SlideShare ist ein Scribd-Unternehmen logo
1 von 29
Downloaden Sie, um offline zu lesen
American Thoracic Society Documents
Guidelines for the Management of Adults with
Hospital-acquired, Ventilator-associated, and
Healthcare-associated Pneumonia
This official statement of the American Thoracic Society and the Infectious Diseases Society of America was approved
by the ATS Board of Directors, December 2004 and the IDSA Guideline Committee, October 2004

CONTENTS                                                           have appeared, mandating a new evidence-based guideline for
                                                                   hospital-acquired pneumonia (HAP), including healthcare-asso-
Executive Summary
                                                                   ciated pneumonia (HCAP) and ventilator-associated pneumonia
Introduction
                                                                   (VAP). This document, prepared by a joint committee of the
Methodology Used to Prepare the Guideline
Epidemiology                                                       ATS and Infectious Diseases Society of America (IDSA), fo-
   Incidence                                                       cuses on the epidemiology and pathogenesis of bacterial pneu-
   Etiology                                                        monia in adults, and emphasizes modifiable risk factors for infec-
   Major Epidemiologic Points                                      tion. In addition, the microbiology of HAP is reviewed, with an
Pathogenesis                                                       emphasis on multidrug-resistant (MDR) bacterial pathogens,
   Major Points for Pathogenesis                                   such as Pseudomonas aeruginosa, Acinetobacter species, and
Modifiable Risk Factors                                             methicillin-resistant Staphylococcus aureus. Controversies about
   Intubation and Mechanical Ventilation                           diagnosis are discussed, emphasizing initial examination of lower
   Aspiration, Body Position, and Enteral Feeding                  respiratory tract samples for bacteria, and the rationale for both
   Modulation of Colonization: Oral Antiseptics and Antibiotics    clinical and bacteriologic approaches, using either “semiquanti-
   Stress Bleeding Prophylaxis, Transfusion, and Glucose Control   tative” or “quantitative” microbiologic methods that help direct
   Major Points and Recommendations for Modifiable                  selection of appropriate antibiotic therapy. We also provide rec-
     Risk Factors                                                  ommendations for additional diagnostic and therapeutic evalua-
Diagnostic Testing                                                 tions in patients with nonresolving pneumonia. This is an evi-
   Major Points and Recommendations for Diagnosis                  dence-based document that emphasizes the issues of VAP,
Diagnostic Strategies and Approaches                               because there are far fewer data available about HAP in nonintu-
   Clinical Strategy                                               bated patients and about HCAP. By extrapolation, patients who
   Bacteriologic Strategy                                          are not intubated and mechanically ventilated should be man-
   Recommended Diagnostic Strategy                                 aged like patients with VAP, using the same approach to identify
   Major Points and Recommendations for Comparing
                                                                   risk factors for infection with specific pathogens.
     Diagnostic Strategies
                                                                       The major goals of this evidence-based guideline for the man-
Antibiotic Treatment of Hospital-acquired Pneumonia
   General Approach                                                agement of HAP, VAP, and HCAP emphasize early, appropriate
   Initial Empiric Antibiotic Therapy                              antibiotics in adequate doses, while avoiding excessive antibiot-
   Appropriate Antibiotic Selection and Adequate Dosing            ics by de-escalation of initial antibiotic therapy, based on micro-
   Local Instillation and Aerosolized Antibiotics                  biologic cultures and the clinical response of the patient, and
   Combination versus Monotherapy                                  shortening the duration of therapy to the minimum effective
   Duration of Therapy                                             period. The guideline recognizes the variability of bacteriology
   Major Points and Recommendations for Optimal                    from one hospital to another and from one time period to an-
     Antibiotic Therapy                                            other and recommends taking local microbiologic data into ac-
   Specific Antibiotic Regimens                                     count when adapting treatment recommendations to any specific
   Antibiotic Heterogeneity and Antibiotic Cycling                 clinical setting. The initial, empiric antibiotic therapy algorithm
Response to Therapy                                                includes two groups of patients: one with no need for broad-
   Modification of Empiric Antibiotic Regimens                      spectrum therapy, because these patients have early-onset HAP,
   Defining the Normal Pattern of Resolution                        VAP, or HCAP and no risk factors for MDR pathogens, and a
   Reasons for Deterioration or Nonresolution                      second group that requires broad-spectrum therapy, because of
   Evaluation of the Nonresponding Patient                         late-onset pneumonia or other risk factors for infection with
   Major Points and Recommendations for Assessing                  MDR pathogens.
     Response to Therapy                                               Some of the key recommendations and principles in this new,
Suggested Performance Indicators
                                                                   evidence-based guideline are as follows:
EXECUTIVE SUMMARY                                                     • HCAP is included in the spectrum of HAP and VAP, and
                                                                        patients with HCAP need therapy for MDR pathogens.
Since the initial 1996 American Thoracic Society (ATS) guide-         • A lower respiratory tract culture needs to be collected
line on nosocomial pneumonia, a number of new developments              from all patients before antibiotic therapy, but collection
                                                                        of cultures should not delay the initiation of therapy in
                                                                        critically ill patients.
                                                                      • Either “semiquantitative” or “quantitative” culture data
Am J Respir Crit Care Med Vol 171. pp 388–416, 2005
DOI: 10.1164/rccm.200405-644ST                                          can be used for the management of patients with HAP.
Internet address: www.atsjournals.org                                 • Lower respiratory tract cultures can be obtained broncho-
American Thoracic Society Documents                                                                                                  389

       scopically or nonbronchoscopically, and can be cultured        nonintubated patients may be less accurate, most of our informa-
       quantitatively or semiquantitatively.                          tion is derived from those with VAP, but by extrapolation can
   •   Quantitative cultures increase specificity of the diagnosis     be applied to all patients with HAP, emphasizing risk factors
       of HAP without deleterious consequences, and the specific       for infection with specific pathogens.
       quantitative technique should be chosen on the basis of            This guideline is an update of the 1996 consensus statement
       local expertise and experience.                                on HAP published by the American Thoracic Society (5). The
   •   Negative lower respiratory tract cultures can be used to       principles and recommendations are largely based on data pre-
       stop antibiotic therapy in a patient who has had cultures      sented by committee members at a conference jointly sponsored
       obtained in the absence of an antibiotic change in the past    by the American Thoracic Society (ATS) and the Infectious
       72 hours.                                                      Disease Society of America (IDSA). The committee was com-
   •   Early, appropriate, broad-spectrum, antibiotic therapy         posed of pulmonary, critical care, and infectious disease special-
       should be prescribed with adequate doses to optimize anti-     ists with clinical and research interests in HAP, VAP, and HCAP.
       microbial efficacy.                                             All major aspects of the epidemiology, pathogenesis, bacteriol-
   •   An empiric therapy regimen should include agents that are      ogy, diagnosis, and antimicrobial treatment were reviewed by
       from a different antibiotic class than the patient has re-     this group. Therapy recommendations are focused on antibiotic
       cently received.                                               choice and patient stratification; adjunctive, nonantibiotic ther-
   •   Combination therapy for a specific pathogen should be           apy of pneumonia is not discussed, but information on this topic
       used judiciously in the therapy of HAP, and consideration      is available elsewhere (7). Recommendations to reduce the risk
       should be given to short-duration (5 days) aminoglycoside      of pneumonia are limited in this document to key, modifiable
       therapy, when used in combination with a -lactam to treat      risk factors related to the pathogenesis of pneumonia to avoid
       P. aeruginosa pneumonia.                                       redundancy with the more comprehensive Guidelines for Pre-
   •   Linezolid is an alternative to vancomycin, and uncon-          venting Health-care–associated Pneumonia, prepared by the Cen-
       firmed, preliminary data suggest it may have an advantage       ters for Disease Control and Prevention (CDC) and the Hospital
       for proven VAP due to methicillin-resistant S. aureus.         Infection Control Practices Advisory Committee (HICPAC) (3).
   •   Colistin should be considered as therapy for patients with         The goal of our document is to provide a framework for the
       VAP due to a carbapenem-resistant Acinetobacter species.       initial evaluation and management of the immunocompetent,
   •   Aerosolized antibiotics may have value as adjunctive ther-     adult patient with bacterial causes of HAP, VAP, or HCAP,
       apy in patients with VAP due to some MDR pathogens.            and excludes patients who are known to be immunosuppressed
   •   De-escalation of antibiotics should be considered once data    by human immunodeficiency virus (HIV) infection, hematologic
       are available on the results of lower respiratory tract cul-   malignancy, chemotherapy-induced neutropenia, organ trans-
       tures and the patient’s clinical response.                     plantation, and so on. At the outset, the ATS/IDSA Guideline
   •   A shorter duration of antibiotic therapy (7 to 8 days) is      Committee members recognized that currently, many patients
       recommended for patients with uncomplicated HAP, VAP,          with HAP, VAP, or HCAP are infected with multidrug-resistant
       or HCAP who have received initially appropriate therapy        (MDR) bacterial pathogens that threaten the adequacy of initial,
       and have had a good clinical response, with no evidence        empiric antibiotic therapy. At the same time, the committee
       of infection with nonfermenting gram-negative bacilli.         members recognized that many studies have shown that exces-
                                                                      sive antibiotic use is a major factor contributing to increased
INTRODUCTION                                                          frequency of antibiotic-resistant pathogens. Four major princi-
                                                                      ples underlie the management of HAP, VAP, and HCAP:
As with all guidelines, these new recommendations, although
                                                                         • Avoid untreated or inadequately treated HAP, VAP, or
evidence graded, need validation for their impact on the outcome
                                                                           HCAP, because the failure to initiate prompt appropriate
of patients with HAP, VAP, and HCAP. In addition, this guide-
                                                                           and adequate therapy has been a consistent factor associ-
line points out areas of incomplete knowledge, which can be
                                                                           ated with increased mortality.
used to set an agenda for future research.
                                                                         • Recognize the variability of bacteriology from one hospital
    Hospital-acquired pneumonia (HAP), ventilator-associated
                                                                           to another, specific sites within the hospital, and from one
pneumonia (VAP), and healthcare-associated pneumonia (HCAP)
                                                                           time period to another, and use this information to alter the
remain important causes of morbidity and mortality despite ad-
                                                                           selection of an appropriate antibiotic treatment regimen for
vances in antimicrobial therapy, better supportive care modal-
                                                                           any specific clinical setting.
ities, and the use of a wide-range of preventive measures (1–5).
                                                                         • Avoid the overuse of antibiotics by focusing on accurate
HAP is defined as pneumonia that occurs 48 hours or more after
                                                                           diagnosis, tailoring therapy to the results of lower respira-
admission, which was not incubating at the time of admission
                                                                           tory tract cultures, and shortening duration of therapy to
(1, 3). HAP may be managed in a hospital ward or in the intensive
                                                                           the minimal effective period.
care unit (ICU) when the illness is more severe. VAP refers to
                                                                         • Apply prevention strategies aimed at modifiable risk fac-
pneumonia that arises more than 48–72 hours after endotracheal
                                                                           tors.
intubation (2, 3). Although not included in this definition, some
patients may require intubation after developing severe HAP               The ATS/IDSA guideline was established for use in the initial
and should be managed similar to patients with VAP. HCAP              management of patients in whom HAP, VAP, or HCAP is sus-
includes any patient who was hospitalized in an acute care hospi-     pected. Therapeutic algorithms are presented that are based on
tal for two or more days within 90 days of the infection; resided     the expected antimicrobial susceptibility of the common bacte-
in a nursing home or long-term care facility; received recent         rial pathogens, and with therapeutic regimens that can commonly
intravenous antibiotic therapy, chemotherapy, or wound care           lead to initial adequate antibiotic management.
within the past 30 days of the current infection; or attended a           This guideline is not meant to replace clinical judgment, but
hospital or hemodialysis clinic (3, 4, 6). Although this document     rather to give an organizational framework to patient manage-
focuses more on HAP and VAP, most of the principles overlap           ment. Individual clinical situations can be highly complex and
with HCAP. Because most of the current data have been col-            the judgment of a knowledgeable physician with all available
lected from patients with VAP, and microbiologic data from            information about a specific patient is essential for optimal clini-
390                                                     AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE VOL 171 2005

                TABLE 1. EVIDENCE-BASED GRADING SYSTEM USED TO RANK RECOMMENDATIONS
                Evidence Level                                                          Definition

                Level I (high)               Evidence comes from well conducted, randomized controlled trials
                Level II (moderate)          Evidence comes from well designed, controlled trials without randomization (including cohort,
                                               patient series, and case-control studies). Level II studies also include any large case series
                                               in which systematic analysis of disease patterns and/or microbial etiology was conducted,
                                               as well as reports of new therapies that were not collected in a randomized fashion
                Level III (low)              Evidence comes from case studies and expert opinion. In some instances therapy recommendations
                                               come from antibiotic susceptibility data without clinical observations

                  Adapted from American Thoracic Society guidelines for the management of adults with community-acquired pneumonia (8).




cal management. As more laboratory and clinical data become                     more than $40,000 per patient (9–11). Although HAP is not a
available, therapy often needs to be streamlined or altered. Fi-                reportable illness, available data suggest that it occurs at a rate
nally, our committee realizes that these guidelines will change                 of between 5 and 10 cases per 1,000 hospital admissions, with the
over time, and that our current recommendations will need to                    incidence increasing by as much as 6- to 20-fold in mechanically
be updated as new information becomes available.                                ventilated patients (9, 12, 13). It is often difficult to define the
                                                                                exact incidence of VAP, because there may be an overlap with
METHODOLOGY USED TO PREPARE THE GUIDELINE                                       other lower respiratory tract infections, such as infectious tra-
                                                                                cheobronchitis in mechanically ventilated patients. The exact
The ATS/IDSA Guideline Committee originally met as a group,
                                                                                incidence varies widely depending on the case definition of pneu-
with each individual being assigned a topic for review and pre-
                                                                                monia and the population being evaluated (14). For example,
sentation to the entire group. Each topic in the guideline was
                                                                                the incidence of VAP may be up to two times higher in patients
reviewed by more than one committee member, and after pre-
                                                                                diagnosed by qualitative or semiquantitative sputum cultures
sentation of information, the committee discussed the data and
                                                                                compared with quantitative cultures of lower respiratory tract
formulated recommendations. Two committee members pre-
                                                                                secretions (9, 15).
pared each section of the document, and a draft document incor-
                                                                                    HAP accounts for up to 25% of all ICU infections and for
porating all sections was written and distributed to the committee
                                                                                more than 50% of the antibiotics prescribed (16). VAP occurs
for review and suggestions. The guideline was then revised and
                                                                                in 9–27% of all intubated patients (9, 11). In ICU patients, nearly
circulated to the committee for final comment. This final state-
                                                                                90% of episodes of HAP occur during mechanical ventilation.
ment represents the results of this process and the opinions of
                                                                                In mechanically ventilated patients, the incidence increases with
the majority of committee members.
                                                                                duration of ventilation. The risk of VAP is highest early in the
    The grading system for our evidence-based recommendations
was previously used for the updated ATS Community-acquired                      course of hospital stay, and is estimated to be 3%/day during
Pneumonia (CAP) statement, and the definitions of high-level                     the first 5 days of ventilation, 2%/day during Days 5 to 10 of
(Level I), moderate-level (Level II), and low-level (Level III)                 ventilation, and 1%/day after this (17). Because most mechanical
evidence are summarized in Table 1 (8). All available and rele-                 ventilation is short term, approximately half of all episodes of
vant, peer-reviewed studies published until July 2004 were con-                 VAP occur within the first 4 days of mechanical ventilation. The
sidered. Much of the literature is observational, and only a few                intubation process itself contributes to the risk of infection, and
therapy trials have been conducted in a prospective, randomized                 when patients with acute respiratory failure are managed with
fashion.                                                                        noninvasive ventilation, nosocomial pneumonia is less common
    Nearly all of the evidence-based data on risk factors for bacte-            (18–20).
rial HAP have been collected from observational studies, which                      Time of onset of pneumonia is an important epidemiologic
cannot distinguish causation from noncausal association. Most                   variable and risk factor for specific pathogens and outcomes in
of the studies have focused on patients with VAP, but the com-                  patients with HAP and VAP . Early-onset HAP and VAP, defined
mittee extrapolated the relationship between risk factors and                   as occurring within the first 4 days of hospitalization, usually carry
bacteriology to all patients with HAP, including those with                     a better prognosis, and are more likely to be caused by antibiotic-
HCAP. Ultimate proof of causality, and ideally the best strate-                 sensitive bacteria. Late-onset HAP and VAP (5 days or more) are
gies for prevention of HAP, VAP, and HCAP, should be based                      more likely to be caused by multidrug-resistant (MDR) pathogens,
on prospective, randomized trials. However, recommendations                     and are associated with increased patient mortality and morbidity.
are further compromised when such trials provide conflicting                     However, patients with early-onset HAP who have received prior
results, often as a result of differences in definitions, study design,          antibiotics or who have had prior hospitalization within the past
and the specific population studied. In addition, evidence-based                 90 days are at greater risk for colonization and infection with
recommendations are dynamic and may change as new therapies                     MDR pathogens and should be treated similar to patients with
become available and as new interventions alter the natural                     late-onset HAP or VAP (Table 2) (21).
history of the disease.                                                             The crude mortality rate for HAP may be as high as 30 to
                                                                                70%, but many of these critically ill patients with HAP die of
EPIDEMIOLOGY                                                                    their underlying disease rather than pneumonia. The mortality
                                                                                related to the HAP or “attributable mortality” has been estimated
Incidence                                                                       to be between 33 and 50% in several case-matching studies of
HAP is usually caused by bacteria, is currently the second most                 VAP. Increased mortality rates were associated with bacteremia,
common nosocomial infection in the United States, and is associ-                especially with Pseudomonas aeruginosa or Acinetobacter species,
ated with high mortality and morbidity (3). The presence of                     medical rather than surgical illness, and treatment with ineffective
HAP increases hospital stay by an average of 7 to 9 days per                    antibiotic therapy (22, 23). Other studies using similar methodol-
patient and has been reported to produce an excess cost of                      ogy failed to identify any attributable mortality due to VAP,
American Thoracic Society Documents                                                                                                  391

