SlideShare ist ein Scribd-Unternehmen logo
1 von 41
Downloaden Sie, um offline zu lesen
Section 3.5
  Inverse Trigonometric
        Functions
                     V63.0121, Calculus I


                     March 11–12, 2009


Announcements
   Get half of your unearned ALEKS points back by March 22
                                            .   .   .   .    .   .
What functions are invertible?



   In order for f−1 to be a function, there must be only one a in D
   corresponding to each b in E.
       Such a function is called one-to-one
       The graph of such a function passes the horizontal line test:
       any horizontal line intersects the graph in exactly one point if at
       all.
       If f is continuous, then f−1 is continuous.




                                                     .   .   .   .    .      .
Outline



   Inverse Trigonometric Functions



   Derivatives of Inverse Trigonometric Functions
      Arcsine
      Arccosine
      Arctangent
      Arcsecant




                                                .   .   .   .   .   .
arcsin

   Arcsin is the inverse of the sine function after restriction to
   [−π/2, π/2].

                                      y
                                      .



                              .       .       .                                 x
                                                                                .
                                                                         s
                                                                         . in
                              π               π
                            −               −
                            .               .
                               2               2




                                                    .    .    .      .    .         .
arcsin

   Arcsin is the inverse of the sine function after restriction to
   [−π/2, π/2].

                                      y
                                      .



                              .       .       .                                 x
                                                                                .
                                                                         s
                                                                         . in
                              π               π
                            −               −
                            .               .
                               2               2




                                                    .    .    .      .    .         .
arcsin

   Arcsin is the inverse of the sine function after restriction to
   [−π/2, π/2].

                                      y
                                      .
                                                   . =x
                                                   y


                              .       .       .                                 x
                                                                                .
                                                                         s
                                                                         . in
                              π               π
                            −               −
                            .               .
                               2               2




                                                    .     .   .      .    .         .
arcsin

   Arcsin is the inverse of the sine function after restriction to
   [−π/2, π/2].

                                      y
                                      .
                                            a
                                            . rcsin

                              .       .       .                                 x
                                                                                .
                                                                         s
                                                                         . in
                              π               π
                            −               −
                            .               .
                               2               2



         The domain of arcsin is [−1, 1]
                               [ π π]
         The range of arcsin is − ,
                                  22

                                                      .   .   .      .    .         .
arccos

   Arccos is the inverse of the cosine function after restriction to [0, π]



                                     y
                                     .


                                                                          c
                                                                          . os
                                       .                  .                      x
                                                                                 .
                                                        π
                                                        .
                                     0
                                     .




                                                    .         .   .   .    .         .
arccos

   Arccos is the inverse of the cosine function after restriction to [0, π]



                                     y
                                     .


                                                                          c
                                                                          . os
                                       .                  .                      x
                                                                                 .
                                                        π
                                                        .
                                     0
                                     .




                                                    .         .   .   .    .         .
arccos

   Arccos is the inverse of the cosine function after restriction to [0, π]



                                     y
                                     .
                                                 . =x
                                                 y

                                                                          c
                                                                          . os
                                       .                  .                      x
                                                                                 .
                                                        π
                                                        .
                                     0
                                     .




                                                    .         .   .   .    .         .
arccos

   Arccos is the inverse of the cosine function after restriction to [0, π]

                                  a
                                  . rccos
                                      y
                                      .


                                                                          c
                                                                          . os
                                           .              .                      x
                                                                                 .
                                                        π
                                                        .
                                         0
                                         .




         The domain of arccos is [−1, 1]
         The range of arccos is [0, π]

                                                    .         .   .   .    .         .
arctan
   Arctan is the inverse of the tangent function after restriction to
   [−π/2, π/2].
                                     y
                                     .




                                      .                                      x
                                                                             .
                              π             π
             3π                                             3π
                            −
           −                .               .
           .                                                .
                              2              2
              2                                               2




                                                                  t
                                                                  . an


                                                   .    .    .       .   .       .
arctan
   Arctan is the inverse of the tangent function after restriction to
   [−π/2, π/2].
                                     y
                                     .




