SlideShare ist ein Scribd-Unternehmen logo
1 von 37
Downloaden Sie, um offline zu lesen
Lesson 28 (Sections 18.2–5)
                Lagrange Multipliers II

                          Math 20


                     November 28, 2007


Announcements
   Problem Set 11 assigned today. Due December 5.
   next OH: Today 1–3 (SC 323)
   Midterm II review: Tuesday 12/4, 7:30-9:00pm in Hall E
   Midterm II: Thursday, 12/6, 7-8:30pm in Hall A
Outline

   A homework problem

   Restating the Method of Lagrange Multipliers
      Statement
      Justifications

   Second order conditions
      Compact feasibility sets
      Ad hoc arguments
      Analytic conditions

   Example: More than two variables

   More than one constraint
Problem 17.1.10

   Problem
   Maximize the quantity f (x, y , z) = Ax a y b z c subject to the
   constraint that px + qy + rz = m. (Here A, a, b, c, p, q, r , m are
   positive constants.)
Problem 17.1.10

   Problem
   Maximize the quantity f (x, y , z) = Ax a y b z c subject to the
   constraint that px + qy + rz = m. (Here A, a, b, c, p, q, r , m are
   positive constants.)

   Solution (By elimination)
   Solving the constraint for z in terms of x and y , we get
                                    m − px − qy
                             z=
                                         r
   So we optimize the unconstrained function
                                  Aab
                                     x y (m − px − qy )c
                    f (x, y ) =
                                  rc
We have
∂f (x, y )   A
           = c ax a−1 y b (m − px − qy )c + x a y b c(m − px − qy )c−1 (−p)
    x       r
             A
           = c x a−1 y b (m − px − qy )c−1 [a(m − px − qy ) − cpx]
            r
Likewise
 ∂f (x, y )   A
            = c x a y b−1 (m − px − qy )c−1 [b(m − px − qy ) − cqy ]
     y       r
So throwing out the critical points where x = 0, y = 0, or z = 0
(these give minimal values of f , not maximal), we get

                      (a + c)px + aqy = am
                      bpx + (b + c)qy = bm
This is a fun exercise in Cramer’s Rule:
                       am    aq                  1  1
                                           amq
                       bm (b + c)q               b b+c
          x=                       =
               (a + c)p     aq           a+c  a
                                      pq
                  bp     (b + c)q          b b+c
                    amqc           m     a
            =                    =
              pq(ac + bc + c 2 )   p a+b+c

It follows that
                       m   b               m   c
                  y=                 z=
                       q a+b+c             r a+b+c
If this is a utility-maximization problem subject to fixed budget,
the portion spent on each good ( px , for instance) is the relative
                                    m
                                                  a
degree to which that good multiplies utility ( a+b+c ).
Outline

   A homework problem

   Restating the Method of Lagrange Multipliers
      Statement
      Justifications

   Second order conditions
      Compact feasibility sets
      Ad hoc arguments
      Analytic conditions

   Example: More than two variables

   More than one constraint
Theorem (The Method of Lagrange Multipliers)
Let f (x1 , x2 , . . . , xn ) and g (x1 , x2 , . . . , xn ) be functions of several
variables. The critical points of the function f restricted to the set
g = 0 are solutions to the equations:
  ∂f                              ∂g
      (x1 , x2 , . . . , xn ) = λ     (x1 , x2 , . . . , xn ) for each i = 1, . . . , n
  ∂xi                             ∂xi
    g (x1 , x2 , . . . , xn ) = 0.

Note that this is n + 1 equations in n + 1 variables x1 , . . . , xn , λ.
Graphical Justification
   In two variables, the critical points of f restricted to the level curve
   g = 0 are found when the tangent to the the level curve of f is
   parallel to the tangent to the level curve g = 0.
These tangents have slopes

                dy            fx       dy            gx
                         =−                     =−
                                 and
                dx            fy       dx            gy
                     f                      g
These tangents have slopes

                dy            fx         dy            gx
                         =−                       =−
                                 and
                dx            fy         dx            gy
                     f                        g

So they are equal when

                                   fy
                     fx  g     f
                        = x =⇒ x =
                     fy  gy    gx  gy
or

                              fx = λgx
                              fy = λgy
Symbolic Justification


   Suppose that we can use the relation g (x1 , . . . , xn ) = 0 to solve for
   xn in terms of the the other variables x1 , . . . , xn−1 , after making
   some choices. Then the critical points of f (x1 , . . . , xn ) are
   unconstrained critical points of f (x1 , . . . , xn (x1 , . . . , xn−1 )).

                               f


               x1        x2                   xn
                                   ···


                                                           xn−1
                              x1         x2        ···
Now for any i = 1, . . . , n − 1,

                           ∂f            ∂f    ∂f    ∂xn
                                     =       +
                           ∂xi           ∂xi   ∂xn   ∂xi
                                 g                         g
                                       ∂f    ∂f ∂g /∂xi
                                           −
                                     =
                                       ∂xi   ∂xn ∂g /∂xn

     ∂f
If             = 0, then
     ∂xi   g

                ∂f /∂xi   ∂g /∂xi    ∂f /∂xi   ∂f /∂xn
                                  ⇐⇒
                        =                    =
                ∂f /∂xn   ∂g /∂xn    ∂g /∂xi   ∂g /∂xn

                  ∂f     ∂g
So as before,         =λ     for all i.
                  ∂xi    ∂xi
Another perspective

   To find the critical points of f subject to the constraint that
   g = 0, create the lagrangian function

                L = f (x1 , x2 , . . . , xn ) − λg (x1 , x2 , . . . , xn )

   If L is restricted to the set g = 0, L = f and so the constrained
   critical points are unconstrained critical points of L . So for each i,
                          ∂L         ∂f     ∂g
                              = 0 =⇒     =λ     .
                          ∂xi        ∂xi    ∂xi
   But also,
                    ∂L
                       = 0 =⇒ g (x1 , x2 , . . . , xn ) = 0.
                    ∂λ
Outline

   A homework problem

   Restating the Method of Lagrange Multipliers
      Statement
      Justifications

   Second order conditions
      Compact feasibility sets
      Ad hoc arguments
      Analytic conditions

   Example: More than two variables

   More than one constraint
Second order conditions




   The Method of Lagrange Multipliers finds the constrained critical
   points, but doesn’t determine their “type” (max, min, neither).
   So what then?
A dash of topology
Cf. Sections 17.2–3



    Definition
    A subset of Rn is called closed if it includes its boundary.
A dash of topology
Cf. Sections 17.2–3



    Definition
    A subset of Rn is called closed if it includes its boundary.