TABLE 2. RISK FACTORS FOR MULTIDRUG-RESISTANT                         hospital-wide surveillance of nosocomial infections at the Uni-
PATHOGENS CAUSING HOSPITAL-ACQUIRED PNEUMONIA,                        versity of North Carolina have described the pathogens causing
HEALTHCARE-ASSOCIATED PNEUMONIA, AND
VENTILATOR-ASSOCIATED PNEUMONIA
                                                                      both VAP and nosocomial pneumonia in nonintubated patients
                                                                      during the years 2000–2003 (D. Weber and W. Rutala, unpub-
• Antimicrobial therapy in preceding 90 d                             lished data). Pathogens were isolated from 92% of mechanically
• Current hospitalization of 5 d or more                              ventilated patients with infection, and from 77% of nonventi-
• High frequency of antibiotic resistance in the community or         lated patients with infection. In general, the bacteriology of
  in the specific hospital unit
                                                                      nonventilated patients was similar to that of ventilated patients,
• Presence of risk factors for HCAP:
     Hospitalization for 2 d or more in the preceding 90 d            including infection with MDR pathogens such as methicillin-
     Residence in a nursing home or extended care facility            resistant S. aureus (MRSA), P. aeruginosa, Acinetobacter spe-
     Home infusion therapy (including antibiotics)                    cies, and K. pneumoniae. In fact, some organisms (MRSA and
     Chronic dialysis within 30 d                                     K. pneumoniae) were more common in nonventilated than venti-
     Home wound care                                                  lated patients, whereas certain resistant gram-negative bacilli
     Family member with multidrug-resistant pathogen
                                                                      were more common in patients with VAP (P. aeruginosa, Steno-
• Immunosuppressive disease and/or therapy
                                                                      trophomonas maltophilia, and Acinetobacter species). However,
                                                                      the latter group of more resistant gram-negative bacilli occurred
                                                                      with sufficient frequency in nonventilated patients that they
                                                                      should be considered when designing an empiric therapy regi-
suggesting a variable outcome impact, according to the severity       men. Studies in nonventilated patients have not determined
of underlying medical conditions (24–26).                             whether this population has risk factors for MDR pathogens
                                                                      that differ from the risk factors present in ventilated patients.
Etiology                                                                  Emergence of selected multidrug-resistant bacteria. Rates of
HAP, VAP, and HCAP may be caused by a wide spectrum of                HAP due to MDR pathogens have increased dramatically in
bacterial pathogens, may be polymicrobial, and are rarely due         hospitalized patients, especially in intensive care and transplant
to viral or fungal pathogens in immunocompetent hosts (9, 12,         patients (16). Risk factors for colonization and infection with
27–32). Common pathogens include aerobic gram-negative ba-            MDR pathogens are summarized in Table 2 (21, 43). Data on
cilli, such as P. aeruginosa, Escherichia coli, Klebsiella pneumo-    mechanisms of antibiotic resistance for specific bacterial patho-
niae, and Acinetobacter species. Infections due to gram-positive      gens have provided new insight into the adaptability of these
cocci, such as Staphylococcus aureus, particularly methicillin-       pathogens.
resistant S. aureus (MRSA), have been rapidly emerging in the             Pseudomonas aeruginosa. P. aeruginosa, the most common
United States (16, 33). Pneumonia due to S. aureus is more            MDR gram-negative bacterial pathogen causing HAP/VAP, has
common in patients with diabetes mellitus, head trauma, and           intrinsic resistance to many antimicrobial agents (44–46). This
those hospitalized in ICUs (34).                                      resistance is mediated by multiple efflux pumps, which may
    Significant growth of oropharyngeal commensals (viridans           be expressed all the time or may be upregulated by mutation
group streptococci, coagulase-negative staphylococci, Neisseria       (47). Resistance to piperacillin, ceftazidime, cefepime, other oxy-
species, and Corynebacterium species) from distal bronchial           imino- -lactams, imipenem and meropenem, aminoglycosides,
specimens is difficult to interpret, but these organisms can pro-      or fluoroquinolones is increasing in the United States (16). De-
duce infection in immunocompromised hosts and some immuno-            creased expression of an outer membrane porin channel (OprD)
competent patients (35). Rates of polymicrobial infection vary        can cause resistance to both imipenem and meropenem or, de-
widely, but appear to be increasing, and are especially high in       pending on the alteration in OprD, specific resistance to imi-
patients with adult respiratory distress syndrome (ARDS) (9, 12,      penem, but not other -lactams (48). At present, some MDR
36–38).                                                               isolates of P. aeruginosa are susceptible only to polymyxin B.
    The frequency of specific MDR pathogens causing HAP may                Although currently uncommon in the United States, there
vary by hospital, patient population, exposure to antibiotics, type   is concern about the acquisition of plasmid-mediated metallo-
of ICU patient, and changes over time, emphasizing the need             -lactamases active against carbapenems and antipseudomonal
for timely, local surveillance data (3, 8, 10, 21, 39–41). HAP        penicillins and cephalosporins (49). The first such enzyme, IMP-1,
involving anaerobic organisms may follow aspiration in nonintu-       appeared in Japan in 1991 and spread among P. aeruginosa and
bated patients, but is rare in patients with VAP (28, 42).            Serratia marcescens, and then to other gram-negative pathogens.
    Elderly patients represent a diverse population of patients       Resistant strains of P. aeruginosa with IMP-type enzymes and
with pneumonia, particularly HCAP. Elderly residents of long-         other carbapenemases have been reported from additional coun-
term care facilities have been found to have a spectrum of patho-     tries in the Far East, Europe, Canada, Brazil, and recently in
gens that more closely resemble late-onset HAP and VAP (30, 31).      the United States (50).
In a study of 104 patients age 75 years and older with severe             Klebsiella, Enterobacter, and Serratia species. Klebsiella
pneumonia, El-Solh found S. aureus (29%), enteric gram-nega-          species are intrinsically resistant to ampicillin and other amino-
tive rods (15%), Streptococcus pneumoniae (9%), and Pseudo-           penicillins and can acquire resistance to cephalosporins and az-
monas species (4%) as the most frequent causes of nursing home-       treonam by the production of extended-spectrum -lactamases
acquired pneumonia (30). In another study of 52 long-term care        (ESBLs) (51). Plasmids encoding ESBLs often carry resistance
residents aged 70 years and above who failed to respond to            to aminoglycosides and other drugs, but ESBL-producing strains
72 hours of antibiotics, MRSA (33%), gram-negative enterics           remain susceptible to carbapenems. Five to 10% of oxyimino-
(24%), and Pseudomonas species (14%) were the most frequent             -lactam-resistant K. pneumoniae do not produce an ESBL, but
pathogens isolated by invasive diagnostics (bronchoscopy) (31).       rather a plasmid-mediated AmpC-type enzyme (52). Such strains
In the latter study, 72% had at least two comorbidities whereas       usually are carbapenem susceptible, but may become resistant
23% had three or more.                                                by loss of an outer membrane porin (53). Enterobacter species
    Few data are available about the bacteriology and risk factors    have a chromosomal AmpC -lactamase that is inducible and
for specific pathogens in patients with HAP and HCAP, and              also easily expressed at a high level by mutation with consequent
who are not mechanically ventilated. Data from comprehensive          resistance to oxyimino- -lactams and -methoxy- -lactams,
392                                                  AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE VOL 171 2005

such as cefoxitin and cefotetan, but continued susceptibility to        tection is based on the widespread use of Legionella urinary
carbapenems. Citrobacter and Serratia species have the same             antigen, rather than culture for Legionella, disease due to sero-
inducible AmpC -lactamase and the same potential for resis-             groups other than serogroup 1 may be underdiagnosed. Detailed
tance development. Although the AmpC enzyme of E. coli is               strategies for prevention of Legionella infections and eradication
not inducible, it can occasionally be hyperexpressed. Plasmid-          procedures for Legionella species in cooling towers and the hos-
mediated resistance, such as ESBL production, is a more common          pital water supply are outlined in the CDC/HICPAC Guidelines
mechanism for -lactam resistance in nosocomial isolates, and is         for Preventing Health-care–associated Pneumonia (3).
increasingly recognized not only in isolates of K. pneumoniae and           Fungal pathogens. Nosocomial pneumonia due to fungi, such
E. coli, but also Enterobacter species (54).                            as Candida species and Aspergillus fumigatus, may occur in organ
    Acinetobacter species, Stenotrophomonas maltophilia,                transplant or immunocompromised, neutropenic patients, but is
and Burkholderia cepacia. Although generally less virulent              uncommon in immunocompetent patients (70–75). Nosocomial
than P. aeruginosa, Acinetobacter species have nonetheless be-          Aspergillus species infections suggest possible airborne transmis-
come problem pathogens because of increasing resistance to              sion by spores, and may be associated with an environmental
commonly used antimicrobial agents (55). More than 85% of               source such as contaminated air ducts or hospital construction.
isolates are susceptible to carbapenems, but resistance is increas-     By comparison, isolation of Candida albicans and other Candida
ing due either to IMP-type metalloenzymes or carbapenemases             species from endotracheal aspirates is common, but usually rep-
of the OXA type (49). An alternative for therapy is sulbactam,          resents colonization of the airways, rather than pneumonia in
usually employed as an enzyme inhibitor, but with direct antibac-       immunocompetent patients, and rarely requires treatment with
terial activity against Acinetobacter species (56). S. maltophilia,
                                                                        antifungal therapy (70).
which shares with B. cepacia a tendency to colonize the respira-
                                                                            Viral pathogens. The incidence of HAP and VAP due to
tory tract rather than cause invasive disease, is uniformly resistant
                                                                        viruses is also low in immunocompetent hosts. Outbreaks of
to carbapenems, because of a ubiquitous metallo- -lactamase.
                                                                        HAP, VAP, and HCAP due to viruses, such as influenza, parainflu-
S. maltophilia and B. cepacia are most likely to be susceptible
                                                                        enza, adenovirus, measles, and respiratory syncytial virus have
to trimethoprim–sulfamethoxazole, ticarcillin–clavulanate, or a
fluoroquinolone (55). B. cepacia is also usually susceptible to          been reported and are usually seasonal. Influenza, pararinflu-
ceftazidime and carbapenems.                                            enza, adenovirus, and respiratory syncytial virus account for 70%
    Methicillin-resistant Staphylococcus aureus. In the                 of the nosocomial viral cases of HAP, VAP, and HCAP (3, 76–78).
United States, more than 50% of the ICU infections caused by            Respiratory syncytial virus outbreaks of bronchiolitis and pneu-
S. aureus are with methicillin-resistant organisms (16, 33). MRSA       monia are more common in children’s wards and rare in immuno-
produces a penicillin-binding protein with reduced affinity for          competent adults (76). Diagnosis of these viral infections is often
  -lactam antibiotics that is encoded by the mecA gene, which           made by rapid antigen testing and viral culture or serologic assays.
is carried by one of a family of four mobile genetic elements               Influenza A is probably the most common viral cause of
(57, 58). Strains with mecA are resistant to all commercially           HAP and HCAP in adult patients. Pneumonia in patients with
available -lactams and many other antistaphylococcal drugs,             influenza A or B may be due to the virus, to secondary bacterial
with considerable country-to-country variability (59, 60). Al-          infection, or both. Influenza is transmitted directly from person
though vancomycin-intermediate S. aureus, with a minimal inhib-         to person when infected persons sneeze, cough, or talk or indi-
itory concentration (MIC) of 8–16 g/ml, and high-level vanco-           rectly by person–fomite–person transmission (3, 79–81). The use
mycin-resistant S. aureus, with an MIC of 32–1,024 g/ml or              of influenza vaccine along with prophylaxis and early antiviral
more, have been isolated from clinical specimens, none to date          therapy among at-risk healthcare workers and high-risk patients
have caused respiratory tract infection and all have been sensi-        with amantadine, rimantadine, or one of the neuraminidase in-
tive to linezolid (61, 62). Unfortunately, linezolid resistance has     hibitors (oseltamivir and zanamivir) dramatically reduces the
emerged in S. aureus, but is currently rare (63).                       spread of influenza within hospital and healthcare facilities (3,
    Streptococcus pneumoniae and Haemophilus influenzae.                 81–90). Amantadine and rimantadine are effective only for treat-
S. pneumoniae and H. influenzae cause early-onset HAP in pa-             ment and prophylaxis against influenza A strains, whereas neura-
tients without other risk factors, are uncommon in late-onset           minidase inhibitors are effective against both influenza A and B.
infection, and frequently are community acquired. At present,
many strains of S. pneumoniae are penicillin resistant due to           Major Epidemiologic Points
altered penicillin-binding proteins. Some such strains are resis-
tant as well to cephalosporins, macrolides, tetracyclines, and              1. Many patients with HAP, VAP, and HCAP are at in-
clindamycin (64). Despite low and moderate levels of resistance                creased risk for colonization and infection with MDR
to penicillins and cephalosporins in vitro, clinical outcomes in               pathogens (Level II) (2–4, 6, 9, 11–13, 21, 22).
patients with pneumococcal pneumonia and bacteremia treated                 2. It is often difficult to define the exact incidence of HAP
with these agents have been satisfactory (65). All of the multi-               and VAP, because there may be an overlap with other
drug-resistant strains in the United States are currently sensitive            lower respiratory tract infections, such as tracheobronchi-
to vancomycin or linezolid, and most remain sensitive to broad-                tis, especially in mechanically ventilated patients (Level
spectrum quinolones. Resistance of H. influenzae to antibiotics                 III) (9, 12–14).
other than penicillin and ampicillin is sufficiently rare so as not          3. The exact incidence of HAP is usually between 5 and 15
to present a problem in therapy.                                               cases per 1,000 hospital admissions depending on the case
    Legionella pneumophila. The evidence for Legionella pneu-                  definition and study population; the exact incidence of
mophila as a cause of HAP is variable, but is increased in immu-               VAP is 6- to 20-fold greater than in nonventilated patients
nocompromised patients, such as organ transplant recipients or                 (Level II) (9, 12–14).
patients with HIV disease, as well as those with diabetes mellitus,         4. HAP and VAP are a frequent cause of nosocomial infec-
underlying lung disease, or end-stage renal disease (29, 66–69).               tion that is associated with a higher crude mortality than
HAP due to Legionella species is more common in hospitals                      other hospital-acquired infections (Level II) (3, 9, 16).
where the organism is present in the hospital water supply or               5. Patients with late-onset HAP and VAP are more likely
where there is ongoing construction (3, 29, 66–69). Because de-                to be infected with MDR pathogens and have higher
American Thoracic Society Documents                                                                                                     393

         crude mortality than patients with early-onset disease;       mon (107, 108). Hematogenous spread from infected intravascu-
         patients with early-onset HAP who have recently re-           lar catheters or bacterial translocation from the gastrointestinal
         ceived antibiotics or had an admission to a healthcare        tract lumen are quite rare.
         facility are at risk for colonization and infection with
         MDR pathogens (Level II) (3, 9, 21, 22).                      Major Points for Pathogenesis
    6.   An increase in crude and attributable mortality for HAP          1. Sources of pathogens for HAP include healthcare devices,
         and VAP is associated with the presence of MDR patho-               the environment (air, water, equipment, and fomites), and
         gens (Level II) (3, 5, 9–13, 21–23).                                commonly the transfer of microorganisms between the
    7.   Bacteria cause most cases of HAP, VAP, and HCAP and
                                                                             patient and staff or other patients (Level II) (3, 9, 12, 13,
         many infections are polymicrobial; rates are especially
                                                                             27, 66, 92, 93).
         high in patients with ARDS (Level I) (2, 4, 6, 9, 12,
                                                                          2. A number of host- and treatment-related colonization fac-
         36–38).
                                                                             tors, such as the severity of the patient’s underlying disease,
    8.   HAP, VAP, and HCAP are commonly caused by aerobic
                                                                             prior surgery, exposure to antibiotics, other medications,
         gram-negative bacilli, such as P. aeruginosa, K. pneumo-
                                                                             and exposure to invasive respiratory devices and equip-
         niae, and Acinetobacter species, or by gram-positive cocci,
                                                                             ment, are important in the pathogenesis of HAP and VAP
         such as S. aureus, much of which is MRSA; anaerobes
                                                                             (Level II) (40, 93, 94).
         are an uncommon cause of VAP (Level II) (9, 12, 28,
                                                                          3. Aspiration of oropharyngeal pathogens, or leakage of se-
         36–40, 42, 91).
                                                                             cretions containing bacteria around the endotracheal tube
    9.   Rates of L. pneumophila vary considerably between hos-
                                                                             cuff, are the primary routes of bacterial entry into the
         pitals and disease occurs more commonly with serogroup
                                                                             lower respiratory tract (Level II) (95–98).
         1 when the water supply is colonized or there is ongoing
                                                                          4. Inhalation or direct inoculation of pathogens into the lower
         construction (Level II) (29, 66–69).
                                                                             airway, hematogenous spread from infected intravenous
   10.   Nosocomial virus and fungal infections are uncommon
                                                                             catheters, and bacterial translocation from the gastrointes-
         causes of HAP and VAP in immunocompetent patients.
         Outbreaks of influenza have occurred sporadically and                tinal tract lumen are uncommon pathogenic mechanisms
         risk of infection can be substantially reduced with wide-           (Level II) (107, 108).
         spread effective infection control, vaccination, and use         5. Infected biofilm in the endotracheal tube, with subsequent
         of antiinfluenza agents (Level I) (3, 70–75, 79–90).                 embolization to distal airways, may be important in the
   11.   The prevalence of MDR pathogens varies by patient pop-              pathogenesis of VAP (Level III) (105, 106).
         ulation, hospital, and type of ICU, which underscores the        6. The stomach and sinuses may be potential reservoirs of
         need for local surveillance data (Level II) (3, 9, 41).             nosocomial pathogens that contribute to bacterial coloni-
   12.   MDR pathogens are more commonly isolated from pa-                   zation of the oropharynx, but their contribution is contro-
         tients with severe, chronic underlying disease, those with          versial, may vary by the population at risk, and may be
         risk factors for HCAP, and patients with late-onset HAP             decreasing with the changing natural history and manage-
         or VAP (Level II) (9, 21, 22, 30, 31, 39, 40, 91).                  ment of HAP (Level II) (94, 99–104, 109).


PATHOGENESIS                                                           MODIFIABLE RISK FACTORS
For HAP to occur, the delicate balance between host defenses           Risk factors for the development of HAP can be differentiated
and microbial propensity for colonization and invasion must shift      into modifiable and nonmodifiable conditions. Risk factors may
in favor of the ability of the pathogens to persist and invade the     also be patient related (male sex, preexisting pulmonary disease,
lower respiratory tract. Sources of infection for HAP include          or multiple organ system failure) or treatment related (intuba-
healthcare devices or the environment (air, water, equipment,          tion or enteral feeding). Modifiable risk factors for HAP are
and fomites) and can occur with transfer of microorganisms             obvious targets for improved management and prophylaxis in
between staff and patients (3, 9, 12, 13, 27, 66, 92, 93). A number    several studies and in the comprehensive Guidelines for Pre-
of host- and treatment-related colonization factors, such as the       venting Health-care–associated Pneumonia, published by the
severity of the patient’s underlying disease, prior surgery, expo-     Centers for Disease Control (3, 93, 110). Effective strategies
sure to antibiotics, other medications, and exposure to invasive       include strict infection control, alcohol-based hand disinfection,
respiratory devices and equipment, are important in the patho-         use of microbiologic surveillance with timely availability of data
genesis of HAP and VAP (40, 93, 94)                                    on local MDR pathogens, monitoring and early removal of inva-
    HAP requires the entry of microbial pathogens into the lower       sive devices, and programs to reduce or alter antibiotic-prescrib-
respiratory tract, followed by colonization, which can then over-      ing practices (3, 92, 93, 100, 110–113).
whelm the host’s mechanical (ciliated epithelium and mucus),
                                                                       Intubation and Mechanical Ventilation
humoral (antibody and complement), and cellular (polymorpho-
nuclear leukocytes, macrophages, and lymphocytes and their             Intubation and mechanical ventilation increase the risk of HAP
respective cytokines) defenses to establish infection (9, 94).         6- to 21-fold and therefore should be avoided whenever possible
    Aspiration of oropharyngeal pathogens or leakage of bacteria       (3, 94, 110, 114). Noninvasive positive-pressure ventilation, using
around the endotracheal tube cuff is the primary route of bacte-       a face mask, is an attractive alternative for patients with acute
rial entry into the trachea (95–98). The stomach and sinuses           exacerbations of chronic obstructive pulmonary disease or acute
have been suggested as potential reservoirs for certain bacteria       hypoxemic respiratory failure, and for some immunosuppressed
colonizing the oropharynx and trachea, but their importance            patients with pulmonary infiltrates and respiratory failure (18, 20,
remains controversial (99–104). Some investigators postulate           115–119). Data suggest that use of noninvasive ventilation to
that colonization of the endotracheal tube with bacteria encased       avoid reintubation after initial extubation may not be a good
in biofilm may result in embolization into the alveoli during           strategy (115).
suctioning or bronchoscopy (105, 106). Inhalation of pathogens             Specific strategies have been recommended to reduce the
from contaminated aerosols, and direct inoculation, are less com-      duration of mechanical ventilation, such as improved methods
394                                                 AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE VOL 171 2005

