
FLIEGER, J. Effect of 
mobile phase 
composition on the 
retention of selected 
alkaloids in reversed-phase 
liquid 
chromatography 
with chaotropic 
salts. Journal of 
chromatography A, 
v. 1175, n. 2, p. 207- 
216, 2007
Experimental retention factors obtained for investigated alkaloids vs. trifluoroacetate and 
hexafluorophosphate concentration in mobile phase: 30% ACN/10 mM phosphate buffer 
(dashed lines) and 30% ACN/30 mM phosphate buffer pH = 2.7 (continuous lines).
Graphic comparison of the 
desolvation parameters 
obtained using 
hexafluorophosphate as 
the counter-anion for two 
eluent systems: 25% 
THF/30 mM phosphate 
buffer (THF) and 30% 
ACN/30 mM phosphate 
buffer (ACN).
Chromatograms of mixtures of alkaloids obtained by the use of different mobile phases: (A) 35% 
ACN/10 mM phosphate buffer (pH 2.7) + 30 mM NaPF6, (B) 40% MeOH/10 mM phosphate 
buffer (pH 2.7) + 30 mM NaPF6, (C) 25% THF/10 mM phosphate buffer (pH 2.7) + 30 mM NaPF6.
PAN, Li et al. Influence of inorganic mobile phase additives on the retention, efficiency and peak 
symmetry of protonated basic compounds in reversed-phase liquid chromatography. Journal of 
Chromatography A, v. 1049, n. 1, p. 63-73, 2004.
Effect of analyte 
load on: 
(A) N(h/2) and (B) 
tailing factor. 
Chromatographic 
conditions: 0.1% 
(v/v) 
H3PO4:acetonitrile 
eluent; 
benzylamine (5% 
acetonitrile), 
toluene (50% 
acetonitrile), 
Labetalol and 4- 
nitrophenol (25% 
acetonitrile), flow 
rate: 1.0 mL/min; 
temperature: 25 °C; 
analyte load: 0.5– 
50 μg.
Chromatographic overlays of Labetalol analyzed at different analyte concentrations using 
increasing mobile phase concentration of perchlorate anion. Chromatographic conditions: 
analyte load: 3.3, 6.5, 31.2 μg, (a) 75%:0.1% (v/v) H3PO4:25% acetonitrile; (b) 75%:0.05% (v/v) 
HClO4:25% acetonitrile; (c) 75%:0.3% (v/v) HClO4:25% acetonitrile; (d) 75%:0.4% (v/v) 
HClO4:25% acetonitrile; (e) 75%:0.5% (v/v) HClO4:25% acetonitrile.
Chromatographic overlays of Dorzolamide HCl analyzed at different analyte concentrations using 
increasing mobile phase concentration of perchlorate anion. Chromatographic conditions: 
Analyte load: 1.4, 5.2, 9.2, 48 μg, (a) 90%:0.1% (v/v) H3PO4:10% acetonitrile; (b) 90%:0.05% (v/v) 
HClO4:10% acetonitrile; (c) 90%:0.3% (v/v) HClO4:10% acetonitrile; (d) 90%:0.4% (v/v) 
HClO4:10% acetonitrile; (e) 90%:0.5% (v/v) HClO4:10% acetonitrile.
Effect of counteranion type and concentration on analyte retention, peak efficiency, N(h/2), and 
tailing factor. Chromatographic conditions: Mobile phase: 75% aqueous:25% acetonitrile. 
Effective counteranion concentration for each mobile phase indicated in figure legend, flow rate: 
1.0 mL/min; temperature: 25 °C; analyte load: 0.5 μg; wavelength: 225 nm.
FLIEGER, J. Application of 
perfluorinated acids as ion-pairing 
reagents for reversed-phase 
chromatography and 
retention-hydrophobicity 
relationships studies of 
selected β-blockers. Journal 
of Chromatography A, v. 
1217, n. 4, p. 540-549, 2010. 
Effect of ion-pairing reagent 
concentration in 
methanol/water mobile 
phase (acetic acid, AA; 
trifluoroacetic acid, TFAA; 
pentafluoropropionic acid, 
PFPA; heptafluorobutyric 
acid, HFBA) on retention 
coefficient of investigated 
β-blockers.
Chromatograms of mixtures of β-blockers obtained by the use of different mobile phases. The 
peaks order: atenolol, pindolol, nadolol, metoprolol, acebutolol.
XIE, Wenchun; TERAOKA, Iwao; GROSS, 
Richard A. Reversed phase ion-pairing 
chromatography of an oligolysine mixture in 
different mobile phases: effort of searching 
critical chromatography conditions. Journal 
of Chromatography A, v. 1304, p. 127-132, 
2013. 
SIR mass chromatograms of a mixture of 
oligolysine (dp = 2–8) at different 
percentages of ACN in the mobile phase 
when heptafluorobutyric acid [HFBA] is 
9.2 mM. Column Waters XBridge Shield 
RP18 column (50 mm × 4.6 mm i.d.; pore 
size 135 Å, particle size 3.5 μm) 
thermostated at 35 °C. The number on the 
top of each peak represents dp. Peaks 
corresponding to dp = 7 and 8 are shown 
as an inset for 23% ACN.
XIE, Wenchun et al. Cooperative effect in ion 
pairing of oligolysine with heptafluorobutyric 
acid in reversed-phase 
chromatography. Journal of Chromatography 
A, v. 1218, n. 43, p. 7765-7770, 2011. 
Effect of the HFBA concentration on the 
retention of oligolyisne. The number of lysine 
residues is indicated adjacent to each curve. (a) 
Results for all concentrations of HFBA. (b) Results 
at low concentrations. The y axis is in a log scale 
in (a) and in a linear scale in (b).
LONG, Zhen et al. Strong cation 
exchange column allow for 
symmetrical peak shape and 
increased sample loading in the 
separation of basic 
compounds. Journal of 
Chromatography A, v. 1256, p. 67- 
71, 2012. 
Chromatograms of basic 
compounds separated on the 
Sunfire C18 column (A), XBridge 
C18 column (B) and the XCharge 
SCX column (C); Loading amounts 
on columns were 0.09035 mg, 
0.9035 mg, and 3.614 mg from (a) 
to (c). Peaks: 1 = propranolol, 
2 = berberine, 3 = amitriptyline. 
The mobile phases used for the separation of basic compounds on 
XCharge SCX column were A: acetonitrile, B: 100 mmol/L 
NaH2PO4 (pH = 2.83) and C: water. The flow rate was 1.0 mL/min and 
peaks were recorded at 260 nm. Mobile phase composition on the 
XCharge SCX column was 50% A, 30% B. The optimized mobile phases 
on Sunfire C18 column were A: 0.1% FA in ACN (v/v) and B: 0.1% FA in 
water (v/v). Mobile phase composition on Sunfire C18 column started 
at 10% A and shifted to 35% A over 30 min. Mobile phases for the 
analysis of basic compounds on XBridge C18 column were A: 
acetonitrile, B: 100 mmol/L NH4HCO3 (pH adjusted to 10.12 with 
ammonia solution) and C: water. Mobile phase composition on 
XBridge C18 column started at 20% A, 10% B, shifted to 30% A, 10% B 
from 0 to 10 min, and finally shifted to 60% A, 10% B from 10 to 
40 min.
Universidade Federal do Rio Grande do Norte 
Centro de Ciências Exatas e da Terra 
Instituto de Química 
Matéria de ensino: Química Analítica 
Detectores
DETECTORES 
Classificação 
UNIVERSAIS: 
Geram sinal para qualquer 
substância eluida. 
SELETIVOS: 
Detectam apenas substâncias 
com determinada propriedade 
físico-química. 
ESPECÍFICOS: 
Detectam substâncias que 
possuam determinado elemento 
ou grupo funcional em suas 
estruturas
DETECTORES 
Parâmetros Básicos de Desempenho 
SENSIBILIDADE Relação entre o incremento de área do pico e o 
incremento de massa do analito 
MASSA 
ÁREA 
Fator de Resposta, 
S: inclinação da reta 
Área do pico x 
Massa do analito 
o mesmo incremento de 
massa causa um maior 
incremento de área 
S Sensibilidade 
Na ausência de erros determinados: 
A = área do pico cromatográfico 
m = massa do analito
FAIXA LINEAR DINÂMICA Intervalo de massas dentro do qual a 
resposta do detector é linear 
MASSA 
ÁREA 
A partir de certo 
ponto o sinal não 
aumenta mais 
linearmente 
O fim da zona de 
linearidade pode ser 
detectado quando a 
razão (Área / Massa) 
diverge em mais de 5 % 
da inclinação da reta na 
região linear: 
MASSA 
ÁREA / MASSA 
1,05 S 
0,95 S
Detector de Ultra violeta (ultraviolet detector, 
UV) ou espectroquímico
Extrato de folhas da M. aquifolium depois de um processo de hidrolise, detecção a 270 nm 
Chromatography Research Inte national Volume 2012 (2012), Article ID 691509, 7 pages 
http://dx.doi.org/10.1155/2012/691509
Uma solução 0,1 mol/L de uma 
substância de coloração intensa é 
analisada por LC-UV, mas nenhum 
pico é observado. Por que?
Detector de índice de refração (refractive 
index detector, RI) 
(A) Indice de refração quando não há analito e (B) quando há analito.
Detector Fluorescência. 
G. Iriarteet al.,J. Sep. Sci.,29, 2265 (2006)
Fontes de ionização para o LC-MS 
• Ionização por eletronebulização – ESI 
(Electrospray) 
– Modo ESI 
– Modo Ionspray (ISI) 
• Ionização Química a Pressão Atmosférica – APCI 
• Fotoionização a Pressão Atmosférica – APPI
Espectrometria de massas (mass spectrometry, MS 
Diagramas de blocos de um MS 
Modo de Ionização no Vácuo 
Interface / 
Fonte de Íons 
Interface / 
Fonte de Íons 
Analisador 
de Massas 
ALTO VÁCUO 
Detector 
ALTO VÁCUO 
Analisador 
de Massas 
Detector 
Modo de Ionização à Pressão Atmosférica (API) 
Introdução dos 
analitos 
Introdução dos 
analitos 
Exemplos: EI, CI, PI, MALDI, TSI, FAB, SIMS, FI/FD 
Exemplos: ESI, APCI, APPI, AP-MALDI, DESI, DART, EASI
Escolhendo o modo de ionização e a 
polaridade 
 ESI: solutos iônicos e polares (PM 100-150x103 dalton). 
Moléculas maiores adquirem mais que uma carga. 
 APCI: solutos de polaridade média e não-polares 
(PM 100-2000 dalton). 
 APPI: mesmos solutos que APCI mas resposta melhor para 
moléculas de alta apolaridade.
Electrospray – ESI 
Vazões: 100 nL/min a 5 μL/min
Como você acha que a percentagem de modificador orgânico na fase 
móvel? 
ESI pode ser usado com que modos da cromatografia líquida NP, RP, IEX, 
SE e HILIC? 
HILIC: A Critical Evaluation 
http://www.chromatographyonline.com/lcgc/article/articleDetail.jsp?id=835539&pageID=1
Ionização Química a Pressão Atmosférica 
(APCI)
Fotoionização a Pressão Atmosférica (APPI) 
Saída HPLC 
Gás de nebulização 
Nebulizador (sprayer) 
Vaporizador (aquecedor) 
Gás de secagem 
Capilar 
Lâmpada UV 
• Pode ser 
usado um 
dopante 
Ex. Tolueno
http://www.shimadzu.com/an/lcms/lcmsittof/ittof-8.html
Baixa abundância do íon 
[M+H]+ em m/z 253. 
Íon [M+H]+ mais abundante 
Presença de M+ em m/z 252 
Isótopo C13 em m/z 254 
Abundância 5 x maior que APCI e 20 
x maior que ESI. 
Análise de benzo[a]pireno;100 picomoles; modo positivo; injeção em fluxo. 
Agilent Technologies, www.agilent.com/chem, 2001.
 Ésteres de testosterona: baixo PM e polaridade média 
Que modo de ionização vc escolheria? 
ESI ou APCI?
 Ésteres de testosterona: baixo PM e polaridade média 
1 propionato de testosterona 
2 fenilpropionato 
3 caproato 
4 decanoato 
(b) Pico 2 em APCI 
(c) Pico 2 em ESI 
Sandra, P. et al., LC-GC Europe, 2001.
Modos de ionização para MS(/MS) 
Massa Molecular 
(GC) EI 
(GC) CI 
Apolar 
Polaridade 
Muito Polar 
Fonte: Agilent Technologies, www.agilent.com/chem, 2001.
Analisadores para MS 
• Setor Magnético e Setor Eletrostático 
• Quadrupolo 
• Ion Trap 
• Tempo de Voo 
• FT-ICR 
• (FT) Orbitrap
Focalização Dupla 
• Vantagens 
– Alta resolução e exatidão 
– Excelente estabilidade = resultados quatitativos 
– Permite MS/MS 
• Desvantagens 
– Caro -- Difícil de usar 
– Velocidade de varredura limitada (histerese) 
– Detectabilidade é dependente da velocidade
Tempo de Voo - TOF
Quadrupolo
Modos de operação 
- Espectro dos produtos ou 
“íons filhos” 
MS1 
Estático 
Massa do 
precursor (pai) 
Câmara de 
colisão 
Fragmentação CID 
Modo RF (passam 
todas as massas) 
MS2 
Scan 
Espectro dos 
produtos (ions 
filhos)
QqQ – Aplicação 
MRM (frente) x SIM (trás) 
Mercaptobenzotiazol 
SIM: m/z 166 
MRM: m/z 166 → 134 
Mercaptobenzoxazol 
SIM: m/z 150 
MRM: m/z 150 → 58 
Tempo de Retenção, minutos 
Trends Anal. Chem., 2001, 20, 533-542.
Nigericina 
Salinomicina 
Narasina 
Lasalocida 
Monensina 
Cromatograma obtido a partir da análise de matriz fortificada com LAS (20 μg kg-1), MON (10 
μg kg-1), SAL (100 μg kg-1) e NAR (15 μg kg-1) na concentração de seus respectivos LMRs e NIG 
(50 μg kg-1).