                                 x2 + y2 ≤ 1
      x2 + y2 ≤ 1                                                 y ≥0
                                  not closed                      closed
         closed

    Basically, if a subset is described by ≤ or ≥ inequalities, it is closed.
Definition
A subset of Rn is called bounded if it is contained within some
ball centered at the origin.




                           x2 + y2 ≤ 1
x2 + y2 ≤ 1                                             y ≥0
                            bounded                  not bounded
 bounded
Definition
A subset of Rn is called compact if it is closed and bounded.




                          x2 + y2 ≤ 1
x2 + y2 ≤ 1                                             y ≥0
                          not compact                not compact
  compact
Optimizing over compact sets




   Theorem (Compact Set Method)
   To find the extreme values of function f on a compact set D of
   Rn , it suffices to find
       the (unconstrained) critical points of f “inside” D
       the (constrained) critical points of f on the “boundary” of D.
Ad hoc arguments




  If D is not compact, sometimes it’s still easy to argue that as x
  gets farther away, f becomes larger, or smaller, so the critical
  points are “obviously” maxes, or mins.
Ad hoc arguments




  If D is not compact, sometimes it’s still easy to argue that as x
  gets farther away, f becomes larger, or smaller, so the critical
  points are “obviously” maxes, or mins.
  (Example later)
Analytic conditions
Recall Equation 16.13, cf. Section 18.4


          For the two-variable constrained optimization problem, we
          have (look in the book if you want the gory details):

                                                           Lλλ Lλx    Lλy
                          0          gx           gy
             d 2f
                                              fxy − λgxy = Lxλ Lxx    Lxy
                                     − λgxx
                        = gx   fxx
             dx 2
                                                           Ly λ Lyx   Lyy
                    g                − λgyx   gyy − λgyy
                          gy   fyx

          The critical point is a local max if this determinant is
          negative, and a local min if this is positive.
          The matrix on the right is the Hessian of the Lagrangian. But
          there is still a distinction between this and the unconstrained
          case. The constrained extrema are critical points of the
          Lagrangian, not extrema.
          Don’t worry too much about this!
Outline

   A homework problem

   Restating the Method of Lagrange Multipliers
      Statement
      Justifications

   Second order conditions
      Compact feasibility sets
      Ad hoc arguments
      Analytic conditions

   Example: More than two variables

   More than one constraint
Problem 17.1.10

   Problem
   Maximize the quantity f (x, y , z) = Ax a y b z c subject to the
   constraint that px + qy + rz = m. (Here A, a, b, c, p, q, r , m are
   positive constants.)
Problem 17.1.10

   Problem
   Maximize the quantity f (x, y , z) = Ax a y b z c subject to the
   constraint that px + qy + rz = m. (Here A, a, b, c, p, q, r , m are
   positive constants.)

   Solution
   The Lagrange equations are

                            Aax a−1 y b z c = λp
                            Abx a y b−1 z c = λq
                            Acx a y b z c−1 = λr


   We rule out any solution with x, y , z, or λ equal to 0 (they will
   minimize f , not maximize it).
Dividing the first two equations gives
                      ay   p        bp
                         =   =⇒ y =    x
                      bx   q        aq
Dividing the first and last equations gives
                      az   p       cp
                         =   =⇒ z = x
                      cx   r       ar
Plugging these into the equation of constraint gives
                 bp    cp            m   a
          px +      x + x = m =⇒ x =
                  a     a            p a+b+c
Outline

   A homework problem

   Restating the Method of Lagrange Multipliers
      Statement
      Justifications

   Second order conditions
      Compact feasibility sets
      Ad hoc arguments
      Analytic conditions

   Example: More than two variables

   More than one constraint
General method for more than one constraint

   If we are optimizing f (x1 , . . . , xn ) subject to gj (x1 , . . . , xn ) ≡ 0,
   j = 1, . . . , m we need multiple lambdas for them. The new
   Lagrangian is
                                                            m
            L (x1 , . . . , xn ) = f (x1 , . . . , xn ) −         λj gj (x1 , . . . , xn )
                                                            j=1

                                   ∂L                 ∂L
   The conditions are that               = 0 and            = 0 for all i and j. In
                                   ∂xi                ∂λj
   other words,
                             ∂f        ∂g1              ∂gm
                                           + · · · + λm
                                  = λ1                                           (all i)
                            ∂xi        ∂xi              ∂xi
            gj (x1 , . . . , xn ) = 0                                            (all j)
Example
Find the minimum distance between the curves xy = 1 and
x + 2y = 1.
Example
Find the minimum distance between the curves xy = 1 and
x + 2y = 1.
Reframing this, we can minimize

                f (x, y , u, v ) = (x − u)2 + (y − v )2

subject to the constraints

               xy − 1 = 0                  u + 2v = 1.
•
•
    •
                •   xy = 1
            •
•
    •           •
                    x + 2y = 1
The Lagrangian is

     L = (x − u)2 + (y − v )2 − λ(xy − 1) − µ(u + 2v − 1)

So the Lagrangian equations are

           2(x − u) = λy             −2(x − u) = µ
           2(y − v ) = λx            −2(y − v ) = 2µ

Dividing the two λ equations and the two µ equations gives
              x −u                     x −u
                     y                       1
                   =                        =.
              y −v                     y −v
                     x                       2
Since the left-hand-sides are the same, we have 2y =√ Since
                                                    x.
                                √        1                    1
                                        √ , or x = − 2, y = − √
xy = 1, we can say either x = 2, y = 2                          2
√            1
Suppose x =       2, y =   √.   Then
                            2
                  √                      √
                     2−u   1             32
                             =⇒ 2u − v =
                         =
                    1      2             2
                   √ −v
                     2

This along with u + 2v = 1 gives
                         √                      √
                 1                    1
                                          4−3 2
           u=       1+3 2        v=
                 5                   10
                          √         1
If we instead choose x = − 2, y = − √2 , we get

                        √
                   1                        1      3
                                                2+ √
                     1−3 2
              u=                       v=
                   5                        5        2
√
              1
                9−4 2
              5

          •       •
                        xy = 1
              •
     •

                        x + 2y = 1
     √
1
  9+4 2
5
Because f gets larger as x, y , u, and v get larger, the absolute
minimum is the smaller of these two critical values. So the
                               √
                     1
minimum distance is 5 9 − 4 2 .