of sedation and the use of protocols to facilitate and accelerate      Modulation of Colonization: Oral Antiseptics and Antibiotics
weaning (120–124). These interventions are dependent on ade-           The progression from colonization to tracheobronchitis to pneu-
quate ICU staffing. Reintubation should be avoided, if possible,        monia is a dynamic equilibrium and the possibility to discern
as it increases the risk of VAP (114).                                 the different entities depends on the specificity of diagnostic
    Attention to the specific type of endotracheal tube, its mainte-    tools. Oropharyngeal colonization, either present on admission
nance, and the site of insertion may also be valuable. The use         or acquired during ICU stay, has been identified as an indepen-
of oral endotracheal and orogastric tubes, rather than nasotra-        dent risk factor for the development of ICU-acquired HAP
cheal and nasogastric tubes, can reduce the frequency of nosoco-       caused by enteric gram-negative bacteria and P. aeruginosa
mial sinusitis and possibly HAP, although causality between            (101). In a randomized trial, DeRiso and coworkers demon-
sinusitis and HAP has not been firmly established (109, 125).           strated that the use of the oral antiseptic chlorhexidine signifi-
Efforts to reduce the likelihood of aspiration of oropharyngeal        cantly reduced rates of nosocomial infection in patients undergo-
bacteria around the endotracheal tube cuff and into the lower          ing coronary artery bypass surgery (148).
respiratory tract include limiting the use of sedative and paralytic       Modulation of oropharyngeal colonization, by combinations
agents that depress cough and other host-protective mechanisms,        of oral antibiotics, with or without systemic therapy, or by selec-
and maintaining endotracheal cuff pressure at greater than 20 cm       tive decontamination of the digestive tract (SDD), is also effec-
H2O (98, 126). Continuous aspiration of subglottic secretions,         tive in significantly reducing the frequency of HAP, although
through the use of a specially designed endotracheal tube, has         methodologic study quality appeared to be inversely related to
significantly reduced the incidence of early-onset VAP in several       the magnitude of the preventive effects (93, 149–155).
studies (97, 127–130).                                                     In two prospective randomized trials SDD was associated
    VAP may also be related to colonization of the ventilator          with higher ICU survival among patients receiving SDD (156,
circuit (131). A large number of prospective, randomized trials        157). In the first study patients with a midrange APACHE II
have shown that the frequency of ventilator circuit change does        score on admission had a lower ICU mortality, although ICU
not affect the incidence of HAP, but condensate collecting in          mortality rates of all patients included did not differ significantly
the ventilator circuit can become contaminated from patient            (156). In the largest study performed so far, SDD administered
secretions (98, 132–135). Therefore, vigilance is needed to pre-       to 466 patients in one unit was associated with a relative risk
vent inadvertently flushing the condensate into the lower airway        for ICU mortality of 0.65 and with a relative risk of hospital
or to in-line medication nebulizers when the patient turns or          mortality of 0.78, when compared with 472 patients admitted in
the bedrail is raised (98, 131–134, 136). Passive humidifiers or        a control ward (157). In addition, infections due to antibiotic-
heat–moisture exchangers decrease ventilator circuit coloniza-         resistant microorganisms occurred more frequently in the control
tion but have not significantly reduced the incidence of VAP            ward. Importantly, levels of antibiotic-resistant pathogens were
(128, 135–139).                                                        low in both wards, with complete absence of MRSA. Moreover,
                                                                       a small preexisting difference in outcome between two wards
Aspiration, Body Position, and Enteral Feeding
                                                                       and the absence of a cross-over design warrant confirmation of
Supine patient positioning may also facilitate aspiration, which       these beneficial effects of SDD.
may be decreased by a semirecumbent positioning (140–142).                 The preventive effects of selective decontamination of the
Using radioactive labeled enteral feeding, cumulative numbers          digestive tract for HAP have also been considerably lower in
of endotracheal counts were higher when patients were placed           ICUs with high endemic levels of antibiotic resistance. In such
in the completely supine position (0 ) as compared with a semire-      a setting, selective decontamination of the digestive tract may
cumbent position (45 ) (140, 141). One randomized trial demon-         increase the selective pressure for antibiotic-resistant micro-
strated a threefold reduction in the incidence of ICU-acquired         organisms (158–164). Although selective decontamination of the
HAP in patients treated in the semirecumbent position com-             digestive tract reduces HAP, routine prophylactic use of antibiot-
pared with patients treated completely supine (143). Infection         ics should be discouraged, especially in hospital settings where
in patients in the supine position was strongly associated with        there are high levels of antibiotic resistance.
the simultaneous administration of enteral nutrition. Thus, intu-          The role of systemic antibiotics in the development of HAP
bated patients should be managed in a semirecumbent position,          is less clear. In one study, prior administration of antibiotics had
particularly during feeding.                                           an adjusted odds ratio of 3.1 (95% confidence interval, 1.4–6.9)
    Enteral nutrition has been considered a risk factor for the        for development of late-onset ICU-acquired HAP (165). More-
development of HAP, mainly because of an increased risk of             over, antibiotics clearly predispose patients to subsequent coloni-
aspiration of gastric contents (3, 144). However, its alternative,     zation and infection with antibiotic-resistant pathogens (21). In
parenteral nutrition, is associated with higher risks for intravas-    contrast, prior antibiotic exposure conferred protection (risk
cular device-associated infections, complications of line inser-       ratio, 0.37; 95% confidence interval, 0.27–0.51) for ICU-acquired
tions, higher costs, and loss of intestinal villous architecture,      HAP in another study (17). In addition, antibiotic use at the
which may facilitate enteral microbial translocation. Although         time of emergent intubation may prevent pneumonia within the
some have advised feeding critically ill patients enterally as early   first 48 hours of intubation (166). Preventive effects of intrave-
as possible, a strategy of early (i.e., Day 1 of intubation and        nous antibiotics were evaluated in only one randomized trial:
ventilation) enteral feeding was, when compared with late ad-          administration of cefuroxime for 24 hours, at the time of intuba-
ministration (i.e., Day 5 of intubation), associated with a higher     tion; and it reduced the incidence of early-onset, ICU-acquired
risk for ICU-acquired VAP (145, 146). Seven studies have evalu-        HAP in patients with closed head injury (167). However, circum-
ated the risks for ICU-acquired HAP in patients randomized to          stantial evidence of the efficacy of systemic antibiotics also follows
either gastric or postpyloric feeding (147). Although significant       from the results of metaanalyses of selective decontamination
differences were not demonstrated in any individual study, post-       of the digestive tract, which have suggested that the intravenous
pyloric feeding was associated with a significant reduction in          component of the regimens was largely responsible for improved
ICU-acquired HAP in metaanalysis (relative risk, 0.76; 95%             survival (149). In summary, prior administration of antibiotics for
confidence interval, 0.59 to 0.99) (147).                               short duration may be beneficial in some patient groups, but when
American Thoracic Society Documents                                                                                                     395

given for prolonged periods may well place others at risk for           Major Points and Recommendations for Modifiable
subsequent infection with antibiotic-resistant microorganisms.          Risk Factors
Stress Bleeding Prophylaxis, Transfusion, and Glucose Control           General prophylaxis.
Both histamine Type 2 (H2) antagonists and antacids have been              1. Effective infection control measures: staff education, com-
identified as independent risk factors for ICU-acquired HAP.                   pliance with alcohol-based hand disinfection, and isolation
Sucralfate has been used for stress bleeding prophylaxis, as it               to reduce cross-infection with MDR pathogens should be
does not decrease intragastric acidity or significantly increase               used routinely (Level I) (3, 93, 100, 110, 111).
gastric volume. Numerous randomized trials, using different doses          2. Surveillance of ICU infections, to identify and quantify
and various study populations, have provided controversial re-                endemic and new MDR pathogens, and preparation of
sults on the benefits of specific stress bleeding prophylaxis agents            timely data for infection control and to guide appropriate,
in relation to the increased risk of VAP (38, 99, 103, 104, 155,              antimicrobial therapy in patients with suspected HAP or
168). One large randomized trial comparing antacids, H2 block-                other nosocomial infections, are recommended (Level II)
ers, and sucralfate reported no differences in rates of early-onset           (3, 92, 93, 100, 110–113).
VAP, but rates of late-onset VAP were lower among patients              Intubation and mechanical ventilation.
treated with sucralfate (103). In one multicenter study of VAP             1. Intubation and reintubation should be avoided, if possible,
in patients with ARDS, sucralfate and duration of exposure to                 as it increases the risk of VAP (Level I) (3, 12, 93, 94,
sucralfate were associated with an increased risk of VAP (38).                114).
A large, double-blind, randomized trial comparing ranitidine               2. Noninvasive ventilation should be used whenever possible
with sucralfate demonstrated a trend to toward lower rates of                 in selected patients with respiratory failure (Level I) (18,
VAP with sucralfate, but clinically significant gastrointestinal               20, 115–119).
bleeding was 4% higher in the sucralfate group (104). Thus, if
                                                                           3. Orotracheal intubation and orogastric tubes are preferred
stress ulcer prophylaxis is indicated, the risks and benefits of
                                                                              over nasotracheal intubation and nasogastric tubes to pre-
each regimen should be weighed before prescribing either H2
                                                                              vent nosocomial sinusitis and to reduce the risk of VAP,
blockers or sucralfate.
                                                                              although direct causality has not been proved (Level II)
    A landmark prospective randomized trial comparing liberal
                                                                              (3, 93, 94, 109, 125).
and conservative “triggers” to transfusion in ICU patients not
                                                                           4. Continuous aspiration of subglottic secretions can reduce
exhibiting active bleeding and without underlying cardiac disease
                                                                              the risk of early-onset VAP, and should be used, if avail-
demonstrated that awaiting a hemoglobin level of 7.0 g/dl as
                                                                              able (Level I) (97, 128, 130).
opposed to a level of 9.0 g/dl before initiating transfusion resulted
                                                                           5. The endotracheal tube cuff pressure should be maintained
in less transfusion and no adverse effects on outcome (169). In
                                                                              at greater than 20 cm H2O to prevent leakage of bacterial
fact, in those patients less severely ill, as judged by low APACHE
                                                                              pathogens around the cuff into the lower respiratory tract
II scores, mortality was improved in the “restricted transfusion”
                                                                              (Level II) (98, 126).
group, a result thought to result from immunosuppressive effects
                                                                           6. Contaminated condensate should be carefully emptied
of non–leukocyte-depleted red blood cell units with consequent
                                                                              from ventilator circuits and condensate should be pre-
increased risk for infection. Multiple studies have identified ex-
                                                                              vented from entering either the endotracheal tube or in-
posure to allogeneic blood products as a risk factor for postoper-
ative infection and postoperative pneumonia, and the length of                line medication nebulizers (Level II) (98, 131, 132).
time of blood storage as another factor modulating risk (170–              7. Passive humidifiers or heat–moisture exchangers decrease
174). In one prospective randomized control trial the use of                  ventilator circuit colonization, but have not consistently
leukocyte-depleted red blood cell transfusions resulted in a re-              reduced the incidence of VAP, and thus they cannot be
duced incidence of postoperative infections, and specifically a                regarded as a pneumonia prevention tool (Level I) (135–
reduced incidence of pneumonia in patients undergoing colo-                   139).
rectal surgery (172). Routine red blood cell transfusion should be         8. Reduced duration of intubation and mechanical ventila-
conducted with a restricted transfusion trigger policy. Whether               tion may prevent VAP and can be achieved by protocols
leukocyte-depleted red blood cell transfusions will further re-               to improve the use of sedation and to accelerate weaning
duce the incidence of pneumonia in broad populations of pa-                   (Level II) (93, 120–122, 124).
tients at risk remains to be determined.                                   9. Maintaining adequate staffing levels in the ICU can reduce
    Hyperglycemia, relative insulin deficiency, or both may di-                length of stay, improve infection control practices, and
rectly or indirectly increase the risk of complications and poor              reduce duration of mechanical ventilation (Level II) (121–
outcomes in critically ill patients. van den Berghe and coworkers             124).
randomized surgical intensive care unit patients to receive either      Aspiration, body position, and enteral feeding.
intensive insulin therapy to maintain blood glucose levels be-             1. Patients should be kept in the semirecumbent position
tween 80 and 110 mg/dl or to receive conventional treatment                   (30–45 ) rather than supine to prevent aspiration, espe-
(175). The group receiving intensive insulin therapy had reduced              cially when receiving enteral feeding (Level I) (140–144).
mortality (4.6 versus 8%, p 0.04) and the difference was greater           2. Enteral nutrition is preferred over parenteral nutrition to
in patients who remained in the intensive care unit more than                 reduce the risk of complications related to central intrave-
5 days (10.6 versus 20.2%, p 0.005). When compared with the                   nous catheters and to prevent reflux villous atrophy of the
control group, those treated with intensive insulin therapy had               intestinal mucosa that may increase the risk of bacterial
a 46% reduction of bloodstream infections, decreased frequency                translocation (Level I) (3, 93, 145, 146).
of acute renal failure requiring dialysis by 41%, fewer antibiotic
treatment days, and significantly shorter length of mechanical           Modulation of colonization: oral antiseptics and antibiotics.
ventilation and ICU stay. Although the same degree of benefit               1. Routine prophylaxis of HAP with oral antibiotics (selec-
may not be seen among patients with VAP as in other popula-                   tive decontamination of the digestive tract or SDD), with
tions, aggressive treatment of hyperglycemia has both theoretical             or without systemic antibiotics, reduces the incidence of
and clinical support.                                                         ICU-acquired VAP, has helped contain outbreaks of
396                                                    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE VOL 171 2005

        MDR bacteria (Level I), but is not recommended for rou-           of antibiotic therapy led to a reduced incidence of subsequent
        tine use, especially in patients who may be colonized with        pneumonia and mortality (181).
        MDR pathogens (Level II) (149–154, 156–159, 161–164,                  The diagnosis of HAP is difficult, and most studies of nonintu-
        176).                                                             bated patients have involved clinical diagnosis, with sputum cul-
   2.   Prior administration of systemic antibiotics has reduced          ture, but bronchoscopy has been used less often, making the reliabil-
        the risk of nosocomial pneumonia in some patient groups,          ity of the bacteriologic information uncertain and the specificity
        but if a history of prior administration is present at the time   of the diagnosis undefined (182). The accuracy of the clinical
        of onset of infection, there should be increased suspicion        diagnosis of VAP has been investigated on the basis of autopsy
        of infection with MDR pathogens (Level II) (157–159,              findings or quantitative cultures of either protected specimen
        161–164).                                                         brush (PSB) or bronchoalveolar lavage (BAL) samples as the
   3.   Prophylactic administration of systemic antibiotics for 24        standard for comparison (183–186). Some studies have investi-
        hours at the time of emergent intubation has been demon-          gated the accuracy of a single clinical finding, whereas others
        strated to prevent ICU-acquired HAP in patients with              included multiple criteria in their definition of pneumonia. These
        closed head injury in one study, but its routine use is not       studies indicate that the diagnostic criteria of a radiographic
        recommended until more data become available (Level I)            infiltrate and at least one clinical feature (fever, leukocytosis,
        (167).                                                            or purulent tracheal secretions) have high sensitivity but low
   4.   Modulation of oropharyngeal colonization by the use of            specificity (especially for VAP). Combinations of signs and symp-
        oral chlorhexidine has prevented ICU-acquired HAP in              toms may increase the specificity. A study in which the diagnostic
        selected patient populations such as those undergoing cor-        standard was histology plus positive microbiologic cultures of
        onary bypass grafting, but its routine use is not recom-          immediate postmortem lung samples, the presence of chest infil-
        mended until more data become available (Level I) (148).          trates, plus two of three clinical criteria resulted in 69% sensitiv-
   5.   Use daily interruption or lightening of sedation to avoid         ity and 75% specificity (187). When the three clinical variables
        constant heavy sedation and try to avoid paralytic agents,        were used the sensitivity declined, whereas the use of only one
                                                                          variable led to a decline in specificity.
        both of which can depress cough and thereby increase the
                                                                              For patients diagnosed with ARDS, suspicion of pneumonia
        risk of HAP (Level II) (120).
                                                                          should be high and the presence of only one of the three clinical
  Stress bleeding prophylaxis, transfusion, and hyperglycemia.            criteria described should lead to more diagnostic testing (188).
   1. Comparative data from randomized trials suggest a trend             A high index of suspicion should also be present in patients who
      toward reduced VAP with sucralfate, but there is a slightly         have unexplained hemodynamic instability or deterioration of
      higher rate of clinically significant gastric bleeding, com-         blood gases during mechanical ventilation. In the absence of any
      pared with H2 antagonists. If needed, stress bleeding pro-          of these findings, no further investigations are required. The
      phylaxis with either H2 antagonists or sucralfate is accept-        incidence of colonization in hospitalized patients in general and
      able (Level I) (99–104, 155, 177–179).                              even more in patients requiring endotracheal intubation is high
   2. Transfusion of red blood cell and other allogeneic blood            (107). Antibiotic treatment of simple colonization is strongly
      products should follow a restricted transfusion trigger pol-        discouraged. Routine monitoring of tracheal aspirate cultures to
      icy; leukocyte-depleted red blood cell transfusions can help        anticipate the etiology of a subsequent pneumonia has also been
      to reduce HAP in selected patient populations (Level I)             found to be misleading in a significant percentage of cases (189).
      (169–174).                                                              Although these criteria should raise suspicion of HAP, con-
   3. Intensive insulin therapy is recommended to maintain se-            firmation of the presence of pneumonia is much more difficult,
                                                                          and clinical parameters cannot be used to define the microbio-
      rum glucose levels between 80 and 110 mg/dl in ICU pa-
                                                                          logic etiology of pneumonia. The etiologic diagnosis generally
      tients to reduce nosocomial blood stream infections, dura-
                                                                          requires a lower respiratory tract culture, but rarely may be
      tion of mechanical ventilation, ICU stay, morbidity, and
                                                                          made from blood or pleural fluid cultures. Respiratory tract
      mortality (Level I) (175).
                                                                          cultures can include endotracheal aspirates, BAL or PSB speci-
                                                                          mens. Overall, the sensitivity of blood cultures is less than 25%,
DIAGNOSTIC TESTING                                                        and when positive, the organisms may originate from an extra-
                                                                          pulmonary source in a large percentage, even if VAP is also
Diagnostic testing is ordered for two purposes: to define whether          present (190). Although an etiologic diagnosis is made from a
a patient has pneumonia as the explanation for a constellation of         respiratory tract culture, colonization of the trachea precedes
new signs and symptoms and to determine the etiologic pathogen            development of pneumonia in almost all cases of VAP, and thus
when pneumonia is present. Unfortunately, currently available             a positive culture cannot always distinguish a pathogen from a
tools cannot always reliably provide this information.                    colonizing organism. However, a sterile culture from the lower
   The diagnosis of HAP is suspected if the patient has a radio-          respiratory tract of an intubated patient, in the absence of a
graphic infiltrate that is new or progressive, along with clinical         recent change in antibiotic therapy, is strong evidence that pneu-
findings suggesting infection, which include the new onset of              monia is not present, and an extrapulmonary site of infection
fever, purulent sputum, leukocytosis, and decline in oxygenation.         should be considered (191, 192). In addition, the absence of
When fever, leukocytosis, purulent sputum, and a positive cul-            MDR microorganisms from any lower respiratory specimen in
ture of a sputum or tracheal aspirate are present without a new           intubated patients, in the absence of a change in antibiotics
lung infiltrate, the diagnosis of nosocomial tracheobronchitis             within the last 72 hours, is strong evidence that they are not
should be considered (180). When this definition has been ap-              the causative pathogen. The time course of clearance of these
plied to mechanically ventilated patients, nosocomial tracheo-            difficult-to-treat microorganisms is usually slow, so even in the
bronchitis has been associated with a longer length of ICU stay           face of a recent change in antibiotic therapy sterile cultures may
and mechanical ventilation, without increased mortality (180).            indicate that these organisms are not present (193). For these
Antibiotic therapy may be beneficial in this group of patients             reasons, a lower respiratory tract sample for culture should be
(180, 181). In one prospective randomized trial of intubated              collected from all intubated patients when the diagnosis of pneu-
patients with community-acquired bronchial infection, the use             monia is being considered. The diagnostic yield and negative
American Thoracic Society Documents                                                                                                     397

