SlideShare ist ein Scribd-Unternehmen logo
1 von 31
Downloaden Sie, um offline zu lesen
Numerical Renormalization-Group computation 
of magnetic relaxation rates 
Krissia de Zawadzki, Luiz Nunes de Oliveira, Jose Wilson M. Pinto 
Instituto de F´ısica de S˜ao Carlos - Universidade de S˜ao Paulo 
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 1 / 11
Introduction NRG calculations Numerical results Conclusions Acknowledgment 
Radius of Kondo screening cloud 
Radius of Kondo screening cloud 
푅푘 
LASZLO, B. PRB, 75 (2007). BOYCE, J.B; SLICHTER, C.P. PRL, 32, 61 (1974). 
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 2 / 11
Introduction NRG calculations Numerical results Conclusions Acknowledgment 
Radius of Kondo screening cloud 
Radius of Kondo screening cloud 
푅푘 
푅퐾 ∝ 푇−1 
퐾 
General consensus 
푅퐾 = ~푣퐹 /푘퐵푇퐾 
Boyce  
Slichter 
NMR: 
LASZLO, B. PRB, 75 (2007). BOYCE, J.B; SLICHTER, C.P. PRL, 32, 61 (1974). 
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 2 / 11
Introduction NRG calculations Numerical results Conclusions Acknowledgment 
Radius of Kondo screening cloud 
Radius of Kondo screening cloud 
푅푘 
푅퐾 ∝ 푇−1 
퐾 
General consensus 
푅퐾 = ~푣퐹 /푘퐵푇퐾 
Boyce  
Slichter 
NMR: 
LASZLO, B. PRB, 75 (2007). BOYCE, J.B; SLICHTER, C.P. PRL, 32, 61 (1974). 
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 2 / 11
Introduction NRG calculations Numerical results Conclusions Acknowledgment 
Radius of Kondo screening cloud 
Radius of Kondo screening cloud 
푅푘 
푅퐾 ∝ 푇−1 
퐾 
General consensus 
푅퐾 = ~푣퐹 /푘퐵푇퐾 
Boyce  
Slichter 
NMR: 
Experimental arrangement: 
NMR probe: 푅 from the impurity 
NRG computation of the spin 
lattice relaxation rate 1/(푇1푇) as 
function of 푇 and 푅 
LASZLO, B. PRB, 75 (2007). BOYCE, J.B; SLICHTER, C.P. PRL, 32, 61 (1974). 
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 2 / 11
Introduction NRG calculations Numerical results Conclusions Acknowledgment 
Radius of Kondo screening cloud 
Radius of Kondo screening cloud 
푅푘 
푅퐾 ∝ 푇−1 
퐾 
General consensus 
푅퐾 = ~푣퐹 /푘퐵푇퐾 
Boyce  
Slichter 
NMR: 
Experimental arrangement: 
NMR probe: 푅 from the impurity 
NRG computation of the spin 
lattice relaxation rate 1/(푇1푇) as 
function of 푇 and 푅 
Can we measure 푅퐾 via NMR? 
Our
ndings: 
Yes, we can! 
T dependence changes as probe 
crosses 푅퐾 
Phase of low-푇 Friedel oscillations 
