SlideShare ist ein Scribd-Unternehmen logo
1 von 19
By
T.Manikandan


Descriptive data summarization



Data cleaning



Data integration and transformation



Data reduction



Conclusion


No quality data, no quality mining results!
Quality decisions must be based on quality data
 e.g., duplicate or missing data may cause incorrect or even
misleading statistics.

Data warehouse needs consistent integration of
quality data


Data extraction, cleaning, and transformation
comprises the majority of the work of building a
data warehouse




A well-accepted multidimensional view:
Accuracy
Completeness
Consistency
Timeliness
Believability
Value added
Interpretability
Accessibility
Broad categories:
Intrinsic, contextual, representational, and
accessibility


Data cleaning
 Fill in missing values, smooth noisy data, identify or remove
outliers, and resolve inconsistencies



Data integration
 Integration of multiple databases, data cubes, or files



Data transformation
 Normalization and aggregation



Data reduction
 Obtains reduced representation in volume but produces the
same or similar analytical results



Data discretization
 Part of data reduction but with particular importance,
especially for numerical data


Motivation
 To better understand the data: central
tendency, variation and spread



Data dispersion characteristics
 median, max, min, quantiles, outliers, variance, etc.



Numerical dimensions correspond to sorted intervals

 Data dispersion: analyzed with multiple granularities of
precision
 Boxplot or quantile analysis on sorted intervals


Dispersion analysis on computed measures

 Folding measures into numerical dimensions
 Boxplot or quantile analysis on the transformed cube




Importance
 ―Data cleaning is one of the three biggest
problems in data warehousing‖—Ralph Kimball
 ―Data cleaning is the number one problem in
data warehousing‖—DCI survey
Data cleaning tasks
 Fill in missing values
 Identify outliers and smooth out noisy data
 Correct inconsistent data
 Resolve redundancy caused by data integration


Data is not always available
 E.g., many tuples have no recorded value for several
attributes, such as customer income in sales data



Missing data may be due to
 equipment malfunction
 inconsistent with other recorded data and thus deleted
 data not entered due to misunderstanding
 certain data may not be considered important at the time
of entry
 not register history or changes of the data



Missing data may need to be inferred.


Ignore the tuple: usually done when class label is missing
(assuming the tasks in classification—not effective when the

percentage of missing values per attribute varies considerably.


Fill in the missing value manually: tedious + infeasible?



Fill in it automatically with
 a global constant : e.g., ―unknown‖, a new class?!
 the attribute mean
 the attribute mean for all samples belonging to the same
class: smarter

 the most probable value: inference-based such as Bayesian
formula or decision tree
Noise: random error or variance in a measured
variable
 Incorrect attribute values may due to
faulty data collection instruments
data entry problems
data transmission problems
technology limitation
inconsistency in naming convention
 Other data problems which requires data cleaning
duplicate records
incomplete data
inconsistent data








Binning
 first sort data and partition into (equal-frequency)
bins
 then one can smooth by bin means, smooth by bin
median, smooth by bin boundaries, etc.
Regression
 smooth by fitting the data into regression
functions
Clustering
 detect and remove outliers
Combined computer and human inspection
 detect suspicious values and check by human (e.g.,
deal with possible outliers)


Equal-width (distance) partitioning
 Divides the range into N intervals of equal size: uniform grid

 if A and B are the lowest and highest values of the
attribute, the width of intervals will be: W = (B –A)/N.
 The most straightforward, but outliers may dominate
presentation

 Skewed data is not handled well


Equal-depth (frequency) partitioning
 Divides the range into N intervals, each containing
approximately same number of samples
 Good data scaling
 Managing categorical attributes can be tricky
Sorted data for price (in dollars):
4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
* Partition into equal-frequency (equi-depth) bins:
- Bin 1: 4, 8, 9, 15
- Bin 2: 21, 21, 24, 25
- Bin 3: 26, 28, 29, 34
* Smoothing by bin means:
- Bin 1: 9, 9, 9, 9
- Bin 2: 23, 23, 23, 23
- Bin 3: 29, 29, 29, 29
* Smoothing by bin boundaries:
- Bin 1: 4, 4, 4, 15
- Bin 2: 21, 21, 25, 25
- Bin 3: 26, 26, 26, 34








