SlideShare una empresa de Scribd logo
1 de 10
Descargar para leer sin conexión
Secciones de un canal.
Las secciones más utilizadas en canales de conducción
son la sección trapezoidal y rectangular.
m tg ; 2T b my  ;
2
.........(1)A by my  ;
2
2 1 ......(2)P b y m  
2
2 1b P y m   ; H
A
R
P

(2) en (1): 2 2 2
( 2 1 ) .......(3)A Py y m my Mínimo perímetro   
SI: A= cte. Q=cte. M=cte.
Manteniendo y = constante. 0
P
m



3
; 30º ; 30º
3
m arctgm   
El canal trapecial de máxima eficiencia hidráulica es el que tiene el ángulo 30º  cuyas
fórmulas son las siguientes:
Máxima eficiencia Hidráulica canal trapecial
0º  ; T b ; A by ; 2P b y 
:
La máxima eficiencia hidráulica se da cuando 2b y obteniéndose las siguientes fórmulas:
A= ; b=2y ; P=4y ;
Utilizando las ecuaciones de la sección trapecial con b=0
tenemos:
2T m y
2
A my
2
2 1P y m 
La máxima eficiencia hidráulica se da cuando
MAXIMA EFICIENCIA HIDRAULICA EN UN CANAL TRIANGULAR:
0
dA
dy

m= ; ; A= ; P= ;
EJEMPLO DE APLICACIÓN
Se desea dimensionar un canal de conducción para abastecer una zona irrigable de 300has. Con
un módulo de riego de 1.5lts/seg/ha.
Del trazo topográfico se observa que se puede llegar con una sola pendiente del eje de canal
equivalente a 1/1000.De las muestras de suelo analizadas se concluye que se trata de suelo limo
arcilloso cuyo ángulo de estabilidad ó reposo para estado saturado es 1
59º30  , la velocidad
máxima de arrastre de las partículas es de 0.8 /m seg ¿Diseñar la sección del canal?
Solución
Datos:
3
1
max
0.450
0.001
59º30
0.08
:
m
Q
seg
S
m
V
seg
Suelo Limoarcilloso





Si no existe limitaciones diseñaremos un canal
trapecial de máxima eficiencia hidráulica sin
revestir cuyas fórmulas son las siguientes.
60º  Las fórmulas serán
2
2 1
1
2 ( )
cos
b P y m
sen
b y


  


2
A by my 
2 2
( )
cos
sen
A y




0.023( lim )n suelo oarcilloso Remplazamos las fórmulas anteriores en la ec, de Maning
1 1
2 2
1
HQ AR i EcuacióndeManing
n
 2 2
..........( )
2
2
( ) 2.113 .......( )
cos
H
y
R a
sen
A y y b




 
Remplazando (a) y (b) en la ec. de Maning
2 1
2 3 2
3 (2.113 )( )
20.450
0.023
y
y i
m
seg

2 2
2.113 2.113(0.59) 0.7355A y m  
2
4 1 2
2
2 ( )
cos
mín
mín
P y m my
sen
P y


  


2
H
y
R 
-Chequeamos la velocidad del agua debe ser menor que 0.8 m/seg
3
2
0.45
0.61 ...
0.7355
m
Q mseg
V ok
A m seg
   0.61m/seg<0.8m/seg
0.36b m -Borde libre 0
030 ( ) 0.20Lh y m 
-Ancho de Corona (C): Uso peatonal (0.60m-1.0m)
Uso vehicular (6.50m): Estimaremos C 0.80 m
PROBLEMA DE APLICACIÓN
Se desea diseñar un colector de aguas de lluvia para transportar un caudal máximo de
3
150 /m seg , el colector será de forma triangular revestido de concreto. Dimensionar la estructura
para régimen crítico además encontrar la pendiente crítica.
Solución
Datos:
3
150 /máxQ m seg
Régimen crítico
Revestimiento de concreto
30º  b 0
3
3
tg m  
23
3
A y
2 3
2
3
T my y 
4
3
3
P y
4
3
H
A
R
P
 
Para régimen crítico
2
3
1
Q
T
gA
 .............(1) Remplazando en ecuación. (1)
2
2 3
2 3
(0.15) ( )
3 1
3
(9,81)( )
3
y
y

se da valores a (y) hasta que la igualdad se cumpla 0.42y m
De la ecuación de Maning
2 1
3 2
1
c cV R i
n
 2 23
(0.42) 0.102
3
A m 
0.15
1.47
0.102
c
Q m
V
A seg
  
2
2
3
( )c
c
V n
i
R

2
2
3
(1.47)(0.013)
(0.102)
ci
 
 
 