also changes 
LASZLO, B. PRB, 75 (2007). BOYCE, J.B; SLICHTER, C.P. PRL, 32, 61 (1974). 
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 2 / 11
Introduction NRG calculations Numerical results Conclusions Acknowledgment 
The quantum system 
NRG Probe 
Single-impurity Anderson model 
퐻 = 
퐻푐표푛푑 ⏞Σ︁ ⏟ 
k 
휀k푐† 
k푐k 
휀 = 푣퐹 
퐷 (푘 − 푘퐹 ) 
+퐷 
−퐷 
푘퐹 
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 3 / 11
Introduction NRG calculations Numerical results Conclusions Acknowledgment 
The quantum system 
NRG Probe 
Single-impurity Anderson model 
퐻 = 
퐻푐표푛푑 ⏞Σ︁ ⏟ 
k 
휀k푐† 
k푐k + 
퐻푑 ⏞ ⏟ 
휀푑푐† 
푑푐푑 + 푈푛푑↑푛푑↓ 
휀 = 푣퐹 
퐷 (푘 − 푘퐹 ) 
+퐷 
−퐷 
푘퐹 
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 3 / 11
Introduction NRG calculations Numerical results Conclusions Acknowledgment 
The quantum system 
NRG Probe 
Single-impurity Anderson model 
퐻 = 
퐻푐표푛푑 ⏞Σ︁ ⏟ 
k 
휀k푐† 
k푐k + 
퐻푑 ⏞ ⏟ 
휀푑푐† 
푑푐푑 + 푈푛푑↑푛푑↓ + 
퐻푖푛푡 ⏞√︂ ⏟ 
Γ 
휋 
(푓† 
0 푐푑 + 퐻.푐.) 
휀 = 푣퐹 
퐷 (푘 − 푘퐹 ) 
+퐷 
−퐷 
푘퐹 
푓0 = 
1 
√ 
휌 
Σ︁ 
k 
푐k 
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 3 / 11
Introduction NRG calculations Numerical results Conclusions Acknowledgment 
The quantum system 
NRG Probe 
Single-impurity Anderson model 
퐻 = 
퐻푐표푛푑 ⏞Σ︁ ⏟ 
k 
휀k푐† 
k푐k + 
퐻푑 ⏞ ⏟ 
휀푑푐† 
푑푐푑 + 푈푛푑↑푛푑↓ + 
퐻푖푛푡 ⏞√︂ ⏟ 
Γ 
휋 
(푓† 
0 푐푑 + 퐻.푐.) 
퐻푝푟표푏푒 = −퐴 
[︁ 
Ψ† 
↑(⃗푅 
)Ψ↓(⃗푅)퐼− + 퐻.푐. 
]︁ 
Ψ휇 = 
Σ︁ 
k 
푒푖k.R푐k 
1 
푇1 
= 
4휋 
~ 
Σ︁ 
퐼,퐹 
푒−훽퐸퐼 |⟨퐼|퐻푝푟표푏푒|퐹⟩|2훿(퐸퐼 − 퐸퐹 ) 
푓0 = 
1 
√ 
휌 
Σ︁ 
k 
푐k 
푅 
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 3 / 11
Introduction NRG calculations Numerical results Conclusions Acknowledgment 
Two-center basis 
Two-center basis 
Spherically symmetric operators 
푐휀 = 
Σ︁ 
k 
푐 k 훿(휀 − 휀k) (around impurity) 
푑휀 = 
Σ︁ 
k 
푐 k 푒푖k.R훿(휀 − 휀k) (around probe) 
푐휀 
푑휀 
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 4 / 11
Introduction NRG calculations Numerical results Conclusions Acknowledgment 
Two-center basis 
Two-center basis 
Spherically symmetric operators 
푐휀 = 
Σ︁ 
k 
푐 k 훿(휀 − 휀k) (around impurity) 
푑휀 = 
Σ︁ 
k 
푐 k 푒푖k.R훿(휀 − 휀k) (around probe) 
푐휀 
푑휀 
휀, 푑휀′} = sin(푘푅) 
{푐† 
푘푅 훿(휀 − 휀′) 
Gram-Schmidt construction 
푐¯휀휇 = √ 1 
1−푊2 (푑휀휇 −푊푐휀휇) 
푊 = 푊(휀,푅) = sin(푘푅) 
푘푅 
푘푅 = 푘퐹푅 
(︀ 
1 + 휀 
퐷 
)︀ 
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 4 / 11