Weitere ähnliche Inhalte

Was ist angesagt?

Relatorio de Química analítica Qualitativa cátions grupo II
Relatorio de Química analítica Qualitativa cátions grupo IIRelatorio de Química analítica Qualitativa cátions grupo II
Relatorio de Química analítica Qualitativa cátions grupo IIErica Souza
 
Exercícios de infravermelho com tabela de correlação
Exercícios de infravermelho com tabela de correlaçãoExercícios de infravermelho com tabela de correlação
Exercícios de infravermelho com tabela de correlaçãoLuis Henrique Bembo Filho
 
Reações de Substituição Eletrofílica em Aromáticos
Reações de Substituição Eletrofílica em AromáticosReações de Substituição Eletrofílica em Aromáticos
Reações de Substituição Eletrofílica em AromáticosJosé Nunes da Silva Jr.
 
Componentes óticos em espectroscopia
Componentes óticos em espectroscopiaComponentes óticos em espectroscopia
Componentes óticos em espectroscopiadiegoarica
 
Grupo I ao VI (Identificação de ânions)
Grupo I ao VI (Identificação de ânions)Grupo I ao VI (Identificação de ânions)
Grupo I ao VI (Identificação de ânions)Sarah Ornellas
 
Análise instrumental aula1 introducao
Análise instrumental   aula1 introducaoAnálise instrumental   aula1 introducao
Análise instrumental aula1 introducaoPânico Final
 
Identificação dos cátions Cu2+ e Bi3+
Identificação dos cátions Cu2+ e Bi3+Identificação dos cátions Cu2+ e Bi3+
Identificação dos cátions Cu2+ e Bi3+Gabriela Begalli
 
Química analítica qualitativa p1
Química analítica qualitativa   p1Química analítica qualitativa   p1
Química analítica qualitativa p1Danielle Cruz
 
Texto nº 3 Volumetria de Neutralização
Texto nº 3   Volumetria de NeutralizaçãoTexto nº 3   Volumetria de Neutralização
Texto nº 3 Volumetria de NeutralizaçãoMarta Pinheiro
 

Was ist angesagt? (20)

Relatorio 5
Relatorio 5Relatorio 5
Relatorio 5
 
Absorcao versus emissao
Absorcao versus emissaoAbsorcao versus emissao
Absorcao versus emissao
 
Relatorio de Química analítica Qualitativa cátions grupo II
Relatorio de Química analítica Qualitativa cátions grupo IIRelatorio de Química analítica Qualitativa cátions grupo II
Relatorio de Química analítica Qualitativa cátions grupo II
 
Introdução a Cromatografia.ppt
Introdução a Cromatografia.pptIntrodução a Cromatografia.ppt
Introdução a Cromatografia.ppt
 
Cromatografia
CromatografiaCromatografia
Cromatografia
 
Potenciometria
PotenciometriaPotenciometria
Potenciometria
 
Exercícios de infravermelho com tabela de correlação
Exercícios de infravermelho com tabela de correlaçãoExercícios de infravermelho com tabela de correlação
Exercícios de infravermelho com tabela de correlação
 
Reações químicas
Reações químicasReações químicas
Reações químicas
 
Reações de Substituição Eletrofílica em Aromáticos
Reações de Substituição Eletrofílica em AromáticosReações de Substituição Eletrofílica em Aromáticos
Reações de Substituição Eletrofílica em Aromáticos
 
Componentes óticos em espectroscopia
Componentes óticos em espectroscopiaComponentes óticos em espectroscopia
Componentes óticos em espectroscopia
 
Grupo I ao VI (Identificação de ânions)
Grupo I ao VI (Identificação de ânions)Grupo I ao VI (Identificação de ânions)
Grupo I ao VI (Identificação de ânions)
 
Análise instrumental aula1 introducao
Análise instrumental   aula1 introducaoAnálise instrumental   aula1 introducao
Análise instrumental aula1 introducao
 
Aula de gravimetria
Aula de gravimetriaAula de gravimetria
Aula de gravimetria
 
Cromatografia
CromatografiaCromatografia
Cromatografia
 
Espectrofotometria
EspectrofotometriaEspectrofotometria
Espectrofotometria
 
Identificação dos cátions Cu2+ e Bi3+
Identificação dos cátions Cu2+ e Bi3+Identificação dos cátions Cu2+ e Bi3+
Identificação dos cátions Cu2+ e Bi3+
 
Cromatografia aula
Cromatografia aulaCromatografia aula
Cromatografia aula
 
Química analítica qualitativa p1
Química analítica qualitativa   p1Química analítica qualitativa   p1
Química analítica qualitativa p1
 
Texto nº 3 Volumetria de Neutralização
Texto nº 3   Volumetria de NeutralizaçãoTexto nº 3   Volumetria de Neutralização
Texto nº 3 Volumetria de Neutralização
 
Química Geral Aula 10
Química Geral Aula 10Química Geral Aula 10
Química Geral Aula 10
 

Andere mochten auch

Cromatografia cotel
Cromatografia cotelCromatografia cotel
Cromatografia cotelBruno Cortez
 
Cromatografia / chromatography
Cromatografia / chromatographyCromatografia / chromatography
Cromatografia / chromatographyZara Hoffmann
 
Primer Estudio de Medios de Comunicación Online 2014
Primer Estudio  de Medios de Comunicación Online 2014Primer Estudio  de Medios de Comunicación Online 2014
Primer Estudio de Medios de Comunicación Online 2014IAB Spain
 
How to Make Awesome SlideShares: Tips & Tricks
How to Make Awesome SlideShares: Tips & TricksHow to Make Awesome SlideShares: Tips & Tricks
How to Make Awesome SlideShares: Tips & TricksSlideShare
 
Las guerras de las colas colas coke versus pepsi
Las guerras de las colas colas   coke versus pepsiLas guerras de las colas colas   coke versus pepsi
Las guerras de las colas colas coke versus pepsiPatricia Polvora
 
Results 2012 Netriders LATAM Phase 3
Results 2012 Netriders LATAM Phase 3Results 2012 Netriders LATAM Phase 3
Results 2012 Netriders LATAM Phase 3guestNR
 
Ict phase 1 español
Ict phase 1   españolIct phase 1   español
Ict phase 1 españolsparky32
 
Music With Loans
Music  With LoansMusic  With Loans
Music With Loanssolalopes
 
Environmental assessment and control
Environmental assessment and controlEnvironmental assessment and control
Environmental assessment and controlJavier de Vicente
 
Diagramas de Equilibrio e Transformações
Diagramas de Equilibrio e TransformaçõesDiagramas de Equilibrio e Transformações
Diagramas de Equilibrio e TransformaçõesDaphiny Pottmaier
 
Diapositivas Interfases
Diapositivas InterfasesDiapositivas Interfases
Diapositivas Interfasesgueste9e8e9
 
Apresentação da iv formação sea luciana
Apresentação da iv formação   sea lucianaApresentação da iv formação   sea luciana
Apresentação da iv formação sea lucianaHeloiza Moura
 
GenéTica Bacteriana
GenéTica BacterianaGenéTica Bacteriana
GenéTica Bacterianarmoraga
 

Andere mochten auch (20)

Cromatografia cotel
Cromatografia cotelCromatografia cotel
Cromatografia cotel
 
Cromatografia / chromatography
Cromatografia / chromatographyCromatografia / chromatography
Cromatografia / chromatography
 
Aula 01 introdução
Aula 01   introduçãoAula 01   introdução
Aula 01 introdução
 
Cromatografia Líquida Classica
Cromatografia Líquida ClassicaCromatografia Líquida Classica
Cromatografia Líquida Classica
 
Primer Estudio de Medios de Comunicación Online 2014
Primer Estudio  de Medios de Comunicación Online 2014Primer Estudio  de Medios de Comunicación Online 2014
Primer Estudio de Medios de Comunicación Online 2014
 
Budismo Grafico
Budismo GraficoBudismo Grafico
Budismo Grafico
 
How to Make Awesome SlideShares: Tips & Tricks
How to Make Awesome SlideShares: Tips & TricksHow to Make Awesome SlideShares: Tips & Tricks
How to Make Awesome SlideShares: Tips & Tricks
 
Las guerras de las colas colas coke versus pepsi
Las guerras de las colas colas   coke versus pepsiLas guerras de las colas colas   coke versus pepsi
Las guerras de las colas colas coke versus pepsi
 
Nia’s 500 a 800
Nia’s 500 a 800Nia’s 500 a 800
Nia’s 500 a 800
 
Results 2012 Netriders LATAM Phase 3
Results 2012 Netriders LATAM Phase 3Results 2012 Netriders LATAM Phase 3
Results 2012 Netriders LATAM Phase 3
 
Phase 2 refuel
Phase 2   refuelPhase 2   refuel
Phase 2 refuel
 
Ict phase 1 español
Ict phase 1   españolIct phase 1   español
Ict phase 1 español
 
Muscle tech phase 8
Muscle tech phase 8Muscle tech phase 8
Muscle tech phase 8
 
Music With Loans
Music  With LoansMusic  With Loans
Music With Loans
 
Sessão 7 – Partilha de Reformas na Área do Comércio International SISTEMA D...
Sessão 7  – Partilha de Reformas na Área do Comércio International  SISTEMA D...Sessão 7  – Partilha de Reformas na Área do Comércio International  SISTEMA D...
Sessão 7 – Partilha de Reformas na Área do Comércio International SISTEMA D...
 