Data integration:
 Combines data from multiple sources into a
coherent store
Schema integration: e.g., A.cust-id B.cust-#
 Integrate metadata from different sources
Entity identification problem:
 Identify real world entities from multiple data
sources, e.g., Bill Clinton = William Clinton
Detecting and resolving data value conflicts
 For the same real world entity, attribute values from
different sources are different
 Possible reasons: different representations, different
scales, e.g., metric vs. British units




Redundant data occur often when integration of
multiple databases
Object identification: The same attribute or object
may have different names in different databases
Derivable data: One attribute may be a ―derived‖
attribute in another table, e.g., annual revenue
Redundant attributes may be able to be detected by

correlation analysis


Careful integration of the data from multiple
sources may help reduce/avoid redundancies and
inconsistencies and improve mining speed and
quality
Smoothing: remove noise from data
 Aggregation: summarization, data cube
construction
 Generalization: concept hierarchy climbing
 Normalization: scaled to fall within a
small, specified range
min-max normalization
z-score normalization
normalization by decimal scaling
 Attribute/feature construction
New attributes constructed from the given ones







Why data reduction?
 A database/data warehouse may store terabytes of data
 Complex data analysis/mining may take a very long time
to run on the complete data set
Data reduction
 Obtain a reduced representation of the data set that is
much smaller in volume but yet produce the same (or
almost the same) analytical results
Data reduction strategies
 Data cube aggregation:
 Dimensionality reduction — e.g., remove unimportant
attributes
 Data Compression
 Numerosity reduction — e.g., fit data into models
 Discretization and concept hierarchy generation






Data preparation or preprocessing is a big issue for
both data warehousing and data mining

Discriptive data summarization is need for quality
data preprocessing
Data preparation includes
Data cleaning and data integration
Data reduction and feature selection
Discretization



A lot a methods have been developed but data
preprocessing still an active area of research

Weitere ähnliche Inhalte

Was ist angesagt? (14)

Data mining
Data miningData mining
Data mining
 
Data preprocess
Data preprocessData preprocess
Data preprocess
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
 
Data Reduction
Data ReductionData Reduction
Data Reduction
 
Preprocess
PreprocessPreprocess
Preprocess
 
Data Processing-Presentation
Data Processing-PresentationData Processing-Presentation
Data Processing-Presentation
 
Data Preprocessing
Data PreprocessingData Preprocessing
Data Preprocessing
 
Data preparation
Data preparationData preparation
Data preparation
 
Data reduction
Data reductionData reduction
Data reduction
 
Data Preprocessing&tools
Data Preprocessing&toolsData Preprocessing&tools
Data Preprocessing&tools
 
1234
12341234
1234
 
Data pre processing
Data pre processingData pre processing
Data pre processing
 
Data For Datamining
Data For DataminingData For Datamining
Data For Datamining
 

Ähnlich wie Data preprocessing

Data preprocessing ng
Data preprocessing   ngData preprocessing   ng
Data preprocessing ngsaranya12345
 
data processing.pdf
data processing.pdfdata processing.pdf
data processing.pdfDimpyJindal4
 
Data preprocessing in Data Mining
Data preprocessing in Data MiningData preprocessing in Data Mining
Data preprocessing in Data MiningDHIVYADEVAKI
 
Data preperation
Data preperationData preperation
Data preperationFraboni Ec
 
prvg4sczsginx3ynyqlc-signature-b84f0cf1da1e7d0fde4ecfab2a28f243cfa561f9aa2c9b...
prvg4sczsginx3ynyqlc-signature-b84f0cf1da1e7d0fde4ecfab2a28f243cfa561f9aa2c9b...prvg4sczsginx3ynyqlc-signature-b84f0cf1da1e7d0fde4ecfab2a28f243cfa561f9aa2c9b...
prvg4sczsginx3ynyqlc-signature-b84f0cf1da1e7d0fde4ecfab2a28f243cfa561f9aa2c9b...ImXaib
 