Weitere ähnliche Inhalte

Was ist angesagt?

Lesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of CalculusLesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of CalculusMatthew Leingang
 
Use of summation notation
Use of summation notation Use of summation notation
Use of summation notation Nadeem Uddin
 
Ασκήσεις στα Όρια-Συνέχεια Συνάρτησης Γ' Λυκείου ΕΠΑΛ
Ασκήσεις στα Όρια-Συνέχεια Συνάρτησης Γ' Λυκείου ΕΠΑΛΑσκήσεις στα Όρια-Συνέχεια Συνάρτησης Γ' Λυκείου ΕΠΑΛ
Ασκήσεις στα Όρια-Συνέχεια Συνάρτησης Γ' Λυκείου ΕΠΑΛΡεβέκα Θεοδωροπούλου
 
introduction to differential equations
introduction to differential equationsintroduction to differential equations
introduction to differential equationsEmdadul Haque Milon
 
Τρίωρο διαγώνισμα προσομοίωσης Γ Λυκείου από την Περιφερειακή Εκπαίδευση Βορε...
Τρίωρο διαγώνισμα προσομοίωσης Γ Λυκείου από την Περιφερειακή Εκπαίδευση Βορε...Τρίωρο διαγώνισμα προσομοίωσης Γ Λυκείου από την Περιφερειακή Εκπαίδευση Βορε...
Τρίωρο διαγώνισμα προσομοίωσης Γ Λυκείου από την Περιφερειακή Εκπαίδευση Βορε...Μάκης Χατζόπουλος
 
Μαθηματικά Επαναληπτικό διαγώνισμα μέχρι και κυρτότητα και σημεία καμπής
Μαθηματικά   Επαναληπτικό διαγώνισμα μέχρι και κυρτότητα και σημεία καμπήςΜαθηματικά   Επαναληπτικό διαγώνισμα μέχρι και κυρτότητα και σημεία καμπής
Μαθηματικά Επαναληπτικό διαγώνισμα μέχρι και κυρτότητα και σημεία καμπήςBillonious
 
Διαγώνισμα επαναληπτικό στο Κεφάλαιο 2ο: Διαφορικός Λογισμός (edit 3)
Διαγώνισμα επαναληπτικό στο Κεφάλαιο 2ο: Διαφορικός Λογισμός (edit 3)Διαγώνισμα επαναληπτικό στο Κεφάλαιο 2ο: Διαφορικός Λογισμός (edit 3)
Διαγώνισμα επαναληπτικό στο Κεφάλαιο 2ο: Διαφορικός Λογισμός (edit 3)Μάκης Χατζόπουλος
 
Διαγώνισμα Rolle ΘΜΤ και συνέπειες + λύσεις
Διαγώνισμα Rolle ΘΜΤ και συνέπειες + λύσειςΔιαγώνισμα Rolle ΘΜΤ και συνέπειες + λύσεις
Διαγώνισμα Rolle ΘΜΤ και συνέπειες + λύσειςΜάκης Χατζόπουλος
 
Όρια - γραφικές παραστάσεις - τριγωνομετρία - Υλικό Γ Λυκείου
Όρια - γραφικές παραστάσεις - τριγωνομετρία - Υλικό Γ ΛυκείουΌρια - γραφικές παραστάσεις - τριγωνομετρία - Υλικό Γ Λυκείου
Όρια - γραφικές παραστάσεις - τριγωνομετρία - Υλικό Γ ΛυκείουΜάκης Χατζόπουλος
 
Eigenvalues in a Nutshell
Eigenvalues in a NutshellEigenvalues in a Nutshell
Eigenvalues in a Nutshellguest9006ab
 
Διαγώνισμα άλγεβρας Α' λυκείου εξισώσεις - ανισώσεις.pdf
Διαγώνισμα άλγεβρας Α' λυκείου εξισώσεις - ανισώσεις.pdfΔιαγώνισμα άλγεβρας Α' λυκείου εξισώσεις - ανισώσεις.pdf
Διαγώνισμα άλγεβρας Α' λυκείου εξισώσεις - ανισώσεις.pdfelmit2
 
σπαθάρας δημήτριος διδακτικό υλικό γλκατ τεύχος 1
σπαθάρας δημήτριος   διδακτικό υλικό γλκατ τεύχος 1σπαθάρας δημήτριος   διδακτικό υλικό γλκατ τεύχος 1
σπαθάρας δημήτριος διδακτικό υλικό γλκατ τεύχος 1Christos Loizos
 
Grade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptx
Grade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptxGrade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptx
Grade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptxErlenaMirador1
 
Ο τσελεμεντές του υποψηφίου στα Μαθηματικά Γ Λυκείου.Παράγωγος.Ενότητα Ρυθμός...
Ο τσελεμεντές του υποψηφίου στα Μαθηματικά Γ Λυκείου.Παράγωγος.Ενότητα Ρυθμός...Ο τσελεμεντές του υποψηφίου στα Μαθηματικά Γ Λυκείου.Παράγωγος.Ενότητα Ρυθμός...
Ο τσελεμεντές του υποψηφίου στα Μαθηματικά Γ Λυκείου.Παράγωγος.Ενότητα Ρυθμός...Θανάσης Δρούγας
 
Exponential and logrithmic functions
Exponential and logrithmic functionsExponential and logrithmic functions
Exponential and logrithmic functionsMalikahmad105
 
Extreme values of a function & applications of derivative
Extreme values of a function & applications of derivativeExtreme values of a function & applications of derivative
Extreme values of a function & applications of derivativeNofal Umair
 