                                      .                                      x
                                                                             .
                              π             π
             3π                                             3π
                            −
           −                .               .
           .                                                .
                              2              2
              2                                               2




                                                                  t
                                                                  . an


                                                   .    .    .       .   .       .
arctan
   Arctan is the inverse of the tangent function after restriction to
                                                           . =x
                                                           y
   [−π/2, π/2].
                                     y
                                     .




                                      .                                      x
                                                                             .
                              π             π
             3π                                             3π
                            −
           −                .               .
           .                                                .
                              2              2
              2                                               2




                                                                  t
                                                                  . an


                                                   .    .    .       .   .       .
arctan
   Arctan is the inverse of the tangent function after restriction to
   [−π/2, π/2].
                                     y
                                     .

                                   π
                                   .                                        a
                                                                            . rctan
                                    2

                                         .                                  x
                                                                            .

                                     π
                                 −
                                 .
                                     2

         The domain of arctan is (−∞, ∞)
                               ( π π)
         The range of arctan is − ,
                                   22
                         π                  π
          lim arctan x = , lim arctan x = −
                         2 x→−∞             2
         x→∞

                                                   .    .    .    .     .       .
Outline



   Inverse Trigonometric Functions



   Derivatives of Inverse Trigonometric Functions
      Arcsine
      Arccosine
      Arctangent
      Arcsecant




                                                .   .   .   .   .   .
Theorem (The Inverse Function Theorem)
Let f be differentiable at a, and f′ (a) ̸= 0. Then f−1 is defined in an open
interval containing b = f(a), and

                                                 1
                          (f−1 )′ (b) =   ′ −1
                                          f (f       (b))




                                                            .   .   .   .   .   .
Theorem (The Inverse Function Theorem)
Let f be differentiable at a, and f′ (a) ̸= 0. Then f−1 is defined in an open
interval containing b = f(a), and

                                                   1
                            (f−1 )′ (b) =   ′ −1
                                            f (f       (b))


“Proof”.
If y = f−1 (x), then
                                   f(y) = x,
So by implicit differentiation

                        dy        dy    1         1
               f′ (y)      = 1 =⇒    =′     = ′ −1
                        dx        dx  f (y)   f (f (x))



                                                              .   .   .   .   .   .
The derivative of arcsin

   Let y = arcsin x, so x = sin y. Then

                      dy        dy    1           1
                         = 1 =⇒    =       =
              cos y
                      dx        dx   cos y   cos(arcsin x)




                                                .   .   .    .   .   .
The derivative of arcsin

   Let y = arcsin x, so x = sin y. Then

                       dy        dy    1           1
                          = 1 =⇒    =       =
               cos y
                       dx        dx   cos y   cos(arcsin x)

  To simplify, look at a right
  triangle:




                                                     .



                                                 .       .   .   .   .   .
The derivative of arcsin

   Let y = arcsin x, so x = sin y. Then

                       dy        dy    1           1
                          = 1 =⇒    =       =
               cos y
                       dx        dx   cos y   cos(arcsin x)

  To simplify, look at a right
  triangle:

                                                             1
                                                             .
                                                                         x
                                                                         .



                                                     .



                                                 .       .       .   .       .   .
The derivative of arcsin

   Let y = arcsin x, so x = sin y. Then

                       dy        dy    1           1
                          = 1 =⇒    =       =
               cos y
                       dx        dx   cos y   cos(arcsin x)

  To simplify, look at a right
  triangle:

                                                               1
                                                               .
                                                                           x
                                                                           .


                                                         . = arcsin x
                                                         y
                                                     .



                                                 .         .       .   .       .   .
The derivative of arcsin

   Let y = arcsin x, so x = sin y. Then

                       dy        dy    1           1
                          = 1 =⇒    =       =
               cos y
                       dx        dx   cos y   cos(arcsin x)

  To simplify, look at a right
  triangle:

                                                            1
                                                            .
                                                                        x
                                                                        .