Introduction NRG calculations Numerical results Conclusions Acknowledgment 
Two-center basis 
Two-center basis 
Spherically symmetric operators 
푐휀 = 
Σ︁ 
k 
푐 k 훿(휀 − 휀k) (around impurity) 
푑휀 = 
Σ︁ 
k 
푐 k 푒푖k.R훿(휀 − 휀k) (around probe) 
푐휀 
푑휀 
NRG 
analytical 
휀, 푑휀′} = sin(푘푅) 
{푐† 
푘푅 훿(휀 − 휀′) 
Gram-Schmidt construction 
푐¯휀휇 = √ 1 
1−푊2 (푑휀휇 −푊푐휀휇) 
푊 = 푊(휀,푅) = sin(푘푅) 
푘푅 
푘푅 = 푘퐹푅 
(︀ 
1 + 휀 
퐷 
)︀ 
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 4 / 11
Introduction NRG calculations Numerical results Conclusions Acknowledgment 
NRG and Lanczos basis 
NRG and Lanczos basis 
퐻푁 = 
1 
풟푁 
(︃ 
푁Σ︁−1 
푛=0 
푡푛(푓†푛 
푓푛+1 + 퐻.푐.) + 
√︂ 
Γ 
휋 
(푐† 
푑푓0 + 퐻.푐.) + 퐻푑 
)︃ 
NRG[4] 
퐻푝푟표푏푒 = −퐴[ 휙† 
↑휙↓ + Φ† 
↑Φ↓ + (휙† 
↑Φ↓ + Φ† 
↑휙↓) ] I− + 퐻.푐. 
휙휇(푅) ≡ 
∫︁ 퐷 
−퐷 
푑휀 
√︁ 
1 −푊(휀,푅)¯푐휀휇 Φ휇(푅) ≡ 
Σ︁ 
푛 
훾푛푓푛 
analytically 
numerically 
WILSON, K. Rev Mod Phys, 47, 773 (1975). 
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 5 / 11
Introduction NRG calculations Numerical results Conclusions Acknowledgment 
NRG and Lanczos basis 
NRG and Lanczos basis 
퐻푁 = 
1 
풟푁 
(︃ 
푁Σ︁−1 
푛=0 
푡푛(푓†푛 
푓푛+1 + 퐻.푐.) + 
√︂ 
Γ 
휋 
(푐† 
푑푓0 + 퐻.푐.) + 퐻푑 
)︃ 
NRG[4] 
퐻푝푟표푏푒 = −퐴[ 휙† 
↑휙↓ + Φ† 
↑Φ↓ + (휙† 
↑Φ↓ + Φ† 
↑휙↓) ] I− + 퐻.푐. 
휙휇(푅) ≡ 
∫︁ 퐷 
−퐷 
푑휀 
√︁ 
1 −푊(휀,푅)¯푐휀휇 Φ휇(푅) ≡ 
Σ︁ 
푛 
훾푛푓푛 
analytically 
numerically 
1 
푇1 
= 
+ 
+ 
WILSON, K. Rev Mod Phys, 47, 773 (1975). 
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 5 / 11
Introduction NRG calculations Numerical results Conclusions Acknowledgment 
NRG and Lanczos basis 
NRG and Lanczos basis 
퐻푁 = 
1 
풟푁 
(︃ 
푁Σ︁−1 
푛=0 
푡푛(푓†푛 
푓푛+1 + 퐻.푐.) + 
√︂ 
Γ 
휋 
(푐† 
푑푓0 + 퐻.푐.) + 퐻푑 
)︃ 
NRG[4] 
퐻푝푟표푏푒 = −퐴[ 휙† 
↑휙↓ + Φ† 
↑Φ↓ + (휙† 
↑Φ↓ + Φ† 
↑휙↓) ] I− + 퐻.푐. 
휙휇(푅) ≡ 
∫︁ 퐷 
−퐷 
푑휀 
√︁ 
1 −푊(휀,푅)¯푐휀휇 Φ휇(푅) ≡ 
Σ︁ 
푛 
훾푛푓푛 
analytically 
numerically 
1 
푇1 
= 
(︂ 
1 
푇1 
)︂ 
휙휙 ⏟ ⏞ 
1−푊2 
퐹 
+ 
+ 
cte 
푊퐹 = 
sin(푘퐹푅) 
푘퐹푅 
WILSON, K. Rev Mod Phys, 47, 773 (1975). 
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 5 / 11
Introduction NRG calculations Numerical results Conclusions Acknowledgment 
NRG and Lanczos basis 
NRG and Lanczos basis 
퐻푁 = 
1 
풟푁 
(︃ 
푁Σ︁−1 
푛=0 
푡푛(푓†푛 
푓푛+1 + 퐻.푐.) + 
√︂ 
Γ 
휋 
(푐† 
푑푓0 + 퐻.푐.) + 퐻푑 
)︃ 
NRG[4] 
퐻푝푟표푏푒 = −퐴[ 휙† 
↑휙↓ + Φ† 
↑Φ↓ + (휙† 
↑Φ↓ + Φ† 
↑휙↓) ] I− + 퐻.푐. 
휙휇(푅) ≡ 
∫︁ 퐷 
−퐷 
푑휀 
√︁ 
1 −푊(휀,푅)¯푐휀휇 Φ휇(푅) ≡ 
Σ︁ 
푛 
훾푛푓푛 
analytically 
numerically 