  
0.008ci  0
00.8ci 
1
2 ( ) 0.36
cos
sen
b y m



 
Los canales no revestidos se deben diseñar de tal forma que no haya erosión ni sedimentación.
VELOCIDADES MÁXIMAS PERMISIBLES EN CANALES SIN REVESTIR
MATERIAL n Agua Clara
m/s
Agua con limos
coloidales en
suspensión
m/s
Arena fina coloidal
Franco Arenoso. no coloidal
Franco limoso. no coloidal
Limo aluvial no coloidal
Suelo franco firme
Ceniza volcánica
Arcilla muy coloidal
Limo aluvial muy coloidal
Arcillas compactadas
Grava fina
 Francos a cantos rodados
pequeños (no coloidal)
 Limos Graduados a cantos
rodados pequeños coloidal.
 Grava gruesa no coloidal
 Cantos rodados grandes
0.020
0.020
0.020
0.020
0.020
0.020
0.025
0.025
0.025
0.020
0.030
0.030
0.025
0.035
0.45
0.50
0.60
0.60
0.75
0.75
1.10
1.10
1.80
0.75
1.10
1.20
1.20
1.50
0.75
0.75
0.90
1.05
1.05
1.05
1.50
1.50
1.80
1.50
1.50
1.65
1.80
1.65
Los valores de esta tabla son para canales rectos con profundidad de agua igual a 1 m. Para
Canales diferentes se deben corregir los valores
FACTORES DE CORRECIÓN POR SINUOSIDAD Y PROFUNDIDAD
CASO 1:
CASO 2:
SINUOSIDAD FACTOR
Recto 1.00
Ligeramente sinuoso 0.95
Medianamente sinuoso 0.87
Muy sinuoso 0.78
PROFUNDIDAD((m) FACTOR
0.30 0.86
0.50 0.90
0.75 0.95
1.00 1.00
1.50 1.10
2.00 1.15
2.50 1.20
3.00 1.25
TALUDES RECOMENDADOS PARA CANALES NO REVESTIDOS:
Con descargas temporales o altas fluctuaciones en la descarga (Horizontal – Vertical)
TIPO DE SUELO PROFUNDIDAD
(Tirante)  1.20
PROFUNDIDAD
( Tirante) > 1.20
Turba 0.25 : 1 0.5 : 1
Arcilla 1 : 1 1.5 : 1
Franco Arcilloso 1.5 : 1 2 : 1
Franco arenoso 2 : 1 3 : 1
Arenoso 3 : 1 4 : 1
Roca Casi vertical Casi vertical
BORDE LIBRE DE CANALES REVESTIDOS
 Respecto del tirante
0
030Lh deltirante
 Respecto al gasto  Respecto al ancho de solera
CAUDAL (
m3
/seg)
BORDE LIBRE
(m)
menor de 0.50 0.30
mayor de 0.5 0.40
ancho de solera(b)m BORDE LIBRE (m)
menor de 0.80 0.40
0.80 a 1.50 0.50
1.50 a 3.0 0.60
3.0 a 4.5 0.80
mayor a 4.5 1.00
El borde libre se estima teniendo en cuenta las lluvias (fenómenos extraordinarios) en zonas
lluviosas el borde libre debe ser mayor
DISEÑO DE UNA RAPIDA
PROBLEMA: Hallar el perfil del agua y la longitud total a revestir de la rápida de la figura que se
muestra para una sección rectangular que conducirá un caudal de 5m3/seg. El
suelo resiste una velocidad de 0.9 m/seg
Solución
DATOS
TRAMO 1 TRAMO 2 TRAMO 3
0.025 0.0005 0.015 0.1 40 m 0.025 0.0005
Además el canal debe ser de máxima eficiencia: por lo tanto se tiene:
TRAMO 1 TRAMO 2 TRAMO 3
i=0.0005
n=0.025
L=40 m
i=0.1
n=0.05
i=0.0005
n=0.025
z
TRAMO 1
Calculo del tirante normal:
ZONA REVESTIDA ZONA SIN REVESTIR
Entonces:
ecuación de Fraudé es:La
Y para un flujo critico se debe cumplir que y analizando para un canal rectangular se tiene
el tirante critico
Como es un flujo subcritico
La sección de control está constituida por el punto de intersección del tramo 1 con el 2,
correspondiendo su tirante
TRAMO 2
Calculo del tirante normal:
Como:
Resolviendo la ecuación:
Como la geometría de la sección transversal permanece constante el es el mismo en los
tres tramos:
La sección de control es la misma del tramo 1 es decir el punto de intersección del tramo 1
con el 2, correspondiendo el tirante real al .
3.5
y
TRAMO 3
Calculo del tirante normal
Como en este tramo el canal tiene la misma pendiente y la misma rugosidad el tirante es igual al
tirante normal del tramo 1
La sección de control es el punto de intersección del tramo 2 con el 3.
UBICACIÓN DEL RESALTO HIDRAULICO:
A partir del tirante normal del tramo 2 se calcula un tirante conjugado , entonces
se puede decir que:
Con la ecuación de tirantes conjugados para un canal de sección transversal rectangular.
Donde
Se tiene:
Luego se compara con el tirante normal del tramo 3 . Se observa que por lo
tanto el resalto es ahogado y se ubica en el tramo 2.
REVESTIMIENTO:
El cálculo para el revestimiento se calcula en forma independiente. En la zona del Tramo 1, se
calcula desde la sección de control con tirante hacia aguas arriba hasta el tirante
que corresponde a una velocidad de 0.9 m/s, es decir:
Entonces en el tramo 1 la zona que será
revestida será la zona que está entre los
ytirantes
Resalto Hidraulico
yn yc
y
1
y
2
TRAMO 1 TRAMO 2 TRAMO 3
yn
yn yc
TRAMO 1
y=1.583
Calculo de :
Donde
Donde
Luego:
Calculo de :
Donde
Luego:
Calculo de :
Donde
Luego:
Calculo de :
Donde
Luego:
Calculo de :
Donde
Luego:
Entonces la zona que se revestirá en el primer tramo será de
Y finalmente la parte revestida en la rápida será:
PROBLEMA
Calcule el tirante normal en un canal de tierra en buenas condiciones que conduce un gasto de
4.5 m3
/seg, y cuya pendiente es de 0.40 m. por kilómetro, el ancho de plantilla es de 3.00 m, la
inclinación de los taludes es 1.5: 1 y el
coeficiente de rugosidad vale 0.025.
Datos:
Q = 4.5 m3
/seg;
S=0.40 por kilometro = 0.4/1000=0.0004;
b=3.0m;
m=1.5:1 = 1.5; n=0.025.
Solución:
Para resolver el problema procedemos por tanteo:
Tabla de cálculo.
d (m) A (m2) P (m) R (m) r2/3 (m) Ar2/3 Q n/S1/2
1.20 5.76 7.32 0.786 0.8524 4.91 ≠
1.25 6.093 7.51 0.811 0.870 5.30 ≠
1.30 6.435 7.693 0.8364 0.8878 5.71 ≠
1.29 6.366 7.656 0.8315 0.88436 5.629 5.625
Por lo tanto el tirante supuesto de 1.29 es correcto Checando la velocidad:
Es correcta la velocidad media de la corriente
PROBLEMA
Un canal trapecial tiene un ancho de plantilla de 6m, talud
y , determinar la pendiente normal (
) para una profundidad normal de 1.02 m, cuando el gasto
vale 11.32 m3/seg.
Datos:
Q=11.32 m3/S b= 6.0 m m =2:1 n=0.025
Solución:
A partir de los datos que tenemos se procede a calcular el:
Área hidráulica =
Perímetro =
Radio =
Aplicando la ecuación se tiene.
Considerando que y sustituido en la expresión de la velocidad queda:
1:2m 025.0n nS
222
m20.8)02.1(2)02.1)(6(  nn mdbdA
222
m56.1021)02.1(2612  mdbP n
m776.0
56.10
20.8