                                                      . = arcsin x
                                                      y
                                                     .√
                                                       . 1 − x2


                                                 .      .       .   .       .   .
The derivative of arcsin

   Let y = arcsin x, so x = sin y. Then

                      dy        dy    1           1
                         = 1 =⇒    =       =
              cos y
                      dx        dx   cos y   cos(arcsin x)

  To simplify, look at a right
  triangle:
                       √
      cos(arcsin x) = 1 − x2                               1
                                                           .
                                                                       x
                                                                       .


                                                     . = arcsin x
                                                     y
                                                    .√
                                                      . 1 − x2


                                                .      .       .   .       .   .
The derivative of arcsin

   Let y = arcsin x, so x = sin y. Then

                      dy        dy    1           1
                         = 1 =⇒    =       =
              cos y
                      dx        dx   cos y   cos(arcsin x)

  To simplify, look at a right
  triangle:
                       √
      cos(arcsin x) = 1 − x2                               1
                                                           .
                                                                       x
                                                                       .
   So
     d                  1
        arcsin(x) = √                                . = arcsin x
                                                     y
                      1 − x2                        .√
     dx
                                                      . 1 − x2


                                                .      .       .   .       .   .
Graphing arcsin and its derivative



                                          1
                                     .√
                                         1 − x2
                                      a
                                      . rcsin


                             .
                       |          |
                       .          .
                      −
                      .1         1
                                 .




                                              .   .   .   .   .   .
The derivative of arccos

   Let y = arccos x, so x = cos y. Then

                     dy        dy     1              1
           − sin y      = 1 =⇒    =         =
                                    − sin y   − sin(arccos x)
                     dx        dx




                                                .   .    .      .   .   .
The derivative of arccos

   Let y = arccos x, so x = cos y. Then

                     dy        dy     1              1
           − sin y      = 1 =⇒    =         =
                                    − sin y   − sin(arccos x)
                     dx        dx

  To simplify, look at a right
  triangle:
                       √
      sin(arccos x) = 1 − x2                                       √
                                                       1
                                                       .
                                                                   . 1 − x2
  So
    d                    1                        . = arccos x
                                                  y
       arccos(x) = − √                        .
                       1 − x2
    dx                                                x
                                                      .


                                                   .       .   .      .   .   .
Graphing arcsin and arccos



       a
       . rccos



                      a
                      . rcsin


            .
      |           |
      .           .
     −
     .1          1
                 .




                                .   .   .   .   .   .
Graphing arcsin and arccos



       a
       . rccos
                                Note
                                                       (π    )
                                                          −θ
                                           cos θ = sin
                                                        2
                      a
                      . rcsin
                                                   π
                                     =⇒ arccos x = − arcsin x
                                                   2
            .                   So it’s not a surprise that their
      |           |
      .           .
     −
     .1          1
                 .              derivatives are opposites.




                                               .    .    .    .     .   .
The derivative of arctan

   Let y = arctan x, so x = tan y. Then

                      dy        dy     1
             sec2 y                         = cos2 (arctan x)
                         = 1 =⇒    =
                                     sec2 y
                      dx        dx




                                                 .   .    .     .   .   .
The derivative of arctan

   Let y = arctan x, so x = tan y. Then

                       dy        dy     1
              sec2 y                         = cos2 (arctan x)
                          = 1 =⇒    =
                                      sec2 y
                       dx        dx

  To simplify, look at a right
  triangle:




                                                      .



                                                  .       .   .   .   .   .
The derivative of arctan

   Let y = arctan x, so x = tan y. Then

                       dy        dy     1
              sec2 y                         = cos2 (arctan x)
                          = 1 =⇒    =
                                      sec2 y
                       dx        dx

  To simplify, look at a right
  triangle:



                                                                      x
                                                                      .



                                                      .
                                                              1
                                                              .