Φύλλο εργασίες στις ρίζες πραγματικών αριθμών - Α΄ Λυκείου
Φύλλο εργασίες στις ρίζες πραγματικών αριθμών - Α΄ ΛυκείουΦύλλο εργασίες στις ρίζες πραγματικών αριθμών - Α΄ Λυκείου
Φύλλο εργασίες στις ρίζες πραγματικών αριθμών - Α΄ ΛυκείουΜάκης Χατζόπουλος
 
Φύλλα εργασίας Γεωμετρίας για την Α και Β Λυκείου [2018 - 19]
Φύλλα εργασίας Γεωμετρίας για την Α και Β Λυκείου [2018 - 19]Φύλλα εργασίας Γεωμετρίας για την Α και Β Λυκείου [2018 - 19]
Φύλλα εργασίας Γεωμετρίας για την Α και Β Λυκείου [2018 - 19]Μάκης Χατζόπουλος
 
Modeling with Quadratics
Modeling with QuadraticsModeling with Quadratics
Modeling with QuadraticsPLeach
 

Was ist angesagt? (20)

Lesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of CalculusLesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of Calculus
 
Use of summation notation
Use of summation notation Use of summation notation
Use of summation notation
 
Ασκήσεις στα Όρια-Συνέχεια Συνάρτησης Γ' Λυκείου ΕΠΑΛ
Ασκήσεις στα Όρια-Συνέχεια Συνάρτησης Γ' Λυκείου ΕΠΑΛΑσκήσεις στα Όρια-Συνέχεια Συνάρτησης Γ' Λυκείου ΕΠΑΛ
Ασκήσεις στα Όρια-Συνέχεια Συνάρτησης Γ' Λυκείου ΕΠΑΛ
 
introduction to differential equations
introduction to differential equationsintroduction to differential equations
introduction to differential equations
 
Τρίωρο διαγώνισμα προσομοίωσης Γ Λυκείου από την Περιφερειακή Εκπαίδευση Βορε...
Τρίωρο διαγώνισμα προσομοίωσης Γ Λυκείου από την Περιφερειακή Εκπαίδευση Βορε...Τρίωρο διαγώνισμα προσομοίωσης Γ Λυκείου από την Περιφερειακή Εκπαίδευση Βορε...
Τρίωρο διαγώνισμα προσομοίωσης Γ Λυκείου από την Περιφερειακή Εκπαίδευση Βορε...
 
Μαθηματικά Επαναληπτικό διαγώνισμα μέχρι και κυρτότητα και σημεία καμπής
Μαθηματικά   Επαναληπτικό διαγώνισμα μέχρι και κυρτότητα και σημεία καμπήςΜαθηματικά   Επαναληπτικό διαγώνισμα μέχρι και κυρτότητα και σημεία καμπής
Μαθηματικά Επαναληπτικό διαγώνισμα μέχρι και κυρτότητα και σημεία καμπής
 
Διαγώνισμα επαναληπτικό στο Κεφάλαιο 2ο: Διαφορικός Λογισμός (edit 3)
Διαγώνισμα επαναληπτικό στο Κεφάλαιο 2ο: Διαφορικός Λογισμός (edit 3)Διαγώνισμα επαναληπτικό στο Κεφάλαιο 2ο: Διαφορικός Λογισμός (edit 3)
Διαγώνισμα επαναληπτικό στο Κεφάλαιο 2ο: Διαφορικός Λογισμός (edit 3)
 
Διαγώνισμα Rolle ΘΜΤ και συνέπειες + λύσεις
Διαγώνισμα Rolle ΘΜΤ και συνέπειες + λύσειςΔιαγώνισμα Rolle ΘΜΤ και συνέπειες + λύσεις
Διαγώνισμα Rolle ΘΜΤ και συνέπειες + λύσεις
 
Όρια - γραφικές παραστάσεις - τριγωνομετρία - Υλικό Γ Λυκείου
Όρια - γραφικές παραστάσεις - τριγωνομετρία - Υλικό Γ ΛυκείουΌρια - γραφικές παραστάσεις - τριγωνομετρία - Υλικό Γ Λυκείου
Όρια - γραφικές παραστάσεις - τριγωνομετρία - Υλικό Γ Λυκείου
 
Eigenvalues in a Nutshell
Eigenvalues in a NutshellEigenvalues in a Nutshell
Eigenvalues in a Nutshell
 
Διαγώνισμα άλγεβρας Α' λυκείου εξισώσεις - ανισώσεις.pdf
Διαγώνισμα άλγεβρας Α' λυκείου εξισώσεις - ανισώσεις.pdfΔιαγώνισμα άλγεβρας Α' λυκείου εξισώσεις - ανισώσεις.pdf
Διαγώνισμα άλγεβρας Α' λυκείου εξισώσεις - ανισώσεις.pdf
 
σπαθάρας δημήτριος διδακτικό υλικό γλκατ τεύχος 1
σπαθάρας δημήτριος   διδακτικό υλικό γλκατ τεύχος 1σπαθάρας δημήτριος   διδακτικό υλικό γλκατ τεύχος 1
σπαθάρας δημήτριος διδακτικό υλικό γλκατ τεύχος 1
 
Grade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptx
Grade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptxGrade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptx
Grade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptx
 
Ο τσελεμεντές του υποψηφίου στα Μαθηματικά Γ Λυκείου.Παράγωγος.Ενότητα Ρυθμός...
Ο τσελεμεντές του υποψηφίου στα Μαθηματικά Γ Λυκείου.Παράγωγος.Ενότητα Ρυθμός...Ο τσελεμεντές του υποψηφίου στα Μαθηματικά Γ Λυκείου.Παράγωγος.Ενότητα Ρυθμός...
Ο τσελεμεντές του υποψηφίου στα Μαθηματικά Γ Λυκείου.Παράγωγος.Ενότητα Ρυθμός...
 