1 
푇1 
= 
(︂ 
1 
푇1 
)︂ 
휙휙 ⏟ ⏞ 
1−푊2 
퐹 
+ 
(︂ 
1 
푇1 
)︂ 
⏟ ⏞ ΦΦ 
푊2 
퐹 
+ 
cte 
푘퐹 푅 ≪ 1 
푊퐹 = 
sin(푘퐹푅) 
푘퐹푅 
WILSON, K. Rev Mod Phys, 47, 773 (1975). 
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 5 / 11
Introduction NRG calculations Numerical results Conclusions Acknowledgment 
NRG and Lanczos basis 
NRG and Lanczos basis 
퐻푁 = 
1 
풟푁 
(︃ 
푁Σ︁−1 
푛=0 
푡푛(푓†푛 
푓푛+1 + 퐻.푐.) + 
√︂ 
Γ 
휋 
(푐† 
푑푓0 + 퐻.푐.) + 퐻푑 
)︃ 
NRG[4] 
퐻푝푟표푏푒 = −퐴[ 휙† 
↑휙↓ + Φ† 
↑Φ↓ + (휙† 
↑Φ↓ + Φ† 
↑휙↓) ] I− + 퐻.푐. 
휙휇(푅) ≡ 
∫︁ 퐷 
−퐷 
푑휀 
√︁ 
1 −푊(휀,푅)¯푐휀휇 Φ휇(푅) ≡ 
Σ︁ 
푛 
훾푛푓푛 
analytically 
numerically 
1 
푇1 
= 
(︂ 
1 
푇1 
)︂ 
휙휙 ⏟ ⏞ 
1−푊2 
퐹 
+ 
(︂ 
1 
푇1 
)︂ 
⏟ ⏞ ΦΦ 
푊2 
퐹 
+ 
(︂ 
1 
푇1 
)︂ 
Φ휙 ⏟ ⏞ 
(1−푊퐹 )푊퐹 
cte 
푘퐹 푅 ≪ 1 
푘퐹푅 ≫ 1 
DULL 
SMALL 
푊퐹 = 
sin(푘퐹푅) 
푘퐹푅 
WILSON, K. Rev Mod Phys, 47, 773 (1975). 
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 5 / 11
Introduction NRG calculations Numerical results Conclusions Acknowledgment 
Friedel oscillations 
Friedel oscillations 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
T=1.7569e−4 
T=9.8711e−8 
0.17 
9.8 10.0 10.2 10.4 10.6 10.8 11.0 11.2 
kF R 
¼ 
0.0 
10.5¼ 
10¼ 10.25¼ 
10.0 10.5 11.0 
0.16 
1 
T1 T (kF R)2 
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 6 / 11
Introduction NRG calculations Numerical results Conclusions Acknowledgment 
Relaxation rate - temperature dependence 
푘퐵푇퐾 = 1.25 × 10−5 
7 
6 
5 
T1 ´ 
kB T ³1 
4 
3 
2 
1 
10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 
kB T 
0 
(101+0.25)¼ 
(102+0.25)¼ 
(103+0.25)¼ 
(104+0.25)¼ 
(105+0.25)¼ 
(106+0.25)¼ 
(107+0.25)¼ 
(kF R)2 
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 7 / 11
Introduction NRG calculations Numerical results Conclusions Acknowledgment 
Interference relaxation rate 
Interference relaxation rate 
7 
6 
5 
1 
kB T ³T1 ´ kB T 
4 
3 
2 
1 
R¼RK 
outside 
inside 
10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 0 
(kF R)2 
kF R=(n+1 
4 )¼ 
¸B =2¼ vF 
kB T 
de Broglie 
n=102 
n=105 
n=107 
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 8 / 11
Introduction NRG calculations Numerical results Conclusions Acknowledgment 
Friedel oscillations 
Friedel oscillations 
1.72 
1.70 
1.68 
1.66 
1.64 
1.62 
1.60 
0.00015 
101 102 103 104 105 106 107 108 
kF R 
¼ 
1.58 
RK !TK =1.25e−05 
n¼ 
(n+1/2)¼ 
104 105 106 
0.00010 
+1.6131 
1 