                                                  .       .   .   .       .   .
The derivative of arctan

   Let y = arctan x, so x = tan y. Then

                       dy        dy     1
              sec2 y                         = cos2 (arctan x)
                          = 1 =⇒    =
                                      sec2 y
                       dx        dx

  To simplify, look at a right
  triangle:



                                                                         x
                                                                         .


                                                          . = arctan x
                                                          y
                                                      .
                                                              1
                                                              .


                                                  .       .    .   .         .   .
The derivative of arctan

   Let y = arctan x, so x = tan y. Then

                       dy        dy     1
              sec2 y                         = cos2 (arctan x)
                          = 1 =⇒    =
                                      sec2 y
                       dx        dx

  To simplify, look at a right
  triangle:


                                                  √
                                                                         x
                                                                         .
                                                  . 1 + x2


                                                          . = arctan x
                                                          y
                                                      .
                                                              1
                                                              .


                                                  .       .    .   .         .   .
The derivative of arctan

   Let y = arctan x, so x = tan y. Then

                       dy        dy     1
              sec2 y                         = cos2 (arctan x)
                          = 1 =⇒    =
                                      sec2 y
                       dx        dx

  To simplify, look at a right
  triangle:

                           1
     cos(arctan x) = √
                                                  √
                          1 + x2
                                                                         x
                                                                         .
                                                  . 1 + x2


                                                          . = arctan x
                                                          y
                                                      .
                                                              1
                                                              .


                                                  .       .    .   .         .   .
The derivative of arctan

   Let y = arctan x, so x = tan y. Then

                       dy        dy     1
              sec2 y                         = cos2 (arctan x)
                          = 1 =⇒    =
                                      sec2 y
                       dx        dx

  To simplify, look at a right
  triangle:

                           1
     cos(arctan x) = √
                                                  √
                          1 + x2
                                                                         x
                                                                         .
                                                  . 1 + x2
   So
        d                1
                                                          . = arctan x
                                                          y
           arctan(x) =
                                                      .
                       1 + x2
        dx
                                                              1
                                                              .


                                                  .       .    .   .         .   .
Graphing arctan and its derivative



                           y
                           .

                                                     a
                                                     . rctan

                                                        1
                            .                        x
                                                     .
                                                      1 + x2




                                     .   .   .   .   .     .
Example
                    √
                        x. Find f′ (x).
Let f(x) = arctan




                                          .   .   .   .   .   .
Example
                    √
                        x. Find f′ (x).
Let f(x) = arctan

Solution

                    √              d√
           d                 1            1   1
                                            ·√
                            (√ )2
              arctan x =              x=
                                         1+x 2 x
           dx                   x dx
                         1+
                              1
                       =√        √
                         2 x + 2x x




                                          .   .   .   .   .   .
Recap


                   y′
        y
                   1
               √
    arcsin x
                 1 − x2
                    1      Remarkable that the
    arccos x − √
                  1 − x2   derivatives of these
                   1       transcendental functions
    arctan x
                1 + x2     are algebraic (or even
                    1
              −
    arccot x               rational!)
                 1 + x2
                   1
               √
    arcsec x
              x x2 − 1
                    1
    arccsc x − √
               x x2 − 1


                             .    .    .   .    .     .

Weitere ähnliche Inhalte

Was ist angesagt?

Gamma and betta function harsh shah
Gamma and betta function  harsh shahGamma and betta function  harsh shah
Gamma and betta function harsh shah
C.G.P.I.T
 
1.6 slopes and the difference quotient
1.6 slopes and the difference quotient1.6 slopes and the difference quotient
1.6 slopes and the difference quotient
math265
 
1.2 review on algebra 2-sign charts and inequalities
1.2 review on algebra 2-sign charts and inequalities1.2 review on algebra 2-sign charts and inequalities
1.2 review on algebra 2-sign charts and inequalities
math265
 
Factoring polynomials
Factoring polynomialsFactoring polynomials
Factoring polynomials
jilllenz
 