Environmental assessment and control
Environmental assessment and controlEnvironmental assessment and control
Environmental assessment and control
 
Diagramas de Equilibrio e Transformações
Diagramas de Equilibrio e TransformaçõesDiagramas de Equilibrio e Transformações
Diagramas de Equilibrio e Transformações
 
Diapositivas Interfases
Diapositivas InterfasesDiapositivas Interfases
Diapositivas Interfases
 
Apresentação da iv formação sea luciana
Apresentação da iv formação   sea lucianaApresentação da iv formação   sea luciana
Apresentação da iv formação sea luciana
 
GenéTica Bacteriana
GenéTica BacterianaGenéTica Bacteriana
GenéTica Bacteriana
 

Ähnlich wie Cromatografia líquida moderna

Lect. 3 intro hplc
Lect. 3 intro hplcLect. 3 intro hplc
Lect. 3 intro hplcprenato
 
New RP HPLC method for the simultaneous estimation of sulbactum and ceftriaxo...
New RP HPLC method for the simultaneous estimation of sulbactum and ceftriaxo...New RP HPLC method for the simultaneous estimation of sulbactum and ceftriaxo...
New RP HPLC method for the simultaneous estimation of sulbactum and ceftriaxo...SriramNagarajan19
 
advance phytochemical analysis.pptx
advance phytochemical analysis.pptxadvance phytochemical analysis.pptx
advance phytochemical analysis.pptxPratikKapse8
 
A Fluorescent Probe Designed For Conformational Studies
A Fluorescent Probe Designed For Conformational StudiesA Fluorescent Probe Designed For Conformational Studies
A Fluorescent Probe Designed For Conformational Studiessubbu2681
 
عرض تحليل الي م3_095500.pptx
عرض تحليل الي م3_095500.pptxعرض تحليل الي م3_095500.pptx
عرض تحليل الي م3_095500.pptxawasbelal
 
عرض تحليل الي م3_095500.pptx
عرض تحليل الي م3_095500.pptxعرض تحليل الي م3_095500.pptx
عرض تحليل الي م3_095500.pptxawasbelal
 
HPLC (HIGH PERFORMANCE LIQUID CHROMATOGRAPHY)
HPLC (HIGH PERFORMANCE LIQUID CHROMATOGRAPHY)HPLC (HIGH PERFORMANCE LIQUID CHROMATOGRAPHY)
HPLC (HIGH PERFORMANCE LIQUID CHROMATOGRAPHY)royal college of pharmacy
 
Chan et al 2002
Chan et al 2002Chan et al 2002
Chan et al 2002Kin Chan
 
Bioanalytical method development and validation .
Bioanalytical method development and validation .Bioanalytical method development and validation .
Bioanalytical method development and validation .Shubham Bora
 
Doping in poea nanostructured films studied with atomic force spectroscopy (...
Doping in poea  nanostructured films studied with atomic force spectroscopy (...Doping in poea  nanostructured films studied with atomic force spectroscopy (...
Doping in poea nanostructured films studied with atomic force spectroscopy (...Grupo de Pesquisa em Nanoneurobiofisica
 
Poster Sorrento
Poster SorrentoPoster Sorrento
Poster Sorrentomary_
 
Lipophilicity by HPLC retention
Lipophilicity by HPLC retentionLipophilicity by HPLC retention
Lipophilicity by HPLC retentionKlara Valko
 
TSK-GEL Cation Exchange STAT Columns_TP132
TSK-GEL Cation Exchange STAT Columns_TP132TSK-GEL Cation Exchange STAT Columns_TP132
TSK-GEL Cation Exchange STAT Columns_TP132royeksteen
 
TSK-GEL STAT Cation Exchange Columns (TP132)
TSK-GEL STAT Cation Exchange Columns (TP132)TSK-GEL STAT Cation Exchange Columns (TP132)
TSK-GEL STAT Cation Exchange Columns (TP132)guest149f116
 
Nucleoside libray e-conference VRX-Harry
Nucleoside libray e-conference VRX-HarryNucleoside libray e-conference VRX-Harry
Nucleoside libray e-conference VRX-HarryHarry An
 

Ähnlich wie Cromatografia líquida moderna (20)

Ion par chromatography
Ion par chromatographyIon par chromatography
Ion par chromatography
 
Size exclusion chromatography
Size exclusion chromatographySize exclusion chromatography
Size exclusion chromatography
 
Lect. 3 intro hplc
Lect. 3 intro hplcLect. 3 intro hplc
Lect. 3 intro hplc
 
New RP HPLC method for the simultaneous estimation of sulbactum and ceftriaxo...
New RP HPLC method for the simultaneous estimation of sulbactum and ceftriaxo...New RP HPLC method for the simultaneous estimation of sulbactum and ceftriaxo...
New RP HPLC method for the simultaneous estimation of sulbactum and ceftriaxo...
 
HPLC
HPLCHPLC
HPLC
 
advance phytochemical analysis.pptx
advance phytochemical analysis.pptxadvance phytochemical analysis.pptx
advance phytochemical analysis.pptx
 
A Fluorescent Probe Designed For Conformational Studies
A Fluorescent Probe Designed For Conformational StudiesA Fluorescent Probe Designed For Conformational Studies
A Fluorescent Probe Designed For Conformational Studies
 
عرض تحليل الي م3_095500.pptx
عرض تحليل الي م3_095500.pptxعرض تحليل الي م3_095500.pptx
عرض تحليل الي م3_095500.pptx
 
عرض تحليل الي م3_095500.pptx
عرض تحليل الي م3_095500.pptxعرض تحليل الي م3_095500.pptx
عرض تحليل الي م3_095500.pptx
 
HPLC (HIGH PERFORMANCE LIQUID CHROMATOGRAPHY)
HPLC (HIGH PERFORMANCE LIQUID CHROMATOGRAPHY)HPLC (HIGH PERFORMANCE LIQUID CHROMATOGRAPHY)
HPLC (HIGH PERFORMANCE LIQUID CHROMATOGRAPHY)
 
Chan et al 2002
Chan et al 2002Chan et al 2002
Chan et al 2002
 
Bioanalytical method development and validation .
Bioanalytical method development and validation .Bioanalytical method development and validation .
Bioanalytical method development and validation .
 
Doping in poea nanostructured films studied with atomic force spectroscopy (...
Doping in poea  nanostructured films studied with atomic force spectroscopy (...Doping in poea  nanostructured films studied with atomic force spectroscopy (...
Doping in poea nanostructured films studied with atomic force spectroscopy (...
 
Experiment 6.che314
Experiment 6.che314Experiment 6.che314
Experiment 6.che314
 
chromatograpgy
chromatograpgychromatograpgy
chromatograpgy
 
Poster Sorrento
Poster SorrentoPoster Sorrento
Poster Sorrento
 
Lipophilicity by HPLC retention
Lipophilicity by HPLC retentionLipophilicity by HPLC retention
Lipophilicity by HPLC retention
 
TSK-GEL Cation Exchange STAT Columns_TP132
TSK-GEL Cation Exchange STAT Columns_TP132TSK-GEL Cation Exchange STAT Columns_TP132
TSK-GEL Cation Exchange STAT Columns_TP132
 
TSK-GEL STAT Cation Exchange Columns (TP132)
TSK-GEL STAT Cation Exchange Columns (TP132)TSK-GEL STAT Cation Exchange Columns (TP132)
TSK-GEL STAT Cation Exchange Columns (TP132)
 
Nucleoside libray e-conference VRX-Harry
Nucleoside libray e-conference VRX-HarryNucleoside libray e-conference VRX-Harry
Nucleoside libray e-conference VRX-Harry
 

Mehr von Endler Marcel Borges (6)

Aula 2
Aula 2Aula 2
Aula 2
 
Aula cations e anions via umida
Aula cations e anions via umidaAula cations e anions via umida
Aula cations e anions via umida
 
14042015
1404201514042015
14042015
 
Aula 28042015
Aula 28042015Aula 28042015
Aula 28042015
 
Fundamentos de lc e gc
Fundamentos de lc e gcFundamentos de lc e gc
Fundamentos de lc e gc
 
Análise de macro moleculas
Análise de macro moleculasAnálise de macro moleculas
Análise de macro moleculas
 

Kürzlich hochgeladen

Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...D. B. S. College Kanpur
 
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In DubaiDubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubaikojalkojal131
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringPrajakta Shinde
 
well logging & petrophysical analysis.pptx
well logging & petrophysical analysis.pptxwell logging & petrophysical analysis.pptx
well logging & petrophysical analysis.pptxzaydmeerab121
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologycaarthichand2003
 
Biological classification of plants with detail
Biological classification of plants with detailBiological classification of plants with detail
Biological classification of plants with detailhaiderbaloch3
 
Servosystem Theory / Cybernetic Theory by Petrovic
Servosystem Theory / Cybernetic Theory by PetrovicServosystem Theory / Cybernetic Theory by Petrovic
Servosystem Theory / Cybernetic Theory by PetrovicAditi Jain
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxMurugaveni B
 
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests GlycosidesGLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests GlycosidesNandakishor Bhaurao Deshmukh
 
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingBase editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingNetHelix
 
Ai in communication electronicss[1].pptx
Ai in communication electronicss[1].pptxAi in communication electronicss[1].pptx
Ai in communication electronicss[1].pptxsubscribeus100
 
trihybrid cross , test cross chi squares
trihybrid cross , test cross chi squarestrihybrid cross , test cross chi squares
trihybrid cross , test cross chi squaresusmanzain586
 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024AyushiRastogi48
 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPirithiRaju
 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxJorenAcuavera1
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024innovationoecd
 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫qfactory1
 

Kürzlich hochgeladen (20)

Let’s Say Someone Did Drop the Bomb. Then What?
Let’s Say Someone Did Drop the Bomb. Then What?Let’s Say Someone Did Drop the Bomb. Then What?
Let’s Say Someone Did Drop the Bomb. Then What?
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
 
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In DubaiDubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical Engineering
 
well logging & petrophysical analysis.pptx
well logging & petrophysical analysis.pptxwell logging & petrophysical analysis.pptx
well logging & petrophysical analysis.pptx
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technology
 
Biological classification of plants with detail
Biological classification of plants with detailBiological classification of plants with detail
Biological classification of plants with detail
 
Servosystem Theory / Cybernetic Theory by Petrovic
Servosystem Theory / Cybernetic Theory by PetrovicServosystem Theory / Cybernetic Theory by Petrovic
Servosystem Theory / Cybernetic Theory by Petrovic
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
 
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests GlycosidesGLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
 
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingBase editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
 
Ai in communication electronicss[1].pptx
Ai in communication electronicss[1].pptxAi in communication electronicss[1].pptx
Ai in communication electronicss[1].pptx
 
trihybrid cross , test cross chi squares
trihybrid cross , test cross chi squarestrihybrid cross , test cross chi squares
trihybrid cross , test cross chi squares
 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024
 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdf
 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptx
 
AZOTOBACTER AS BIOFERILIZER.PPTX
AZOTOBACTER AS BIOFERILIZER.PPTXAZOTOBACTER AS BIOFERILIZER.PPTX
AZOTOBACTER AS BIOFERILIZER.PPTX
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024
 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫
 