T1 T (kF R)2 
T¼5.62e−11 
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 9 / 11
Introduction NRG calculations Numerical results Conclusions Acknowledgment 
Conclusions 
NMR to measure 푅퐾 : OK! 
Inside cloud, 푇-dependent rate follows universal curve 
Outside cloud, rate follows dierent curve 
Phase of Friedel oscillations reverses around 푅 = 푅퐾 
Future prospects: 
Other geometries 
P-h symmetric case diers from assymetric ? 
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 10 / 11
Introduction NRG calculations Numerical results Conclusions Acknowledgment 
Acknowledgment 
Thank you! 
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 11 / 11
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 1 / 4
Additional results 
Relaxation rate - 풢푠푖푑푒(푇) profile 
7 
6 
5 
T1 ´ 
kB T ³1 
4 
3 
2 
1 
10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 
kB T 
0 
(101+0.5)¼ 
(102+0.5)¼ 
(103+0.5)¼ 
(104+0.5)¼ 
(105+0.5)¼ 
(106+0.5)¼ 
(107+0.5)¼ 
(kF R)2 
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 2 / 4
Additional results 
Relaxation rate - 풢푆퐸푇 (푇) profile 
7 
6 
5 
T1 ´ 
kB T ³1 
4 
3 
2 
1 
10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 
kB T 
0 
101 ¼ 
102 ¼ 
103 ¼ 
104 ¼ 
105 ¼ 
106 ¼ 
107 ¼ 
(kF R)2 
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 3 / 4
Additional results 
Particle-hole symmetric case 
Particle-hole symmetric case: 1/푇1 as function of 푇 
푘퐹푅 = 푛휋 and 푘퐹푅 = (푛 + 1 
2 )휋, 푛 = 10 
7 
6 
5 
T1 ´ 
kB T ³1 
4 
3 
2 
1 
2.0 
1.8 
1.6 
10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 
kB T 
0 
10-9 10-8 10-7 1.4 
(kF R)2 
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 4 / 4
Additional results 
Particle-hole symmetric case 
Particle-hole symmetric case: 1/푇1 as function of 푇 
푘퐹푅 = 푛휋 and 푘퐹푅 = (푛 + 1 
2 )휋, 푛 = 103 
7 
6 
5 
T1 ´ 
kB T ³1 
4 
3 
2 
1 
2.0 
1.8 
1.6 
10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 
kB T 
0 
10-8 10-7 1.4 
(kF R)2 
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 4 / 4
Additional results 
Particle-hole symmetric case 
Particle-hole symmetric case: 1/푇1 as function of 푇 
푘퐹푅 = 푛휋 and 푘퐹푅 = (푛 + 1 
2 )휋, 푛 = 105 
7 
6 
5 
T1 ´ 
kB T ³1 
4 
3 
2 
1 
2.0 
1.8 
10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 
kB T 
0 
10-7 
1.6 
(kF R)2 
Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 4 / 4