P
A
R
2
3/2 




R
Vn
S
00167.0
92.6
283.0
)776.0)(20.8(
025.032.11
22
3/2











 
nS

Más contenido relacionado

La actualidad más candente

Diseño de bocatoma
Diseño de bocatomaDiseño de bocatoma
Diseño de bocatomaRAYCCSAC
 
Libro resistencia de materiales ii (prácticas y exámenes usmp)(1)
Libro resistencia de materiales ii (prácticas y exámenes usmp)(1)Libro resistencia de materiales ii (prácticas y exámenes usmp)(1)
Libro resistencia de materiales ii (prácticas y exámenes usmp)(1)Marco Antonio Gomez Ramos
 
Velocidad de diseño
Velocidad de diseñoVelocidad de diseño
Velocidad de diseñoPaul Jauregui
 
Resalto Hidráulico - Mecánica de Fluidos
Resalto Hidráulico - Mecánica de FluidosResalto Hidráulico - Mecánica de Fluidos
Resalto Hidráulico - Mecánica de FluidosRobin Gomez Peña
 
HIDRAULICA DE CANALES - PEDRO RODRIGUEZ
HIDRAULICA DE CANALES - PEDRO RODRIGUEZHIDRAULICA DE CANALES - PEDRO RODRIGUEZ
HIDRAULICA DE CANALES - PEDRO RODRIGUEZCarlos Pajuelo
 
Ejercicios resueltos de canales.pdf
Ejercicios resueltos de canales.pdfEjercicios resueltos de canales.pdf
Ejercicios resueltos de canales.pdfMARCOVALERIO13
 
Semana 2 diseño de obras de captación - u. continental
Semana 2   diseño de obras de captación - u. continentalSemana 2   diseño de obras de captación - u. continental
Semana 2 diseño de obras de captación - u. continentalniza483
 
LINEA DE CONDUCCION
LINEA DE CONDUCCION LINEA DE CONDUCCION
LINEA DE CONDUCCION Paul Seguil
 
Mecanica de suelos_(problemas_resueltos)
Mecanica de suelos_(problemas_resueltos)Mecanica de suelos_(problemas_resueltos)
Mecanica de suelos_(problemas_resueltos)Geillyn Castro
 
Coeficientes de rugosidad (haestad)
Coeficientes de rugosidad (haestad)Coeficientes de rugosidad (haestad)
Coeficientes de rugosidad (haestad)cosmeacr
 

La actualidad más candente (20)

Ejercicios canales
Ejercicios canalesEjercicios canales
Ejercicios canales
 
Diseño de bocatoma
Diseño de bocatomaDiseño de bocatoma
Diseño de bocatoma
 
Libro resistencia de materiales ii (prácticas y exámenes usmp)(1)
Libro resistencia de materiales ii (prácticas y exámenes usmp)(1)Libro resistencia de materiales ii (prácticas y exámenes usmp)(1)
Libro resistencia de materiales ii (prácticas y exámenes usmp)(1)
 
Flujo gradualmente variado
Flujo gradualmente variadoFlujo gradualmente variado
Flujo gradualmente variado
 
Velocidad de diseño
Velocidad de diseñoVelocidad de diseño
Velocidad de diseño
 
Máxima Eficiencia Hidráulica
Máxima Eficiencia Hidráulica Máxima Eficiencia Hidráulica
Máxima Eficiencia Hidráulica
 
Resalto Hidráulico - Mecánica de Fluidos
Resalto Hidráulico - Mecánica de FluidosResalto Hidráulico - Mecánica de Fluidos
Resalto Hidráulico - Mecánica de Fluidos
 
HIDRAULICA DE CANALES - PEDRO RODRIGUEZ
HIDRAULICA DE CANALES - PEDRO RODRIGUEZHIDRAULICA DE CANALES - PEDRO RODRIGUEZ
HIDRAULICA DE CANALES - PEDRO RODRIGUEZ
 
Ejercicios resueltos de canales.pdf
Ejercicios resueltos de canales.pdfEjercicios resueltos de canales.pdf
Ejercicios resueltos de canales.pdf
 