Exponential and logrithmic functions
Exponential and logrithmic functionsExponential and logrithmic functions
Exponential and logrithmic functions
 
Extreme values of a function & applications of derivative
Extreme values of a function & applications of derivativeExtreme values of a function & applications of derivative
Extreme values of a function & applications of derivative
 
Συναρτήσεις, επανάληψη
Συναρτήσεις, επανάληψη Συναρτήσεις, επανάληψη
Συναρτήσεις, επανάληψη
 
Φύλλο εργασίες στις ρίζες πραγματικών αριθμών - Α΄ Λυκείου
Φύλλο εργασίες στις ρίζες πραγματικών αριθμών - Α΄ ΛυκείουΦύλλο εργασίες στις ρίζες πραγματικών αριθμών - Α΄ Λυκείου
Φύλλο εργασίες στις ρίζες πραγματικών αριθμών - Α΄ Λυκείου
 
Φύλλα εργασίας Γεωμετρίας για την Α και Β Λυκείου [2018 - 19]
Φύλλα εργασίας Γεωμετρίας για την Α και Β Λυκείου [2018 - 19]Φύλλα εργασίας Γεωμετρίας για την Α και Β Λυκείου [2018 - 19]
Φύλλα εργασίας Γεωμετρίας για την Α και Β Λυκείου [2018 - 19]
 
Modeling with Quadratics
Modeling with QuadraticsModeling with Quadratics
Modeling with Quadratics
 

Andere mochten auch

Lesson 27: Lagrange Multipliers I
Lesson 27: Lagrange Multipliers ILesson 27: Lagrange Multipliers I
Lesson 27: Lagrange Multipliers IMatthew Leingang
 
Lesson 17: The Method of Lagrange Multipliers
Lesson 17: The Method of Lagrange MultipliersLesson 17: The Method of Lagrange Multipliers
Lesson 17: The Method of Lagrange MultipliersMatthew Leingang
 
Lagrange multipliers
Lagrange multipliersLagrange multipliers
Lagrange multipliersmaster900211
 
Lesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization ILesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization IMatthew Leingang
 
Lesson24 Implicit Differentiation Slides
Lesson24    Implicit  Differentiation SlidesLesson24    Implicit  Differentiation Slides
Lesson24 Implicit Differentiation SlidesMatthew Leingang
 
Lesson20 Tangent Planes Slides+Notes
Lesson20   Tangent Planes Slides+NotesLesson20   Tangent Planes Slides+Notes
Lesson20 Tangent Planes Slides+NotesMatthew Leingang
 
Lesson 26: Optimization II: Data Fitting
Lesson 26: Optimization II: Data FittingLesson 26: Optimization II: Data Fitting
Lesson 26: Optimization II: Data FittingMatthew Leingang
 
Lesson 25: Indeterminate Forms and L'Hôpital's Rule
Lesson 25: Indeterminate Forms and L'Hôpital's RuleLesson 25: Indeterminate Forms and L'Hôpital's Rule
Lesson 25: Indeterminate Forms and L'Hôpital's RuleMatthew Leingang
 
Lesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite IntegralsLesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite IntegralsMatthew Leingang
 
Lesson 22: Quadratic Forms
Lesson 22: Quadratic FormsLesson 22: Quadratic Forms
Lesson 22: Quadratic FormsMatthew Leingang
 
Midterm II Review Session Slides
Midterm II Review Session SlidesMidterm II Review Session Slides
Midterm II Review Session SlidesMatthew Leingang
 
Lesson 24: Implicit Differentiation
Lesson 24: Implicit DifferentiationLesson 24: Implicit Differentiation
Lesson 24: Implicit DifferentiationMatthew Leingang
 
Lesson 30: The Definite Integral
Lesson 30: The  Definite  IntegralLesson 30: The  Definite  Integral
Lesson 30: The Definite IntegralMatthew Leingang
 
Lesson 34: Introduction To Game Theory
Lesson 34: Introduction To Game TheoryLesson 34: Introduction To Game Theory
Lesson 34: Introduction To Game TheoryMatthew Leingang
 
Lesson 16: Implicit Differentiation
Lesson 16: Implicit DifferentiationLesson 16: Implicit Differentiation
Lesson 16: Implicit DifferentiationMatthew Leingang
 
Lesson 21: Partial Derivatives in Economics
Lesson 21: Partial Derivatives in EconomicsLesson 21: Partial Derivatives in Economics
Lesson 21: Partial Derivatives in EconomicsMatthew Leingang
 

Andere mochten auch (20)

Lesson 27: Lagrange Multipliers I
Lesson 27: Lagrange Multipliers ILesson 27: Lagrange Multipliers I
Lesson 27: Lagrange Multipliers I
 
Lesson 17: The Method of Lagrange Multipliers
Lesson 17: The Method of Lagrange MultipliersLesson 17: The Method of Lagrange Multipliers
Lesson 17: The Method of Lagrange Multipliers
 
Lagrange multipliers
Lagrange multipliersLagrange multipliers
Lagrange multipliers
 
Midterm II Review
Midterm II ReviewMidterm II Review
Midterm II Review
 
Lesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization ILesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization I
 
Lesson24 Implicit Differentiation Slides
Lesson24    Implicit  Differentiation SlidesLesson24    Implicit  Differentiation Slides
Lesson24 Implicit Differentiation Slides
 
Lesson20 Tangent Planes Slides+Notes
Lesson20   Tangent Planes Slides+NotesLesson20   Tangent Planes Slides+Notes
Lesson20 Tangent Planes Slides+Notes
 
Lesson 29: Areas
Lesson 29: AreasLesson 29: Areas
Lesson 29: Areas
 
Lesson 26: Optimization II: Data Fitting
Lesson 26: Optimization II: Data FittingLesson 26: Optimization II: Data Fitting
Lesson 26: Optimization II: Data Fitting
 
Lesson 25: Indeterminate Forms and L'Hôpital's Rule
Lesson 25: Indeterminate Forms and L'Hôpital's RuleLesson 25: Indeterminate Forms and L'Hôpital's Rule
Lesson 25: Indeterminate Forms and L'Hôpital's Rule
 
Lesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite IntegralsLesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite Integrals
 
Lesson 22: Quadratic Forms
Lesson 22: Quadratic FormsLesson 22: Quadratic Forms
Lesson 22: Quadratic Forms
 
Lesson 23: The Chain Rule
Lesson 23: The Chain RuleLesson 23: The Chain Rule
Lesson 23: The Chain Rule
 
Midterm II Review Session Slides
Midterm II Review Session SlidesMidterm II Review Session Slides
Midterm II Review Session Slides
 