Data preparation
Data preparationData preparation
Data preparationTony Nguyen
 
Data preparation
Data preparationData preparation
Data preparationJames Wong
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessingTony Nguyen
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessingJames Wong
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessingHarry Potter
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessingFraboni Ec
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessingHoang Nguyen
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessingYoung Alista
 

Ähnlich wie Data preprocessing (20)

Data preprocessing ng
Data preprocessing   ngData preprocessing   ng
Data preprocessing ng
 
Data preprocessing ng
Data preprocessing   ngData preprocessing   ng
Data preprocessing ng
 
data processing.pdf
data processing.pdfdata processing.pdf
data processing.pdf
 
Data preprocessing in Data Mining
Data preprocessing in Data MiningData preprocessing in Data Mining
Data preprocessing in Data Mining
 
Data preperation
Data preperationData preperation
Data preperation
 
Data preperation
Data preperationData preperation
Data preperation
 
Data preperation
Data preperationData preperation
Data preperation
 
Data preparation
Data preparationData preparation
Data preparation
 
prvg4sczsginx3ynyqlc-signature-b84f0cf1da1e7d0fde4ecfab2a28f243cfa561f9aa2c9b...
prvg4sczsginx3ynyqlc-signature-b84f0cf1da1e7d0fde4ecfab2a28f243cfa561f9aa2c9b...prvg4sczsginx3ynyqlc-signature-b84f0cf1da1e7d0fde4ecfab2a28f243cfa561f9aa2c9b...
prvg4sczsginx3ynyqlc-signature-b84f0cf1da1e7d0fde4ecfab2a28f243cfa561f9aa2c9b...
 
Data preparation
Data preparationData preparation
Data preparation
 
Data preparation
Data preparationData preparation
Data preparation
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
 
Data Mining
Data MiningData Mining
Data Mining
 
Preprocessing
PreprocessingPreprocessing
Preprocessing
 

Kürzlich hochgeladen

Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...JojoEDelaCruz
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptxMusic 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptxleah joy valeriano
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
Activity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationActivity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationRosabel UA
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 

Kürzlich hochgeladen (20)

Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptxMusic 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
Activity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationActivity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translation
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 