2 vertederos
2 vertederos2 vertederos
2 vertederos
 
Tirante normal
Tirante normalTirante normal
Tirante normal
 
Problemas de-canales-abiertos-1
Problemas de-canales-abiertos-1Problemas de-canales-abiertos-1
Problemas de-canales-abiertos-1
 
Problemas resueltos hidrologia
Problemas resueltos hidrologiaProblemas resueltos hidrologia
Problemas resueltos hidrologia
 
Semana 2 diseño de obras de captación - u. continental
Semana 2   diseño de obras de captación - u. continentalSemana 2   diseño de obras de captación - u. continental
Semana 2 diseño de obras de captación - u. continental
 
Abastecimientos de agua
Abastecimientos de aguaAbastecimientos de agua
Abastecimientos de agua
 
LINEA DE CONDUCCION
LINEA DE CONDUCCION LINEA DE CONDUCCION
LINEA DE CONDUCCION
 
Mecanica de suelos_(problemas_resueltos)
Mecanica de suelos_(problemas_resueltos)Mecanica de suelos_(problemas_resueltos)
Mecanica de suelos_(problemas_resueltos)
 
Diseño de desarenadores
Diseño de desarenadoresDiseño de desarenadores
Diseño de desarenadores
 
SUELOS 1
SUELOS 1SUELOS 1
SUELOS 1
 
Coeficientes de rugosidad (haestad)
Coeficientes de rugosidad (haestad)Coeficientes de rugosidad (haestad)
Coeficientes de rugosidad (haestad)
 

Destacado

Hidraulica de canales abiertos
Hidraulica de canales abiertosHidraulica de canales abiertos
Hidraulica de canales abiertosDaniel Cab Salazar
 
Ejercicios resueltos 11
Ejercicios resueltos 11Ejercicios resueltos 11
Ejercicios resueltos 11Luis Chulin
 
CALCULO DE CAUDAL - FORMULA DE MANNING-Canal hidraulica
CALCULO DE CAUDAL - FORMULA DE MANNING-Canal hidraulicaCALCULO DE CAUDAL - FORMULA DE MANNING-Canal hidraulica
CALCULO DE CAUDAL - FORMULA DE MANNING-Canal hidraulicaEdwin Gualan
 
Aplicaciones de las derivadas en ingeniería
Aplicaciones de las derivadas en ingenieríaAplicaciones de las derivadas en ingeniería
Aplicaciones de las derivadas en ingenieríaPaul Nùñez
 
Maximo villon- diseno de estructuras hidraulicas
Maximo villon- diseno de estructuras hidraulicas Maximo villon- diseno de estructuras hidraulicas
Maximo villon- diseno de estructuras hidraulicas Pilar Chong
 
Aplicación de la derivada
Aplicación de la derivadaAplicación de la derivada
Aplicación de la derivadaMaria_Alejos
 
Libro de hidraulica de canales (maximo villon)
Libro de hidraulica de canales (maximo villon)Libro de hidraulica de canales (maximo villon)
Libro de hidraulica de canales (maximo villon)SIMON MELGAREJO
 
Texto de ejerciciosresueltos de hidraulica 1 nelame
Texto de ejerciciosresueltos de hidraulica 1 nelameTexto de ejerciciosresueltos de hidraulica 1 nelame
Texto de ejerciciosresueltos de hidraulica 1 nelameerslide71
 

Destacado (12)

Hidraulica de canales abiertos
Hidraulica de canales abiertosHidraulica de canales abiertos
Hidraulica de canales abiertos
 
manual-hcanales
manual-hcanalesmanual-hcanales
manual-hcanales
 
Ejercicios resueltos 11
Ejercicios resueltos 11Ejercicios resueltos 11
Ejercicios resueltos 11
 
Calculo I Aplicaciones De La Derivada
Calculo I Aplicaciones De La DerivadaCalculo I Aplicaciones De La Derivada
Calculo I Aplicaciones De La Derivada
 
CALCULO DE CAUDAL - FORMULA DE MANNING-Canal hidraulica
CALCULO DE CAUDAL - FORMULA DE MANNING-Canal hidraulicaCALCULO DE CAUDAL - FORMULA DE MANNING-Canal hidraulica
CALCULO DE CAUDAL - FORMULA DE MANNING-Canal hidraulica
 
Aplicaciones de las derivadas en ingeniería
Aplicaciones de las derivadas en ingenieríaAplicaciones de las derivadas en ingeniería
Aplicaciones de las derivadas en ingeniería
 
Mecanica de-suelos - Peter L. Berry
Mecanica de-suelos - Peter L. BerryMecanica de-suelos - Peter L. Berry
Mecanica de-suelos - Peter L. Berry
 
Maximo villon- diseno de estructuras hidraulicas
Maximo villon- diseno de estructuras hidraulicas Maximo villon- diseno de estructuras hidraulicas
Maximo villon- diseno de estructuras hidraulicas
 
Aplicación de la derivada
Aplicación de la derivadaAplicación de la derivada
Aplicación de la derivada
 
Hidraulica de-tuberias-y-canales
Hidraulica de-tuberias-y-canalesHidraulica de-tuberias-y-canales
Hidraulica de-tuberias-y-canales
 
Libro de hidraulica de canales (maximo villon)
Libro de hidraulica de canales (maximo villon)Libro de hidraulica de canales (maximo villon)
Libro de hidraulica de canales (maximo villon)
 
Texto de ejerciciosresueltos de hidraulica 1 nelame
Texto de ejerciciosresueltos de hidraulica 1 nelameTexto de ejerciciosresueltos de hidraulica 1 nelame
Texto de ejerciciosresueltos de hidraulica 1 nelame
 