Cromatografia líquida moderna

  • 1. O que é cromatografia líquida?
  • 2. •http://chemkeys.com/br/2000/07/18/cromatografia-a-gas-curso-em-diapositivos/ CROMATOGRAFIA Histórico M. TSWEET (1903): Separação de misturas de pigmentos vegetais em colunas recheadas com adsorventes sólidos e solventes variados. éter de petróleo CaCO3 mistura de pigmentos pigmentos separados Cromatografia = kroma [cor] + graph [escrever] (grego) http://chemkeys.com/br/2000/07/18/cromatografia-a-gas-curso-em-diapositivos/
  • 3. “Xpомофиллы в растительном и животном мире” (Chromophils in plant and animal world) Doctor of Science dissertation,Warsaw, 1910, 380 pp. Reprinted from Chromatographic adsorption analysis, selected works of M. S. Tswet by Academy of Sciences of the USSR, 1946.
  • 4. CROMATOGRAFIA Princípio Básico Separação de misturas por interação diferencial dos seus componentes entre uma FASE ESTACIONÁRIA (líquido ou sólido) e uma FASE MÓVEL (líquido ou gás).
  • 5. CROMATOGRAFIA Modalidades e Classificação FM = Líquido FM = Gás Cromatografia Líquida Cromatografia Gasosa (CG) Em CG a FE pode ser: Sólida Líquida Cromatografia Gás-Sólido (CGS) Cromatografia Gás-Líquido (CGL)
  • 8.
  • 11. Parâmetros cromatográficos que você deve conhecer, quando trabalha com cromatografia.
  • 12. Cromatograma com as medidas relacionadas à determinação de parâmetros cromatográficos C.H. Collins, G.L. Braga, P.S. Bonato, Fundamentos de Cromatografia, 4ª edição .,:Editora da Unicamp, Campinas, 2006. R M t t R M M t t t k '    2 1 2    1 ' R t ' R t k k      t t R R 2 1 2 1,177   s w w   R R 2 1              1 2 1 2 h h b b t t w w R
  • 13. Variação do volume de retenção (VM) da uracila e da tiouréia em função do tipo e da quantidade de modificador orgânico. Coluna: Restek Allure-C18 150 × 4,6 mm. VM = tM x F, onde F é a vazão da fase móvel Y. Kazakevich, R. Lobrutto, HPLC for Pharmaceutical Scientists, Wiley-Interscience Hoboken, 2005.
  • 14. L N H  2 2     R R t t 545 , 5 16               h b w w N
  • 15. Medida e cálculo do fator de assimetria do pico. A. Braithwaite, F.J.Smith, “Chromatographic Methods”, 4a. edição, Chapman and Hall, Londres, 1985.
  • 16. Medida e cálculo do fator de alargamento do pico, segundo a USP
  • 17. Efeito da retenção, da eficiência e da seletividade sobre a resolução (adaptado da referencia
  • 18. C  B H  A   L M t   http://www.chromedia.org/chromedia?waxtrapp=yqegzCsHqnOxmOlIEcCbC&subNav=wnjedDs HqnOxmOlIEcCbCmF
  • 19. R.M. Ornaf, M.W. Dong In S. Ahuja, M.W Dong (Eds) 6th Volume, Handbook of Pharmaceutical Analysis by HPLC, Elsevier Academic Press, Londres, 2005, pg 19-45.
  • 20.
  • 22.
  • 23.
  • 24.
  • 25. 푑푝 2휇 퐷푀 푣 = a) + 푐푣 b) 퐻 = 퐴푑푝 + 퐵퐷푀 휇 + 퐶 휇푑푝 퐷푚 ℎ = 퐻 푑푝 ℎ = 푎 + 푏 푣 a) Gráficos de van Deemter b) gráficos de Knox . Dm para a acetofenona é 1.2 × 10−9 m2/s . Fase móvel 30/70 acetonitrile/água temperatura: 40 ◦C, Colunas Acquity BEH C18, 1.7 m, 10 cm × 2.1mm ID; XBridge C18, 3.5m, 15 cm×4.6mm ID; XBridge C18, 5 m, 25 cm×4.6mm ID. de Villiers et al. / J. Chromatogr. A 1127 (2006) 60–69
  • 26. Fekete et al., Journal of Chromatography A 1228 (2012) 57-71
  • 27. ΔP = (ηFL)/(K0πr2dp2) onde K0 é a permeabilidade específica, η é a viscosidade da FM, F é a vazão da FM, r é o raio interno da coluna e dp é o diâmetro médio das partículas da fase estacionária (FE) que recheiam a coluna
  • 28. Quais são os principais modos de cromatografia?
  • 29. http://www.chromedia.org/chromedia? waxtrapp=yqegzCsHqnOxmOlIEcCbC&su bNav=yarwnEsHqnOxmOlIEcCzBYT Different mechanisms of retardation in liquid chromatography (J.F. Rubinson, K.A. Rubinson, Contemporary Chemical Analysis, Prentice Hall, Upper Saddle River, 1998).
  • 30. Normal-phase LC NP-LC is performed by using silica sorbents which or chemically modified with polar and/or hydrophilic functional groups and in combination with non-polar eluents.
  • 31.
  • 33.
  • 34. Typical chromatogram of a reaction mixture collected during the course of reaction of phthalic anhydride with benzene in the presence of AlCl3, as catalyst. Peaks: 1, benzene; 2, anthraquinone; 3, phthalic anhydride; 4, maleic anhydride; 5, unknown. Chromatographic conditions: Column: Spherisob silica, 250 × 4.6mm, 10μm; mobile phase, n-heptane–ethanol chloroform–acetic acid (89 : 5 : 5 : 1, v/v/v/v); flow rate, 1mL/ min; detection, UV at 254 nm; temperature, 27°C.
  • 36.
  • 37. Viscosity as a function of organic/water composition
  • 38.
  • 39.
  • 40.
  • 41. (A) 30% MeCN: 70% 20mM Phosphate, pH 7. (B) 50% MeCN: 50% 20mM Phosphate, pH 7. (C) 80% MeCN: 20% 20mM Phosphate, pH 7.
  • 42. Retention of alkylbenzenes on Luna-C18 column from acetonitrile/water eluent.
  • 43. %ACN tR(NB), min k(NB) tR(PP), min k(PP) α (PP/NB) 100 1,02 0,28 1,02 0,28 1 90 1,04 0,3 1,04 0,3 1 80 1,18 0,48 1,12 0,39 0,83 70 1,38 0,73 1,27 0,59 0,81 60 1,73 1,16 1,57 0,96 0,83 50 2,37 1,96 2,29 1,86 0,95 40 3,73 3,66 3,73 3,66 1 30 6,55 7,19 8,62 9,78 1,36 25 9,25 10,56 15,35 18,19 1,72 20 13,46 15,83 30,75 37,44 2,37 %MeOH tR(NB),min k(NB) tR(PP), min k(PP) α (PP/NB) 100 1,02 0,28 1,02 0,28 1 90 1,08 0,35 1,08 0,35 1 80 1,25 0,56 1,25 0,56 1 70 1,5 0,88 1,68 1,1 1,26 60 2,02 1,53 2,73 2,41 1,58 50 3,05 2,81 5,65 6,06 2,16 40 5,07 5,34 14,36 16,95 3,18 30 8,91 10,14 41 50,25 4,96 25 11,78 13,73 74 91,5 6,67 Tempo de retenção (tR), fator de retenção (k) e seletividade (α) do nitrobenzeno (NB) e do propilparabeno (PP) em função da percentagem e do tipo de modificador orgânico. Coluna: Symmetry C18, 3 μm, 75 × 4,6 mm, Waters. Vazão: 1mL/min. Temperatura 40 °C
  • 44. Y. Kazakevich, R. Lobrutto, HPLC for Pharmaceutical Scientists, Wiley-Interscience Hoboken, 2005.
  • 45. Selectivity for steroids as a function of organic mobile-phase component. Chromatograms showing the elution order of all eight congeners as a function of organic modifier with 0.1% formic acid as the buffer phase on YMC ODS-AQ column at ambient temperature. (Top panel) 25% acetonitrile, 1.5-mL/min flow rate; (middle panel) 45% methanol, 1.2-mL/min flow rate; (bottom panel) 20% tetrahydrofuran, 1.5- mL/min flow rate. (Reprinted from reference 51, with permission.) P. Zhuang, R. Thompson, and T. O’Brien, J. Liq. Chrom. Rel. Technol. 28 (2005), 1345–1356.
  • 46. Time (min) A (%) B (%) 0 100 0 4 55 45 40 0 100 45 0 100 48 100 0 A. Stafiej et al. / J. Biochem. Biophys. Methods 69 (2006) 15–24
  • 47.
  • 48.
  • 49. Y. Kazakevich, R. Lobrutto, HPLC for Pharmaceutical Scientists, Wiley-Interscience Hoboken, 2005.
  • 50. Theoretical retention versus pH profiles for acidic and a zwitterionic component. Chromatographic conditions: Column: 15-cm × 0.46-cm Phenoemenex Luna C18(2), 5μm; 70% 15mM K2HPO4 adjusted pH 2–9 with phosphoric acid; 30% MeCN; flow rate, 1mL/min; temperature, 25°C. R. LoBrutto, A. Jones, Y. V. Kazakevich, and H. M. McNair, J. Chromatogr. A 913 (2001), 173–187
  • 51. Y. Kazakevich, R. Lobrutto, HPLC for Pharmaceutical Scientists, Wiley-Interscience Hoboken, 2005.
  • 52. R. LoBrutto, A. Jones, Y. V. Kazakevich, and H. M. McNair, J. Chromatogr. A 913 (2001), 173–187
  • 53.
  • 54. Y. Kazakevich, R. Lobrutto, HPLC for Pharmaceutical Scientists, Wiley-Interscience Hoboken, 2005.
  • 56. Diferentes seletividades obtidas para uma mistura de compostos básicos com fases estacionárias preparadas com diferentes tipos de ligantes químicos sobre a mesma sílica. Colunas: 250 x 4,6 mm, dp 5 μm, todas da ACE. Fase móvel: metanol:tampão fosfato (pH 6; 25 mmol/L) 80:20 (v/v). Vazão: 1.5 mL/min. Identificação dos solutos: 1 = norefedrina; 2 = nortriptilina; 3 = tolueno; 4 = amitriptilina; 5 imipramina Dolan, J. W.; LCGC North Am. 2007, 25, 1014
  • 57. J. Layne / J. Chromatogr. A 957 (2002) 149–164
  • 58. H. Engelhardt, R. Grüner, M. Schererv Chromatographia, 53 (2001), pp. S154–S161 Separation of tricyclic antidepressants on an (a) Prontosil C18 H and (b) Prontosil C 18 ACE/EPS column (150 mm × 4.6 mm, dp 5 μm). Mobile phase 65:35 (v/v) methanol:phosphate buffer (20 mM, pH 7). Peaks: 1 = uracil, 2 = protriptyline, 3 = nortriptyline, 4 = doxepine, 5 = imipramine, 6 = amitryptyline, 7 = trimipramine, 8 = clomipramine.
  • 59. O que acontece quando usamos partículas com diâmetro reduzido?
  • 60. R.M. Ornaf, M.W. Dong In S. Ahuja, M.W Dong (Eds) 6th Volume, Handbook of Pharmaceutical Analysis by HPLC, Elsevier Academic Press, Londres, 2005, pg 19-45.
  • 61. Experimental H–u plots of columns packed with 1.3, 1.7, 2.6 and 5 μm core–shell particles (peak widths were corrected for the extra-column band broadening). Test analyte: butylparaben. S. Fekete, D. Guillarme / J. Chromatogr. A 1308 (2013) 104– 113
  • 62. Impurity profiling of α-estradiol. Peaks: α-estradiol (1), main impurity (2) and minor impurity (3). Columns: Phenomenex Kinetex 50 mm × 2.1 mm, 1.3, 1.7 and 2.6 μm. Mobile phase: water/ACN 60/40 (v/v), flow rate: 0.5 mL/min, temperature: 25 °C, Vinj: 0.5 μL (25 μg/mL estradiol), λ = 210 nm (80 Hz). S. Fekete, D. Guillarme / J. Chromatogr. A 1308 (2013) 104– 113
  • 63. Fast separation of cashew nut extract. Columns: Phenomenex Kinetex 50 mm × 2.1 mm, 1.3, 1.7 and 2.6 μm. Mobile phase: water/ACN 14/86 (v/v), flow rate: 0.8 mL/min, temperature: 25 °C, Vinj: 0.3 μL, λ = 280 nm (80 Hz). S. Fekete, D. Guillarme / J. Chromatogr. A 1308 (2013) 104– 113
  • 64. Transferência de método do HPLC para o UPLC, metodologia empregada para analisar uma formulação farmacêutica de composto 6 onde se encontram onze impurezas (a) método original para HPLC: coluna, XBridge C18 (150×4.6 mm, 5 μm); vazão: 1000 μL min−1; volume de injeção, 20 μL; tempo de gradiente, 45 min. (b) método UHPLC transferido para HPLC: coluna, Acquity BEH C18 (50×2.1 mm, 1.7 μm); vazão, 610 μL min−1; volume de injeção, 1.4 μL; tempo de gradiente, 5.1 min. (c) Otimização do método UHPLC: columa, Acquity BEH C18 (50×2.1 mm, 1.7 μm); vazão, 1000 μL min−1; volume de injeção, 1.4 μL; tempo total de gradiente, 3.1 min. Figura adaptada Guillarme et al. Anal Bioanal Chem (2010) 397:1069–1082.
  • 65. Separation of a pharmaceutical formulation “Rapidocain” in isocratic mode. Experimental conditions: mobile phase containing ACN/phosphate buffer at pH 7.2 (40:60, v/v). A. Waters Xterra RP18, 150 × 4.6 mm, 5 μm, F = 1000 μl/min,Vinj = 20 μl. B. Waters Acquity Shield RP18, 50 × 2.1 mm, 1.7 μm, F = 613 μl/min, Vinj = 1.4 μl. C. Waters Acquity Shield RP18, 50 × 2.1 mm, 1.7 μm, F = 1000 μl/min, Vinj = 1.4 μl. 1, methylparaben; 2, 2,6- dimethylanalinine; 3, propylparaben; 4, lidocaine. (http://www.rsc.org/shop/books/ 2012/9781849733885.asp). S. Fekete et al. / Journal of Pharmaceutical and Biomedical Analysis 87 (2014) 105–119