Weitere ähnliche Inhalte

Was ist angesagt?

Pdpta11 G-Ensemble for Meteorological Prediction Enhancement
Pdpta11 G-Ensemble for Meteorological Prediction EnhancementPdpta11 G-Ensemble for Meteorological Prediction Enhancement
Pdpta11 G-Ensemble for Meteorological Prediction EnhancementHisham Ihshaish
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...Lake Como School of Advanced Studies
 
Prof Tom Trainor (University of Washington, Seattle, USA)
Prof Tom Trainor (University of Washington, Seattle, USA)Prof Tom Trainor (University of Washington, Seattle, USA)
Prof Tom Trainor (University of Washington, Seattle, USA)Rene Kotze
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...Lake Como School of Advanced Studies
 
Sensing Throughput Tradeoff for Cognitive Radio Networks with Noise Variance ...
Sensing Throughput Tradeoff for Cognitive Radio Networks with Noise Variance ...Sensing Throughput Tradeoff for Cognitive Radio Networks with Noise Variance ...
Sensing Throughput Tradeoff for Cognitive Radio Networks with Noise Variance ...T. E. BOGALE
 
Computational Photochemistry
Computational PhotochemistryComputational Photochemistry
Computational Photochemistrywinterschool
 
Parton distributions with QED corrections and LHC phenomenology
Parton distributions with QED corrections and LHC phenomenologyParton distributions with QED corrections and LHC phenomenology
Parton distributions with QED corrections and LHC phenomenologyjuanrojochacon
 
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto SesanaLOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto SesanaLake Como School of Advanced Studies
 
Seminar atlas 1104.5225
Seminar atlas 1104.5225Seminar atlas 1104.5225
Seminar atlas 1104.5225RiggoryLirikin
 
Support for the_thermal_origin_of_the_pioneer_anomaly
Support for the_thermal_origin_of_the_pioneer_anomalySupport for the_thermal_origin_of_the_pioneer_anomaly
Support for the_thermal_origin_of_the_pioneer_anomalySérgio Sacani
 

Was ist angesagt? (17)

EXO_DBD07
EXO_DBD07EXO_DBD07
EXO_DBD07
 
Pdpta11 G-Ensemble for Meteorological Prediction Enhancement
Pdpta11 G-Ensemble for Meteorological Prediction EnhancementPdpta11 G-Ensemble for Meteorological Prediction Enhancement
Pdpta11 G-Ensemble for Meteorological Prediction Enhancement
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
 
Prof Tom Trainor (University of Washington, Seattle, USA)
Prof Tom Trainor (University of Washington, Seattle, USA)Prof Tom Trainor (University of Washington, Seattle, USA)
Prof Tom Trainor (University of Washington, Seattle, USA)
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
 
New policies
New policiesNew policies
New policies
 
Gravitational Waves and Binary Systems (3) - Thibault Damour
Gravitational Waves and Binary Systems (3) - Thibault DamourGravitational Waves and Binary Systems (3) - Thibault Damour
Gravitational Waves and Binary Systems (3) - Thibault Damour
 
Sensing Throughput Tradeoff for Cognitive Radio Networks with Noise Variance ...
Sensing Throughput Tradeoff for Cognitive Radio Networks with Noise Variance ...Sensing Throughput Tradeoff for Cognitive Radio Networks with Noise Variance ...
Sensing Throughput Tradeoff for Cognitive Radio Networks with Noise Variance ...
 
Computational Photochemistry
Computational PhotochemistryComputational Photochemistry
Computational Photochemistry
 
NBO Analysis
NBO AnalysisNBO Analysis
NBO Analysis
 
Aa18195 11
Aa18195 11Aa18195 11
Aa18195 11
 
Gravitational Waves and Binary Systems (2) - Thibault Damour
Gravitational Waves and Binary Systems (2) - Thibault DamourGravitational Waves and Binary Systems (2) - Thibault Damour
Gravitational Waves and Binary Systems (2) - Thibault Damour
 
Parton distributions with QED corrections and LHC phenomenology
Parton distributions with QED corrections and LHC phenomenologyParton distributions with QED corrections and LHC phenomenology
Parton distributions with QED corrections and LHC phenomenology
 
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto SesanaLOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
 
NNPDF3.1
NNPDF3.1NNPDF3.1
NNPDF3.1
 
Seminar atlas 1104.5225
Seminar atlas 1104.5225Seminar atlas 1104.5225
Seminar atlas 1104.5225
 
Support for the_thermal_origin_of_the_pioneer_anomaly
Support for the_thermal_origin_of_the_pioneer_anomalySupport for the_thermal_origin_of_the_pioneer_anomaly
Support for the_thermal_origin_of_the_pioneer_anomaly
 

Ähnlich wie NRG Calculation

Non-linear optics by means of dynamical Berry phase
Non-linear optics  by means of  dynamical Berry phaseNon-linear optics  by means of  dynamical Berry phase
Non-linear optics by means of dynamical Berry phaseClaudio Attaccalite
 
Basics Nuclear Physics concepts
Basics Nuclear Physics conceptsBasics Nuclear Physics concepts
Basics Nuclear Physics conceptsMuhammad IrfaN
 
www.gravity.psu.edu/events/conferences/inaugural/t... www.gravity.psu.edu/e...
www.gravity.psu.edu/events/conferences/inaugural/t... 	 www.gravity.psu.edu/e...www.gravity.psu.edu/events/conferences/inaugural/t... 	 www.gravity.psu.edu/e...
www.gravity.psu.edu/events/conferences/inaugural/t... www.gravity.psu.edu/e...MedicineAndHealthCancer
 