predictive value of expectorated sputum in nonintubated pa-            The goals of diagnostic approaches in patients with suspected
tients have not been determined.                                       HAP are to identify which patients have pulmonary infection;
                                                                       to ensure collection of appropriate cultures; to promote the use
Major Points and Recommendations for Diagnosis                         of early, effective antibiotic therapy, while allowing for stream-
    1. All patients should have a comprehensive medical history        lining or de-escalation when possible; and to identify patients
       obtained and undergo physical examination to define the          who have extrapulmonary infection (Figure 1). The committee
       severity of HAP, to exclude other potential sources of          considered two different approaches to management, a clinical
       infection, and to reveal the presence of specific conditions     strategy and a bacteriologic strategy, and have incorporated fea-
       that can influence the likely etiologic pathogens (Level II)     tures from both in the final recommendations.
       (9, 16, 194).
                                                                       Clinical Strategy
    2. All patients should have a chest radiograph, preferably
       posteroanterior and lateral if not intubated, as portable       When the clinical approach is used, the presence of pneumonia
       chest radiographs have limited accuracy. The radiograph         is defined by new lung infiltrate plus clinical evidence that the
       can help to define the severity of pneumonia (multilobar         infiltrate is of an infectious origin. The presence of a new or
       or not) and the presence of complications, such as effu-        progressive radiographic infiltrate plus at least two of three clini-
       sions or cavitation (Level II) (5, 195).                        cal features (fever greater than 38 C, leukocytosis or leukopenia,
    3. Purulent tracheobronchitis may mimic many of the clini-         and purulent secretions) represents the most accurate combina-
       cal signs of HAP and VAP, and may require antibiotic            tion of criteria for starting empiric antibiotic therapy (187). Al-
       therapy, but prospective, randomized trials are needed          though sensitivity for the presence of pneumonia is increased if
       (Level III) (180). Tracheal colonization is common in           only one criterion is used, this occurs at the expense of specificity,
       intubated patients, but in the absence of clinical findings      leading to significantly more antibiotic treatment. Requiring all
       is not a sign of infection, and does not require therapy        three clinical criteria is too insensitive and will result in many
       or diagnostic evaluation (Level II) (40, 107).                  patients with true pneumonia not receiving therapy.
    4. Arterial oxygenation saturation should be measured in all           The etiologic cause of pneumonia is defined by semiquantita-
       patients to determine the need for supplemental oxygen.         tive cultures of endotracheal aspirates or sputum with initial
       Arterial blood gas should be determined if concern exists       microscopic examination. Tracheal aspirate cultures consistently
       regarding either metabolic or respiratory acidosis, and         grow more microorganisms than do invasive quantitative cul-
       this test generally is needed to manage patients who re-        tures, and most microbiology laboratories report the results in
       quire mechanical ventilation. These results, along with other   a semiquantitative fashion, describing growth as light, moderate,
       laboratory studies (complete blood count, serum electro-        or heavy. In general, it is rare that a tracheal aspirate culture
       lytes, renal and liver function), can point to the presence     does not contain the pathogen(s) found in invasive quantitative
       of multiple organ dysfunction and thus help define the           cultures (191, 199, 200). Gram staining of polymorphonuclear
       severity of illness (Level II) (38, 188).                       leukocytes and macrophages and careful examination of the
    5. All patients with suspected VAP should have blood cul-          morphology of any bacteria found to be present, may improve
       tures collected, recognizing that a positive result can indi-   diagnostic accuracy when correlated with culture results (201,
       cate the presence of either pneumonia or extrapulmonary         202). Conversely, a negative tracheal aspirate (absence of bacte-
       infection (Level II) (190).                                     ria or inflammatory cells) in a patient without a recent (within
    6. A diagnostic thoracentesis to rule out a complicating em-       72 hours) change in antibiotics has a strong negative predictive
       pyema or parapneumonic effusion should be performed             value (94%) for VAP (203). A reliably performed Gram stain
       if the patient has a large pleural effusion or if the patient   of tracheal aspirates has been demonstrated to result in a low
       with a pleural effusion appears toxic (Level III) (5).          incidence of inappropriate therapy when used to guide initial
    7. Samples of lower respiratory tract secretions should be         empiric antibiotic therapy (9, 198).
       obtained from all patients with suspected HAP, and                  The clinical strategy emphasizes prompt empiric therapy for
       should be collected before antibiotic changes. Samples          all patients suspected of having HAP. The driving force behind
       can include an endotracheal aspirate, bronchoalveolar           this strategy is the consistent finding that delay in the initiation
       lavage sample, or protected specimen brush sample               of appropriate antibiotic therapy for patients with HAP is associ-
       (Level II) (183, 184, 192, 196, 197).
                                                                       ated with increased mortality (37, 112, 204). The selection of
    8. In the absence of any clinical suspicion of HAP or nosoco-
                                                                       initial antibiotic therapy is based on risk factors for specific
       mial tracheobronchitis, no respiratory tract cultures should
                                                                       pathogens, modified by knowledge of local patterns of antibiotic
       be obtained (Level III).
                                                                       resistance and organism prevalence. Therapy is modified on the
    9. A sterile culture of respiratory secretions in the absence
                                                                       basis of the clinical response on Days 2 and 3, and the findings
       of a new antibiotic in the past 72 hours virtually rules
                                                                       of semiquantitative cultures of lower respiratory tract secretions.
       out the presence of bacterial pneumonia, but viral or
       Legionella infection is still possible (Level II) (192). If     This approach requires no specialized microbiologic methods,
       these patients have clinical signs of infection, an extrapul-   and all patients suspected of having pneumonia are treated. This
       monary site of infection should be investigated (Level II)      avoids the problem of not treating some infected individuals.
       (190, 198).                                                     Use of an ICU-specific, broad-spectrum empiric therapy regi-
   10. For patients with ARDS, for whom it is difficult to demon-       ment can reduce the incidence of inappropriate initial therapy
       strate deterioration of radiographic images, at least one of    to less than 10% (198, 205).
       the three clinical criteria or other signs of pneumonia, such       The major limitation to the clinical approach is that it consis-
       as hemodynamic instability or deterioration of blood gases,     tently leads to more antibiotic therapy than when therapy deci-
       should lead to more diagnostic testing (Level II) (38).         sions are based on the findings (microscopy and quantitative
                                                                       cultures) of invasive (bronchoscopic) lower respiratory tract sam-
                                                                       ples (198). The clinical approach is overly sensitive, and patients
DIAGNOSTIC STRATEGIES AND APPROACHES
                                                                       can be treated for pneumonia when another noninfectious pro-
Because clinical suspicion of HAP/VAP is overly sensitive, fur-        cess is responsible for the clinical findings. These processes may
ther diagnostic strategies are required for optimal management.        include congestive heart failure, atelectasis, pulmonary thrombo-
398                                                AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE VOL 171 2005




                                                                                                  Figure 1. Summary of the management
                                                                                                  strategies for a patient with suspected
                                                                                                  hospital-acquired pneumonia (HAP), ven-
                                                                                                  tilator-associated pneumonia (VAP), or
                                                                                                  healthcare-associated pneumonia (HCAP).
                                                                                                  The decision about antibiotic discontinu-
                                                                                                  ation may differ depending on the type
                                                                                                  of sample collected (PSB, BAL, or endotra-
                                                                                                  cheal aspirate), and whether the results
                                                                                                  are reported in quantitative or semiquan-
                                                                                                  titative terms (see text for details).




embolism, pulmonary drug reactions, pulmonary hemorrhage,             sooner, is necessary, because patients who are improving will
or ARDS. Even if the patient has pneumonia, reliance on semi-         have signs of a good clinical response by this time point (193,
quantitative cultures, which may not reliably separate true patho-    208). Singh and coworkers have shown that some patients with
gens from colonizers, can lead to either more or broader spec-        a low clinical suspicion of VAP (CPIS of 6 or less) can have
trum antibiotic therapy than with a quantitative approach (198).      antibiotics safely discontinued after 3 days, if the subsequent
These cultures have their greatest value if they are negative and     course suggests that the probability of pneumonia is still low
the patient has not received new antibiotics within the past 72       (207). The modified CPIS used by Singh and coworkers appears
hours. One other concern is that reliance on nonquantitative cul-     to be an objective measure to define patients who can receive
tures could lead to a failure to recognize extrapulmonary infection   a short duration of therapy.
at an early time point.                                               Major points and recommendations for the clinical strategy.
   In an effort to improve the specificity of clinical diagnosis,         1. A reliable tracheal aspirate Gram stain can be used to direct
Pugin and coworkers developed the clinical pulmonary infection              initial empiric antimicrobial therapy and may increase the
score (CPIS), which combines clinical, radiographic, physiologi-            diagnostic value of the CPIS (Level II) (191, 199, 201, 209).
cal (PaO2/FiO2), and microbiologic data into a single numerical          2. A negative tracheal aspirate (absence of bacteria or in-
result (206). When the CPIS exceeded 6, good correlation with               flammatory cells) in a patient without a recent (within 72
the presence of pneumonia, as defined by quantitative cultures               hours) change in antibiotics has a strong negative pre-
of bronchoscopic and nonbronchoscopic BAL specimens, was                    dictive value (94%) for VAP and should lead to a search
found. However, in a subsequent study that used histology plus              for alternative sources of fever (Level II) (203).
immediate postmortem quantitative lung cultures as the refer-            3. The presence of a new or progressive radiographic infil-
ence standard, the CPIS had a sensitivity of 77% and a specificity           trate plus at least two of three clinical features (fever
of 42% (187). One prospective study evaluated 79 episodes of                greater than 38 C, leukocytosis or leukopenia, and puru-
suspected VAP, using the CPIS, and compared the findings with                lent secretions) represent the most accurate clinical criteria
diagnoses established by BAL culture. Overall, the sensitivity              for starting empiric antibiotic therapy (Level II) (187).
and specificity of the score were low, although it improved if a          4. If a clinical strategy is used, reevaluation of the decision
Gram stain of a deep respiratory tract culture was added to the             to use antibiotics based on the results of semiquantitative
evaluation (201).                                                           lower respiratory tract cultures and serial clinical evalua-
   The original description of the CPIS required microbiologic              tions, by Day 3 or sooner, is necessary (Level II) (193,
data, and thus could not be used to screen for HAP. Singh and               205, 207, 208).
colleagues used a modified CPIS that did not rely on culture              5. A modified CPIS of 6 or less for 3 days, proposed by Singh
data to guide clinical management (207). Another approach was               and coworkers, is an objective criterion to select patients
to calculate the score by using the results of a Gram stain of a            at low risk for early discontinuation of empiric treatment
BAL specimen or blind protected telescoping catheter sample,                of HAP, but still requires validation in patients with more
and score the findings as either positive or negative. Using this            severe forms of VAP (Level I) (201, 207).
approach, the CPIS for patients with confirmed VAP was signifi-
cantly higher than the value for nonconfirmed VAP (201).               Bacteriologic Strategy
   If a clinical strategy is used, reevaluation of the decision to    The bacteriologic strategy uses quantitative cultures of lower
use antibiotics based on serial clinical evaluations, by Day 3 or     respiratory secretions (endotracheal aspirates, BAL or PSB speci-
Ats nih guia 2005
Ats nih guia 2005
Ats nih guia 2005
Ats nih guia 2005
Ats nih guia 2005
Ats nih guia 2005
Ats nih guia 2005
Ats nih guia 2005
Ats nih guia 2005
Ats nih guia 2005
Ats nih guia 2005
Ats nih guia 2005
Ats nih guia 2005
Ats nih guia 2005
Ats nih guia 2005
Ats nih guia 2005
Ats nih guia 2005
Ats nih guia 2005

Weitere ähnliche Inhalte

Was ist angesagt?

antibiotic and using in common infection
antibiotic and using in common infection antibiotic and using in common infection
antibiotic and using in common infection Y Alsfah
 
VAP bundle compliance in ICU - Clinical Audit
VAP bundle compliance in ICU - Clinical AuditVAP bundle compliance in ICU - Clinical Audit
VAP bundle compliance in ICU - Clinical Auditfaheta
 
Burry et al-2012-pediatric_blood_&_cancer
Burry et al-2012-pediatric_blood_&_cancerBurry et al-2012-pediatric_blood_&_cancer
Burry et al-2012-pediatric_blood_&_cancerisabelerazochaves
 
Development of clinical trail protocol
Development of clinical trail protocolDevelopment of clinical trail protocol
Development of clinical trail protocolPradnya Shirude
 
Probioticos x antibóticos
Probioticos x antibóticosProbioticos x antibóticos
Probioticos x antibóticoslactivos
 
Cap.8 Farmacologia 2011
Cap.8 Farmacologia 2011Cap.8 Farmacologia 2011
Cap.8 Farmacologia 2011Martin Pan
 
Declaration of-helsinki presantation
Declaration of-helsinki presantationDeclaration of-helsinki presantation
Declaration of-helsinki presantationManoharReddy183
 
Definition and scope of Pharmacoepidemiology
Definition and scope of Pharmacoepidemiology Definition and scope of Pharmacoepidemiology
Definition and scope of Pharmacoepidemiology ABUBAKRANSARI2
 
Pharmacoepidemiology
PharmacoepidemiologyPharmacoepidemiology
PharmacoepidemiologyStanley Palma
 
Adverse effects of delayed antimicrobial treatment and surgical source contro...
Adverse effects of delayed antimicrobial treatment and surgical source contro...Adverse effects of delayed antimicrobial treatment and surgical source contro...
Adverse effects of delayed antimicrobial treatment and surgical source contro...Manuel Pivaral
 
Pace study training slides 22 09-2015 v2.1
Pace study training slides 22 09-2015 v2.1Pace study training slides 22 09-2015 v2.1
Pace study training slides 22 09-2015 v2.1angewatkins
 
Concept of risk in pharmacoepidemiology Presentation
Concept of risk in pharmacoepidemiology PresentationConcept of risk in pharmacoepidemiology Presentation
Concept of risk in pharmacoepidemiology PresentationMdshams244
 

Was ist angesagt? (16)

antibiotic and using in common infection
antibiotic and using in common infection antibiotic and using in common infection
antibiotic and using in common infection
 
Farmakoepidemiologi3
Farmakoepidemiologi3Farmakoepidemiologi3
Farmakoepidemiologi3
 
VAP bundle compliance in ICU - Clinical Audit
VAP bundle compliance in ICU - Clinical AuditVAP bundle compliance in ICU - Clinical Audit
VAP bundle compliance in ICU - Clinical Audit
 
Burry et al-2012-pediatric_blood_&_cancer
Burry et al-2012-pediatric_blood_&_cancerBurry et al-2012-pediatric_blood_&_cancer
Burry et al-2012-pediatric_blood_&_cancer
 
Development of clinical trail protocol
Development of clinical trail protocolDevelopment of clinical trail protocol
Development of clinical trail protocol
 
Probioticos x antibóticos
Probioticos x antibóticosProbioticos x antibóticos
Probioticos x antibóticos
 
JC HO - Colistin V. Tige - NOWICKI
JC HO - Colistin V. Tige - NOWICKIJC HO - Colistin V. Tige - NOWICKI
JC HO - Colistin V. Tige - NOWICKI
 
Cap.8 Farmacologia 2011
Cap.8 Farmacologia 2011Cap.8 Farmacologia 2011
Cap.8 Farmacologia 2011
 
Medical expert ani
Medical expert aniMedical expert ani
Medical expert ani
 
Declaration of-helsinki presantation
Declaration of-helsinki presantationDeclaration of-helsinki presantation
Declaration of-helsinki presantation
 
Definition and scope of Pharmacoepidemiology
Definition and scope of Pharmacoepidemiology Definition and scope of Pharmacoepidemiology
Definition and scope of Pharmacoepidemiology
 
Pharmacoepidemiology
PharmacoepidemiologyPharmacoepidemiology
Pharmacoepidemiology
 
Adverse effects of delayed antimicrobial treatment and surgical source contro...
Adverse effects of delayed antimicrobial treatment and surgical source contro...Adverse effects of delayed antimicrobial treatment and surgical source contro...
Adverse effects of delayed antimicrobial treatment and surgical source contro...
 
Pace study training slides 22 09-2015 v2.1
Pace study training slides 22 09-2015 v2.1Pace study training slides 22 09-2015 v2.1
Pace study training slides 22 09-2015 v2.1
 
Concept of risk in pharmacoepidemiology Presentation
Concept of risk in pharmacoepidemiology PresentationConcept of risk in pharmacoepidemiology Presentation
Concept of risk in pharmacoepidemiology Presentation
 
Aspergillosis 2008 guideline
Aspergillosis 2008 guidelineAspergillosis 2008 guideline
Aspergillosis 2008 guideline
 

Andere mochten auch

Trabajo indios pizarra
Trabajo indios pizarraTrabajo indios pizarra
Trabajo indios pizarratorricopilar
 
Educ638 theory report
Educ638   theory reportEduc638   theory report
Educ638 theory reportlerongajang
 
BB Assignment 01: Mad Lib
BB Assignment 01: Mad LibBB Assignment 01: Mad Lib
BB Assignment 01: Mad Liblerongajang
 
Elluminate 10 moderator
Elluminate 10 moderatorElluminate 10 moderator
Elluminate 10 moderatorlerongajang
 
Presentation Tips
Presentation TipsPresentation Tips
Presentation TipsZubair Khan
 
You have the Power Tab!
You have the Power Tab!You have the Power Tab!
You have the Power Tab!lerongajang
 
استخدام المنتدى
استخدام المنتدىاستخدام المنتدى
استخدام المنتدىalhumaidi
 
Presentació cloud computing
Presentació cloud computingPresentació cloud computing
Presentació cloud computingcarme0
 
Bahagian badan & pancaindera
Bahagian badan & pancainderaBahagian badan & pancaindera
Bahagian badan & pancainderalengwei900215
 
новая презентация школы
новая презентация школыновая презентация школы
новая презентация школыLitvinenko Elena
 
Presentació santa cecília
Presentació santa cecíliaPresentació santa cecília
Presentació santa cecíliaElturo
 

Andere mochten auch (17)

Ats nih guia 2005
Ats nih guia 2005Ats nih guia 2005
Ats nih guia 2005
 
Trabajo indios pizarra
Trabajo indios pizarraTrabajo indios pizarra
Trabajo indios pizarra
 
Educ638 theory report
Educ638   theory reportEduc638   theory report
Educ638 theory report
 
What is QR?
What is QR?What is QR?
What is QR?
 
BB Assignment 01: Mad Lib
BB Assignment 01: Mad LibBB Assignment 01: Mad Lib
BB Assignment 01: Mad Lib
 
Elluminate 10 moderator
Elluminate 10 moderatorElluminate 10 moderator
Elluminate 10 moderator
 
Ajang chapter 5
Ajang   chapter 5Ajang   chapter 5
Ajang chapter 5
 
Presentation Tips
Presentation TipsPresentation Tips
Presentation Tips
 
You have the Power Tab!
You have the Power Tab!You have the Power Tab!
You have the Power Tab!
 
استخدام المنتدى
استخدام المنتدىاستخدام المنتدى
استخدام المنتدى
 
Presentació cloud computing
Presentació cloud computingPresentació cloud computing
Presentació cloud computing
 
Ha
HaHa
Ha
 
Bahagian badan & pancaindera
Bahagian badan & pancainderaBahagian badan & pancaindera
Bahagian badan & pancaindera
 
новая презентация школы
новая презентация школыновая презентация школы
новая презентация школы
 
Marketing social
Marketing socialMarketing social
Marketing social
 
Aleksander suur
Aleksander suurAleksander suur
Aleksander suur
 
Presentació santa cecília
Presentació santa cecíliaPresentació santa cecília
Presentació santa cecília
 

Ähnlich wie Ats nih guia 2005

Neumonia asociada al ventilador y nosocomial guias idsa 2016
Neumonia asociada al ventilador y nosocomial guias idsa 2016Neumonia asociada al ventilador y nosocomial guias idsa 2016
Neumonia asociada al ventilador y nosocomial guias idsa 2016Mauricio Alejandro Usme Arango
 
HAP/VAP 2016 ATS/IDSA Guidelines. Our Data available at: https://rdcu.be/Mx8E
HAP/VAP 2016 ATS/IDSA Guidelines. Our Data available at: https://rdcu.be/Mx8EHAP/VAP 2016 ATS/IDSA Guidelines. Our Data available at: https://rdcu.be/Mx8E
HAP/VAP 2016 ATS/IDSA Guidelines. Our Data available at: https://rdcu.be/Mx8EDr Sandeep Kumar
 
Antibiotic de escalation_in_the_icu___how_is_it.
Antibiotic de escalation_in_the_icu___how_is_it.Antibiotic de escalation_in_the_icu___how_is_it.
Antibiotic de escalation_in_the_icu___how_is_it.Alex Castañeda-Sabogal
 
4. Evolving Roles of Pharmacists in AMS by Dr. Mediadora Saniel.pdf
4. Evolving Roles of Pharmacists in AMS by Dr. Mediadora Saniel.pdf4. Evolving Roles of Pharmacists in AMS by Dr. Mediadora Saniel.pdf
4. Evolving Roles of Pharmacists in AMS by Dr. Mediadora Saniel.pdfMarkAnthonyEllana1
 
Treatment of hospital acquired, ventilator-associated, and healthcare-associa...
Treatment of hospital acquired, ventilator-associated, and healthcare-associa...Treatment of hospital acquired, ventilator-associated, and healthcare-associa...
Treatment of hospital acquired, ventilator-associated, and healthcare-associa...Christian Wilhelm
 
Neutropenia por cancer y uso de antibioticos guia idsa 2010
Neutropenia por cancer y uso de antibioticos guia idsa 2010Neutropenia por cancer y uso de antibioticos guia idsa 2010
Neutropenia por cancer y uso de antibioticos guia idsa 2010Mauricio Alejandro Usme Arango
 
VAP/HAP management guidelines by IDSA/ATS (2016) -: Dr.Tinku Joseph
VAP/HAP management guidelines  by IDSA/ATS (2016) -: Dr.Tinku JosephVAP/HAP management guidelines  by IDSA/ATS (2016) -: Dr.Tinku Joseph
VAP/HAP management guidelines by IDSA/ATS (2016) -: Dr.Tinku JosephDr.Tinku Joseph
 
Community acquired pneumonia 2015 part 2
Community acquired pneumonia  2015  part 2Community acquired pneumonia  2015  part 2
Community acquired pneumonia 2015 part 2samirelansary
 
Community acquired pneumonia 2015 part 2
Community acquired pneumonia  2015  part 2Community acquired pneumonia  2015  part 2
Community acquired pneumonia 2015 part 2samirelansary
 
American Guideline Pneumonia.pdf
American Guideline Pneumonia.pdfAmerican Guideline Pneumonia.pdf
American Guideline Pneumonia.pdfNataliaSaezDuarte
 
Antimicrobial Stewardship
Antimicrobial StewardshipAntimicrobial Stewardship
Antimicrobial StewardshipFatmaAtef10
 
Guideline useofantimicrobialagentsinneutropenicpatients
Guideline useofantimicrobialagentsinneutropenicpatientsGuideline useofantimicrobialagentsinneutropenicpatients
Guideline useofantimicrobialagentsinneutropenicpatientsnegrulo2013
 
Ventilator associated pneumonia (1).pptx
Ventilator associated pneumonia (1).pptxVentilator associated pneumonia (1).pptx
Ventilator associated pneumonia (1).pptxrekha reddy
 

Ähnlich wie Ats nih guia 2005 (20)

Neumonia asociada al ventilador y nosocomial guias idsa 2016
Neumonia asociada al ventilador y nosocomial guias idsa 2016Neumonia asociada al ventilador y nosocomial guias idsa 2016
Neumonia asociada al ventilador y nosocomial guias idsa 2016
 
NEUMONIA ASOCIADA AL VENTILADOR GUIA IDSA 2016
NEUMONIA ASOCIADA AL VENTILADOR GUIA IDSA 2016NEUMONIA ASOCIADA AL VENTILADOR GUIA IDSA 2016
NEUMONIA ASOCIADA AL VENTILADOR GUIA IDSA 2016
 
HAP/VAP 2016 ATS/IDSA Guidelines. Our Data available at: https://rdcu.be/Mx8E
HAP/VAP 2016 ATS/IDSA Guidelines. Our Data available at: https://rdcu.be/Mx8EHAP/VAP 2016 ATS/IDSA Guidelines. Our Data available at: https://rdcu.be/Mx8E
HAP/VAP 2016 ATS/IDSA Guidelines. Our Data available at: https://rdcu.be/Mx8E
 
Antibiotic de escalation_in_the_icu___how_is_it.
Antibiotic de escalation_in_the_icu___how_is_it.Antibiotic de escalation_in_the_icu___how_is_it.
Antibiotic de escalation_in_the_icu___how_is_it.
 