  • 66. Chromatograms for columns with different lengths. Conditions: 50, 100, and 150 mm BEH Shield C-18 columns packed with 1.7, 3.5, and 5.0 μm particles respectively; 2.1 mm internal diameter; flow rates for 50, 100, and 150 mm lengths were 0.36, 0.24, and 0.12 mL/min, respectively; the injection volumes for 50, 100, and 150 mm lengths were 1.0, 2.0, and 3 μL, respectively; the sample concentration was 0.1 mg/mL for each analyte;. Peak identifications: from left to right (1) uracil; (2) benzylalcohol; (3) acetophenone; (4) propiophenone; and (5) benzophenone N. Wu, A.C. Bradley / J. Chromatogr. A 1261 (2012) 113–120
  • 67. Chromatograms for columns with different lengths. Conditions: 50, 100, and 150 mm BEH Shield C-18 columns packed with 1.7, 3.5, and 5.0 μm particles respectively; 2.1 mm internal diameter; flow rates for 50, 100, and 150 mm lengths were 0.36, 0.24, and 0.12 mL/min, respectively; the injection volumes for 50, 100, and 150 mm lengths were 1.0, 2.0, and 3 μL, respectively; the sample concentration was 0.1 mg/mL for each analyte;. Peak identifications: from left to right (1) uracil; (2) benzylalcohol; (3) acetophenone; (4) propiophenone; and (5) benzophenone.
  • 68. Loss in efficiency at various retention factors for columns with different lengths. Conditions: 0.1 mg/mL uracil, benzylalcohol, acetophenone, propiophenone; and benzophenone were used as analytes. Keys: (♦) 50 mm; (○) 100 mm; and (●) 150 mm.
  • 69.
  • 70.
  • 71. Chromatograms obtained with a Kinetex® 100 × 2.1 mm, 2.6 μm column with A. a conventional HPLC system without modification, and B. after optimization. https://phenomenex.blob.c ore.windows.net/document s/ad6882fd-5ad1-478a-ab0a- 5ad746734529.pdf (06.02.2 013).
  • 72. Graphical representation of A. pressure tolerance and type of pumping system, and B. standard system dwell volume of all the UHPLC systems (ΔP > 600 bar) commercially available. In A., light red expresses low pressure system volume while dark blue represents high pressure system volume. It is important to notice that the standard dwell volume reported in this figure can be modified on a few instruments either by bypassing the damper and mixer, or by changing the volume of the mixing chamber. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
  • 73.
  • 74.
  • 75.
  • 76. Jul 1, 2012 By: Fabrice Gritti, Georges Guiochon LCGC North America Volume 7, Issue 30
  • 77. Distribuição do tamanho de partícula. (A) Zorbax-XDB- 1.8 μm, (B) Acquity-BEH- 1.7 μm, (C) Kinetex-1.7 μm, and (D) EiS-150-1.7 μm. (E) Sobreposição de todas as figuras. Omamogho & Glennon; Anal. Chem. 2011, 83, 1547-1556
  • 78. DA,B é o coeficiente de difusão de um soluto A em um solvente B, (cm2 s−1), MB é a massa molecular do solvente B (g mol−1), T é a temperatura absoluta em (K), ηB é a viscosidade do solvente B (cP) a uma temperatura T, VA é o volume molar do soluto A (cm3 g−1 mol−1) e ϕB, é o coeficiente de associação do soluto com a fase móvel B (adimensional) (Guillarme et al / Journal of Chromatography A, 1052 (2004) 39–51)
  • 79. Curvas H–u (curvas de van Deenter) de colunas 1.7 μm core–shell (Kinetex C18, 5 cm×2.1mm) e 1.7 μm totalmente porosas (Waters BEH C18, 5 cm×2.1mm). Fase móvel: 440/560/1 (para proteínas de 18.8 kDa), 470/530/1 (para proteínas de 38.9 kDa) e 610/390/1 (para BSA, 66.3 kDa) acetonitrila/água/TFA, temperatura: 60 ◦C, injeção: 0.5 μl, analitos teste: proteínas. S. Fekete et al. / Journal of Pharmaceutical and Biomedical Analysis 54 (2011) 482–490.
  • 80. Van Deemter plots das colunas Kinetex, Ascentis Express (2.7 μm), e sub-2 μm totalmente porosas. Fase móvel : (A) 48% acetonitrila–52% água para o estradiol e (B) 95% acetonitrila–5% água para a ivermectina. Temperatura: 35 °C, injeção: 0.5 μL, analito: (A) estradiol (B) ivermectina. (E. Olah et al. / J. Chromatogr. A 1217 (2010) 3642–3653)
  • 81.
  • 82. Waters Acquity BEH 50 × 2.1 mm, 1.7 μm, C18 column. The mobile phase containing a mixture of 0.01% aqueous trifluroacetic acid and acetonitrile in the ratio of 75:25 (v/v) at a flow rate of 500 μl/min was used A Kromasil C18, 250 × 4.6 mm, 5 μm column was used for separation. Chromatographic separation was achieved in both the modes (isocratic and gradient). Mobile phase consisting of a mixture of A: 0.01% aqueous trifluroacetic acid and B: acetonitrile in the ratio 75:25 (v/v) for isocratic mode Journal of Pharmaceutical and Biomedical Analysis 46 (2008) 236–242 Chemical structures of primaquine phosphate and impurities. (A) primaquine phosphate (B) impurity I: 8-(4-amino-4-methylbutyl amino)-6 methoxyquinoline (C) impurity II: 8-nitro-6- methoxyquinoline.
  • 83. The LOD and LOQ demonstrated for HPLC (isocratic mode) and UPLC.
  • 84. O efeito da pressão na retenção.
  • 85. Effect of pressure (generated by restrictor tubes at column outlet) on the retention of small analytes. Column: Acquity BEHC18 (50 mm × 2.1 mm), mobile phase: water (0.1% TFA) + acetonitrile (0.1% TFA): 70 + 30 (v/v), flow-rate: 100 μL/min, temperature: 30 °C, injected volume: 0.5 μL, detection: 210 nm. Peaks: lidocaine (1), salicylic acid (2), bupivacaine (3), propranolol (4), propylparaben (5) and testosterone (6). S. Fekete et al. / J. Chromatogr. A 1270 (2012) 127– 138
  • 86. Effect of pressure (generated by restrictor tubes at column outlet) on the retention of related peptides (1–1.3 kDa). Column: Acquity BEH300 C18 (50 mm × 2.1 mm), mobile phase: water (0.1% TFA) + acetonitrile (0.1% TFA): 73 + 27 (v/v), flow-rate: 100 μL/min, temperature: 40 °C, injected volume: 1 μL, detection: fluorescence ex.: 280 nm, em.: 360 nm. Peaks: P-868 (1), P-866 (2), P-870 (3), and P-869 (4).
  • 87. Effect of pressure (generated by restrictor tubes at column outlet) on the retention of insulin and related proteins. Column: Acquity BEH300 C18 (50 mm × 2.1 mm), mobile phase: water (0.1% TFA) + acetonitrile (0.1% TFA): 69 + 31 (v/v), flow-rate: 100 μL/min, temperature: 50 °C, injected volume: 1 μL, detection: fluorescence ex.: 280 nm, em.: 360 nm. Peaks: insulin (1), related proteins (2–4). Please note that time scale is normalized to the last eluted peak.
  • 88. Effect of pressure (A) and the combination of pressure and mobile phase velocitiy (B) on the retention (relative change in k) of different size analytes (1.1 kDa peptide, 5.7 kDa insulin, 12.3 kDa cytochrome C and 17 kDa myoglobin). Column: Acquity BEH300 C18 (50 mm × 2.1 mm), mobile phase A: water (0.1% TFA), mobile phase B: acetonitrile (0.1% TFA). Detection: fluorescence ex.: 280 nm, em.: 360 nm. Investigated pressure range: 100– 1100 bar.
  • 89. Effect of very high pressure (generated by restrictor tubes at column outlet) on the retention (A) and peak shape (A and B) of cytochrome C. Column: Acquity BEH300 C18 (50 mm × 2.1 mm), mobile phase: water (0.1% TFA) + acetonitrile (0.1% TFA): 70.5 + 29.5 (v/v), flow-rate: 200 μL/min, temperature: 65 °C, injected volume: 1 μL, detection: fluorescence ex.: 280 nm, em.: 360 nm.
  • 90. Effect of pressure on selectivity of separation of a diverse mixture of compounds Column: Ace Excel 5 C18, 5 cm × 0.21 cm I.D., 5 μm, mobile phase 25% ACN in 0.025 M phosphate buffer at pH 2.7. T = 30 °C, F = 0.3 mL/min, λ = 254 nm. Peak identities 1 = uracil, 2 = aniline, 3 = 2- naphthalenesulfonic acid, 4 = propranolol, 5 = prednisone, 6 = acetophenone, 7 = diphenhydramine, 8 = nitrobenzene. Results for this Figure obtained with the Acquity system. M.M. Fallas et al. / J. Chromatogr. A 1297 (2013) 37– 45
  • 92. Wide-pore fused-core particles for protein separations. Left: cartoon of particle dimensions. Right: scanning electron micrograph of particles. S.A. Schuster et al. / J. Chromatogr. A 1315 (2013) 118– 126
  • 93. Focused ion beam scanning electron micrographs of wide-pore fused-core particles. Left: single particle showing porous outer shell. Right: particle cross-section showing shell thickness. S.A. Schuster et al. / J. Chromatogr. A 1315 (2013) 118– 126
  • 94. Plate height comparison. Columns 100 mm × 2.1 mm; mobile phase: 1.7 μm totally porous – 40.5% acetonitrile/59.5% aqueous 0.1% (v/v) trifluoroacetic acid, = 3.4; 3.4 μm Halo 400 – 42.5% acetonitrile/57.5% aqueous 0.1% (v/v) trifluoroacetic acid, k = 3.6; solute: carbonic anhydrase (29 kDa), 0.1 mg/mL in 6 M urea/1.0% acetic acid; temperature: 60 °C
  • 95. Reduced plate height comparison. Columns 100 mm × 2.1 mm; mobile phase: 1.7 μm totally porous – 40.5% acetonitrile/59.5% aqueous 0.1% (v/v) trifluoroacetic acid, = 3.4; 3.4 μm Halo 400 – 42.5% acetonitrile/57.5% aqueous 0.1% (v/v) trifluoroacetic acid, k = 3.6; solute: carbonic anhydrase (29 kDa), 0.1 mg/mL in 6 M urea/1.0% acetic acid; temperature: 60 °C
  • 96. Effect of temperature on protein separations. Column: 100 mm × 2.1 mm Halo Protein C4; gradient: 28–58% B in 10.0 min; mobile phase A: aqueous 0.1% trifluoroacetic acid; mobile phase B: acetonitrile with 0.1% trifluoroacetic acid; flow rate: 0.45 mL/min; instrument: Agilent 1200 SL; injection volume, 2 μL; detection: 215 nm; temperatures as indicated; solutes, proteins as shown.
  • 97. Effect of pore size on separation of small proteins. Columns: 100 mm×4.6 mm Halo C18 (90 Å pores) and 100 mm×4.6 mm Halo Peptide ES-C18 (160 Å pores); mobile phase: A=water/0.1% trifluoroacetic acid; B=acetonitrile/0.1% trifluoroacetic acid; gradient: 25–42% B in 10 min; flow rate: 1.5 mL/min; temperature: 30 °C; detection: 215 nm; and solutes in order of elution: (1) ribonuclease A, (2) bovine insulin, (3) human insulin, (4) cytochrome c, and (5) lysozyme. Peak widths in minutes above each peak. Journal of Pharmaceutical Analysis 2013;3(5):303–312
  • 99. SEM photographs of monolithic silica rod columns prepared at different PEG concentrations in the starting reaction mixture. PEG: 9.4 g (a), 9.8 g (b), 10.2 g (c), and 10.4 g (d). Other starting reaction conditions: 45 mL TMOS, 100 mL of 0.01 M aqueous acetic acid solution. Concentration of NH4OH used for controlling the mesopore size: 0.01 M. The skeleton size and through-pore size are indicated by black and white arrows, respectively, in (a). Journal of Chromatography A, 1191 (2008) 231–252
  • 100.
  • 101.
  • 102.
  • 103.
  • 104.
  • 105.