Similar a Ejercicios de canales canales

ejercicios-completos-estructuras-hidraulicas_compress.pdf
ejercicios-completos-estructuras-hidraulicas_compress.pdfejercicios-completos-estructuras-hidraulicas_compress.pdf
ejercicios-completos-estructuras-hidraulicas_compress.pdfCarlosQuintana206655
 
SEMANA 03.pdf
SEMANA 03.pdfSEMANA 03.pdf
SEMANA 03.pdfNoePv1
 
167782318 hoja-de-calculo-puente-canal
167782318 hoja-de-calculo-puente-canal167782318 hoja-de-calculo-puente-canal
167782318 hoja-de-calculo-puente-canalTony Ventura
 
167782318 hoja-de-calculo-puente-canal
167782318 hoja-de-calculo-puente-canal167782318 hoja-de-calculo-puente-canal
167782318 hoja-de-calculo-puente-canalTony Ventura
 
352078949 rapidas-hidraulica...........
352078949 rapidas-hidraulica...........352078949 rapidas-hidraulica...........
352078949 rapidas-hidraulica...........gimerllaure
 
Clase de fluidos. flujo de canal. prismary b
Clase de fluidos. flujo de canal. prismary bClase de fluidos. flujo de canal. prismary b
Clase de fluidos. flujo de canal. prismary bPrismary Betancourt
 
Dlscrib.com pdf-ejercicios-resueltos-de-estructuras-hidraulicas-dl fe07b8bda1...
Dlscrib.com pdf-ejercicios-resueltos-de-estructuras-hidraulicas-dl fe07b8bda1...Dlscrib.com pdf-ejercicios-resueltos-de-estructuras-hidraulicas-dl fe07b8bda1...
Dlscrib.com pdf-ejercicios-resueltos-de-estructuras-hidraulicas-dl fe07b8bda1...Royercitocruz
 
Abastecimientos
AbastecimientosAbastecimientos
Abastecimientossap200
 
Solucionario arturo-rocha-cap-4
Solucionario arturo-rocha-cap-4Solucionario arturo-rocha-cap-4
Solucionario arturo-rocha-cap-4Elvis Condor
 
Métodos para las Redes Cerradas
Métodos para las Redes CerradasMétodos para las Redes Cerradas
Métodos para las Redes CerradasLuis Morales
 
Ejercicios canales de conduccion de agua
Ejercicios canales de conduccion de aguaEjercicios canales de conduccion de agua
Ejercicios canales de conduccion de aguaaredasilva
 
Diseno hidraulico de_aliviaderos2
Diseno hidraulico de_aliviaderos2Diseno hidraulico de_aliviaderos2
Diseno hidraulico de_aliviaderos2ProyectosCiviles1
 

Similar a Ejercicios de canales canales (20)

ejercicios-completos-estructuras-hidraulicas_compress.pdf
ejercicios-completos-estructuras-hidraulicas_compress.pdfejercicios-completos-estructuras-hidraulicas_compress.pdf
ejercicios-completos-estructuras-hidraulicas_compress.pdf
 
SEMANA 03.pdf
SEMANA 03.pdfSEMANA 03.pdf
SEMANA 03.pdf
 
167782318 hoja-de-calculo-puente-canal
167782318 hoja-de-calculo-puente-canal167782318 hoja-de-calculo-puente-canal
167782318 hoja-de-calculo-puente-canal
 
167782318 hoja-de-calculo-puente-canal
167782318 hoja-de-calculo-puente-canal167782318 hoja-de-calculo-puente-canal
167782318 hoja-de-calculo-puente-canal
 
352078949 rapidas-hidraulica...........
352078949 rapidas-hidraulica...........352078949 rapidas-hidraulica...........
352078949 rapidas-hidraulica...........
 
155969933 diseno-de-canales-abiertos
155969933 diseno-de-canales-abiertos155969933 diseno-de-canales-abiertos
155969933 diseno-de-canales-abiertos
 
Problemas de-canales-abiertos-1
Problemas de-canales-abiertos-1Problemas de-canales-abiertos-1
Problemas de-canales-abiertos-1
 
Clase de fluidos. flujo de canal. prismary b
Clase de fluidos. flujo de canal. prismary bClase de fluidos. flujo de canal. prismary b
Clase de fluidos. flujo de canal. prismary b
 
Dlscrib.com pdf-ejercicios-resueltos-de-estructuras-hidraulicas-dl fe07b8bda1...
Dlscrib.com pdf-ejercicios-resueltos-de-estructuras-hidraulicas-dl fe07b8bda1...Dlscrib.com pdf-ejercicios-resueltos-de-estructuras-hidraulicas-dl fe07b8bda1...
Dlscrib.com pdf-ejercicios-resueltos-de-estructuras-hidraulicas-dl fe07b8bda1...
 