4. Evolving Roles of Pharmacists in AMS by Dr. Mediadora Saniel.pdf
4. Evolving Roles of Pharmacists in AMS by Dr. Mediadora Saniel.pdf4. Evolving Roles of Pharmacists in AMS by Dr. Mediadora Saniel.pdf
4. Evolving Roles of Pharmacists in AMS by Dr. Mediadora Saniel.pdf
 
Treatment of hospital acquired, ventilator-associated, and healthcare-associa...
Treatment of hospital acquired, ventilator-associated, and healthcare-associa...Treatment of hospital acquired, ventilator-associated, and healthcare-associa...
Treatment of hospital acquired, ventilator-associated, and healthcare-associa...
 
Neutropenia febril
Neutropenia febrilNeutropenia febril
Neutropenia febril
 
Neutropenia por cancer y uso de antibioticos guia idsa 2010
Neutropenia por cancer y uso de antibioticos guia idsa 2010Neutropenia por cancer y uso de antibioticos guia idsa 2010
Neutropenia por cancer y uso de antibioticos guia idsa 2010
 
VAP/HAP management guidelines by IDSA/ATS (2016) -: Dr.Tinku Joseph
VAP/HAP management guidelines  by IDSA/ATS (2016) -: Dr.Tinku JosephVAP/HAP management guidelines  by IDSA/ATS (2016) -: Dr.Tinku Joseph
VAP/HAP management guidelines by IDSA/ATS (2016) -: Dr.Tinku Joseph
 
Community acquired pneumonia 2015 part 2
Community acquired pneumonia  2015  part 2Community acquired pneumonia  2015  part 2
Community acquired pneumonia 2015 part 2
 
Community acquired pneumonia 2015 part 2
Community acquired pneumonia  2015  part 2Community acquired pneumonia  2015  part 2
Community acquired pneumonia 2015 part 2
 
Idsa neutropenia febril
Idsa neutropenia febrilIdsa neutropenia febril
Idsa neutropenia febril
 
AMSP PPT.pptx
AMSP PPT.pptxAMSP PPT.pptx
AMSP PPT.pptx
 
American Guideline Pneumonia.pdf
American Guideline Pneumonia.pdfAmerican Guideline Pneumonia.pdf
American Guideline Pneumonia.pdf
 
Ats neumonia
Ats neumoniaAts neumonia
Ats neumonia
 
Acs0815 Antibiotics
Acs0815 AntibioticsAcs0815 Antibiotics
Acs0815 Antibiotics
 
Antimicrobial Stewardship
Antimicrobial StewardshipAntimicrobial Stewardship
Antimicrobial Stewardship
 
Guideline useofantimicrobialagentsinneutropenicpatients
Guideline useofantimicrobialagentsinneutropenicpatientsGuideline useofantimicrobialagentsinneutropenicpatients
Guideline useofantimicrobialagentsinneutropenicpatients
 
Cap,2019
Cap,2019Cap,2019
Cap,2019
 
Ventilator associated pneumonia (1).pptx
Ventilator associated pneumonia (1).pptxVentilator associated pneumonia (1).pptx
Ventilator associated pneumonia (1).pptx
 

Kürzlich hochgeladen

Primary headache and facial pain. (2024)
Primary headache and facial pain. (2024)Primary headache and facial pain. (2024)
Primary headache and facial pain. (2024)Mohamed Rizk Khodair
 
The next social challenge to public health: the information environment.pptx
The next social challenge to public health:  the information environment.pptxThe next social challenge to public health:  the information environment.pptx
The next social challenge to public health: the information environment.pptxTina Purnat
 
Tans femoral Amputee : Prosthetics Knee Joints.pptx
Tans femoral Amputee : Prosthetics Knee Joints.pptxTans femoral Amputee : Prosthetics Knee Joints.pptx
Tans femoral Amputee : Prosthetics Knee Joints.pptxKezaiah S
 
Music Therapy's Impact in Palliative Care| IAPCON2024| Dr. Tara Rajendran
Music Therapy's Impact in Palliative Care| IAPCON2024| Dr. Tara RajendranMusic Therapy's Impact in Palliative Care| IAPCON2024| Dr. Tara Rajendran
Music Therapy's Impact in Palliative Care| IAPCON2024| Dr. Tara RajendranTara Rajendran
 
VarSeq 2.6.0: Advancing Pharmacogenomics and Genomic Analysis
VarSeq 2.6.0: Advancing Pharmacogenomics and Genomic AnalysisVarSeq 2.6.0: Advancing Pharmacogenomics and Genomic Analysis
VarSeq 2.6.0: Advancing Pharmacogenomics and Genomic AnalysisGolden Helix
 
Giftedness: Understanding Everyday Neurobiology for Self-Knowledge
Giftedness: Understanding Everyday Neurobiology for Self-KnowledgeGiftedness: Understanding Everyday Neurobiology for Self-Knowledge
Giftedness: Understanding Everyday Neurobiology for Self-Knowledgeassessoriafabianodea
 
Big Data Analysis Suggests COVID Vaccination Increases Excess Mortality Of ...
Big Data Analysis Suggests COVID  Vaccination Increases Excess Mortality Of  ...Big Data Analysis Suggests COVID  Vaccination Increases Excess Mortality Of  ...
Big Data Analysis Suggests COVID Vaccination Increases Excess Mortality Of ...sdateam0
 
low cost antibiotic cement nail for infected non union.pptx
low cost antibiotic cement nail for infected non union.pptxlow cost antibiotic cement nail for infected non union.pptx
low cost antibiotic cement nail for infected non union.pptxdrashraf369
 
Presentation on General Anesthetics pdf.
Presentation on General Anesthetics pdf.Presentation on General Anesthetics pdf.
Presentation on General Anesthetics pdf.Prerana Jadhav
 
Lippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdf
Lippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdfLippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdf
Lippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdfSreeja Cherukuru
 
PERFECT BUT PAINFUL TKR -ROLE OF SYNOVECTOMY.pptx
PERFECT BUT PAINFUL TKR -ROLE OF SYNOVECTOMY.pptxPERFECT BUT PAINFUL TKR -ROLE OF SYNOVECTOMY.pptx
PERFECT BUT PAINFUL TKR -ROLE OF SYNOVECTOMY.pptxdrashraf369
 
Measurement of Radiation and Dosimetric Procedure.pptx
Measurement of Radiation and Dosimetric Procedure.pptxMeasurement of Radiation and Dosimetric Procedure.pptx
Measurement of Radiation and Dosimetric Procedure.pptxDr. Dheeraj Kumar
 
PNEUMOTHORAX AND ITS MANAGEMENTS.pdf
PNEUMOTHORAX   AND  ITS  MANAGEMENTS.pdfPNEUMOTHORAX   AND  ITS  MANAGEMENTS.pdf
PNEUMOTHORAX AND ITS MANAGEMENTS.pdfDolisha Warbi
 
world health day presentation ppt download
world health day presentation ppt downloadworld health day presentation ppt download
world health day presentation ppt downloadAnkitKumar311566
 
ANTI-DIABETICS DRUGS - PTEROCARPUS AND GYMNEMA
ANTI-DIABETICS DRUGS - PTEROCARPUS AND GYMNEMAANTI-DIABETICS DRUGS - PTEROCARPUS AND GYMNEMA
ANTI-DIABETICS DRUGS - PTEROCARPUS AND GYMNEMADivya Kanojiya
 
SYNDESMOTIC INJURY- ANATOMICAL REPAIR.pptx
SYNDESMOTIC INJURY- ANATOMICAL REPAIR.pptxSYNDESMOTIC INJURY- ANATOMICAL REPAIR.pptx
SYNDESMOTIC INJURY- ANATOMICAL REPAIR.pptxdrashraf369
 
MedDRA-A-Comprehensive-Guide-to-Standardized-Medical-Terminology.pdf
MedDRA-A-Comprehensive-Guide-to-Standardized-Medical-Terminology.pdfMedDRA-A-Comprehensive-Guide-to-Standardized-Medical-Terminology.pdf
MedDRA-A-Comprehensive-Guide-to-Standardized-Medical-Terminology.pdfSasikiranMarri
 
Informed Consent Empowering Healthcare Decision-Making.pptx
Informed Consent Empowering Healthcare Decision-Making.pptxInformed Consent Empowering Healthcare Decision-Making.pptx
Informed Consent Empowering Healthcare Decision-Making.pptxSasikiranMarri
 
CEHPALOSPORINS.pptx By Harshvardhan Dev Bhoomi Uttarakhand University
CEHPALOSPORINS.pptx By Harshvardhan Dev Bhoomi Uttarakhand UniversityCEHPALOSPORINS.pptx By Harshvardhan Dev Bhoomi Uttarakhand University
CEHPALOSPORINS.pptx By Harshvardhan Dev Bhoomi Uttarakhand UniversityHarshChauhan475104
 
Apiculture Chapter 1. Introduction 2.ppt
Apiculture Chapter 1. Introduction 2.pptApiculture Chapter 1. Introduction 2.ppt
Apiculture Chapter 1. Introduction 2.pptkedirjemalharun
 

Kürzlich hochgeladen (20)

Primary headache and facial pain. (2024)
Primary headache and facial pain. (2024)Primary headache and facial pain. (2024)
Primary headache and facial pain. (2024)
 
The next social challenge to public health: the information environment.pptx
The next social challenge to public health:  the information environment.pptxThe next social challenge to public health:  the information environment.pptx
The next social challenge to public health: the information environment.pptx
 
Tans femoral Amputee : Prosthetics Knee Joints.pptx
Tans femoral Amputee : Prosthetics Knee Joints.pptxTans femoral Amputee : Prosthetics Knee Joints.pptx
Tans femoral Amputee : Prosthetics Knee Joints.pptx
 
Music Therapy's Impact in Palliative Care| IAPCON2024| Dr. Tara Rajendran
Music Therapy's Impact in Palliative Care| IAPCON2024| Dr. Tara RajendranMusic Therapy's Impact in Palliative Care| IAPCON2024| Dr. Tara Rajendran
Music Therapy's Impact in Palliative Care| IAPCON2024| Dr. Tara Rajendran
 
VarSeq 2.6.0: Advancing Pharmacogenomics and Genomic Analysis
VarSeq 2.6.0: Advancing Pharmacogenomics and Genomic AnalysisVarSeq 2.6.0: Advancing Pharmacogenomics and Genomic Analysis
VarSeq 2.6.0: Advancing Pharmacogenomics and Genomic Analysis
 
Giftedness: Understanding Everyday Neurobiology for Self-Knowledge
Giftedness: Understanding Everyday Neurobiology for Self-KnowledgeGiftedness: Understanding Everyday Neurobiology for Self-Knowledge
Giftedness: Understanding Everyday Neurobiology for Self-Knowledge
 
Big Data Analysis Suggests COVID Vaccination Increases Excess Mortality Of ...
Big Data Analysis Suggests COVID  Vaccination Increases Excess Mortality Of  ...Big Data Analysis Suggests COVID  Vaccination Increases Excess Mortality Of  ...
Big Data Analysis Suggests COVID Vaccination Increases Excess Mortality Of ...
 
low cost antibiotic cement nail for infected non union.pptx
low cost antibiotic cement nail for infected non union.pptxlow cost antibiotic cement nail for infected non union.pptx
low cost antibiotic cement nail for infected non union.pptx
 
Presentation on General Anesthetics pdf.
Presentation on General Anesthetics pdf.Presentation on General Anesthetics pdf.
Presentation on General Anesthetics pdf.
 
Lippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdf
Lippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdfLippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdf
Lippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdf
 
PERFECT BUT PAINFUL TKR -ROLE OF SYNOVECTOMY.pptx
PERFECT BUT PAINFUL TKR -ROLE OF SYNOVECTOMY.pptxPERFECT BUT PAINFUL TKR -ROLE OF SYNOVECTOMY.pptx
PERFECT BUT PAINFUL TKR -ROLE OF SYNOVECTOMY.pptx
 
Measurement of Radiation and Dosimetric Procedure.pptx
Measurement of Radiation and Dosimetric Procedure.pptxMeasurement of Radiation and Dosimetric Procedure.pptx
Measurement of Radiation and Dosimetric Procedure.pptx
 
PNEUMOTHORAX AND ITS MANAGEMENTS.pdf
PNEUMOTHORAX   AND  ITS  MANAGEMENTS.pdfPNEUMOTHORAX   AND  ITS  MANAGEMENTS.pdf
PNEUMOTHORAX AND ITS MANAGEMENTS.pdf
 
world health day presentation ppt download
world health day presentation ppt downloadworld health day presentation ppt download
world health day presentation ppt download
 
ANTI-DIABETICS DRUGS - PTEROCARPUS AND GYMNEMA
ANTI-DIABETICS DRUGS - PTEROCARPUS AND GYMNEMAANTI-DIABETICS DRUGS - PTEROCARPUS AND GYMNEMA
ANTI-DIABETICS DRUGS - PTEROCARPUS AND GYMNEMA
 
SYNDESMOTIC INJURY- ANATOMICAL REPAIR.pptx
SYNDESMOTIC INJURY- ANATOMICAL REPAIR.pptxSYNDESMOTIC INJURY- ANATOMICAL REPAIR.pptx
SYNDESMOTIC INJURY- ANATOMICAL REPAIR.pptx
 
MedDRA-A-Comprehensive-Guide-to-Standardized-Medical-Terminology.pdf
MedDRA-A-Comprehensive-Guide-to-Standardized-Medical-Terminology.pdfMedDRA-A-Comprehensive-Guide-to-Standardized-Medical-Terminology.pdf
MedDRA-A-Comprehensive-Guide-to-Standardized-Medical-Terminology.pdf
 
Informed Consent Empowering Healthcare Decision-Making.pptx
Informed Consent Empowering Healthcare Decision-Making.pptxInformed Consent Empowering Healthcare Decision-Making.pptx
Informed Consent Empowering Healthcare Decision-Making.pptx
 
CEHPALOSPORINS.pptx By Harshvardhan Dev Bhoomi Uttarakhand University
CEHPALOSPORINS.pptx By Harshvardhan Dev Bhoomi Uttarakhand UniversityCEHPALOSPORINS.pptx By Harshvardhan Dev Bhoomi Uttarakhand University
CEHPALOSPORINS.pptx By Harshvardhan Dev Bhoomi Uttarakhand University
 
Apiculture Chapter 1. Introduction 2.ppt
Apiculture Chapter 1. Introduction 2.pptApiculture Chapter 1. Introduction 2.ppt
Apiculture Chapter 1. Introduction 2.ppt
 