  • 106. Experimental Van Deemter plots of 2.6 μm shell-type (Kinetex), 2.7 μm shell-type (Ascentis Express), sub- 2 μm totally porous particles and a monolith column (peak widths were corrected for the extra-column broadening). Mobile phase: (A) 48% acetonitrile–52% water for estradiol and (B) 95% acetonitrile–5% water for ivermectin, temperature: 35 °C, injection: 0.5 μL, analyte: (A) estradiol and (B) ivermectin. Journal of Chromatography A, Volume 1217, Issue 23, 2010, 3642 - 3653
  • 107.
  • 108.
  • 109.
  • 110.
  • 111.
  • 112.
  • 113. Structures and possible fragmentations of each analyte and IS. Yin Huang , Yuan Tian , Zunjian Zhang , Can Peng Journal of Chromatography B, Volume 905, 2012, 37 - 42
  • 114. ZIC®-HILIC column (250 mm × 4.6 mm, 5 μm) from Merck (Darmstadt, Germany).The column temperature was maintained at 45 °C with an injection of 10 μL. Mobile phase A consisted of acetonitrile while mobile phase B onsisted of 10 mM ammonium acetate in redistilled water. The isocratic program was 70% A and 30% B at a flow rate of 0.5 mL/min. Y. Huang et al. / J. Chromatogr. B 905 (2012) 37–42.
  • 115.
  • 116. Effect of water content on the retention of hydrazines on a ZIC HILIC column. Column temperature was at 30 °C with a flow rate of 0.4 mL/min using a splitter and CLND. The CLND system was set at 1050 °C combustion furnace, 50 mL/min argon, 280 mL/min oxygen, 75 mL/min makeup (argon), 30 mL/min ozone, 5 °C cooler, gain x1, 750 V on PMT. The analyte concentrations were about 30– 70 μg/mL in water/EtOH (20/80, v/v). Acetonitrile at 0.1% (v/v) level in EtOH was used as a void time marker. Injection volume was 10 μL. (A) Chromatographic separation of hydrazines as a function of water content in the mobile phase– TFA/water/ethyl alcohol (0.1/50–10/50– 90, v/v/v). 1: 1,2-Dimethylhydrazine, 2: 1,1-dimethylhydrazine, 3: methylhydrazine and 4: hydrazine. (B) Effect of water content on k′ in the isocratic condition with the mobile phases–TFA/water/ethyl alcohol (0.1/50– 10/50–90, v/v/v). Hydrazine (green), methylhydrazine (red), 1,1- dimethylhydrazine (pink) and 1,2- dimethylhydrazine (blue).
  • 117. Chemical structures of SBD-F and thiols. (A) Structure of thiols: 1, Cys; 2, Hcy; 3, CA; 4, γ-GluCys; 5, CysGly; 6, GSH; 7, NAC; 8, MPG. (B) Reaction of SBD-F and thiols Analyst,2013, 138, 3802- 3808.
  • 118. Effect of the type of alcohols on the retention of hydrazines on a ZIC HILIC column. For each separation, isocratic run was performed in the mobile phase of TFA/water/alcohol (0.1/10/90, v/v/v), column temperature at 30 °C, flow rate at 0.4 mL/min with a splitter and CLND. 1: 1,2- Dimethylhydrazine, 2: 1,1-dimethylhydrazine, 3: methylhydrazine and 4: hydrazine.
  • 119. Effect of the type of acid modifiers on the retention of hydrazines on a ZIC HILIC column. For each separation, isocratic elution was performed with acid/water/ethyl alcohol (0.1/30/70, v/v/v) as a mobile phase, column temperature at 30 °C, flow rate at 0.4 mL/min with a splitter and CLND. 1: 1,2-Dimethylhydrazine, 2: 1,1-dimethylhydrazine, 3: methylhydrazine and 4: hydrazine.
  • 120. The separation of hydrazines on different columns. Column temperature was at 30 °C; flow rate was 0.4 mL/min with a splitter and CLND. Mobile phase was formic acid/water/ethyl alcohol (0.5/20/80, v/v/v). 0.1% ACN (v/v) in ethyl alcohol was used as a void volume marker. 1: 1,2- Dimethylhydrazine, 2: 1,1-dimethylhydrazine, 3: methylhydrazine and 4: hydrazine. (a) Zorbax NH2, (b) Diol, (c) Amide-80 and (d) ZIC HILIC.
  • 121. HILIC columns Functional group Chemical structure Inertsil SIL Bare silica Inertsil Amide Amide Inertsil Diol Diol TSKgel NH2-100 Amino PC HILIC Phosphorylcholine ZIC-HILIC Sulfobetaine
  • 122. Retention time of SBD–thiols on five HILIC columns. Columns: Inertsil Diol, ●; Inertsil SIL, ◇; PCHILIC, ▲; Inertsil Amide, ; ZIC-HILIC, ◆. Column temperature: 35 °C. Mobile phase: acetonitrile–10 mmol l−1 ammonium formate buffer (pH 3.0) = 75/25 (v/v). Linear velocity: 58 mm min−1. Fluorescence detection: ex; 375 nm, em; 510 nm.
  • 123. Effect of (A) acetonitrile content, (B) pH of ammonium formate buffer and (C) concentration ofammonium formate buffer on retention time of SBD–thiols. Symbols: SBD– MPG, ●; SBD–NAC,◇; SBD– CA, ▲; SBD–Hcy, ; SBD–Cys, ◆; SBD–CysGly, ○; SBD–GSH, ■; SBD–γ-GluCys, △. Column: ZIC-HILIC (150 mm × 2.1 mm i.d., 5 μm, Merck). Column temperature: 35 °C. Mobile phase: (A) acetonitrile–10 mmol l−1 ammonium formate buffer (pH 3.0), (B) acetonitrile–10 mmol l−1 ammonium formate buffer = 75/25 (v/v), and (C) acetonitrile– ammonium formate buffer (pH 3.0) = 75/25. Flow rate: 0.2 ml min−1. Fluorescence detection: ex 375 nm, em 510 nm. Injection sample: 5 μl, containing 90%acetonitrile.
  • 124. Comparison of five HILIC columns: amide, hybrid silica, diol, bare silica and zwitterionic phase, for the separation of a test mixture of acidic compounds: (AT) coumachlor, (BJ) hydrochlorothiazide, (BP) ketoprofen, (AY) diclofenac, (AD) acetylsalicylic acid, (BH) furosemide. Column dimensions: 2.1 mm × 50 mm, 1.7 μm, except for RRHD 1.8 μm. Flow rate of 0.5 mL/min, λ = 230 nm, injected volume = 1 μL. Condition: ammonium formate (50 mmol/L, pH 4), gradient profile: 95%ACN for 1 min, then 95–65%ACN in 3 min with T = 30 °C.
  • 125. Comparison of five HILIC columns: amide, hybrid silica, diol, bare silica and zwitterionic phase, for the separation of a mixture of basic compounds: (CJ) noscapine, (AF) alprazolam, (BI) heroin, (CV) sotalol, (AS) codeine, (BK) hydromorphone, (AZ) dihydrocodeine. Column dimensions: 2.1 mm × 50 mm, 1.7 μm, except for RRHD 1.8 μm. Flow rate of 0.5 mL/min, λ = 249 nm, injected volume = 1 μL. Condition: ammonium formate (50 mmol/L, pH 4), gradient profile: 95% ACN for 1 min, then 95–65% ACN in 3 min with T = 30 °C.
  • 126. Effect of pH on selectivity. Column: bare silica (2.1 mm × 50 mm, 1.8 μm), flow rate of 0.5 mL/min., λ = 249 nm, injected volume = 1 μL. Condition: pH 3 ammonium formate 50 mmol/L, pH 4 ammonium formate 50 mmol/L, pH 5 ammonium acetate 50 mmol/L, pH 6 ammonium acetate 50 mmol/L, gradient profile: 95% ACN for 1 min, then 95–65% ACN in 3 min withT = 30 °C. Peak label: (CL) oxazepam, (AY) diclofenac, (BQ) lidocaine, (CP) pindolol, (CZ) thebaine, (BK) hydromorphone, (AZ) dihydrocodeine
  • 127. Effect of organic modifier on selectivity: ACN, ACN/IPA 80:20 v/v, and ACN/MeOH 80:20 v/v. Column: silica bare, flow rate of 0.5 mL/min, λ = 249 nm, injected volume = 1 μL. Condition: ammonium formate (50 mmol/L, pH 4), gradient profile: 5% buffer for 1 min, then 5–35% buffer in 3 min with T = 30 °C. Peak label: (CL) oxazepam, (AY) diclofenac, (BQ) lidocaine, (CP) pindolol, (CZ) thebaine, (BK) hydromorphone, (AZ) dihydrocodeine.
  • 128. Performance comparison of two HILIC columns: (A) an Acquity BEH HILIC (2.1 mm id × 150 mm, 1.7 μm) and (B) an Acquity HILIC amide (2.1 mm id × 150 mm, 1.7 μm) for the analysis of a mixture of hypoxanthine (1: 80 μg/mL), cytosine (2: 10 μg/mL), nicotinic acid (3: 30 μg/mL) and procainamide (4: 30 μg/mL) dissolved in pure ACN. Conditions: mobile phase: ammonium formate (50 mM, pH 3.14) modified with ACN, gradient profile: 95% ACN for 6 min, then 95– 75% ACN in 5 min for (A) and isocratic conditions: 94% ACN for (B), flow rate of 500 μL/min, λ = 214 nm, volume injected = 5 μL, T = 30 °C.
  • 129. Comparison of the chromatographic performance obtained by (A) RPLC vs. (B) HILIC for the analysis of a mixture of 9 peptides: (1) lysine vasopressin (20 μg/mL), (2) arginine vasopressin (12 μg/mL), (3) peptide D (20 μg/mL), (4) triptorelin (5 μg/mL), (5) peptide A (20 μg/mL), (6) insulin (60 μg/mL), (7) peptide B (6 μg/mL), (8) peptide E (25 μg/mL), (9) peptide C (6 μg/mL) dissolved in water for (A) and in IPA for (B); the star (*) designates an impurity present in synthetic peptides. Conditions: (A) Column Acquity BEH C18 (2.1 mm id × 150 mm, 1.7 μm), flow rate of 400 μL/min, λ = 214 nm, volume injected = 5 μL, gradient profile: 10–90% ACN in 20 min with T = 30 °C, (B) Column Acquity HILIC amide (2.1 mm id × 150 mm, 1.7 μm), flow rate of 500 μL/min, λ = 214 nm, volume injected = 5 μL, gradient profile: 90% ACN for 3 min, then 90–62% ACN in 9 min with T = 30 °C.
  • 130.
  • 131.
  • 132.
  • 133.
  • 134.
  • 135.
  • 136.
  • 137.
  • 138.
  • 139.
  • 141. Illustrative description of separation in SEC
  • 142.
  • 143. HONG, Paula; KOZA, Stephan; BOUVIER, Edouard SP. A REVIEW SIZE-EXCLUSION CHROMATOGRAPHY FOR THE ANALYSIS OF PROTEIN BIOTHERAPEUTICS AND THEIR AGGREGATES. Journal of liquid chromatography & related technologies, v. 35, n. 20, p. 2923-2950, 2012. FEKETE, Szabolcs et al. Theory and practice of Size Exclusion Chromatography for the analysis of protein aggregates. Journal of Pharmaceutical and Biomedical Analysis, 2014.
  • 144.
  • 145. The free energy change of a chromatographic process can be described by, where ΔG 0, ΔH 0, and ΔS 0 are the standard free energy, enthalpy, and entropy differences, respectively; R is the gas constant: T is absolute temperature, and k is the partition coefficient. For most chromatographic modes of separation, the enthalpy of adsorption is the dominant contributor to the overall change in free energy. SEC is unique in that partitioning is driven entirely by entropic processes as there ideally is no adsorption, ΔH = 0. Thus the previous equation becomes: where K D is the thermodynamic retention factor in SEC. Thus, in SEC separations, temperature should have no impact on retention. In practice, temperature can indirectly impact retention to a small degree by altering the conformation of the proteins, as well as by affecting mobile phase viscosity and analyte diffusivity.
  • 146. The thermodynamic SEC retention factor is the fraction of intraparticle pore volume that is accessible to the analyte: where V R , V 0, and V i are the respective retention volumes of the analyte of interest, the interstitial volume, and the intra-particle volume. K D will range from a value of 0 where the analyte is fully excluded from the pores of the stationary phase, to a value of 1 where the analyte fully accesses the intraparticle pores.
  • 147. Separation of (1) thyroglobulin, (2) IgG, (3) BSA, (4) Myoglobin, and (5) Uracil on a Waters ACQUITY UPLC BEH200 SEC, 1.7 μ, 4.6 × 150 mm. Mobile phase: 100 mM sodium phosphate, pH 6.8. Flow rate: 0.3 mL/min. Temperature: 30°C (black), 40°C (blue), 50°C (red). Reproduced with permission from Waters Corporation, Milford, MA
  • 149.