Abastecimientos
AbastecimientosAbastecimientos
Abastecimientos
 
Resumen
ResumenResumen
Resumen
 
GABRIELA A
GABRIELA AGABRIELA A
GABRIELA A
 
Solucionario arturo-rocha-cap-4
Solucionario arturo-rocha-cap-4Solucionario arturo-rocha-cap-4
Solucionario arturo-rocha-cap-4
 
Métodos para las Redes Cerradas
Métodos para las Redes CerradasMétodos para las Redes Cerradas
Métodos para las Redes Cerradas
 
Ejercicios canales de conduccion de agua
Ejercicios canales de conduccion de aguaEjercicios canales de conduccion de agua
Ejercicios canales de conduccion de agua
 
LIBRO
LIBROLIBRO
LIBRO
 
Canales
CanalesCanales
Canales
 
Diseno hidraulico de_aliviaderos2
Diseno hidraulico de_aliviaderos2Diseno hidraulico de_aliviaderos2
Diseno hidraulico de_aliviaderos2
 
PLANEAMIENTO Y DISEÑO DE OBRAS HIDRAULICAS
PLANEAMIENTO Y DISEÑO DE OBRAS HIDRAULICASPLANEAMIENTO Y DISEÑO DE OBRAS HIDRAULICAS
PLANEAMIENTO Y DISEÑO DE OBRAS HIDRAULICAS
 
Alcantarillado
AlcantarilladoAlcantarillado
Alcantarillado
 

Último

ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN PARÍS. Por JAVIER SOL...
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN  PARÍS. Por JAVIER SOL...ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN  PARÍS. Por JAVIER SOL...
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN PARÍS. Por JAVIER SOL...JAVIER SOLIS NOYOLA
 
Actividades para el 11 de Mayo día del himno.docx
Actividades para el 11 de Mayo día del himno.docxActividades para el 11 de Mayo día del himno.docx
Actividades para el 11 de Mayo día del himno.docxpaogar2178
 
La Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración AmbientalLa Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración AmbientalJonathanCovena1
 
La Evaluacion Formativa SM6 Ccesa007.pdf
La Evaluacion Formativa SM6  Ccesa007.pdfLa Evaluacion Formativa SM6  Ccesa007.pdf
La Evaluacion Formativa SM6 Ccesa007.pdfDemetrio Ccesa Rayme
 
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdfPROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdfEduardoJosVargasCama1
 
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Katherine Concepcion Gonzalez
 
activ4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdfactiv4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdfRosabel UA
 
Biografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdfBiografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdfGruberACaraballo
 
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLAACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptxCONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptxroberthirigoinvasque
 
Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024IES Vicent Andres Estelles
 
PLAN LECTOR 2024 integrado nivel inicial-miercoles 10.pptx
PLAN LECTOR 2024  integrado nivel inicial-miercoles 10.pptxPLAN LECTOR 2024  integrado nivel inicial-miercoles 10.pptx
PLAN LECTOR 2024 integrado nivel inicial-miercoles 10.pptxCamuchaCrdovaAlonso
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfMercedes Gonzalez
 
6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primariaWilian24
 
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).pptPINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).pptAlberto Rubio
 
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docxPLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docxiemerc2024
 
Revista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdfRevista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdfapunteshistoriamarmo
 

Último (20)

ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN PARÍS. Por JAVIER SOL...
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN  PARÍS. Por JAVIER SOL...ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN  PARÍS. Por JAVIER SOL...
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN PARÍS. Por JAVIER SOL...
 
Actividades para el 11 de Mayo día del himno.docx
Actividades para el 11 de Mayo día del himno.docxActividades para el 11 de Mayo día del himno.docx
Actividades para el 11 de Mayo día del himno.docx
 
La Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración AmbientalLa Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración Ambiental
 
La Evaluacion Formativa SM6 Ccesa007.pdf
La Evaluacion Formativa SM6  Ccesa007.pdfLa Evaluacion Formativa SM6  Ccesa007.pdf
La Evaluacion Formativa SM6 Ccesa007.pdf
 
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdfPROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
 
Power Point E. S.: Los dos testigos.pptx
Power Point E. S.: Los dos testigos.pptxPower Point E. S.: Los dos testigos.pptx
Power Point E. S.: Los dos testigos.pptx
 
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
 
activ4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdfactiv4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdf
 
Biografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdfBiografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdf
 
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLAACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
 
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptxCONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
 
Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024
 
Lecciones 06 Esc. Sabática. Los dos testigos
Lecciones 06 Esc. Sabática. Los dos testigosLecciones 06 Esc. Sabática. Los dos testigos
Lecciones 06 Esc. Sabática. Los dos testigos
 
PLAN LECTOR 2024 integrado nivel inicial-miercoles 10.pptx
PLAN LECTOR 2024  integrado nivel inicial-miercoles 10.pptxPLAN LECTOR 2024  integrado nivel inicial-miercoles 10.pptx
PLAN LECTOR 2024 integrado nivel inicial-miercoles 10.pptx
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
 
6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria
 
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).pptPINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
 
Novena de Pentecostés con textos de san Juan Eudes
Novena de Pentecostés con textos de san Juan EudesNovena de Pentecostés con textos de san Juan Eudes
Novena de Pentecostés con textos de san Juan Eudes
 
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docxPLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
 
Revista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdfRevista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdf
 