Ion-acoustic rogue waves in multi-ion plasmas
Ion-acoustic rogue waves in multi-ion plasmasIon-acoustic rogue waves in multi-ion plasmas
Ion-acoustic rogue waves in multi-ion plasmasMehedi Hassan
 
Ab-initio real-time spectroscopy: application to non-linear optics
Ab-initio real-time spectroscopy: application to non-linear opticsAb-initio real-time spectroscopy: application to non-linear optics
Ab-initio real-time spectroscopy: application to non-linear opticsClaudio Attaccalite
 
Biermann AstroPhysic
Biermann AstroPhysicBiermann AstroPhysic
Biermann AstroPhysicAtner Yegorov
 
Quantum force sensing with optomechanical transducers
Quantum force sensing with optomechanical transducersQuantum force sensing with optomechanical transducers
Quantum force sensing with optomechanical transducersOndrej Cernotik
 
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...Anax Fotopoulos
 
Experimental Neutrino Physics Concepts in Nutshell
Experimental Neutrino Physics Concepts in Nutshell Experimental Neutrino Physics Concepts in Nutshell
Experimental Neutrino Physics Concepts in Nutshell Son Cao
 
Yet another statistical analysis of the data of the ‘loophole free’ experime...
Yet another statistical analysis of the data of the  ‘loophole free’ experime...Yet another statistical analysis of the data of the  ‘loophole free’ experime...
Yet another statistical analysis of the data of the ‘loophole free’ experime...Richard Gill
 
Pairing and Symmetries in Nuclear Matter
Pairing and Symmetries in Nuclear MatterPairing and Symmetries in Nuclear Matter
Pairing and Symmetries in Nuclear MatterAlex Quadros
 
Room Temperature Superconductivity: Dream or Reality?
Room Temperature Superconductivity: Dream or Reality?Room Temperature Superconductivity: Dream or Reality?
Room Temperature Superconductivity: Dream or Reality?ABDERRAHMANE REGGAD
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Jorge Quintanilla
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Jorge Quintanilla
 
Closed-Form Solutions in Low-Rank Subspace Recovery Models and Their Implicat...
Closed-Form Solutions in Low-Rank Subspace Recovery Models and Their Implicat...Closed-Form Solutions in Low-Rank Subspace Recovery Models and Their Implicat...
Closed-Form Solutions in Low-Rank Subspace Recovery Models and Their Implicat...少华 白
 
Adamek_SestoGR18.pdf
Adamek_SestoGR18.pdfAdamek_SestoGR18.pdf
Adamek_SestoGR18.pdfgarfacio30
 
Nonlinear response of solids within the GW plus Bethe-Salpeter approximation
Nonlinear response  of solids within the GW plus Bethe-Salpeter approximationNonlinear response  of solids within the GW plus Bethe-Salpeter approximation
Nonlinear response of solids within the GW plus Bethe-Salpeter approximationClaudio Attaccalite
 

Ähnlich wie NRG Calculation (20)

Non-linear optics by means of dynamical Berry phase
Non-linear optics  by means of  dynamical Berry phaseNon-linear optics  by means of  dynamical Berry phase
Non-linear optics by means of dynamical Berry phase
 
Basics Nuclear Physics concepts
Basics Nuclear Physics conceptsBasics Nuclear Physics concepts
Basics Nuclear Physics concepts
 
www.gravity.psu.edu/events/conferences/inaugural/t... www.gravity.psu.edu/e...
www.gravity.psu.edu/events/conferences/inaugural/t... 	 www.gravity.psu.edu/e...www.gravity.psu.edu/events/conferences/inaugural/t... 	 www.gravity.psu.edu/e...
www.gravity.psu.edu/events/conferences/inaugural/t... www.gravity.psu.edu/e...
 