Relations & functions.pps
Relations  &  functions.ppsRelations  &  functions.pps
Relations & functions.pps
indu psthakur
 
1.1 review on algebra 1
1.1 review on algebra 11.1 review on algebra 1
1.1 review on algebra 1
math265
 

Was ist angesagt? (20)

Factoring quadratic expressions
Factoring quadratic expressionsFactoring quadratic expressions
Factoring quadratic expressions
 
Relations and functions
Relations and functionsRelations and functions
Relations and functions
 
Gamma and betta function harsh shah
Gamma and betta function  harsh shahGamma and betta function  harsh shah
Gamma and betta function harsh shah
 
1.6 slopes and the difference quotient
1.6 slopes and the difference quotient1.6 slopes and the difference quotient
1.6 slopes and the difference quotient
 
Lesson 7-8: Derivatives and Rates of Change, The Derivative as a function
Lesson 7-8: Derivatives and Rates of Change, The Derivative as a functionLesson 7-8: Derivatives and Rates of Change, The Derivative as a function
Lesson 7-8: Derivatives and Rates of Change, The Derivative as a function
 
1.2 review on algebra 2-sign charts and inequalities
1.2 review on algebra 2-sign charts and inequalities1.2 review on algebra 2-sign charts and inequalities
1.2 review on algebra 2-sign charts and inequalities
 
Echelon and reduced echelon form & Filters
Echelon and reduced echelon form & FiltersEchelon and reduced echelon form & Filters
Echelon and reduced echelon form & Filters
 
Factoring polynomials
Factoring polynomialsFactoring polynomials
Factoring polynomials
 
Lecture 6 limits with infinity
Lecture 6   limits with infinityLecture 6   limits with infinity
Lecture 6 limits with infinity
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Lesson 17: The Method of Lagrange Multipliers
Lesson 17: The Method of Lagrange MultipliersLesson 17: The Method of Lagrange Multipliers
Lesson 17: The Method of Lagrange Multipliers
 
Chain Rule
Chain RuleChain Rule
Chain Rule
 
Relations & functions.pps
Relations  &  functions.ppsRelations  &  functions.pps
Relations & functions.pps
 
Chapter 2 (maths 3)
Chapter 2 (maths 3)Chapter 2 (maths 3)
Chapter 2 (maths 3)
 
Lesson 19: Maximum and Minimum Values
Lesson 19: Maximum and Minimum ValuesLesson 19: Maximum and Minimum Values
Lesson 19: Maximum and Minimum Values
 
PPT of Improper Integrals IMPROPER INTEGRAL
PPT of Improper Integrals IMPROPER INTEGRALPPT of Improper Integrals IMPROPER INTEGRAL
PPT of Improper Integrals IMPROPER INTEGRAL
 
1.1 review on algebra 1
1.1 review on algebra 11.1 review on algebra 1
1.1 review on algebra 1
 
Graph of a linear function
Graph of a linear functionGraph of a linear function
Graph of a linear function
 
Differentiation using First Principle - By Mohd Noor Abdul Hamid
Differentiation using First Principle  - By Mohd Noor Abdul HamidDifferentiation using First Principle  - By Mohd Noor Abdul Hamid
Differentiation using First Principle - By Mohd Noor Abdul Hamid
 
My Lecture Notes from Linear Algebra
My Lecture Notes fromLinear AlgebraMy Lecture Notes fromLinear Algebra
My Lecture Notes from Linear Algebra
 

Andere mochten auch

Inverse trigonometric functions
Inverse trigonometric functionsInverse trigonometric functions
Inverse trigonometric functions
Leo Crisologo
 
Lesson 15: Inverse Trigonometric Functions
Lesson 15: Inverse Trigonometric FunctionsLesson 15: Inverse Trigonometric Functions
Lesson 15: Inverse Trigonometric Functions
Matthew Leingang
 