Lesson 24: Implicit Differentiation
Lesson 24: Implicit DifferentiationLesson 24: Implicit Differentiation
Lesson 24: Implicit Differentiation
 
Lesson 30: The Definite Integral
Lesson 30: The  Definite  IntegralLesson 30: The  Definite  Integral
Lesson 30: The Definite Integral
 
Lesson 34: Introduction To Game Theory
Lesson 34: Introduction To Game TheoryLesson 34: Introduction To Game Theory
Lesson 34: Introduction To Game Theory
 
Lesson 19: Related Rates
Lesson 19: Related RatesLesson 19: Related Rates
Lesson 19: Related Rates
 
Lesson 16: Implicit Differentiation
Lesson 16: Implicit DifferentiationLesson 16: Implicit Differentiation
Lesson 16: Implicit Differentiation
 
Lesson 21: Partial Derivatives in Economics
Lesson 21: Partial Derivatives in EconomicsLesson 21: Partial Derivatives in Economics
Lesson 21: Partial Derivatives in Economics
 

Ähnlich wie Lesson 28: Lagrange Multipliers II

Lesson18 Double Integrals Over Rectangles Slides
Lesson18   Double Integrals Over Rectangles SlidesLesson18   Double Integrals Over Rectangles Slides
Lesson18 Double Integrals Over Rectangles SlidesMatthew Leingang
 
Lesson 9: Basic Differentiation Rules
Lesson 9: Basic Differentiation RulesLesson 9: Basic Differentiation Rules
Lesson 9: Basic Differentiation RulesMatthew Leingang
 
Lesson 21: Curve Sketching II (Section 4 version)
Lesson 21: Curve Sketching  II (Section 4 version)Lesson 21: Curve Sketching  II (Section 4 version)
Lesson 21: Curve Sketching II (Section 4 version)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Matthew Leingang
 
Lesson 21: Curve Sketching II (Section 10 version)
Lesson 21: Curve Sketching II (Section 10 version)Lesson 21: Curve Sketching II (Section 10 version)
Lesson 21: Curve Sketching II (Section 10 version)Matthew Leingang
 
Roots equations
Roots equationsRoots equations
Roots equationsoscar
 
Roots equations
Roots equationsRoots equations
Roots equationsoscar
 
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)Matthew Leingang
 
Lesson 19: Partial Derivatives
Lesson 19: Partial DerivativesLesson 19: Partial Derivatives
Lesson 19: Partial DerivativesMatthew Leingang
 
Bai giang ham so kha vi va vi phan cua ham nhieu bien
Bai giang ham so kha vi va vi phan cua ham nhieu bienBai giang ham so kha vi va vi phan cua ham nhieu bien
Bai giang ham so kha vi va vi phan cua ham nhieu bienNhan Nguyen
 
Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Matthew Leingang
 
X2 T05 06 Partial Fractions
X2 T05 06 Partial FractionsX2 T05 06 Partial Fractions
X2 T05 06 Partial FractionsNigel Simmons
 
Lesson 24: The Definite Integral (Section 10 version)
Lesson 24: The Definite Integral (Section 10 version)Lesson 24: The Definite Integral (Section 10 version)
Lesson 24: The Definite Integral (Section 10 version)Matthew Leingang
 
Lesson 24: The Definite Integral (Section 4 version)
Lesson 24: The Definite Integral (Section 4 version)Lesson 24: The Definite Integral (Section 4 version)
Lesson 24: The Definite Integral (Section 4 version)Matthew Leingang
 
Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityMatthew Leingang
 
Lesson 21: Curve Sketching (Section 4 version)
Lesson 21: Curve Sketching (Section 4 version)Lesson 21: Curve Sketching (Section 4 version)
Lesson 21: Curve Sketching (Section 4 version)Matthew Leingang
 
Lesson 4 - Calculating Limits (Slides+Notes)
Lesson 4 - Calculating Limits (Slides+Notes)Lesson 4 - Calculating Limits (Slides+Notes)
Lesson 4 - Calculating Limits (Slides+Notes)Matthew Leingang
 

Ähnlich wie Lesson 28: Lagrange Multipliers II (20)

Lesson18 Double Integrals Over Rectangles Slides
Lesson18   Double Integrals Over Rectangles SlidesLesson18   Double Integrals Over Rectangles Slides
Lesson18 Double Integrals Over Rectangles Slides
 
Lesson 9: Basic Differentiation Rules
Lesson 9: Basic Differentiation RulesLesson 9: Basic Differentiation Rules
Lesson 9: Basic Differentiation Rules
 
Lesson 21: Curve Sketching II (Section 4 version)
Lesson 21: Curve Sketching  II (Section 4 version)Lesson 21: Curve Sketching  II (Section 4 version)
Lesson 21: Curve Sketching II (Section 4 version)
 
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
 
Lesson 21: Curve Sketching II (Section 10 version)
Lesson 21: Curve Sketching II (Section 10 version)Lesson 21: Curve Sketching II (Section 10 version)
Lesson 21: Curve Sketching II (Section 10 version)
 
Roots equations
Roots equationsRoots equations
Roots equations
 
Roots equations
Roots equationsRoots equations
Roots equations
 
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
 
Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)
 
Matlab
MatlabMatlab
Matlab
 
Lesson 19: Partial Derivatives
Lesson 19: Partial DerivativesLesson 19: Partial Derivatives
Lesson 19: Partial Derivatives
 
Bai giang ham so kha vi va vi phan cua ham nhieu bien
Bai giang ham so kha vi va vi phan cua ham nhieu bienBai giang ham so kha vi va vi phan cua ham nhieu bien
Bai giang ham so kha vi va vi phan cua ham nhieu bien
 
Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)
 
X2 T05 06 Partial Fractions
X2 T05 06 Partial FractionsX2 T05 06 Partial Fractions
X2 T05 06 Partial Fractions
 
Lesson 24: The Definite Integral (Section 10 version)
Lesson 24: The Definite Integral (Section 10 version)Lesson 24: The Definite Integral (Section 10 version)
Lesson 24: The Definite Integral (Section 10 version)
 
Lesson 24: The Definite Integral (Section 4 version)
Lesson 24: The Definite Integral (Section 4 version)Lesson 24: The Definite Integral (Section 4 version)
Lesson 24: The Definite Integral (Section 4 version)
 
Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and Continuity
 
Lesson 21: Curve Sketching (Section 4 version)
Lesson 21: Curve Sketching (Section 4 version)Lesson 21: Curve Sketching (Section 4 version)
Lesson 21: Curve Sketching (Section 4 version)
 
Midterm I Review
Midterm I ReviewMidterm I Review
Midterm I Review
 
Lesson 4 - Calculating Limits (Slides+Notes)
Lesson 4 - Calculating Limits (Slides+Notes)Lesson 4 - Calculating Limits (Slides+Notes)
Lesson 4 - Calculating Limits (Slides+Notes)
 

Mehr von Matthew Leingang

Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceMatthew Leingang
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsMatthew Leingang
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Matthew Leingang
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Matthew Leingang
 

Mehr von Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 

Kürzlich hochgeladen

Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Jeffrey Haguewood
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...apidays
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamUiPathCommunity
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxRustici Software
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businesspanagenda
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingEdi Saputra
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024The Digital Insurer
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...apidays
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsNanddeep Nachan
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Zilliz
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Victor Rentea
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native ApplicationsWSO2
 
Cyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdfCyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdfOverkill Security
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdfSandro Moreira
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Victor Rentea
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyKhushali Kathiriya
 

Kürzlich hochgeladen (20)

Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Cyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdfCyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdf
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 