Data preprocessing

  • 2.  Descriptive data summarization  Data cleaning  Data integration and transformation  Data reduction  Conclusion
  • 3.  No quality data, no quality mining results! Quality decisions must be based on quality data  e.g., duplicate or missing data may cause incorrect or even misleading statistics. Data warehouse needs consistent integration of quality data  Data extraction, cleaning, and transformation comprises the majority of the work of building a data warehouse
  • 4.   A well-accepted multidimensional view: Accuracy Completeness Consistency Timeliness Believability Value added Interpretability Accessibility Broad categories: Intrinsic, contextual, representational, and accessibility
  • 5.  Data cleaning  Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies  Data integration  Integration of multiple databases, data cubes, or files  Data transformation  Normalization and aggregation  Data reduction  Obtains reduced representation in volume but produces the same or similar analytical results  Data discretization  Part of data reduction but with particular importance, especially for numerical data
  • 6.
  • 7.  Motivation  To better understand the data: central tendency, variation and spread  Data dispersion characteristics  median, max, min, quantiles, outliers, variance, etc.  Numerical dimensions correspond to sorted intervals  Data dispersion: analyzed with multiple granularities of precision  Boxplot or quantile analysis on sorted intervals  Dispersion analysis on computed measures  Folding measures into numerical dimensions  Boxplot or quantile analysis on the transformed cube
  • 8.   Importance  ―Data cleaning is one of the three biggest problems in data warehousing‖—Ralph Kimball  ―Data cleaning is the number one problem in data warehousing‖—DCI survey Data cleaning tasks  Fill in missing values  Identify outliers and smooth out noisy data  Correct inconsistent data  Resolve redundancy caused by data integration
  • 9.  Data is not always available  E.g., many tuples have no recorded value for several attributes, such as customer income in sales data  Missing data may be due to  equipment malfunction  inconsistent with other recorded data and thus deleted  data not entered due to misunderstanding  certain data may not be considered important at the time of entry  not register history or changes of the data  Missing data may need to be inferred.
  • 10.  Ignore the tuple: usually done when class label is missing (assuming the tasks in classification—not effective when the percentage of missing values per attribute varies considerably.  Fill in the missing value manually: tedious + infeasible?  Fill in it automatically with  a global constant : e.g., ―unknown‖, a new class?!  the attribute mean  the attribute mean for all samples belonging to the same class: smarter  the most probable value: inference-based such as Bayesian formula or decision tree
  • 11. Noise: random error or variance in a measured variable  Incorrect attribute values may due to faulty data collection instruments data entry problems data transmission problems technology limitation inconsistency in naming convention  Other data problems which requires data cleaning duplicate records incomplete data inconsistent data 
  • 12.     Binning  first sort data and partition into (equal-frequency) bins  then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc. Regression  smooth by fitting the data into regression functions Clustering  detect and remove outliers Combined computer and human inspection  detect suspicious values and check by human (e.g., deal with possible outliers)
  • 13.  Equal-width (distance) partitioning  Divides the range into N intervals of equal size: uniform grid  if A and B are the lowest and highest values of the attribute, the width of intervals will be: W = (B –A)/N.  The most straightforward, but outliers may dominate presentation  Skewed data is not handled well  Equal-depth (frequency) partitioning  Divides the range into N intervals, each containing approximately same number of samples  Good data scaling  Managing categorical attributes can be tricky
  • 14. Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34 * Partition into equal-frequency (equi-depth) bins: - Bin 1: 4, 8, 9, 15 - Bin 2: 21, 21, 24, 25 - Bin 3: 26, 28, 29, 34 * Smoothing by bin means: - Bin 1: 9, 9, 9, 9 - Bin 2: 23, 23, 23, 23 - Bin 3: 29, 29, 29, 29 * Smoothing by bin boundaries: - Bin 1: 4, 4, 4, 15 - Bin 2: 21, 21, 25, 25 - Bin 3: 26, 26, 26, 34 
  • 15.     Data integration:  Combines data from multiple sources into a coherent store Schema integration: e.g., A.cust-id B.cust-#  Integrate metadata from different sources Entity identification problem:  Identify real world entities from multiple data sources, e.g., Bill Clinton = William Clinton Detecting and resolving data value conflicts  For the same real world entity, attribute values from different sources are different  Possible reasons: different representations, different scales, e.g., metric vs. British units
  • 16.   Redundant data occur often when integration of multiple databases Object identification: The same attribute or object may have different names in different databases Derivable data: One attribute may be a ―derived‖ attribute in another table, e.g., annual revenue Redundant attributes may be able to be detected by correlation analysis  Careful integration of the data from multiple sources may help reduce/avoid redundancies and inconsistencies and improve mining speed and quality
  • 17. Smoothing: remove noise from data  Aggregation: summarization, data cube construction  Generalization: concept hierarchy climbing  Normalization: scaled to fall within a small, specified range min-max normalization z-score normalization normalization by decimal scaling  Attribute/feature construction New attributes constructed from the given ones 
  • 18.    Why data reduction?  A database/data warehouse may store terabytes of data  Complex data analysis/mining may take a very long time to run on the complete data set Data reduction  Obtain a reduced representation of the data set that is much smaller in volume but yet produce the same (or almost the same) analytical results Data reduction strategies  Data cube aggregation:  Dimensionality reduction — e.g., remove unimportant attributes  Data Compression  Numerosity reduction — e.g., fit data into models  Discretization and concept hierarchy generation
  • 19.    Data preparation or preprocessing is a big issue for both data warehousing and data mining Discriptive data summarization is need for quality data preprocessing Data preparation includes Data cleaning and data integration Data reduction and feature selection Discretization  A lot a methods have been developed but data preprocessing still an active area of research