Trigonometric Functions Right Triangles
Trigonometric Functions Right TrianglesTrigonometric Functions Right Triangles
Trigonometric Functions Right Triangles
jrosebus
 
Trigonometric (hayati pravita)
Trigonometric (hayati pravita)Trigonometric (hayati pravita)
Trigonometric (hayati pravita)
Fadhel Hizham
 
Inverse trigonometric functions xii[1]
Inverse trigonometric functions xii[1]Inverse trigonometric functions xii[1]
Inverse trigonometric functions xii[1]
indu thakur
 
Inverse functions 1.6
Inverse functions 1.6Inverse functions 1.6
Inverse functions 1.6
Debra Wallace
 

Andere mochten auch (20)

Inverse trigonometric functions
Inverse trigonometric functionsInverse trigonometric functions
Inverse trigonometric functions
 
Math12 lesson5
Math12 lesson5Math12 lesson5
Math12 lesson5
 
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
 
Lesson 15: Inverse Trigonometric Functions
Lesson 15: Inverse Trigonometric FunctionsLesson 15: Inverse Trigonometric Functions
Lesson 15: Inverse Trigonometric Functions
 
Trigonometry review slide show
Trigonometry review slide showTrigonometry review slide show
Trigonometry review slide show
 
Trigonometric Functions Right Triangles
Trigonometric Functions Right TrianglesTrigonometric Functions Right Triangles
Trigonometric Functions Right Triangles
 
Trigonometric (hayati pravita)
Trigonometric (hayati pravita)Trigonometric (hayati pravita)
Trigonometric (hayati pravita)
 
Inverse trigonometric functions xii[1]
Inverse trigonometric functions xii[1]Inverse trigonometric functions xii[1]
Inverse trigonometric functions xii[1]
 
Lesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsLesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential Functions
 
Lesson 21: Curve Sketching (Section 10 version)
Lesson 21: Curve Sketching (Section 10 version)Lesson 21: Curve Sketching (Section 10 version)
Lesson 21: Curve Sketching (Section 10 version)
 
Lesson 4: Calculating Limits
Lesson 4: Calculating LimitsLesson 4: Calculating Limits
Lesson 4: Calculating Limits
 
Lesson 18: Maximum and Minimum Vaues
Lesson 18: Maximum and Minimum VauesLesson 18: Maximum and Minimum Vaues
Lesson 18: Maximum and Minimum Vaues
 
Lesson 6: Limits Involving ∞
Lesson 6: Limits Involving ∞Lesson 6: Limits Involving ∞
Lesson 6: Limits Involving ∞
 
Lesson 18: Maximum and Minimum Vaues
Lesson 18: Maximum and Minimum VauesLesson 18: Maximum and Minimum Vaues
Lesson 18: Maximum and Minimum Vaues
 
Calculus 45S Slides March 28, 2008
Calculus 45S Slides March 28, 2008Calculus 45S Slides March 28, 2008
Calculus 45S Slides March 28, 2008
 
Inverse functions 1.6
Inverse functions 1.6Inverse functions 1.6
Inverse functions 1.6
 
Lesson 20: Derivatives and the Shapes of Curves
Lesson 20: Derivatives and the Shapes of CurvesLesson 20: Derivatives and the Shapes of Curves
Lesson 20: Derivatives and the Shapes of Curves
 
Lesson 13: Linear Approximation
Lesson 13: Linear ApproximationLesson 13: Linear Approximation
Lesson 13: Linear Approximation
 
Lesson 11: The Chain Rule
Lesson 11: The Chain RuleLesson 11: The Chain Rule
Lesson 11: The Chain Rule
 
Lesson 5: Continuity
Lesson 5: ContinuityLesson 5: Continuity
Lesson 5: Continuity
 

Mehr von Matthew Leingang

Mehr von Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)
 

Kürzlich hochgeladen

Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
Chris Hunter
 

Kürzlich hochgeladen (20)

Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 

Lesson 17: Inverse Trigonometric Functions

  • 1. Section 3.5 Inverse Trigonometric Functions V63.0121, Calculus I March 11–12, 2009 Announcements Get half of your unearned ALEKS points back by March 22 . . . . . .
  • 2. What functions are invertible? In order for f−1 to be a function, there must be only one a in D corresponding to each b in E. Such a function is called one-to-one The graph of such a function passes the horizontal line test: any horizontal line intersects the graph in exactly one point if at all. If f is continuous, then f−1 is continuous. . . . . . .
  • 3. Outline Inverse Trigonometric Functions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant . . . . . .
  • 4. arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . . . . x . s . in π π − − . . 2 2 . . . . . .
  • 5. arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . . . . x . s . in π π − − . . 2 2 . . . . . .
  • 6. arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . . =x y . . . x . s . in π π − − . . 2 2 . . . . . .
  • 7. arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . a . rcsin . . . x . s . in π π − − . . 2 2 The domain of arcsin is [−1, 1] [ π π] The range of arcsin is − , 22 . . . . . .
  • 8. arccos Arccos is the inverse of the cosine function after restriction to [0, π] y . c . os . . x . π . 0 . . . . . . .
  • 9. arccos Arccos is the inverse of the cosine function after restriction to [0, π] y . c . os . . x . π . 0 . . . . . . .
  • 10. arccos Arccos is the inverse of the cosine function after restriction to [0, π] y . . =x y c . os . . x . π . 0 . . . . . . .
  • 11. arccos Arccos is the inverse of the cosine function after restriction to [0, π] a . rccos y . c . os . . x . π . 0 . The domain of arccos is [−1, 1] The range of arccos is [0, π] . . . . . .
  • 12. arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. y . . x . π π 3π 3π − − . . . . 2 2 2 2 t . an . . . . . .
  • 13. arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. y . . x . π π 3π 3π − − . . . . 2 2 2 2 t . an . . . . . .
  • 14. arctan Arctan is the inverse of the tangent function after restriction to . =x y [−π/2, π/2]. y . . x . π π 3π 3π − − . . . . 2 2 2 2 t . an . . . . . .
  • 15. arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. y . π . a . rctan 2 . x . π − . 2 The domain of arctan is (−∞, ∞) ( π π) The range of arctan is − , 22 π π lim arctan x = , lim arctan x = − 2 x→−∞ 2 x→∞ . . . . . .
  • 16. Outline Inverse Trigonometric Functions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant . . . . . .
  • 17. Theorem (The Inverse Function Theorem) Let f be differentiable at a, and f′ (a) ̸= 0. Then f−1 is defined in an open interval containing b = f(a), and 1 (f−1 )′ (b) = ′ −1 f (f (b)) . . . . . .
  • 18. Theorem (The Inverse Function Theorem) Let f be differentiable at a, and f′ (a) ̸= 0. Then f−1 is defined in an open interval containing b = f(a), and 1 (f−1 )′ (b) = ′ −1 f (f (b)) “Proof”. If y = f−1 (x), then f(y) = x, So by implicit differentiation dy dy 1 1 f′ (y) = 1 =⇒ =′ = ′ −1 dx dx f (y) f (f (x)) . . . . . .
  • 19. The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 = 1 =⇒ = = cos y dx dx cos y cos(arcsin x) . . . . . .
  • 20. The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 = 1 =⇒ = = cos y dx dx cos y cos(arcsin x) To simplify, look at a right triangle: . . . . . . .
  • 21. The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 = 1 =⇒ = = cos y dx dx cos y cos(arcsin x) To simplify, look at a right triangle: 1 . x . . . . . . . .