  • 150. Theoretically expected impact of the particle size and mobile phase temperature on column performance. (For the calculations, a 50 kDa protein was assumed.).
  • 151. Effect of linear velocity on plate height for (a) ribonuclease A (red) and (b) a monoclonal antibody (blue) on two columns varying in particle size. The 4.6 × 150 mm columns were packed with either 1.7 micron (solid line) or 2.6 micron particles (dashed line). Pore size of stationary phase sorbent: 200 Å. Mobile phase consisted of 100 mM sodium phosphate, pH 6.8. Reproduced with permission from Waters Corporation, Milford, MA.
  • 152. Comparison of Columns: Effect of Particle Size on Efficiency and Resolution for a Reduced Antibody Theoretical Plates [-17pt] Columns Dimension s (m i.d. × mm length) Particle size (μm) Pore sizes (Å) HC LC Resolution TSKgel G3000SW 7.5 × 300 10 250 1980 3845 3 TSKgel G3000SWxl 7.8 × 300 5 250 5060 10674 4 Shodex KW-804 8.0 × 300 7 250 4952 8859 2 Protein-Pak 300SW 7.5 × 300 10 250 2078 4271 3 BioSuite 250 7.8 × 300 5 250 5149 9403 3
  • 153.
  • 154.
  • 155.
  • 156. The drug aprotinin (Trasylol, previously Bayer and now Nordic Group pharmaceuticals), is the small protein bovine pancreatic trypsin inhibitor, or BPTI, which inhibits trypsin and related proteolytic enzymes. Under the trade name Trasylol, aprotinin was used as a medication administered by injection to reduce bleeding during complex surgery, such as heart and liver surgery. Its main effect is the slowing down of fibrinolysis, the process that leads to the breakdown of blood clots. The aim in its use was to decrease the need for blood transfusions during surgery, as well as end-organ damage due to hypotension (low blood pressure) as a result of marked blood loss. The drug was temporarily withdrawn worldwide in 2007 after studies suggested that its use increased the risk of complications or death
  • 157.
  • 158.
  • 159.
  • 160.
  • 161.
  • 162.
  • 163.
  • 164.
  • 165.
  • 166. Schematic representation of some of the key steps in non-native aggregation
  • 167. Plate heights (HETP) vs. linear velocity (u0) plots of Panitumumab (A), chicken ovalbumin (B) and β-lactoglobulin (C). Columns: Acquity UPLC BEH200 SEC 1.7 μm, 150 mm × 4.6 mm (operated at 30, and 60 °C), YMC-Pack-Diol- 200 5 μm, 300 mm × 6 mm and Phenomenex Yarra SEC- 3000 3 μm, 300 mm × 4.6 mm (operated at 30 and 50 °C). Mobile phase: 20 mM disodium hydrogen-phosphate buffer of pH = 6.8. Journal of Pharmaceutical and Biomedical Analysis 78– 79 (2013) 141– 149
  • 168. Effect of pressure (A) and temperature (B) on the observed aggregates. Column: Acquity UPLC BEH200 SEC 1.7 μm, 150 mm × 4.6 mm. Mobile phase: 20 mM disodium hydrogen-phosphate buffer of pH = 6.8. Flow rate: 200 μl/min, detection: FL (Ex: 280 nm, Em: 360 nm). The column pressure (head pressure) was varied by adding restrictor capillaries to the column outlet (131, 271, 406 and 465 bar were generated, including the column pressure) on (A). Sample: heat stressed panitumumab.
  • 169. Representative chromatograms on the effect of column temperature (A) and pressure (B) on the observed amount of antibody aggregates
  • 170. Representative chromatograms on BEH 1.7 μm column (A) and on YMC diol 5 μm column (B) obtained by injecting the same sample (native panitumumab). Mobile phase: 20 mM disodium hydrogen-phosphate buffer of pH = 6.8. Flow rate: 500 μl/min, detection: FL (Ex: 280 nm, Em: 360 nm), mobile phase temperature: 30 °C. The generated pressure was 274 bar (A) and 73 bar (B).
  • 171. Fast separation of the aggregate and native form of β-lactoglobulin (A) and of chicken egg ovalbumin (B). Column: Acquity UPLC BEH200 SEC 1.7 μm, 150 mm × 4.6 mm. Mobile phase: 20 mM disodium hydrogen-phosphate buffer of pH = 6.8. For β-lactoglobulin: flow rate: 700 μl/min, mobile phase temperature: 45 °C and for egg ovalbumin: flow rate: 850 μl/min, mobile phase temperature: 60 °C. Detection: FL (Ex: 280 nm, Em: 360 nm) for both cases. Peaks: 1, 2 and 3: high molecular weight species.
  • 172. C. Wong et al. / J. Chromatogr. A 1270 (2012) 153– 161 SE-HPLC chromatogram profile at 280 nm showing fronting shoulder on monomer of a drug product at time zero (red) and 40 °C 2 months stability sample (black). Column TSKgel BioAsisst G3SWXL
  • 173. Representative chromatograms of formulated bulk separation using 0.25 M NaCl (black), 0.5 M NaCl (blue), 0.75 M NaCl (green), 1.0 M NaCl (cyan), 1.25 M NaCl (magenta), 1.5 M NaCl (purple), and 1.7 M NaCl (red) sodium chloride in 20 mM sodium phosphate, pH 7.0 mobile phase, and Waters Acquity BHE200 4.6 mm × 300 mm column shown at 280 nm. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
  • 174. Representative chromatogram of (A) formulated bulk material (blue) and purified monomer fraction (black), and (B) 40 °C, 9 months stability sample (blue) and purified pre-peak fraction (black) using the final mixed mode UPLC method at 280 nm. Mobile phase containing 20 mM sodium phosphate at pH 7.0 and a flow rate of 0.15 mL/min showed the best separation for the mixed mode UPLC method. The pre-peak and the monomer peak were fractionated using the final mixed mode UPLC method for characterization
  • 175. J. Sep. Sci. 2013, 36, 2718–2727 Chromatograms of PS standard (Mp ∼ 11 600 g/mol, -D- ∼ 1.03) obtained on XBridge(TM) C18 and ACQUITY R C18 columns (4.6 × 150 mm) packed with different size particles: 10, 5, 3.5, and 1.7 m. Mobile phase, THF; flow rate, 1 mL/min; detection, UV at 254 nm.
  • 176. Stacked chromatograms of SEC separation of two proprietary polymers on BEH 45 unbonded and BEH 45 TMS columns, 4.6 × 150mmin THF at 1 mL/min using UV detection at 254 nm. (A) Polymer A on BEH 45 unbonded; (B) polymer B on BEH 45 unbonded; (C) polymer A on BEH 45 TMS; (D) polymer B on BEH 45 TMS
  • 177. Chromatograms of PS standards on (A) BEH 200 diol, 4.6 × 150 mm, detection, UV at 254 nm; (B) same as (A), but with ELS detection. Five replicate injections are shown, demonstrating repeatability; (C) 5 m PLgel MiniMix D (4.6 × 250 mm); detection, UV at 254 nm. In all cases, mobile phase was THF and flow rate was 1 mL/min.
  • 178. Chromatograms of (A) fourteencomponent mixture of PS standards obtained on two 4.6 × 150 mm columns connected in series. First column, 1.7 m BEH diol 200 A° ; second column, 1.7 m BEH diol 450 A° . Mobile phase, THF; flow rate, 1 mL/min; detection, ELS, (B) twelve-component PS standards obtained on three PL gel SEC columns (7.5 × 300 mm each) packed with 5 m Psdivinylbenzene particles with pore sizes labeled as 10E2, 10E3, and 10E4 A° . Mobile phase, THF; flow rate, 1 mL/min; detection, RI.
  • 179. Chromatograms of PMMA standards and corresponding calibration curve (fifth-order fit). Mobile phase, THF; flow rate, 0.4 mL/min; column, 4.6 × 150 mm, packed with 1.7 mdiol-bonded particles with amean pore size of 200 A° ; detection, ELS.
  • 180.
  • 181. Efeito do contra ion e de sua concentração na retenção de β- bloqueadores.
  • 182. FLIEGER, J. The effect of chaotropic mobile phase additives on the separation of selected alkaloids in reversed-phase high-performance liquid chromatography. Journal of Chromatography A, v. 1113, n. 1, p. 37-44, 2006.
  • 183. Chromatograms of a mixtures of alkaloids (A—caffenine, B— laudanozine, C— colchicine, D—boldine, E—strychnine, F— cinchonine, G—quinine) with different organic anions in the mobile phase.
  • 184. Effect of anionic additive type on the retention of investigated alkaloids. (*) For emetine and berberine the strongest retention was observed when hexafluorophosphate salt was added to the mobile phase. Their retention factors were higher than 25.
  • 185. The effect of different anionic additives on retention, peak symmetry and efficiency of narcotine.
  • 186. Jones, Alan, Rosario LoBrutto, and Yuri Kazakevich. "Effect of the counter-anion type and concentration on the liquid chromatography retention of β-blockers." Journal of Chromatography A 964.1 (2002): 179-187.
  • 187. Dependence of the retention factors for labetolol, acebutolol, and nadolol versus the concentration of perchlorate counter-anion in the mobile phase. Chromatographic conditions: column: Zorbax Eclipse XDB-C18 (150×4.6 mm), mobile phase: aqueous adjusted with perchloric acid and/or sodium perchlorate (pH 3.0)–acetonitrile (70:30), flow-rate: 1 ml/min, detection: UV at 225 nm.
  • 188. Dependence of the retention factors for metoprolol, pindolol, and nadolol versus the concentration of perchlorate counter-anion in the mobile phase. Chromatographic conditions: column: Zorbax Eclipse XDB-C18 (150×4.6 mm), mobile phase: aqueous adjusted with perchloric acid and/or sodium perchlorate (pH 3.0)–acetonitrile (70:30), flow-rate: 1 ml/min, detection: UV at 225 nm.
  • 189. Plot of the acebutolol retention factors versus counter-anion concentration in the mobile phase for different counter-anions used. Chromatographic conditions: column: Zorbax Eclipse XDB-C18 (150×4.6 mm), mobile phase: aqueous (pH 3.0)–acetonitrile (70:30), flow-rate: 1 ml/min, detection: UV at 225 nm.
  • 190. Plot of the acebutolol retention factors versus counter-anion concentration in the mobile phase for different counter-anions used. Chromatographic conditions: column: Zorbax Eclipse XDB-C18 (150×4.6 mm), mobile phase: aqueous (pH 3.0)–acetonitrile (70:30), flow-rate: 1 ml/min, detection: UV at 225 nm.
  • 191. Chromatograms of a mixture of β-blockers and o-chloroaniline analyzed at constant pH and increasing perchlorate concentration.. Chromatographic conditions: column: Zorbax Eclipse XDB-C18 (150×4.6 mm), mobile phase: aqueous (pH 3.0)–acetonitrile (70:30), flow-rate: 1 ml/min, detection: UV at 225 nm.
  • 192. FLIEGER, J. Effect of mobile phase composition on the retention of selected alkaloids in reversed-phase liquid chromatography with chaotropic salts. Journal of chromatography A, v. 1175, n. 2, p. 207- 216, 2007
  • 193. Experimental retention factors obtained for investigated alkaloids vs. trifluoroacetate and hexafluorophosphate concentration in mobile phase: 30% ACN/10 mM phosphate buffer (dashed lines) and 30% ACN/30 mM phosphate buffer pH = 2.7 (continuous lines).
  • 194. Graphic comparison of the desolvation parameters obtained using hexafluorophosphate as the counter-anion for two eluent systems: 25% THF/30 mM phosphate buffer (THF) and 30% ACN/30 mM phosphate buffer (ACN).