Lesson 28: Lagrange Multipliers II

  • 1. Lesson 28 (Sections 18.2–5) Lagrange Multipliers II Math 20 November 28, 2007 Announcements Problem Set 11 assigned today. Due December 5. next OH: Today 1–3 (SC 323) Midterm II review: Tuesday 12/4, 7:30-9:00pm in Hall E Midterm II: Thursday, 12/6, 7-8:30pm in Hall A
  • 2. Outline A homework problem Restating the Method of Lagrange Multipliers Statement Justifications Second order conditions Compact feasibility sets Ad hoc arguments Analytic conditions Example: More than two variables More than one constraint
  • 3. Problem 17.1.10 Problem Maximize the quantity f (x, y , z) = Ax a y b z c subject to the constraint that px + qy + rz = m. (Here A, a, b, c, p, q, r , m are positive constants.)
  • 4. Problem 17.1.10 Problem Maximize the quantity f (x, y , z) = Ax a y b z c subject to the constraint that px + qy + rz = m. (Here A, a, b, c, p, q, r , m are positive constants.) Solution (By elimination) Solving the constraint for z in terms of x and y , we get m − px − qy z= r So we optimize the unconstrained function Aab x y (m − px − qy )c f (x, y ) = rc
  • 5. We have ∂f (x, y ) A = c ax a−1 y b (m − px − qy )c + x a y b c(m − px − qy )c−1 (−p) x r A = c x a−1 y b (m − px − qy )c−1 [a(m − px − qy ) − cpx] r Likewise ∂f (x, y ) A = c x a y b−1 (m − px − qy )c−1 [b(m − px − qy ) − cqy ] y r So throwing out the critical points where x = 0, y = 0, or z = 0 (these give minimal values of f , not maximal), we get (a + c)px + aqy = am bpx + (b + c)qy = bm
  • 6. This is a fun exercise in Cramer’s Rule: am aq 1 1 amq bm (b + c)q b b+c x= = (a + c)p aq a+c a pq bp (b + c)q b b+c amqc m a = = pq(ac + bc + c 2 ) p a+b+c It follows that m b m c y= z= q a+b+c r a+b+c If this is a utility-maximization problem subject to fixed budget, the portion spent on each good ( px , for instance) is the relative m a degree to which that good multiplies utility ( a+b+c ).
  • 7. Outline A homework problem Restating the Method of Lagrange Multipliers Statement Justifications Second order conditions Compact feasibility sets Ad hoc arguments Analytic conditions Example: More than two variables More than one constraint
  • 8. Theorem (The Method of Lagrange Multipliers) Let f (x1 , x2 , . . . , xn ) and g (x1 , x2 , . . . , xn ) be functions of several variables. The critical points of the function f restricted to the set g = 0 are solutions to the equations: ∂f ∂g (x1 , x2 , . . . , xn ) = λ (x1 , x2 , . . . , xn ) for each i = 1, . . . , n ∂xi ∂xi g (x1 , x2 , . . . , xn ) = 0. Note that this is n + 1 equations in n + 1 variables x1 , . . . , xn , λ.
  • 9. Graphical Justification In two variables, the critical points of f restricted to the level curve g = 0 are found when the tangent to the the level curve of f is parallel to the tangent to the level curve g = 0.
  • 10. These tangents have slopes dy fx dy gx =− =− and dx fy dx gy f g
  • 11. These tangents have slopes dy fx dy gx =− =− and dx fy dx gy f g So they are equal when fy fx g f = x =⇒ x = fy gy gx gy or fx = λgx fy = λgy
  • 12. Symbolic Justification Suppose that we can use the relation g (x1 , . . . , xn ) = 0 to solve for xn in terms of the the other variables x1 , . . . , xn−1 , after making some choices. Then the critical points of f (x1 , . . . , xn ) are unconstrained critical points of f (x1 , . . . , xn (x1 , . . . , xn−1 )). f x1 x2 xn ··· xn−1 x1 x2 ···
  • 13. Now for any i = 1, . . . , n − 1, ∂f ∂f ∂f ∂xn = + ∂xi ∂xi ∂xn ∂xi g g ∂f ∂f ∂g /∂xi − = ∂xi ∂xn ∂g /∂xn ∂f If = 0, then ∂xi g ∂f /∂xi ∂g /∂xi ∂f /∂xi ∂f /∂xn ⇐⇒ = = ∂f /∂xn ∂g /∂xn ∂g /∂xi ∂g /∂xn ∂f ∂g So as before, =λ for all i. ∂xi ∂xi
  • 14. Another perspective To find the critical points of f subject to the constraint that g = 0, create the lagrangian function L = f (x1 , x2 , . . . , xn ) − λg (x1 , x2 , . . . , xn ) If L is restricted to the set g = 0, L = f and so the constrained critical points are unconstrained critical points of L . So for each i, ∂L ∂f ∂g = 0 =⇒ =λ . ∂xi ∂xi ∂xi But also, ∂L = 0 =⇒ g (x1 , x2 , . . . , xn ) = 0. ∂λ
  • 15. Outline A homework problem Restating the Method of Lagrange Multipliers Statement Justifications Second order conditions Compact feasibility sets Ad hoc arguments Analytic conditions Example: More than two variables More than one constraint
  • 16. Second order conditions The Method of Lagrange Multipliers finds the constrained critical points, but doesn’t determine their “type” (max, min, neither). So what then?
  • 17. A dash of topology Cf. Sections 17.2–3 Definition A subset of Rn is called closed if it includes its boundary.
  • 18. A dash of topology Cf. Sections 17.2–3 Definition A subset of Rn is called closed if it includes its boundary. x2 + y2 ≤ 1 x2 + y2 ≤ 1 y ≥0 not closed closed closed Basically, if a subset is described by ≤ or ≥ inequalities, it is closed.
  • 19. Definition A subset of Rn is called bounded if it is contained within some ball centered at the origin. x2 + y2 ≤ 1 x2 + y2 ≤ 1 y ≥0 bounded not bounded bounded
  • 20. Definition A subset of Rn is called compact if it is closed and bounded. x2 + y2 ≤ 1 x2 + y2 ≤ 1 y ≥0 not compact not compact compact
  • 21. Optimizing over compact sets Theorem (Compact Set Method) To find the extreme values of function f on a compact set D of Rn , it suffices to find the (unconstrained) critical points of f “inside” D the (constrained) critical points of f on the “boundary” of D.
  • 22. Ad hoc arguments If D is not compact, sometimes it’s still easy to argue that as x gets farther away, f becomes larger, or smaller, so the critical points are “obviously” maxes, or mins.
  • 23. Ad hoc arguments If D is not compact, sometimes it’s still easy to argue that as x gets farther away, f becomes larger, or smaller, so the critical points are “obviously” maxes, or mins. (Example later)
  • 24. Analytic conditions Recall Equation 16.13, cf. Section 18.4 For the two-variable constrained optimization problem, we have (look in the book if you want the gory details): Lλλ Lλx Lλy 0 gx gy d 2f fxy − λgxy = Lxλ Lxx Lxy − λgxx = gx fxx dx 2 Ly λ Lyx Lyy g − λgyx gyy − λgyy gy fyx The critical point is a local max if this determinant is negative, and a local min if this is positive. The matrix on the right is the Hessian of the Lagrangian. But there is still a distinction between this and the unconstrained case. The constrained extrema are critical points of the Lagrangian, not extrema. Don’t worry too much about this!
  • 25. Outline A homework problem Restating the Method of Lagrange Multipliers Statement Justifications Second order conditions Compact feasibility sets Ad hoc arguments Analytic conditions Example: More than two variables More than one constraint
  • 26. Problem 17.1.10 Problem Maximize the quantity f (x, y , z) = Ax a y b z c subject to the constraint that px + qy + rz = m. (Here A, a, b, c, p, q, r , m are positive constants.)
  • 27. Problem 17.1.10 Problem Maximize the quantity f (x, y , z) = Ax a y b z c subject to the constraint that px + qy + rz = m. (Here A, a, b, c, p, q, r , m are positive constants.) Solution The Lagrange equations are Aax a−1 y b z c = λp Abx a y b−1 z c = λq Acx a y b z c−1 = λr We rule out any solution with x, y , z, or λ equal to 0 (they will minimize f , not maximize it).
  • 28. Dividing the first two equations gives ay p bp = =⇒ y = x bx q aq Dividing the first and last equations gives az p cp = =⇒ z = x cx r ar Plugging these into the equation of constraint gives bp cp m a px + x + x = m =⇒ x = a a p a+b+c
  • 29. Outline A homework problem Restating the Method of Lagrange Multipliers Statement Justifications Second order conditions Compact feasibility sets Ad hoc arguments Analytic conditions Example: More than two variables More than one constraint
  • 30. General method for more than one constraint If we are optimizing f (x1 , . . . , xn ) subject to gj (x1 , . . . , xn ) ≡ 0, j = 1, . . . , m we need multiple lambdas for them. The new Lagrangian is m L (x1 , . . . , xn ) = f (x1 , . . . , xn ) − λj gj (x1 , . . . , xn ) j=1 ∂L ∂L The conditions are that = 0 and = 0 for all i and j. In ∂xi ∂λj other words, ∂f ∂g1 ∂gm + · · · + λm = λ1 (all i) ∂xi ∂xi ∂xi gj (x1 , . . . , xn ) = 0 (all j)
  • 31. Example Find the minimum distance between the curves xy = 1 and x + 2y = 1.
  • 32. Example Find the minimum distance between the curves xy = 1 and x + 2y = 1. Reframing this, we can minimize f (x, y , u, v ) = (x − u)2 + (y − v )2 subject to the constraints xy − 1 = 0 u + 2v = 1.
  • 33. • • • • xy = 1 • • • • x + 2y = 1
  • 34. The Lagrangian is L = (x − u)2 + (y − v )2 − λ(xy − 1) − µ(u + 2v − 1) So the Lagrangian equations are 2(x − u) = λy −2(x − u) = µ 2(y − v ) = λx −2(y − v ) = 2µ Dividing the two λ equations and the two µ equations gives x −u x −u y 1 = =. y −v y −v x 2 Since the left-hand-sides are the same, we have 2y =√ Since x. √ 1 1 √ , or x = − 2, y = − √ xy = 1, we can say either x = 2, y = 2 2
  • 35. 1 Suppose x = 2, y = √. Then 2 √ √ 2−u 1 32 =⇒ 2u − v = = 1 2 2 √ −v 2 This along with u + 2v = 1 gives √ √ 1 1 4−3 2 u= 1+3 2 v= 5 10 √ 1 If we instead choose x = − 2, y = − √2 , we get √ 1 1 3 2+ √ 1−3 2 u= v= 5 5 2
  • 36. 1 9−4 2 5 • • xy = 1 • • x + 2y = 1 √ 1 9+4 2 5
  • 37. Because f gets larger as x, y , u, and v get larger, the absolute minimum is the smaller of these two critical values. So the √ 1 minimum distance is 5 9 − 4 2 .