  • 22. The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 = 1 =⇒ = = cos y dx dx cos y cos(arcsin x) To simplify, look at a right triangle: 1 . x . . = arcsin x y . . . . . . .
  • 23. The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 = 1 =⇒ = = cos y dx dx cos y cos(arcsin x) To simplify, look at a right triangle: 1 . x . . = arcsin x y .√ . 1 − x2 . . . . . .
  • 24. The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 = 1 =⇒ = = cos y dx dx cos y cos(arcsin x) To simplify, look at a right triangle: √ cos(arcsin x) = 1 − x2 1 . x . . = arcsin x y .√ . 1 − x2 . . . . . .
  • 25. The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 = 1 =⇒ = = cos y dx dx cos y cos(arcsin x) To simplify, look at a right triangle: √ cos(arcsin x) = 1 − x2 1 . x . So d 1 arcsin(x) = √ . = arcsin x y 1 − x2 .√ dx . 1 − x2 . . . . . .
  • 26. Graphing arcsin and its derivative 1 .√ 1 − x2 a . rcsin . | | . . − .1 1 . . . . . . .
  • 27. The derivative of arccos Let y = arccos x, so x = cos y. Then dy dy 1 1 − sin y = 1 =⇒ = = − sin y − sin(arccos x) dx dx . . . . . .
  • 28. The derivative of arccos Let y = arccos x, so x = cos y. Then dy dy 1 1 − sin y = 1 =⇒ = = − sin y − sin(arccos x) dx dx To simplify, look at a right triangle: √ sin(arccos x) = 1 − x2 √ 1 . . 1 − x2 So d 1 . = arccos x y arccos(x) = − √ . 1 − x2 dx x . . . . . . .
  • 29. Graphing arcsin and arccos a . rccos a . rcsin . | | . . − .1 1 . . . . . . .
  • 30. Graphing arcsin and arccos a . rccos Note (π ) −θ cos θ = sin 2 a . rcsin π =⇒ arccos x = − arcsin x 2 . So it’s not a surprise that their | | . . − .1 1 . derivatives are opposites. . . . . . .
  • 31. The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = cos2 (arctan x) = 1 =⇒ = sec2 y dx dx . . . . . .
  • 32. The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = cos2 (arctan x) = 1 =⇒ = sec2 y dx dx To simplify, look at a right triangle: . . . . . . .
  • 33. The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = cos2 (arctan x) = 1 =⇒ = sec2 y dx dx To simplify, look at a right triangle: x . . 1 . . . . . . .
  • 34. The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = cos2 (arctan x) = 1 =⇒ = sec2 y dx dx To simplify, look at a right triangle: x . . = arctan x y . 1 . . . . . . .
  • 35. The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = cos2 (arctan x) = 1 =⇒ = sec2 y dx dx To simplify, look at a right triangle: √ x . . 1 + x2 . = arctan x y . 1 . . . . . . .
  • 36. The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = cos2 (arctan x) = 1 =⇒ = sec2 y dx dx To simplify, look at a right triangle: 1 cos(arctan x) = √ √ 1 + x2 x . . 1 + x2 . = arctan x y . 1 . . . . . . .
  • 37. The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = cos2 (arctan x) = 1 =⇒ = sec2 y dx dx To simplify, look at a right triangle: 1 cos(arctan x) = √ √ 1 + x2 x . . 1 + x2 So d 1 . = arctan x y arctan(x) = . 1 + x2 dx 1 . . . . . . .
  • 38. Graphing arctan and its derivative y . a . rctan 1 . x . 1 + x2 . . . . . .
  • 39. Example √ x. Find f′ (x). Let f(x) = arctan . . . . . .
  • 40. Example √ x. Find f′ (x). Let f(x) = arctan Solution √ d√ d 1 1 1 ·√ (√ )2 arctan x = x= 1+x 2 x dx x dx 1+ 1 =√ √ 2 x + 2x x . . . . . .
  • 41. Recap y′ y 1 √ arcsin x 1 − x2 1 Remarkable that the arccos x − √ 1 − x2 derivatives of these 1 transcendental functions arctan x 1 + x2 are algebraic (or even 1 − arccot x rational!) 1 + x2 1 √ arcsec x x x2 − 1 1 arccsc x − √ x x2 − 1 . . . . . .