  • 195. Chromatograms of mixtures of alkaloids obtained by the use of different mobile phases: (A) 35% ACN/10 mM phosphate buffer (pH 2.7) + 30 mM NaPF6, (B) 40% MeOH/10 mM phosphate buffer (pH 2.7) + 30 mM NaPF6, (C) 25% THF/10 mM phosphate buffer (pH 2.7) + 30 mM NaPF6.
  • 196. PAN, Li et al. Influence of inorganic mobile phase additives on the retention, efficiency and peak symmetry of protonated basic compounds in reversed-phase liquid chromatography. Journal of Chromatography A, v. 1049, n. 1, p. 63-73, 2004.
  • 197. Effect of analyte load on: (A) N(h/2) and (B) tailing factor. Chromatographic conditions: 0.1% (v/v) H3PO4:acetonitrile eluent; benzylamine (5% acetonitrile), toluene (50% acetonitrile), Labetalol and 4- nitrophenol (25% acetonitrile), flow rate: 1.0 mL/min; temperature: 25 °C; analyte load: 0.5– 50 μg.
  • 198. Chromatographic overlays of Labetalol analyzed at different analyte concentrations using increasing mobile phase concentration of perchlorate anion. Chromatographic conditions: analyte load: 3.3, 6.5, 31.2 μg, (a) 75%:0.1% (v/v) H3PO4:25% acetonitrile; (b) 75%:0.05% (v/v) HClO4:25% acetonitrile; (c) 75%:0.3% (v/v) HClO4:25% acetonitrile; (d) 75%:0.4% (v/v) HClO4:25% acetonitrile; (e) 75%:0.5% (v/v) HClO4:25% acetonitrile.
  • 199. Chromatographic overlays of Dorzolamide HCl analyzed at different analyte concentrations using increasing mobile phase concentration of perchlorate anion. Chromatographic conditions: Analyte load: 1.4, 5.2, 9.2, 48 μg, (a) 90%:0.1% (v/v) H3PO4:10% acetonitrile; (b) 90%:0.05% (v/v) HClO4:10% acetonitrile; (c) 90%:0.3% (v/v) HClO4:10% acetonitrile; (d) 90%:0.4% (v/v) HClO4:10% acetonitrile; (e) 90%:0.5% (v/v) HClO4:10% acetonitrile.
  • 200. Effect of counteranion type and concentration on analyte retention, peak efficiency, N(h/2), and tailing factor. Chromatographic conditions: Mobile phase: 75% aqueous:25% acetonitrile. Effective counteranion concentration for each mobile phase indicated in figure legend, flow rate: 1.0 mL/min; temperature: 25 °C; analyte load: 0.5 μg; wavelength: 225 nm.
  • 201. FLIEGER, J. Application of perfluorinated acids as ion-pairing reagents for reversed-phase chromatography and retention-hydrophobicity relationships studies of selected β-blockers. Journal of Chromatography A, v. 1217, n. 4, p. 540-549, 2010. Effect of ion-pairing reagent concentration in methanol/water mobile phase (acetic acid, AA; trifluoroacetic acid, TFAA; pentafluoropropionic acid, PFPA; heptafluorobutyric acid, HFBA) on retention coefficient of investigated β-blockers.
  • 202. Chromatograms of mixtures of β-blockers obtained by the use of different mobile phases. The peaks order: atenolol, pindolol, nadolol, metoprolol, acebutolol.
  • 203. XIE, Wenchun; TERAOKA, Iwao; GROSS, Richard A. Reversed phase ion-pairing chromatography of an oligolysine mixture in different mobile phases: effort of searching critical chromatography conditions. Journal of Chromatography A, v. 1304, p. 127-132, 2013. SIR mass chromatograms of a mixture of oligolysine (dp = 2–8) at different percentages of ACN in the mobile phase when heptafluorobutyric acid [HFBA] is 9.2 mM. Column Waters XBridge Shield RP18 column (50 mm × 4.6 mm i.d.; pore size 135 Å, particle size 3.5 μm) thermostated at 35 °C. The number on the top of each peak represents dp. Peaks corresponding to dp = 7 and 8 are shown as an inset for 23% ACN.
  • 204. XIE, Wenchun et al. Cooperative effect in ion pairing of oligolysine with heptafluorobutyric acid in reversed-phase chromatography. Journal of Chromatography A, v. 1218, n. 43, p. 7765-7770, 2011. Effect of the HFBA concentration on the retention of oligolyisne. The number of lysine residues is indicated adjacent to each curve. (a) Results for all concentrations of HFBA. (b) Results at low concentrations. The y axis is in a log scale in (a) and in a linear scale in (b).
  • 205. LONG, Zhen et al. Strong cation exchange column allow for symmetrical peak shape and increased sample loading in the separation of basic compounds. Journal of Chromatography A, v. 1256, p. 67- 71, 2012. Chromatograms of basic compounds separated on the Sunfire C18 column (A), XBridge C18 column (B) and the XCharge SCX column (C); Loading amounts on columns were 0.09035 mg, 0.9035 mg, and 3.614 mg from (a) to (c). Peaks: 1 = propranolol, 2 = berberine, 3 = amitriptyline. The mobile phases used for the separation of basic compounds on XCharge SCX column were A: acetonitrile, B: 100 mmol/L NaH2PO4 (pH = 2.83) and C: water. The flow rate was 1.0 mL/min and peaks were recorded at 260 nm. Mobile phase composition on the XCharge SCX column was 50% A, 30% B. The optimized mobile phases on Sunfire C18 column were A: 0.1% FA in ACN (v/v) and B: 0.1% FA in water (v/v). Mobile phase composition on Sunfire C18 column started at 10% A and shifted to 35% A over 30 min. Mobile phases for the analysis of basic compounds on XBridge C18 column were A: acetonitrile, B: 100 mmol/L NH4HCO3 (pH adjusted to 10.12 with ammonia solution) and C: water. Mobile phase composition on XBridge C18 column started at 20% A, 10% B, shifted to 30% A, 10% B from 0 to 10 min, and finally shifted to 60% A, 10% B from 10 to 40 min.
  • 206. Universidade Federal do Rio Grande do Norte Centro de Ciências Exatas e da Terra Instituto de Química Matéria de ensino: Química Analítica Detectores
  • 207. DETECTORES Classificação UNIVERSAIS: Geram sinal para qualquer substância eluida. SELETIVOS: Detectam apenas substâncias com determinada propriedade físico-química. ESPECÍFICOS: Detectam substâncias que possuam determinado elemento ou grupo funcional em suas estruturas
  • 208. DETECTORES Parâmetros Básicos de Desempenho SENSIBILIDADE Relação entre o incremento de área do pico e o incremento de massa do analito MASSA ÁREA Fator de Resposta, S: inclinação da reta Área do pico x Massa do analito o mesmo incremento de massa causa um maior incremento de área S Sensibilidade Na ausência de erros determinados: A = área do pico cromatográfico m = massa do analito
  • 209. FAIXA LINEAR DINÂMICA Intervalo de massas dentro do qual a resposta do detector é linear MASSA ÁREA A partir de certo ponto o sinal não aumenta mais linearmente O fim da zona de linearidade pode ser detectado quando a razão (Área / Massa) diverge em mais de 5 % da inclinação da reta na região linear: MASSA ÁREA / MASSA 1,05 S 0,95 S
  • 210. Detector de Ultra violeta (ultraviolet detector, UV) ou espectroquímico
  • 211.
  • 212. Extrato de folhas da M. aquifolium depois de um processo de hidrolise, detecção a 270 nm Chromatography Research Inte national Volume 2012 (2012), Article ID 691509, 7 pages http://dx.doi.org/10.1155/2012/691509
  • 213. Uma solução 0,1 mol/L de uma substância de coloração intensa é analisada por LC-UV, mas nenhum pico é observado. Por que?
  • 214.
  • 215. Detector de índice de refração (refractive index detector, RI) (A) Indice de refração quando não há analito e (B) quando há analito.
  • 216. Detector Fluorescência. G. Iriarteet al.,J. Sep. Sci.,29, 2265 (2006)
  • 217. Fontes de ionização para o LC-MS • Ionização por eletronebulização – ESI (Electrospray) – Modo ESI – Modo Ionspray (ISI) • Ionização Química a Pressão Atmosférica – APCI • Fotoionização a Pressão Atmosférica – APPI
  • 218. Espectrometria de massas (mass spectrometry, MS Diagramas de blocos de um MS Modo de Ionização no Vácuo Interface / Fonte de Íons Interface / Fonte de Íons Analisador de Massas ALTO VÁCUO Detector ALTO VÁCUO Analisador de Massas Detector Modo de Ionização à Pressão Atmosférica (API) Introdução dos analitos Introdução dos analitos Exemplos: EI, CI, PI, MALDI, TSI, FAB, SIMS, FI/FD Exemplos: ESI, APCI, APPI, AP-MALDI, DESI, DART, EASI
  • 219. Escolhendo o modo de ionização e a polaridade  ESI: solutos iônicos e polares (PM 100-150x103 dalton). Moléculas maiores adquirem mais que uma carga.  APCI: solutos de polaridade média e não-polares (PM 100-2000 dalton).  APPI: mesmos solutos que APCI mas resposta melhor para moléculas de alta apolaridade.
  • 220. Electrospray – ESI Vazões: 100 nL/min a 5 μL/min
  • 221. Como você acha que a percentagem de modificador orgânico na fase móvel? ESI pode ser usado com que modos da cromatografia líquida NP, RP, IEX, SE e HILIC? HILIC: A Critical Evaluation http://www.chromatographyonline.com/lcgc/article/articleDetail.jsp?id=835539&pageID=1
  • 222. Ionização Química a Pressão Atmosférica (APCI)
  • 223. Fotoionização a Pressão Atmosférica (APPI) Saída HPLC Gás de nebulização Nebulizador (sprayer) Vaporizador (aquecedor) Gás de secagem Capilar Lâmpada UV • Pode ser usado um dopante Ex. Tolueno
  • 225. Baixa abundância do íon [M+H]+ em m/z 253. Íon [M+H]+ mais abundante Presença de M+ em m/z 252 Isótopo C13 em m/z 254 Abundância 5 x maior que APCI e 20 x maior que ESI. Análise de benzo[a]pireno;100 picomoles; modo positivo; injeção em fluxo. Agilent Technologies, www.agilent.com/chem, 2001.
  • 226.  Ésteres de testosterona: baixo PM e polaridade média Que modo de ionização vc escolheria? ESI ou APCI?
  • 227.  Ésteres de testosterona: baixo PM e polaridade média 1 propionato de testosterona 2 fenilpropionato 3 caproato 4 decanoato (b) Pico 2 em APCI (c) Pico 2 em ESI Sandra, P. et al., LC-GC Europe, 2001.
  • 228. Modos de ionização para MS(/MS) Massa Molecular (GC) EI (GC) CI Apolar Polaridade Muito Polar Fonte: Agilent Technologies, www.agilent.com/chem, 2001.
  • 229. Analisadores para MS • Setor Magnético e Setor Eletrostático • Quadrupolo • Ion Trap • Tempo de Voo • FT-ICR • (FT) Orbitrap
  • 230. Focalização Dupla • Vantagens – Alta resolução e exatidão – Excelente estabilidade = resultados quatitativos – Permite MS/MS • Desvantagens – Caro -- Difícil de usar – Velocidade de varredura limitada (histerese) – Detectabilidade é dependente da velocidade
  • 231. Tempo de Voo - TOF
  • 233. Modos de operação - Espectro dos produtos ou “íons filhos” MS1 Estático Massa do precursor (pai) Câmara de colisão Fragmentação CID Modo RF (passam todas as massas) MS2 Scan Espectro dos produtos (ions filhos)
  • 234. QqQ – Aplicação MRM (frente) x SIM (trás) Mercaptobenzotiazol SIM: m/z 166 MRM: m/z 166 → 134 Mercaptobenzoxazol SIM: m/z 150 MRM: m/z 150 → 58 Tempo de Retenção, minutos Trends Anal. Chem., 2001, 20, 533-542.
  • 235. Nigericina Salinomicina Narasina Lasalocida Monensina Cromatograma obtido a partir da análise de matriz fortificada com LAS (20 μg kg-1), MON (10 μg kg-1), SAL (100 μg kg-1) e NAR (15 μg kg-1) na concentração de seus respectivos LMRs e NIG (50 μg kg-1).