Ejercicios de canales canales

  • 1. Secciones de un canal. Las secciones más utilizadas en canales de conducción son la sección trapezoidal y rectangular. m tg ; 2T b my  ; 2 .........(1)A by my  ; 2 2 1 ......(2)P b y m   2 2 1b P y m   ; H A R P  (2) en (1): 2 2 2 ( 2 1 ) .......(3)A Py y m my Mínimo perímetro    SI: A= cte. Q=cte. M=cte. Manteniendo y = constante. 0 P m    3 ; 30º ; 30º 3 m arctgm    El canal trapecial de máxima eficiencia hidráulica es el que tiene el ángulo 30º  cuyas fórmulas son las siguientes: Máxima eficiencia Hidráulica canal trapecial 0º  ; T b ; A by ; 2P b y  : La máxima eficiencia hidráulica se da cuando 2b y obteniéndose las siguientes fórmulas: A= ; b=2y ; P=4y ; Utilizando las ecuaciones de la sección trapecial con b=0 tenemos: 2T m y 2 A my 2 2 1P y m  La máxima eficiencia hidráulica se da cuando MAXIMA EFICIENCIA HIDRAULICA EN UN CANAL TRIANGULAR: 0 dA dy 
  • 2. m= ; ; A= ; P= ; EJEMPLO DE APLICACIÓN Se desea dimensionar un canal de conducción para abastecer una zona irrigable de 300has. Con un módulo de riego de 1.5lts/seg/ha. Del trazo topográfico se observa que se puede llegar con una sola pendiente del eje de canal equivalente a 1/1000.De las muestras de suelo analizadas se concluye que se trata de suelo limo arcilloso cuyo ángulo de estabilidad ó reposo para estado saturado es 1 59º30  , la velocidad máxima de arrastre de las partículas es de 0.8 /m seg ¿Diseñar la sección del canal? Solución Datos: 3 1 max 0.450 0.001 59º30 0.08 : m Q seg S m V seg Suelo Limoarcilloso      Si no existe limitaciones diseñaremos un canal trapecial de máxima eficiencia hidráulica sin revestir cuyas fórmulas son las siguientes. 60º  Las fórmulas serán 2 2 1 1 2 ( ) cos b P y m sen b y        2 A by my  2 2 ( ) cos sen A y     0.023( lim )n suelo oarcilloso Remplazamos las fórmulas anteriores en la ec, de Maning 1 1 2 2 1 HQ AR i EcuacióndeManing n  2 2 ..........( ) 2 2 ( ) 2.113 .......( ) cos H y R a sen A y y b       Remplazando (a) y (b) en la ec. de Maning 2 1 2 3 2 3 (2.113 )( ) 20.450 0.023 y y i m seg  2 2 2.113 2.113(0.59) 0.7355A y m   2 4 1 2 2 2 ( ) cos mín mín P y m my sen P y        2 H y R 
  • 3. -Chequeamos la velocidad del agua debe ser menor que 0.8 m/seg 3 2 0.45 0.61 ... 0.7355 m Q mseg V ok A m seg    0.61m/seg<0.8m/seg 0.36b m -Borde libre 0 030 ( ) 0.20Lh y m  -Ancho de Corona (C): Uso peatonal (0.60m-1.0m) Uso vehicular (6.50m): Estimaremos C 0.80 m PROBLEMA DE APLICACIÓN Se desea diseñar un colector de aguas de lluvia para transportar un caudal máximo de 3 150 /m seg , el colector será de forma triangular revestido de concreto. Dimensionar la estructura para régimen crítico además encontrar la pendiente crítica. Solución Datos: 3 150 /máxQ m seg Régimen crítico Revestimiento de concreto 30º  b 0 3 3 tg m   23 3 A y 2 3 2 3 T my y  4 3 3 P y 4 3 H A R P   Para régimen crítico 2 3 1 Q T gA  .............(1) Remplazando en ecuación. (1) 2 2 3 2 3 (0.15) ( ) 3 1 3 (9,81)( ) 3 y y  se da valores a (y) hasta que la igualdad se cumpla 0.42y m De la ecuación de Maning 2 1 3 2 1 c cV R i n  2 23 (0.42) 0.102 3 A m  0.15 1.47 0.102 c Q m V A seg    2 2 3 ( )c c V n i R  2 2 3 (1.47)(0.013) (0.102) ci          0.008ci  0 00.8ci  1 2 ( ) 0.36 cos sen b y m     
  • 4. Los canales no revestidos se deben diseñar de tal forma que no haya erosión ni sedimentación. VELOCIDADES MÁXIMAS PERMISIBLES EN CANALES SIN REVESTIR MATERIAL n Agua Clara m/s Agua con limos coloidales en suspensión m/s Arena fina coloidal Franco Arenoso. no coloidal Franco limoso. no coloidal Limo aluvial no coloidal Suelo franco firme Ceniza volcánica Arcilla muy coloidal Limo aluvial muy coloidal Arcillas compactadas Grava fina  Francos a cantos rodados pequeños (no coloidal)  Limos Graduados a cantos rodados pequeños coloidal.  Grava gruesa no coloidal  Cantos rodados grandes 0.020 0.020 0.020 0.020 0.020 0.020 0.025 0.025 0.025 0.020 0.030 0.030 0.025 0.035 0.45 0.50 0.60 0.60 0.75 0.75 1.10 1.10 1.80 0.75 1.10 1.20 1.20 1.50 0.75 0.75 0.90 1.05 1.05 1.05 1.50 1.50 1.80 1.50 1.50 1.65 1.80 1.65 Los valores de esta tabla son para canales rectos con profundidad de agua igual a 1 m. Para Canales diferentes se deben corregir los valores FACTORES DE CORRECIÓN POR SINUOSIDAD Y PROFUNDIDAD CASO 1: CASO 2: SINUOSIDAD FACTOR Recto 1.00 Ligeramente sinuoso 0.95 Medianamente sinuoso 0.87 Muy sinuoso 0.78 PROFUNDIDAD((m) FACTOR 0.30 0.86 0.50 0.90 0.75 0.95 1.00 1.00 1.50 1.10 2.00 1.15 2.50 1.20 3.00 1.25 TALUDES RECOMENDADOS PARA CANALES NO REVESTIDOS: Con descargas temporales o altas fluctuaciones en la descarga (Horizontal – Vertical) TIPO DE SUELO PROFUNDIDAD (Tirante)  1.20 PROFUNDIDAD ( Tirante) > 1.20 Turba 0.25 : 1 0.5 : 1 Arcilla 1 : 1 1.5 : 1