Ats nih guia 2005

  • 1. American Thoracic Society Documents Guidelines for the Management of Adults with Hospital-acquired, Ventilator-associated, and Healthcare-associated Pneumonia This official statement of the American Thoracic Society and the Infectious Diseases Society of America was approved by the ATS Board of Directors, December 2004 and the IDSA Guideline Committee, October 2004 CONTENTS have appeared, mandating a new evidence-based guideline for hospital-acquired pneumonia (HAP), including healthcare-asso- Executive Summary ciated pneumonia (HCAP) and ventilator-associated pneumonia Introduction (VAP). This document, prepared by a joint committee of the Methodology Used to Prepare the Guideline Epidemiology ATS and Infectious Diseases Society of America (IDSA), fo- Incidence cuses on the epidemiology and pathogenesis of bacterial pneu- Etiology monia in adults, and emphasizes modifiable risk factors for infec- Major Epidemiologic Points tion. In addition, the microbiology of HAP is reviewed, with an Pathogenesis emphasis on multidrug-resistant (MDR) bacterial pathogens, Major Points for Pathogenesis such as Pseudomonas aeruginosa, Acinetobacter species, and Modifiable Risk Factors methicillin-resistant Staphylococcus aureus. Controversies about Intubation and Mechanical Ventilation diagnosis are discussed, emphasizing initial examination of lower Aspiration, Body Position, and Enteral Feeding respiratory tract samples for bacteria, and the rationale for both Modulation of Colonization: Oral Antiseptics and Antibiotics clinical and bacteriologic approaches, using either “semiquanti- Stress Bleeding Prophylaxis, Transfusion, and Glucose Control tative” or “quantitative” microbiologic methods that help direct Major Points and Recommendations for Modifiable selection of appropriate antibiotic therapy. We also provide rec- Risk Factors ommendations for additional diagnostic and therapeutic evalua- Diagnostic Testing tions in patients with nonresolving pneumonia. This is an evi- Major Points and Recommendations for Diagnosis dence-based document that emphasizes the issues of VAP, Diagnostic Strategies and Approaches because there are far fewer data available about HAP in nonintu- Clinical Strategy bated patients and about HCAP. By extrapolation, patients who Bacteriologic Strategy are not intubated and mechanically ventilated should be man- Recommended Diagnostic Strategy aged like patients with VAP, using the same approach to identify Major Points and Recommendations for Comparing risk factors for infection with specific pathogens. Diagnostic Strategies The major goals of this evidence-based guideline for the man- Antibiotic Treatment of Hospital-acquired Pneumonia General Approach agement of HAP, VAP, and HCAP emphasize early, appropriate Initial Empiric Antibiotic Therapy antibiotics in adequate doses, while avoiding excessive antibiot- Appropriate Antibiotic Selection and Adequate Dosing ics by de-escalation of initial antibiotic therapy, based on micro- Local Instillation and Aerosolized Antibiotics biologic cultures and the clinical response of the patient, and Combination versus Monotherapy shortening the duration of therapy to the minimum effective Duration of Therapy period. The guideline recognizes the variability of bacteriology Major Points and Recommendations for Optimal from one hospital to another and from one time period to an- Antibiotic Therapy other and recommends taking local microbiologic data into ac- Specific Antibiotic Regimens count when adapting treatment recommendations to any specific Antibiotic Heterogeneity and Antibiotic Cycling clinical setting. The initial, empiric antibiotic therapy algorithm Response to Therapy includes two groups of patients: one with no need for broad- Modification of Empiric Antibiotic Regimens spectrum therapy, because these patients have early-onset HAP, Defining the Normal Pattern of Resolution VAP, or HCAP and no risk factors for MDR pathogens, and a Reasons for Deterioration or Nonresolution second group that requires broad-spectrum therapy, because of Evaluation of the Nonresponding Patient late-onset pneumonia or other risk factors for infection with Major Points and Recommendations for Assessing MDR pathogens. Response to Therapy Some of the key recommendations and principles in this new, Suggested Performance Indicators evidence-based guideline are as follows: EXECUTIVE SUMMARY • HCAP is included in the spectrum of HAP and VAP, and patients with HCAP need therapy for MDR pathogens. Since the initial 1996 American Thoracic Society (ATS) guide- • A lower respiratory tract culture needs to be collected line on nosocomial pneumonia, a number of new developments from all patients before antibiotic therapy, but collection of cultures should not delay the initiation of therapy in critically ill patients. • Either “semiquantitative” or “quantitative” culture data Am J Respir Crit Care Med Vol 171. pp 388–416, 2005 DOI: 10.1164/rccm.200405-644ST can be used for the management of patients with HAP. Internet address: www.atsjournals.org • Lower respiratory tract cultures can be obtained broncho-
  • 2. American Thoracic Society Documents 389 scopically or nonbronchoscopically, and can be cultured nonintubated patients may be less accurate, most of our informa- quantitatively or semiquantitatively. tion is derived from those with VAP, but by extrapolation can • Quantitative cultures increase specificity of the diagnosis be applied to all patients with HAP, emphasizing risk factors of HAP without deleterious consequences, and the specific for infection with specific pathogens. quantitative technique should be chosen on the basis of This guideline is an update of the 1996 consensus statement local expertise and experience. on HAP published by the American Thoracic Society (5). The • Negative lower respiratory tract cultures can be used to principles and recommendations are largely based on data pre- stop antibiotic therapy in a patient who has had cultures sented by committee members at a conference jointly sponsored obtained in the absence of an antibiotic change in the past by the American Thoracic Society (ATS) and the Infectious 72 hours. Disease Society of America (IDSA). The committee was com- • Early, appropriate, broad-spectrum, antibiotic therapy posed of pulmonary, critical care, and infectious disease special- should be prescribed with adequate doses to optimize anti- ists with clinical and research interests in HAP, VAP, and HCAP. microbial efficacy. All major aspects of the epidemiology, pathogenesis, bacteriol- • An empiric therapy regimen should include agents that are ogy, diagnosis, and antimicrobial treatment were reviewed by from a different antibiotic class than the patient has re- this group. Therapy recommendations are focused on antibiotic cently received. choice and patient stratification; adjunctive, nonantibiotic ther- • Combination therapy for a specific pathogen should be apy of pneumonia is not discussed, but information on this topic used judiciously in the therapy of HAP, and consideration is available elsewhere (7). Recommendations to reduce the risk should be given to short-duration (5 days) aminoglycoside of pneumonia are limited in this document to key, modifiable therapy, when used in combination with a -lactam to treat risk factors related to the pathogenesis of pneumonia to avoid P. aeruginosa pneumonia. redundancy with the more comprehensive Guidelines for Pre- • Linezolid is an alternative to vancomycin, and uncon- venting Health-care–associated Pneumonia, prepared by the Cen- firmed, preliminary data suggest it may have an advantage ters for Disease Control and Prevention (CDC) and the Hospital for proven VAP due to methicillin-resistant S. aureus. Infection Control Practices Advisory Committee (HICPAC) (3). • Colistin should be considered as therapy for patients with The goal of our document is to provide a framework for the VAP due to a carbapenem-resistant Acinetobacter species. initial evaluation and management of the immunocompetent, • Aerosolized antibiotics may have value as adjunctive ther- adult patient with bacterial causes of HAP, VAP, or HCAP, apy in patients with VAP due to some MDR pathogens. and excludes patients who are known to be immunosuppressed • De-escalation of antibiotics should be considered once data by human immunodeficiency virus (HIV) infection, hematologic are available on the results of lower respiratory tract cul- malignancy, chemotherapy-induced neutropenia, organ trans- tures and the patient’s clinical response. plantation, and so on. At the outset, the ATS/IDSA Guideline • A shorter duration of antibiotic therapy (7 to 8 days) is Committee members recognized that currently, many patients recommended for patients with uncomplicated HAP, VAP, with HAP, VAP, or HCAP are infected with multidrug-resistant or HCAP who have received initially appropriate therapy (MDR) bacterial pathogens that threaten the adequacy of initial, and have had a good clinical response, with no evidence empiric antibiotic therapy. At the same time, the committee of infection with nonfermenting gram-negative bacilli. members recognized that many studies have shown that exces- sive antibiotic use is a major factor contributing to increased INTRODUCTION frequency of antibiotic-resistant pathogens. Four major princi- ples underlie the management of HAP, VAP, and HCAP: As with all guidelines, these new recommendations, although • Avoid untreated or inadequately treated HAP, VAP, or evidence graded, need validation for their impact on the outcome HCAP, because the failure to initiate prompt appropriate of patients with HAP, VAP, and HCAP. In addition, this guide- and adequate therapy has been a consistent factor associ- line points out areas of incomplete knowledge, which can be ated with increased mortality. used to set an agenda for future research. • Recognize the variability of bacteriology from one hospital Hospital-acquired pneumonia (HAP), ventilator-associated to another, specific sites within the hospital, and from one pneumonia (VAP), and healthcare-associated pneumonia (HCAP) time period to another, and use this information to alter the remain important causes of morbidity and mortality despite ad- selection of an appropriate antibiotic treatment regimen for vances in antimicrobial therapy, better supportive care modal- any specific clinical setting. ities, and the use of a wide-range of preventive measures (1–5). • Avoid the overuse of antibiotics by focusing on accurate HAP is defined as pneumonia that occurs 48 hours or more after diagnosis, tailoring therapy to the results of lower respira- admission, which was not incubating at the time of admission tory tract cultures, and shortening duration of therapy to (1, 3). HAP may be managed in a hospital ward or in the intensive the minimal effective period. care unit (ICU) when the illness is more severe. VAP refers to • Apply prevention strategies aimed at modifiable risk fac- pneumonia that arises more than 48–72 hours after endotracheal tors. intubation (2, 3). Although not included in this definition, some patients may require intubation after developing severe HAP The ATS/IDSA guideline was established for use in the initial and should be managed similar to patients with VAP. HCAP management of patients in whom HAP, VAP, or HCAP is sus- includes any patient who was hospitalized in an acute care hospi- pected. Therapeutic algorithms are presented that are based on tal for two or more days within 90 days of the infection; resided the expected antimicrobial susceptibility of the common bacte- in a nursing home or long-term care facility; received recent rial pathogens, and with therapeutic regimens that can commonly intravenous antibiotic therapy, chemotherapy, or wound care lead to initial adequate antibiotic management. within the past 30 days of the current infection; or attended a This guideline is not meant to replace clinical judgment, but hospital or hemodialysis clinic (3, 4, 6). Although this document rather to give an organizational framework to patient manage- focuses more on HAP and VAP, most of the principles overlap ment. Individual clinical situations can be highly complex and with HCAP. Because most of the current data have been col- the judgment of a knowledgeable physician with all available lected from patients with VAP, and microbiologic data from information about a specific patient is essential for optimal clini-
  • 3. 390 AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE VOL 171 2005 TABLE 1. EVIDENCE-BASED GRADING SYSTEM USED TO RANK RECOMMENDATIONS Evidence Level Definition Level I (high) Evidence comes from well conducted, randomized controlled trials Level II (moderate) Evidence comes from well designed, controlled trials without randomization (including cohort, patient series, and case-control studies). Level II studies also include any large case series in which systematic analysis of disease patterns and/or microbial etiology was conducted, as well as reports of new therapies that were not collected in a randomized fashion Level III (low) Evidence comes from case studies and expert opinion. In some instances therapy recommendations come from antibiotic susceptibility data without clinical observations Adapted from American Thoracic Society guidelines for the management of adults with community-acquired pneumonia (8). cal management. As more laboratory and clinical data become more than $40,000 per patient (9–11). Although HAP is not a available, therapy often needs to be streamlined or altered. Fi- reportable illness, available data suggest that it occurs at a rate nally, our committee realizes that these guidelines will change of between 5 and 10 cases per 1,000 hospital admissions, with the over time, and that our current recommendations will need to incidence increasing by as much as 6- to 20-fold in mechanically be updated as new information becomes available. ventilated patients (9, 12, 13). It is often difficult to define the exact incidence of VAP, because there may be an overlap with METHODOLOGY USED TO PREPARE THE GUIDELINE other lower respiratory tract infections, such as infectious tra- cheobronchitis in mechanically ventilated patients. The exact The ATS/IDSA Guideline Committee originally met as a group, incidence varies widely depending on the case definition of pneu- with each individual being assigned a topic for review and pre- monia and the population being evaluated (14). For example, sentation to the entire group. Each topic in the guideline was the incidence of VAP may be up to two times higher in patients reviewed by more than one committee member, and after pre- diagnosed by qualitative or semiquantitative sputum cultures sentation of information, the committee discussed the data and compared with quantitative cultures of lower respiratory tract formulated recommendations. Two committee members pre- secretions (9, 15). pared each section of the document, and a draft document incor- HAP accounts for up to 25% of all ICU infections and for porating all sections was written and distributed to the committee more than 50% of the antibiotics prescribed (16). VAP occurs for review and suggestions. The guideline was then revised and in 9–27% of all intubated patients (9, 11). In ICU patients, nearly circulated to the committee for final comment. This final state- 90% of episodes of HAP occur during mechanical ventilation. ment represents the results of this process and the opinions of In mechanically ventilated patients, the incidence increases with the majority of committee members. duration of ventilation. The risk of VAP is highest early in the The grading system for our evidence-based recommendations was previously used for the updated ATS Community-acquired course of hospital stay, and is estimated to be 3%/day during Pneumonia (CAP) statement, and the definitions of high-level the first 5 days of ventilation, 2%/day during Days 5 to 10 of (Level I), moderate-level (Level II), and low-level (Level III) ventilation, and 1%/day after this (17). Because most mechanical evidence are summarized in Table 1 (8). All available and rele- ventilation is short term, approximately half of all episodes of vant, peer-reviewed studies published until July 2004 were con- VAP occur within the first 4 days of mechanical ventilation. The sidered. Much of the literature is observational, and only a few intubation process itself contributes to the risk of infection, and therapy trials have been conducted in a prospective, randomized when patients with acute respiratory failure are managed with fashion. noninvasive ventilation, nosocomial pneumonia is less common Nearly all of the evidence-based data on risk factors for bacte- (18–20). rial HAP have been collected from observational studies, which Time of onset of pneumonia is an important epidemiologic cannot distinguish causation from noncausal association. Most variable and risk factor for specific pathogens and outcomes in of the studies have focused on patients with VAP, but the com- patients with HAP and VAP . Early-onset HAP and VAP, defined mittee extrapolated the relationship between risk factors and as occurring within the first 4 days of hospitalization, usually carry bacteriology to all patients with HAP, including those with a better prognosis, and are more likely to be caused by antibiotic- HCAP. Ultimate proof of causality, and ideally the best strate- sensitive bacteria. Late-onset HAP and VAP (5 days or more) are gies for prevention of HAP, VAP, and HCAP, should be based more likely to be caused by multidrug-resistant (MDR) pathogens, on prospective, randomized trials. However, recommendations and are associated with increased patient mortality and morbidity. are further compromised when such trials provide conflicting However, patients with early-onset HAP who have received prior results, often as a result of differences in definitions, study design, antibiotics or who have had prior hospitalization within the past and the specific population studied. In addition, evidence-based 90 days are at greater risk for colonization and infection with recommendations are dynamic and may change as new therapies MDR pathogens and should be treated similar to patients with become available and as new interventions alter the natural late-onset HAP or VAP (Table 2) (21). history of the disease. The crude mortality rate for HAP may be as high as 30 to 70%, but many of these critically ill patients with HAP die of EPIDEMIOLOGY their underlying disease rather than pneumonia. The mortality related to the HAP or “attributable mortality” has been estimated Incidence to be between 33 and 50% in several case-matching studies of HAP is usually caused by bacteria, is currently the second most VAP. Increased mortality rates were associated with bacteremia, common nosocomial infection in the United States, and is associ- especially with Pseudomonas aeruginosa or Acinetobacter species, ated with high mortality and morbidity (3). The presence of medical rather than surgical illness, and treatment with ineffective HAP increases hospital stay by an average of 7 to 9 days per antibiotic therapy (22, 23). Other studies using similar methodol- patient and has been reported to produce an excess cost of ogy failed to identify any attributable mortality due to VAP,
  • 4. American Thoracic Society Documents 391 TABLE 2. RISK FACTORS FOR MULTIDRUG-RESISTANT hospital-wide surveillance of nosocomial infections at the Uni- PATHOGENS CAUSING HOSPITAL-ACQUIRED PNEUMONIA, versity of North Carolina have described the pathogens causing HEALTHCARE-ASSOCIATED PNEUMONIA, AND VENTILATOR-ASSOCIATED PNEUMONIA both VAP and nosocomial pneumonia in nonintubated patients during the years 2000–2003 (D. Weber and W. Rutala, unpub- • Antimicrobial therapy in preceding 90 d lished data). Pathogens were isolated from 92% of mechanically • Current hospitalization of 5 d or more ventilated patients with infection, and from 77% of nonventi- • High frequency of antibiotic resistance in the community or lated patients with infection. In general, the bacteriology of in the specific hospital unit nonventilated patients was similar to that of ventilated patients, • Presence of risk factors for HCAP: Hospitalization for 2 d or more in the preceding 90 d including infection with MDR pathogens such as methicillin- Residence in a nursing home or extended care facility resistant S. aureus (MRSA), P. aeruginosa, Acinetobacter spe- Home infusion therapy (including antibiotics) cies, and K. pneumoniae. In fact, some organisms (MRSA and Chronic dialysis within 30 d K. pneumoniae) were more common in nonventilated than venti- Home wound care lated patients, whereas certain resistant gram-negative bacilli Family member with multidrug-resistant pathogen were more common in patients with VAP (P. aeruginosa, Steno- • Immunosuppressive disease and/or therapy trophomonas maltophilia, and Acinetobacter species). However, the latter group of more resistant gram-negative bacilli occurred with sufficient frequency in nonventilated patients that they should be considered when designing an empiric therapy regi- suggesting a variable outcome impact, according to the severity men. Studies in nonventilated patients have not determined of underlying medical conditions (24–26). whether this population has risk factors for MDR pathogens that differ from the risk factors present in ventilated patients. Etiology Emergence of selected multidrug-resistant bacteria. Rates of HAP, VAP, and HCAP may be caused by a wide spectrum of HAP due to MDR pathogens have increased dramatically in bacterial pathogens, may be polymicrobial, and are rarely due hospitalized patients, especially in intensive care and transplant to viral or fungal pathogens in immunocompetent hosts (9, 12, patients (16). Risk factors for colonization and infection with 27–32). Common pathogens include aerobic gram-negative ba- MDR pathogens are summarized in Table 2 (21, 43). Data on cilli, such as P. aeruginosa, Escherichia coli, Klebsiella pneumo- mechanisms of antibiotic resistance for specific bacterial patho- niae, and Acinetobacter species. Infections due to gram-positive gens have provided new insight into the adaptability of these cocci, such as Staphylococcus aureus, particularly methicillin- pathogens. resistant S. aureus (MRSA), have been rapidly emerging in the Pseudomonas aeruginosa. P. aeruginosa, the most common United States (16, 33). Pneumonia due to S. aureus is more MDR gram-negative bacterial pathogen causing HAP/VAP, has common in patients with diabetes mellitus, head trauma, and intrinsic resistance to many antimicrobial agents (44–46). This those hospitalized in ICUs (34). resistance is mediated by multiple efflux pumps, which may Significant growth of oropharyngeal commensals (viridans be expressed all the time or may be upregulated by mutation group streptococci, coagulase-negative staphylococci, Neisseria (47). Resistance to piperacillin, ceftazidime, cefepime, other oxy- species, and Corynebacterium species) from distal bronchial imino- -lactams, imipenem and meropenem, aminoglycosides, specimens is difficult to interpret, but these organisms can pro- or fluoroquinolones is increasing in the United States (16). De- duce infection in immunocompromised hosts and some immuno- creased expression of an outer membrane porin channel (OprD) competent patients (35). Rates of polymicrobial infection vary can cause resistance to both imipenem and meropenem or, de- widely, but appear to be increasing, and are especially high in pending on the alteration in OprD, specific resistance to imi- patients with adult respiratory distress syndrome (ARDS) (9, 12, penem, but not other -lactams (48). At present, some MDR 36–38). isolates of P. aeruginosa are susceptible only to polymyxin B. The frequency of specific MDR pathogens causing HAP may Although currently uncommon in the United States, there vary by hospital, patient population, exposure to antibiotics, type is concern about the acquisition of plasmid-mediated metallo- of ICU patient, and changes over time, emphasizing the need -lactamases active against carbapenems and antipseudomonal for timely, local surveillance data (3, 8, 10, 21, 39–41). HAP penicillins and cephalosporins (49). The first such enzyme, IMP-1, involving anaerobic organisms may follow aspiration in nonintu- appeared in Japan in 1991 and spread among P. aeruginosa and bated patients, but is rare in patients with VAP (28, 42). Serratia marcescens, and then to other gram-negative pathogens. Elderly patients represent a diverse population of patients Resistant strains of P. aeruginosa with IMP-type enzymes and with pneumonia, particularly HCAP. Elderly residents of long- other carbapenemases have been reported from additional coun- term care facilities have been found to have a spectrum of patho- tries in the Far East, Europe, Canada, Brazil, and recently in gens that more closely resemble late-onset HAP and VAP (30, 31). the United States (50). In a study of 104 patients age 75 years and older with severe Klebsiella, Enterobacter, and Serratia species. Klebsiella pneumonia, El-Solh found S. aureus (29%), enteric gram-nega- species are intrinsically resistant to ampicillin and other amino- tive rods (15%), Streptococcus pneumoniae (9%), and Pseudo- penicillins and can acquire resistance to cephalosporins and az- monas species (4%) as the most frequent causes of nursing home- treonam by the production of extended-spectrum -lactamases acquired pneumonia (30). In another study of 52 long-term care (ESBLs) (51). Plasmids encoding ESBLs often carry resistance residents aged 70 years and above who failed to respond to to aminoglycosides and other drugs, but ESBL-producing strains 72 hours of antibiotics, MRSA (33%), gram-negative enterics remain susceptible to carbapenems. Five to 10% of oxyimino- (24%), and Pseudomonas species (14%) were the most frequent -lactam-resistant K. pneumoniae do not produce an ESBL, but pathogens isolated by invasive diagnostics (bronchoscopy) (31). rather a plasmid-mediated AmpC-type enzyme (52). Such strains In the latter study, 72% had at least two comorbidities whereas usually are carbapenem susceptible, but may become resistant 23% had three or more. by loss of an outer membrane porin (53). Enterobacter species Few data are available about the bacteriology and risk factors have a chromosomal AmpC -lactamase that is inducible and for specific pathogens in patients with HAP and HCAP, and also easily expressed at a high level by mutation with consequent who are not mechanically ventilated. Data from comprehensive resistance to oxyimino- -lactams and -methoxy- -lactams,