  • 5. Franco Arcilloso 1.5 : 1 2 : 1 Franco arenoso 2 : 1 3 : 1 Arenoso 3 : 1 4 : 1 Roca Casi vertical Casi vertical BORDE LIBRE DE CANALES REVESTIDOS  Respecto del tirante 0 030Lh deltirante  Respecto al gasto  Respecto al ancho de solera CAUDAL ( m3 /seg) BORDE LIBRE (m) menor de 0.50 0.30 mayor de 0.5 0.40 ancho de solera(b)m BORDE LIBRE (m) menor de 0.80 0.40 0.80 a 1.50 0.50 1.50 a 3.0 0.60 3.0 a 4.5 0.80 mayor a 4.5 1.00 El borde libre se estima teniendo en cuenta las lluvias (fenómenos extraordinarios) en zonas lluviosas el borde libre debe ser mayor DISEÑO DE UNA RAPIDA PROBLEMA: Hallar el perfil del agua y la longitud total a revestir de la rápida de la figura que se muestra para una sección rectangular que conducirá un caudal de 5m3/seg. El suelo resiste una velocidad de 0.9 m/seg Solución DATOS TRAMO 1 TRAMO 2 TRAMO 3 0.025 0.0005 0.015 0.1 40 m 0.025 0.0005 Además el canal debe ser de máxima eficiencia: por lo tanto se tiene: TRAMO 1 TRAMO 2 TRAMO 3 i=0.0005 n=0.025 L=40 m i=0.1 n=0.05 i=0.0005 n=0.025 z
  • 6. TRAMO 1 Calculo del tirante normal: ZONA REVESTIDA ZONA SIN REVESTIR Entonces: ecuación de Fraudé es:La Y para un flujo critico se debe cumplir que y analizando para un canal rectangular se tiene el tirante critico Como es un flujo subcritico La sección de control está constituida por el punto de intersección del tramo 1 con el 2, correspondiendo su tirante TRAMO 2 Calculo del tirante normal: Como: Resolviendo la ecuación: Como la geometría de la sección transversal permanece constante el es el mismo en los tres tramos: La sección de control es la misma del tramo 1 es decir el punto de intersección del tramo 1 con el 2, correspondiendo el tirante real al . 3.5 y
  • 7. TRAMO 3 Calculo del tirante normal Como en este tramo el canal tiene la misma pendiente y la misma rugosidad el tirante es igual al tirante normal del tramo 1 La sección de control es el punto de intersección del tramo 2 con el 3. UBICACIÓN DEL RESALTO HIDRAULICO: A partir del tirante normal del tramo 2 se calcula un tirante conjugado , entonces se puede decir que: Con la ecuación de tirantes conjugados para un canal de sección transversal rectangular. Donde Se tiene: Luego se compara con el tirante normal del tramo 3 . Se observa que por lo tanto el resalto es ahogado y se ubica en el tramo 2. REVESTIMIENTO: El cálculo para el revestimiento se calcula en forma independiente. En la zona del Tramo 1, se calcula desde la sección de control con tirante hacia aguas arriba hasta el tirante que corresponde a una velocidad de 0.9 m/s, es decir: Entonces en el tramo 1 la zona que será revestida será la zona que está entre los ytirantes Resalto Hidraulico yn yc y 1 y 2 TRAMO 1 TRAMO 2 TRAMO 3 yn yn yc TRAMO 1 y=1.583
  • 8. Calculo de : Donde Donde Luego: Calculo de : Donde Luego: Calculo de : Donde Luego: Calculo de :
  • 9. Donde Luego: Calculo de : Donde Luego: Entonces la zona que se revestirá en el primer tramo será de Y finalmente la parte revestida en la rápida será: PROBLEMA Calcule el tirante normal en un canal de tierra en buenas condiciones que conduce un gasto de 4.5 m3 /seg, y cuya pendiente es de 0.40 m. por kilómetro, el ancho de plantilla es de 3.00 m, la inclinación de los taludes es 1.5: 1 y el coeficiente de rugosidad vale 0.025. Datos: Q = 4.5 m3 /seg; S=0.40 por kilometro = 0.4/1000=0.0004; b=3.0m; m=1.5:1 = 1.5; n=0.025. Solución: Para resolver el problema procedemos por tanteo:
  • 10. Tabla de cálculo. d (m) A (m2) P (m) R (m) r2/3 (m) Ar2/3 Q n/S1/2 1.20 5.76 7.32 0.786 0.8524 4.91 ≠ 1.25 6.093 7.51 0.811 0.870 5.30 ≠ 1.30 6.435 7.693 0.8364 0.8878 5.71 ≠ 1.29 6.366 7.656 0.8315 0.88436 5.629 5.625 Por lo tanto el tirante supuesto de 1.29 es correcto Checando la velocidad: Es correcta la velocidad media de la corriente PROBLEMA Un canal trapecial tiene un ancho de plantilla de 6m, talud y , determinar la pendiente normal ( ) para una profundidad normal de 1.02 m, cuando el gasto vale 11.32 m3/seg. Datos: Q=11.32 m3/S b= 6.0 m m =2:1 n=0.025 Solución: A partir de los datos que tenemos se procede a calcular el: Área hidráulica = Perímetro = Radio = Aplicando la ecuación se tiene. Considerando que y sustituido en la expresión de la velocidad queda: 1:2m 025.0n nS 222 m20.8)02.1(2)02.1)(6(  nn mdbdA 222 m56.1021)02.1(2612  mdbP n m776.0 56.10 20.8  P A R 2 3/2      R Vn S 00167.0 92.6 283.0 )776.0)(20.8( 025.032.11 22 3/2              nS