  • 5. 392 AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE VOL 171 2005 such as cefoxitin and cefotetan, but continued susceptibility to tection is based on the widespread use of Legionella urinary carbapenems. Citrobacter and Serratia species have the same antigen, rather than culture for Legionella, disease due to sero- inducible AmpC -lactamase and the same potential for resis- groups other than serogroup 1 may be underdiagnosed. Detailed tance development. Although the AmpC enzyme of E. coli is strategies for prevention of Legionella infections and eradication not inducible, it can occasionally be hyperexpressed. Plasmid- procedures for Legionella species in cooling towers and the hos- mediated resistance, such as ESBL production, is a more common pital water supply are outlined in the CDC/HICPAC Guidelines mechanism for -lactam resistance in nosocomial isolates, and is for Preventing Health-care–associated Pneumonia (3). increasingly recognized not only in isolates of K. pneumoniae and Fungal pathogens. Nosocomial pneumonia due to fungi, such E. coli, but also Enterobacter species (54). as Candida species and Aspergillus fumigatus, may occur in organ Acinetobacter species, Stenotrophomonas maltophilia, transplant or immunocompromised, neutropenic patients, but is and Burkholderia cepacia. Although generally less virulent uncommon in immunocompetent patients (70–75). Nosocomial than P. aeruginosa, Acinetobacter species have nonetheless be- Aspergillus species infections suggest possible airborne transmis- come problem pathogens because of increasing resistance to sion by spores, and may be associated with an environmental commonly used antimicrobial agents (55). More than 85% of source such as contaminated air ducts or hospital construction. isolates are susceptible to carbapenems, but resistance is increas- By comparison, isolation of Candida albicans and other Candida ing due either to IMP-type metalloenzymes or carbapenemases species from endotracheal aspirates is common, but usually rep- of the OXA type (49). An alternative for therapy is sulbactam, resents colonization of the airways, rather than pneumonia in usually employed as an enzyme inhibitor, but with direct antibac- immunocompetent patients, and rarely requires treatment with terial activity against Acinetobacter species (56). S. maltophilia, antifungal therapy (70). which shares with B. cepacia a tendency to colonize the respira- Viral pathogens. The incidence of HAP and VAP due to tory tract rather than cause invasive disease, is uniformly resistant viruses is also low in immunocompetent hosts. Outbreaks of to carbapenems, because of a ubiquitous metallo- -lactamase. HAP, VAP, and HCAP due to viruses, such as influenza, parainflu- S. maltophilia and B. cepacia are most likely to be susceptible enza, adenovirus, measles, and respiratory syncytial virus have to trimethoprim–sulfamethoxazole, ticarcillin–clavulanate, or a fluoroquinolone (55). B. cepacia is also usually susceptible to been reported and are usually seasonal. Influenza, pararinflu- ceftazidime and carbapenems. enza, adenovirus, and respiratory syncytial virus account for 70% Methicillin-resistant Staphylococcus aureus. In the of the nosocomial viral cases of HAP, VAP, and HCAP (3, 76–78). United States, more than 50% of the ICU infections caused by Respiratory syncytial virus outbreaks of bronchiolitis and pneu- S. aureus are with methicillin-resistant organisms (16, 33). MRSA monia are more common in children’s wards and rare in immuno- produces a penicillin-binding protein with reduced affinity for competent adults (76). Diagnosis of these viral infections is often -lactam antibiotics that is encoded by the mecA gene, which made by rapid antigen testing and viral culture or serologic assays. is carried by one of a family of four mobile genetic elements Influenza A is probably the most common viral cause of (57, 58). Strains with mecA are resistant to all commercially HAP and HCAP in adult patients. Pneumonia in patients with available -lactams and many other antistaphylococcal drugs, influenza A or B may be due to the virus, to secondary bacterial with considerable country-to-country variability (59, 60). Al- infection, or both. Influenza is transmitted directly from person though vancomycin-intermediate S. aureus, with a minimal inhib- to person when infected persons sneeze, cough, or talk or indi- itory concentration (MIC) of 8–16 g/ml, and high-level vanco- rectly by person–fomite–person transmission (3, 79–81). The use mycin-resistant S. aureus, with an MIC of 32–1,024 g/ml or of influenza vaccine along with prophylaxis and early antiviral more, have been isolated from clinical specimens, none to date therapy among at-risk healthcare workers and high-risk patients have caused respiratory tract infection and all have been sensi- with amantadine, rimantadine, or one of the neuraminidase in- tive to linezolid (61, 62). Unfortunately, linezolid resistance has hibitors (oseltamivir and zanamivir) dramatically reduces the emerged in S. aureus, but is currently rare (63). spread of influenza within hospital and healthcare facilities (3, Streptococcus pneumoniae and Haemophilus influenzae. 81–90). Amantadine and rimantadine are effective only for treat- S. pneumoniae and H. influenzae cause early-onset HAP in pa- ment and prophylaxis against influenza A strains, whereas neura- tients without other risk factors, are uncommon in late-onset minidase inhibitors are effective against both influenza A and B. infection, and frequently are community acquired. At present, many strains of S. pneumoniae are penicillin resistant due to Major Epidemiologic Points altered penicillin-binding proteins. Some such strains are resis- tant as well to cephalosporins, macrolides, tetracyclines, and 1. Many patients with HAP, VAP, and HCAP are at in- clindamycin (64). Despite low and moderate levels of resistance creased risk for colonization and infection with MDR to penicillins and cephalosporins in vitro, clinical outcomes in pathogens (Level II) (2–4, 6, 9, 11–13, 21, 22). patients with pneumococcal pneumonia and bacteremia treated 2. It is often difficult to define the exact incidence of HAP with these agents have been satisfactory (65). All of the multi- and VAP, because there may be an overlap with other drug-resistant strains in the United States are currently sensitive lower respiratory tract infections, such as tracheobronchi- to vancomycin or linezolid, and most remain sensitive to broad- tis, especially in mechanically ventilated patients (Level spectrum quinolones. Resistance of H. influenzae to antibiotics III) (9, 12–14). other than penicillin and ampicillin is sufficiently rare so as not 3. The exact incidence of HAP is usually between 5 and 15 to present a problem in therapy. cases per 1,000 hospital admissions depending on the case Legionella pneumophila. The evidence for Legionella pneu- definition and study population; the exact incidence of mophila as a cause of HAP is variable, but is increased in immu- VAP is 6- to 20-fold greater than in nonventilated patients nocompromised patients, such as organ transplant recipients or (Level II) (9, 12–14). patients with HIV disease, as well as those with diabetes mellitus, 4. HAP and VAP are a frequent cause of nosocomial infec- underlying lung disease, or end-stage renal disease (29, 66–69). tion that is associated with a higher crude mortality than HAP due to Legionella species is more common in hospitals other hospital-acquired infections (Level II) (3, 9, 16). where the organism is present in the hospital water supply or 5. Patients with late-onset HAP and VAP are more likely where there is ongoing construction (3, 29, 66–69). Because de- to be infected with MDR pathogens and have higher
  • 6. American Thoracic Society Documents 393 crude mortality than patients with early-onset disease; mon (107, 108). Hematogenous spread from infected intravascu- patients with early-onset HAP who have recently re- lar catheters or bacterial translocation from the gastrointestinal ceived antibiotics or had an admission to a healthcare tract lumen are quite rare. facility are at risk for colonization and infection with MDR pathogens (Level II) (3, 9, 21, 22). Major Points for Pathogenesis 6. An increase in crude and attributable mortality for HAP 1. Sources of pathogens for HAP include healthcare devices, and VAP is associated with the presence of MDR patho- the environment (air, water, equipment, and fomites), and gens (Level II) (3, 5, 9–13, 21–23). commonly the transfer of microorganisms between the 7. Bacteria cause most cases of HAP, VAP, and HCAP and patient and staff or other patients (Level II) (3, 9, 12, 13, many infections are polymicrobial; rates are especially 27, 66, 92, 93). high in patients with ARDS (Level I) (2, 4, 6, 9, 12, 2. A number of host- and treatment-related colonization fac- 36–38). tors, such as the severity of the patient’s underlying disease, 8. HAP, VAP, and HCAP are commonly caused by aerobic prior surgery, exposure to antibiotics, other medications, gram-negative bacilli, such as P. aeruginosa, K. pneumo- and exposure to invasive respiratory devices and equip- niae, and Acinetobacter species, or by gram-positive cocci, ment, are important in the pathogenesis of HAP and VAP such as S. aureus, much of which is MRSA; anaerobes (Level II) (40, 93, 94). are an uncommon cause of VAP (Level II) (9, 12, 28, 3. Aspiration of oropharyngeal pathogens, or leakage of se- 36–40, 42, 91). cretions containing bacteria around the endotracheal tube 9. Rates of L. pneumophila vary considerably between hos- cuff, are the primary routes of bacterial entry into the pitals and disease occurs more commonly with serogroup lower respiratory tract (Level II) (95–98). 1 when the water supply is colonized or there is ongoing 4. Inhalation or direct inoculation of pathogens into the lower construction (Level II) (29, 66–69). airway, hematogenous spread from infected intravenous 10. Nosocomial virus and fungal infections are uncommon catheters, and bacterial translocation from the gastrointes- causes of HAP and VAP in immunocompetent patients. Outbreaks of influenza have occurred sporadically and tinal tract lumen are uncommon pathogenic mechanisms risk of infection can be substantially reduced with wide- (Level II) (107, 108). spread effective infection control, vaccination, and use 5. Infected biofilm in the endotracheal tube, with subsequent of antiinfluenza agents (Level I) (3, 70–75, 79–90). embolization to distal airways, may be important in the 11. The prevalence of MDR pathogens varies by patient pop- pathogenesis of VAP (Level III) (105, 106). ulation, hospital, and type of ICU, which underscores the 6. The stomach and sinuses may be potential reservoirs of need for local surveillance data (Level II) (3, 9, 41). nosocomial pathogens that contribute to bacterial coloni- 12. MDR pathogens are more commonly isolated from pa- zation of the oropharynx, but their contribution is contro- tients with severe, chronic underlying disease, those with versial, may vary by the population at risk, and may be risk factors for HCAP, and patients with late-onset HAP decreasing with the changing natural history and manage- or VAP (Level II) (9, 21, 22, 30, 31, 39, 40, 91). ment of HAP (Level II) (94, 99–104, 109). PATHOGENESIS MODIFIABLE RISK FACTORS For HAP to occur, the delicate balance between host defenses Risk factors for the development of HAP can be differentiated and microbial propensity for colonization and invasion must shift into modifiable and nonmodifiable conditions. Risk factors may in favor of the ability of the pathogens to persist and invade the also be patient related (male sex, preexisting pulmonary disease, lower respiratory tract. Sources of infection for HAP include or multiple organ system failure) or treatment related (intuba- healthcare devices or the environment (air, water, equipment, tion or enteral feeding). Modifiable risk factors for HAP are and fomites) and can occur with transfer of microorganisms obvious targets for improved management and prophylaxis in between staff and patients (3, 9, 12, 13, 27, 66, 92, 93). A number several studies and in the comprehensive Guidelines for Pre- of host- and treatment-related colonization factors, such as the venting Health-care–associated Pneumonia, published by the severity of the patient’s underlying disease, prior surgery, expo- Centers for Disease Control (3, 93, 110). Effective strategies sure to antibiotics, other medications, and exposure to invasive include strict infection control, alcohol-based hand disinfection, respiratory devices and equipment, are important in the patho- use of microbiologic surveillance with timely availability of data genesis of HAP and VAP (40, 93, 94) on local MDR pathogens, monitoring and early removal of inva- HAP requires the entry of microbial pathogens into the lower sive devices, and programs to reduce or alter antibiotic-prescrib- respiratory tract, followed by colonization, which can then over- ing practices (3, 92, 93, 100, 110–113). whelm the host’s mechanical (ciliated epithelium and mucus), Intubation and Mechanical Ventilation humoral (antibody and complement), and cellular (polymorpho- nuclear leukocytes, macrophages, and lymphocytes and their Intubation and mechanical ventilation increase the risk of HAP respective cytokines) defenses to establish infection (9, 94). 6- to 21-fold and therefore should be avoided whenever possible Aspiration of oropharyngeal pathogens or leakage of bacteria (3, 94, 110, 114). Noninvasive positive-pressure ventilation, using around the endotracheal tube cuff is the primary route of bacte- a face mask, is an attractive alternative for patients with acute rial entry into the trachea (95–98). The stomach and sinuses exacerbations of chronic obstructive pulmonary disease or acute have been suggested as potential reservoirs for certain bacteria hypoxemic respiratory failure, and for some immunosuppressed colonizing the oropharynx and trachea, but their importance patients with pulmonary infiltrates and respiratory failure (18, 20, remains controversial (99–104). Some investigators postulate 115–119). Data suggest that use of noninvasive ventilation to that colonization of the endotracheal tube with bacteria encased avoid reintubation after initial extubation may not be a good in biofilm may result in embolization into the alveoli during strategy (115). suctioning or bronchoscopy (105, 106). Inhalation of pathogens Specific strategies have been recommended to reduce the from contaminated aerosols, and direct inoculation, are less com- duration of mechanical ventilation, such as improved methods
  • 7. 394 AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE VOL 171 2005 of sedation and the use of protocols to facilitate and accelerate Modulation of Colonization: Oral Antiseptics and Antibiotics weaning (120–124). These interventions are dependent on ade- The progression from colonization to tracheobronchitis to pneu- quate ICU staffing. Reintubation should be avoided, if possible, monia is a dynamic equilibrium and the possibility to discern as it increases the risk of VAP (114). the different entities depends on the specificity of diagnostic Attention to the specific type of endotracheal tube, its mainte- tools. Oropharyngeal colonization, either present on admission nance, and the site of insertion may also be valuable. The use or acquired during ICU stay, has been identified as an indepen- of oral endotracheal and orogastric tubes, rather than nasotra- dent risk factor for the development of ICU-acquired HAP cheal and nasogastric tubes, can reduce the frequency of nosoco- caused by enteric gram-negative bacteria and P. aeruginosa mial sinusitis and possibly HAP, although causality between (101). In a randomized trial, DeRiso and coworkers demon- sinusitis and HAP has not been firmly established (109, 125). strated that the use of the oral antiseptic chlorhexidine signifi- Efforts to reduce the likelihood of aspiration of oropharyngeal cantly reduced rates of nosocomial infection in patients undergo- bacteria around the endotracheal tube cuff and into the lower ing coronary artery bypass surgery (148). respiratory tract include limiting the use of sedative and paralytic Modulation of oropharyngeal colonization, by combinations agents that depress cough and other host-protective mechanisms, of oral antibiotics, with or without systemic therapy, or by selec- and maintaining endotracheal cuff pressure at greater than 20 cm tive decontamination of the digestive tract (SDD), is also effec- H2O (98, 126). Continuous aspiration of subglottic secretions, tive in significantly reducing the frequency of HAP, although through the use of a specially designed endotracheal tube, has methodologic study quality appeared to be inversely related to significantly reduced the incidence of early-onset VAP in several the magnitude of the preventive effects (93, 149–155). studies (97, 127–130). In two prospective randomized trials SDD was associated VAP may also be related to colonization of the ventilator with higher ICU survival among patients receiving SDD (156, circuit (131). A large number of prospective, randomized trials 157). In the first study patients with a midrange APACHE II have shown that the frequency of ventilator circuit change does score on admission had a lower ICU mortality, although ICU not affect the incidence of HAP, but condensate collecting in mortality rates of all patients included did not differ significantly the ventilator circuit can become contaminated from patient (156). In the largest study performed so far, SDD administered secretions (98, 132–135). Therefore, vigilance is needed to pre- to 466 patients in one unit was associated with a relative risk vent inadvertently flushing the condensate into the lower airway for ICU mortality of 0.65 and with a relative risk of hospital or to in-line medication nebulizers when the patient turns or mortality of 0.78, when compared with 472 patients admitted in the bedrail is raised (98, 131–134, 136). Passive humidifiers or a control ward (157). In addition, infections due to antibiotic- heat–moisture exchangers decrease ventilator circuit coloniza- resistant microorganisms occurred more frequently in the control tion but have not significantly reduced the incidence of VAP ward. Importantly, levels of antibiotic-resistant pathogens were (128, 135–139). low in both wards, with complete absence of MRSA. Moreover, a small preexisting difference in outcome between two wards Aspiration, Body Position, and Enteral Feeding and the absence of a cross-over design warrant confirmation of Supine patient positioning may also facilitate aspiration, which these beneficial effects of SDD. may be decreased by a semirecumbent positioning (140–142). The preventive effects of selective decontamination of the Using radioactive labeled enteral feeding, cumulative numbers digestive tract for HAP have also been considerably lower in of endotracheal counts were higher when patients were placed ICUs with high endemic levels of antibiotic resistance. In such in the completely supine position (0 ) as compared with a semire- a setting, selective decontamination of the digestive tract may cumbent position (45 ) (140, 141). One randomized trial demon- increase the selective pressure for antibiotic-resistant micro- strated a threefold reduction in the incidence of ICU-acquired organisms (158–164). Although selective decontamination of the HAP in patients treated in the semirecumbent position com- digestive tract reduces HAP, routine prophylactic use of antibiot- pared with patients treated completely supine (143). Infection ics should be discouraged, especially in hospital settings where in patients in the supine position was strongly associated with there are high levels of antibiotic resistance. the simultaneous administration of enteral nutrition. Thus, intu- The role of systemic antibiotics in the development of HAP bated patients should be managed in a semirecumbent position, is less clear. In one study, prior administration of antibiotics had particularly during feeding. an adjusted odds ratio of 3.1 (95% confidence interval, 1.4–6.9) Enteral nutrition has been considered a risk factor for the for development of late-onset ICU-acquired HAP (165). More- development of HAP, mainly because of an increased risk of over, antibiotics clearly predispose patients to subsequent coloni- aspiration of gastric contents (3, 144). However, its alternative, zation and infection with antibiotic-resistant pathogens (21). In parenteral nutrition, is associated with higher risks for intravas- contrast, prior antibiotic exposure conferred protection (risk cular device-associated infections, complications of line inser- ratio, 0.37; 95% confidence interval, 0.27–0.51) for ICU-acquired tions, higher costs, and loss of intestinal villous architecture, HAP in another study (17). In addition, antibiotic use at the which may facilitate enteral microbial translocation. Although time of emergent intubation may prevent pneumonia within the some have advised feeding critically ill patients enterally as early first 48 hours of intubation (166). Preventive effects of intrave- as possible, a strategy of early (i.e., Day 1 of intubation and nous antibiotics were evaluated in only one randomized trial: ventilation) enteral feeding was, when compared with late ad- administration of cefuroxime for 24 hours, at the time of intuba- ministration (i.e., Day 5 of intubation), associated with a higher tion; and it reduced the incidence of early-onset, ICU-acquired risk for ICU-acquired VAP (145, 146). Seven studies have evalu- HAP in patients with closed head injury (167). However, circum- ated the risks for ICU-acquired HAP in patients randomized to stantial evidence of the efficacy of systemic antibiotics also follows either gastric or postpyloric feeding (147). Although significant from the results of metaanalyses of selective decontamination differences were not demonstrated in any individual study, post- of the digestive tract, which have suggested that the intravenous pyloric feeding was associated with a significant reduction in component of the regimens was largely responsible for improved ICU-acquired HAP in metaanalysis (relative risk, 0.76; 95% survival (149). In summary, prior administration of antibiotics for confidence interval, 0.59 to 0.99) (147). short duration may be beneficial in some patient groups, but when
  • 8. American Thoracic Society Documents 395 given for prolonged periods may well place others at risk for Major Points and Recommendations for Modifiable subsequent infection with antibiotic-resistant microorganisms. Risk Factors Stress Bleeding Prophylaxis, Transfusion, and Glucose Control General prophylaxis. Both histamine Type 2 (H2) antagonists and antacids have been 1. Effective infection control measures: staff education, com- identified as independent risk factors for ICU-acquired HAP. pliance with alcohol-based hand disinfection, and isolation Sucralfate has been used for stress bleeding prophylaxis, as it to reduce cross-infection with MDR pathogens should be does not decrease intragastric acidity or significantly increase used routinely (Level I) (3, 93, 100, 110, 111). gastric volume. Numerous randomized trials, using different doses 2. Surveillance of ICU infections, to identify and quantify and various study populations, have provided controversial re- endemic and new MDR pathogens, and preparation of sults on the benefits of specific stress bleeding prophylaxis agents timely data for infection control and to guide appropriate, in relation to the increased risk of VAP (38, 99, 103, 104, 155, antimicrobial therapy in patients with suspected HAP or 168). One large randomized trial comparing antacids, H2 block- other nosocomial infections, are recommended (Level II) ers, and sucralfate reported no differences in rates of early-onset (3, 92, 93, 100, 110–113). VAP, but rates of late-onset VAP were lower among patients Intubation and mechanical ventilation. treated with sucralfate (103). In one multicenter study of VAP 1. Intubation and reintubation should be avoided, if possible, in patients with ARDS, sucralfate and duration of exposure to as it increases the risk of VAP (Level I) (3, 12, 93, 94, sucralfate were associated with an increased risk of VAP (38). 114). A large, double-blind, randomized trial comparing ranitidine 2. Noninvasive ventilation should be used whenever possible with sucralfate demonstrated a trend to toward lower rates of in selected patients with respiratory failure (Level I) (18, VAP with sucralfate, but clinically significant gastrointestinal 20, 115–119). bleeding was 4% higher in the sucralfate group (104). Thus, if 3. Orotracheal intubation and orogastric tubes are preferred stress ulcer prophylaxis is indicated, the risks and benefits of over nasotracheal intubation and nasogastric tubes to pre- each regimen should be weighed before prescribing either H2 vent nosocomial sinusitis and to reduce the risk of VAP, blockers or sucralfate. although direct causality has not been proved (Level II) A landmark prospective randomized trial comparing liberal (3, 93, 94, 109, 125). and conservative “triggers” to transfusion in ICU patients not 4. Continuous aspiration of subglottic secretions can reduce exhibiting active bleeding and without underlying cardiac disease the risk of early-onset VAP, and should be used, if avail- demonstrated that awaiting a hemoglobin level of 7.0 g/dl as able (Level I) (97, 128, 130). opposed to a level of 9.0 g/dl before initiating transfusion resulted 5. The endotracheal tube cuff pressure should be maintained in less transfusion and no adverse effects on outcome (169). In at greater than 20 cm H2O to prevent leakage of bacterial fact, in those patients less severely ill, as judged by low APACHE pathogens around the cuff into the lower respiratory tract II scores, mortality was improved in the “restricted transfusion” (Level II) (98, 126). group, a result thought to result from immunosuppressive effects 6. Contaminated condensate should be carefully emptied of non–leukocyte-depleted red blood cell units with consequent from ventilator circuits and condensate should be pre- increased risk for infection. Multiple studies have identified ex- vented from entering either the endotracheal tube or in- posure to allogeneic blood products as a risk factor for postoper- ative infection and postoperative pneumonia, and the length of line medication nebulizers (Level II) (98, 131, 132). time of blood storage as another factor modulating risk (170– 7. Passive humidifiers or heat–moisture exchangers decrease 174). In one prospective randomized control trial the use of ventilator circuit colonization, but have not consistently leukocyte-depleted red blood cell transfusions resulted in a re- reduced the incidence of VAP, and thus they cannot be duced incidence of postoperative infections, and specifically a regarded as a pneumonia prevention tool (Level I) (135– reduced incidence of pneumonia in patients undergoing colo- 139). rectal surgery (172). Routine red blood cell transfusion should be 8. Reduced duration of intubation and mechanical ventila- conducted with a restricted transfusion trigger policy. Whether tion may prevent VAP and can be achieved by protocols leukocyte-depleted red blood cell transfusions will further re- to improve the use of sedation and to accelerate weaning duce the incidence of pneumonia in broad populations of pa- (Level II) (93, 120–122, 124). tients at risk remains to be determined. 9. Maintaining adequate staffing levels in the ICU can reduce Hyperglycemia, relative insulin deficiency, or both may di- length of stay, improve infection control practices, and rectly or indirectly increase the risk of complications and poor reduce duration of mechanical ventilation (Level II) (121– outcomes in critically ill patients. van den Berghe and coworkers 124). randomized surgical intensive care unit patients to receive either Aspiration, body position, and enteral feeding. intensive insulin therapy to maintain blood glucose levels be- 1. Patients should be kept in the semirecumbent position tween 80 and 110 mg/dl or to receive conventional treatment (30–45 ) rather than supine to prevent aspiration, espe- (175). The group receiving intensive insulin therapy had reduced cially when receiving enteral feeding (Level I) (140–144). mortality (4.6 versus 8%, p 0.04) and the difference was greater 2. Enteral nutrition is preferred over parenteral nutrition to in patients who remained in the intensive care unit more than reduce the risk of complications related to central intrave- 5 days (10.6 versus 20.2%, p 0.005). When compared with the nous catheters and to prevent reflux villous atrophy of the control group, those treated with intensive insulin therapy had intestinal mucosa that may increase the risk of bacterial a 46% reduction of bloodstream infections, decreased frequency translocation (Level I) (3, 93, 145, 146). of acute renal failure requiring dialysis by 41%, fewer antibiotic treatment days, and significantly shorter length of mechanical Modulation of colonization: oral antiseptics and antibiotics. ventilation and ICU stay. Although the same degree of benefit 1. Routine prophylaxis of HAP with oral antibiotics (selec- may not be seen among patients with VAP as in other popula- tive decontamination of the digestive tract or SDD), with tions, aggressive treatment of hyperglycemia has both theoretical or without systemic antibiotics, reduces the incidence of and clinical support. ICU-acquired VAP, has helped contain outbreaks of
  • 9. 396 AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE VOL 171 2005 MDR bacteria (Level I), but is not recommended for rou- of antibiotic therapy led to a reduced incidence of subsequent tine use, especially in patients who may be colonized with pneumonia and mortality (181). MDR pathogens (Level II) (149–154, 156–159, 161–164, The diagnosis of HAP is difficult, and most studies of nonintu- 176). bated patients have involved clinical diagnosis, with sputum cul- 2. Prior administration of systemic antibiotics has reduced ture, but bronchoscopy has been used less often, making the reliabil- the risk of nosocomial pneumonia in some patient groups, ity of the bacteriologic information uncertain and the specificity but if a history of prior administration is present at the time of the diagnosis undefined (182). The accuracy of the clinical of onset of infection, there should be increased suspicion diagnosis of VAP has been investigated on the basis of autopsy of infection with MDR pathogens (Level II) (157–159, findings or quantitative cultures of either protected specimen 161–164). brush (PSB) or bronchoalveolar lavage (BAL) samples as the 3. Prophylactic administration of systemic antibiotics for 24 standard for comparison (183–186). Some studies have investi- hours at the time of emergent intubation has been demon- gated the accuracy of a single clinical finding, whereas others strated to prevent ICU-acquired HAP in patients with included multiple criteria in their definition of pneumonia. These closed head injury in one study, but its routine use is not studies indicate that the diagnostic criteria of a radiographic recommended until more data become available (Level I) infiltrate and at least one clinical feature (fever, leukocytosis, (167). or purulent tracheal secretions) have high sensitivity but low 4. Modulation of oropharyngeal colonization by the use of specificity (especially for VAP). Combinations of signs and symp- oral chlorhexidine has prevented ICU-acquired HAP in toms may increase the specificity. A study in which the diagnostic selected patient populations such as those undergoing cor- standard was histology plus positive microbiologic cultures of onary bypass grafting, but its routine use is not recom- immediate postmortem lung samples, the presence of chest infil- mended until more data become available (Level I) (148). trates, plus two of three clinical criteria resulted in 69% sensitiv- 5. Use daily interruption or lightening of sedation to avoid ity and 75% specificity (187). When the three clinical variables constant heavy sedation and try to avoid paralytic agents, were used the sensitivity declined, whereas the use of only one variable led to a decline in specificity. both of which can depress cough and thereby increase the For patients diagnosed with ARDS, suspicion of pneumonia risk of HAP (Level II) (120). should be high and the presence of only one of the three clinical Stress bleeding prophylaxis, transfusion, and hyperglycemia. criteria described should lead to more diagnostic testing (188). 1. Comparative data from randomized trials suggest a trend A high index of suspicion should also be present in patients who toward reduced VAP with sucralfate, but there is a slightly have unexplained hemodynamic instability or deterioration of higher rate of clinically significant gastric bleeding, com- blood gases during mechanical ventilation. In the absence of any pared with H2 antagonists. If needed, stress bleeding pro- of these findings, no further investigations are required. The phylaxis with either H2 antagonists or sucralfate is accept- incidence of colonization in hospitalized patients in general and able (Level I) (99–104, 155, 177–179). even more in patients requiring endotracheal intubation is high 2. Transfusion of red blood cell and other allogeneic blood (107). Antibiotic treatment of simple colonization is strongly products should follow a restricted transfusion trigger pol- discouraged. Routine monitoring of tracheal aspirate cultures to icy; leukocyte-depleted red blood cell transfusions can help anticipate the etiology of a subsequent pneumonia has also been to reduce HAP in selected patient populations (Level I) found to be misleading in a significant percentage of cases (189). (169–174). Although these criteria should raise suspicion of HAP, con- 3. Intensive insulin therapy is recommended to maintain se- firmation of the presence of pneumonia is much more difficult, and clinical parameters cannot be used to define the microbio- rum glucose levels between 80 and 110 mg/dl in ICU pa- logic etiology of pneumonia. The etiologic diagnosis generally tients to reduce nosocomial blood stream infections, dura- requires a lower respiratory tract culture, but rarely may be tion of mechanical ventilation, ICU stay, morbidity, and made from blood or pleural fluid cultures. Respiratory tract mortality (Level I) (175). cultures can include endotracheal aspirates, BAL or PSB speci- mens. Overall, the sensitivity of blood cultures is less than 25%, DIAGNOSTIC TESTING and when positive, the organisms may originate from an extra- pulmonary source in a large percentage, even if VAP is also Diagnostic testing is ordered for two purposes: to define whether present (190). Although an etiologic diagnosis is made from a a patient has pneumonia as the explanation for a constellation of respiratory tract culture, colonization of the trachea precedes new signs and symptoms and to determine the etiologic pathogen development of pneumonia in almost all cases of VAP, and thus when pneumonia is present. Unfortunately, currently available a positive culture cannot always distinguish a pathogen from a tools cannot always reliably provide this information. colonizing organism. However, a sterile culture from the lower The diagnosis of HAP is suspected if the patient has a radio- respiratory tract of an intubated patient, in the absence of a graphic infiltrate that is new or progressive, along with clinical recent change in antibiotic therapy, is strong evidence that pneu- findings suggesting infection, which include the new onset of monia is not present, and an extrapulmonary site of infection fever, purulent sputum, leukocytosis, and decline in oxygenation. should be considered (191, 192). In addition, the absence of When fever, leukocytosis, purulent sputum, and a positive cul- MDR microorganisms from any lower respiratory specimen in ture of a sputum or tracheal aspirate are present without a new intubated patients, in the absence of a change in antibiotics lung infiltrate, the diagnosis of nosocomial tracheobronchitis within the last 72 hours, is strong evidence that they are not should be considered (180). When this definition has been ap- the causative pathogen. The time course of clearance of these plied to mechanically ventilated patients, nosocomial tracheo- difficult-to-treat microorganisms is usually slow, so even in the bronchitis has been associated with a longer length of ICU stay face of a recent change in antibiotic therapy sterile cultures may and mechanical ventilation, without increased mortality (180). indicate that these organisms are not present (193). For these Antibiotic therapy may be beneficial in this group of patients reasons, a lower respiratory tract sample for culture should be (180, 181). In one prospective randomized trial of intubated collected from all intubated patients when the diagnosis of pneu- patients with community-acquired bronchial infection, the use monia is being considered. The diagnostic yield and negative
  • 10. American Thoracic Society Documents 397 predictive value of expectorated sputum in nonintubated pa- The goals of diagnostic approaches in patients with suspected tients have not been determined. HAP are to identify which patients have pulmonary infection; to ensure collection of appropriate cultures; to promote the use Major Points and Recommendations for Diagnosis of early, effective antibiotic therapy, while allowing for stream- 1. All patients should have a comprehensive medical history lining or de-escalation when possible; and to identify patients obtained and undergo physical examination to define the who have extrapulmonary infection (Figure 1). The committee severity of HAP, to exclude other potential sources of considered two different approaches to management, a clinical infection, and to reveal the presence of specific conditions strategy and a bacteriologic strategy, and have incorporated fea- that can influence the likely etiologic pathogens (Level II) tures from both in the final recommendations. (9, 16, 194). Clinical Strategy 2. All patients should have a chest radiograph, preferably posteroanterior and lateral if not intubated, as portable When the clinical approach is used, the presence of pneumonia chest radiographs have limited accuracy. The radiograph is defined by new lung infiltrate plus clinical evidence that the can help to define the severity of pneumonia (multilobar infiltrate is of an infectious origin. The presence of a new or or not) and the presence of complications, such as effu- progressive radiographic infiltrate plus at least two of three clini- sions or cavitation (Level II) (5, 195). cal features (fever greater than 38 C, leukocytosis or leukopenia, 3. Purulent tracheobronchitis may mimic many of the clini- and purulent secretions) represents the most accurate combina- cal signs of HAP and VAP, and may require antibiotic tion of criteria for starting empiric antibiotic therapy (187). Al- therapy, but prospective, randomized trials are needed though sensitivity for the presence of pneumonia is increased if (Level III) (180). Tracheal colonization is common in only one criterion is used, this occurs at the expense of specificity, intubated patients, but in the absence of clinical findings leading to significantly more antibiotic treatment. Requiring all is not a sign of infection, and does not require therapy three clinical criteria is too insensitive and will result in many or diagnostic evaluation (Level II) (40, 107). patients with true pneumonia not receiving therapy. 4. Arterial oxygenation saturation should be measured in all The etiologic cause of pneumonia is defined by semiquantita- patients to determine the need for supplemental oxygen. tive cultures of endotracheal aspirates or sputum with initial Arterial blood gas should be determined if concern exists microscopic examination. Tracheal aspirate cultures consistently regarding either metabolic or respiratory acidosis, and grow more microorganisms than do invasive quantitative cul- this test generally is needed to manage patients who re- tures, and most microbiology laboratories report the results in quire mechanical ventilation. These results, along with other a semiquantitative fashion, describing growth as light, moderate, laboratory studies (complete blood count, serum electro- or heavy. In general, it is rare that a tracheal aspirate culture lytes, renal and liver function), can point to the presence does not contain the pathogen(s) found in invasive quantitative of multiple organ dysfunction and thus help define the cultures (191, 199, 200). Gram staining of polymorphonuclear severity of illness (Level II) (38, 188). leukocytes and macrophages and careful examination of the 5. All patients with suspected VAP should have blood cul- morphology of any bacteria found to be present, may improve tures collected, recognizing that a positive result can indi- diagnostic accuracy when correlated with culture results (201, cate the presence of either pneumonia or extrapulmonary 202). Conversely, a negative tracheal aspirate (absence of bacte- infection (Level II) (190). ria or inflammatory cells) in a patient without a recent (within 6. A diagnostic thoracentesis to rule out a complicating em- 72 hours) change in antibiotics has a strong negative predictive pyema or parapneumonic effusion should be performed value (94%) for VAP (203). A reliably performed Gram stain if the patient has a large pleural effusion or if the patient of tracheal aspirates has been demonstrated to result in a low with a pleural effusion appears toxic (Level III) (5). incidence of inappropriate therapy when used to guide initial 7. Samples of lower respiratory tract secretions should be empiric antibiotic therapy (9, 198). obtained from all patients with suspected HAP, and The clinical strategy emphasizes prompt empiric therapy for should be collected before antibiotic changes. Samples all patients suspected of having HAP. The driving force behind can include an endotracheal aspirate, bronchoalveolar this strategy is the consistent finding that delay in the initiation lavage sample, or protected specimen brush sample of appropriate antibiotic therapy for patients with HAP is associ- (Level II) (183, 184, 192, 196, 197). ated with increased mortality (37, 112, 204). The selection of 8. In the absence of any clinical suspicion of HAP or nosoco- initial antibiotic therapy is based on risk factors for specific mial tracheobronchitis, no respiratory tract cultures should pathogens, modified by knowledge of local patterns of antibiotic be obtained (Level III). resistance and organism prevalence. Therapy is modified on the 9. A sterile culture of respiratory secretions in the absence basis of the clinical response on Days 2 and 3, and the findings of a new antibiotic in the past 72 hours virtually rules of semiquantitative cultures of lower respiratory tract secretions. out the presence of bacterial pneumonia, but viral or Legionella infection is still possible (Level II) (192). If This approach requires no specialized microbiologic methods, these patients have clinical signs of infection, an extrapul- and all patients suspected of having pneumonia are treated. This monary site of infection should be investigated (Level II) avoids the problem of not treating some infected individuals. (190, 198). Use of an ICU-specific, broad-spectrum empiric therapy regi- 10. For patients with ARDS, for whom it is difficult to demon- ment can reduce the incidence of inappropriate initial therapy strate deterioration of radiographic images, at least one of to less than 10% (198, 205). the three clinical criteria or other signs of pneumonia, such The major limitation to the clinical approach is that it consis- as hemodynamic instability or deterioration of blood gases, tently leads to more antibiotic therapy than when therapy deci- should lead to more diagnostic testing (Level II) (38). sions are based on the findings (microscopy and quantitative cultures) of invasive (bronchoscopic) lower respiratory tract sam- ples (198). The clinical approach is overly sensitive, and patients DIAGNOSTIC STRATEGIES AND APPROACHES can be treated for pneumonia when another noninfectious pro- Because clinical suspicion of HAP/VAP is overly sensitive, fur- cess is responsible for the clinical findings. These processes may ther diagnostic strategies are required for optimal management. include congestive heart failure, atelectasis, pulmonary thrombo-
  • 11. 398 AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE VOL 171 2005 Figure 1. Summary of the management strategies for a patient with suspected hospital-acquired pneumonia (HAP), ven- tilator-associated pneumonia (VAP), or healthcare-associated pneumonia (HCAP). The decision about antibiotic discontinu- ation may differ depending on the type of sample collected (PSB, BAL, or endotra- cheal aspirate), and whether the results are reported in quantitative or semiquan- titative terms (see text for details). embolism, pulmonary drug reactions, pulmonary hemorrhage, sooner, is necessary, because patients who are improving will or ARDS. Even if the patient has pneumonia, reliance on semi- have signs of a good clinical response by this time point (193, quantitative cultures, which may not reliably separate true patho- 208). Singh and coworkers have shown that some patients with gens from colonizers, can lead to either more or broader spec- a low clinical suspicion of VAP (CPIS of 6 or less) can have trum antibiotic therapy than with a quantitative approach (198). antibiotics safely discontinued after 3 days, if the subsequent These cultures have their greatest value if they are negative and course suggests that the probability of pneumonia is still low the patient has not received new antibiotics within the past 72 (207). The modified CPIS used by Singh and coworkers appears hours. One other concern is that reliance on nonquantitative cul- to be an objective measure to define patients who can receive tures could lead to a failure to recognize extrapulmonary infection a short duration of therapy. at an early time point. Major points and recommendations for the clinical strategy. In an effort to improve the specificity of clinical diagnosis, 1. A reliable tracheal aspirate Gram stain can be used to direct Pugin and coworkers developed the clinical pulmonary infection initial empiric antimicrobial therapy and may increase the score (CPIS), which combines clinical, radiographic, physiologi- diagnostic value of the CPIS (Level II) (191, 199, 201, 209). cal (PaO2/FiO2), and microbiologic data into a single numerical 2. A negative tracheal aspirate (absence of bacteria or in- result (206). When the CPIS exceeded 6, good correlation with flammatory cells) in a patient without a recent (within 72 the presence of pneumonia, as defined by quantitative cultures hours) change in antibiotics has a strong negative pre- of bronchoscopic and nonbronchoscopic BAL specimens, was dictive value (94%) for VAP and should lead to a search found. However, in a subsequent study that used histology plus for alternative sources of fever (Level II) (203). immediate postmortem quantitative lung cultures as the refer- 3. The presence of a new or progressive radiographic infil- ence standard, the CPIS had a sensitivity of 77% and a specificity trate plus at least two of three clinical features (fever of 42% (187). One prospective study evaluated 79 episodes of greater than 38 C, leukocytosis or leukopenia, and puru- suspected VAP, using the CPIS, and compared the findings with lent secretions) represent the most accurate clinical criteria diagnoses established by BAL culture. Overall, the sensitivity for starting empiric antibiotic therapy (Level II) (187). and specificity of the score were low, although it improved if a 4. If a clinical strategy is used, reevaluation of the decision Gram stain of a deep respiratory tract culture was added to the to use antibiotics based on the results of semiquantitative evaluation (201). lower respiratory tract cultures and serial clinical evalua- The original description of the CPIS required microbiologic tions, by Day 3 or sooner, is necessary (Level II) (193, data, and thus could not be used to screen for HAP. Singh and 205, 207, 208). colleagues used a modified CPIS that did not rely on culture 5. A modified CPIS of 6 or less for 3 days, proposed by Singh data to guide clinical management (207). Another approach was and coworkers, is an objective criterion to select patients to calculate the score by using the results of a Gram stain of a at low risk for early discontinuation of empiric treatment BAL specimen or blind protected telescoping catheter sample, of HAP, but still requires validation in patients with more and score the findings as either positive or negative. Using this severe forms of VAP (Level I) (201, 207). approach, the CPIS for patients with confirmed VAP was signifi- cantly higher than the value for nonconfirmed VAP (201). Bacteriologic Strategy If a clinical strategy is used, reevaluation of the decision to The bacteriologic strategy uses quantitative cultures of lower use antibiotics based on serial clinical evaluations, by Day 3 or respiratory secretions (endotracheal aspirates, BAL or PSB speci-