Ion-acoustic rogue waves in multi-ion plasmas
Ion-acoustic rogue waves in multi-ion plasmasIon-acoustic rogue waves in multi-ion plasmas
Ion-acoustic rogue waves in multi-ion plasmas
 
Ab-initio real-time spectroscopy: application to non-linear optics
Ab-initio real-time spectroscopy: application to non-linear opticsAb-initio real-time spectroscopy: application to non-linear optics
Ab-initio real-time spectroscopy: application to non-linear optics
 
NANO266 - Lecture 13 - Ab initio molecular dyanmics
NANO266 - Lecture 13 - Ab initio molecular dyanmicsNANO266 - Lecture 13 - Ab initio molecular dyanmics
NANO266 - Lecture 13 - Ab initio molecular dyanmics
 
Biermann AstroPhysic
Biermann AstroPhysicBiermann AstroPhysic
Biermann AstroPhysic
 
Quantum force sensing with optomechanical transducers
Quantum force sensing with optomechanical transducersQuantum force sensing with optomechanical transducers
Quantum force sensing with optomechanical transducers
 
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
 
Experimental Neutrino Physics Concepts in Nutshell
Experimental Neutrino Physics Concepts in Nutshell Experimental Neutrino Physics Concepts in Nutshell
Experimental Neutrino Physics Concepts in Nutshell
 
BSE and TDDFT at work
BSE and TDDFT at workBSE and TDDFT at work
BSE and TDDFT at work
 
Yet another statistical analysis of the data of the ‘loophole free’ experime...
Yet another statistical analysis of the data of the  ‘loophole free’ experime...Yet another statistical analysis of the data of the  ‘loophole free’ experime...
Yet another statistical analysis of the data of the ‘loophole free’ experime...
 
Pairing and Symmetries in Nuclear Matter
Pairing and Symmetries in Nuclear MatterPairing and Symmetries in Nuclear Matter
Pairing and Symmetries in Nuclear Matter
 
Seminor ansto-0730
Seminor ansto-0730Seminor ansto-0730
Seminor ansto-0730
 
Room Temperature Superconductivity: Dream or Reality?
Room Temperature Superconductivity: Dream or Reality?Room Temperature Superconductivity: Dream or Reality?
Room Temperature Superconductivity: Dream or Reality?
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
 
Closed-Form Solutions in Low-Rank Subspace Recovery Models and Their Implicat...
Closed-Form Solutions in Low-Rank Subspace Recovery Models and Their Implicat...Closed-Form Solutions in Low-Rank Subspace Recovery Models and Their Implicat...
Closed-Form Solutions in Low-Rank Subspace Recovery Models and Their Implicat...
 
Adamek_SestoGR18.pdf
Adamek_SestoGR18.pdfAdamek_SestoGR18.pdf
Adamek_SestoGR18.pdf
 
Nonlinear response of solids within the GW plus Bethe-Salpeter approximation
Nonlinear response  of solids within the GW plus Bethe-Salpeter approximationNonlinear response  of solids within the GW plus Bethe-Salpeter approximation
Nonlinear response of solids within the GW plus Bethe-Salpeter approximation
 

Kürzlich hochgeladen

Probability.pptx, Types of Probability, UG
Probability.pptx, Types of Probability, UGProbability.pptx, Types of Probability, UG
Probability.pptx, Types of Probability, UGSoniaBajaj10
 
Environmental acoustics- noise criteria.pptx
Environmental acoustics- noise criteria.pptxEnvironmental acoustics- noise criteria.pptx
Environmental acoustics- noise criteria.pptxpriyankatabhane
 
Advances in AI-driven Image Recognition for Early Detection of Cancer
Advances in AI-driven Image Recognition for Early Detection of CancerAdvances in AI-driven Image Recognition for Early Detection of Cancer
Advances in AI-driven Image Recognition for Early Detection of CancerLuis Miguel Chong Chong
 
Timeless Cosmology: Towards a Geometric Origin of Cosmological Correlations
Timeless Cosmology: Towards a Geometric Origin of Cosmological CorrelationsTimeless Cosmology: Towards a Geometric Origin of Cosmological Correlations
Timeless Cosmology: Towards a Geometric Origin of Cosmological CorrelationsDanielBaumann11
 
LAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary Microbiology
LAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary MicrobiologyLAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary Microbiology
LAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary MicrobiologyChayanika Das
 
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPRPirithiRaju
 
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep LearningCombining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learningvschiavoni
 
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...Christina Parmionova
 
Measures of Central Tendency.pptx for UG
Measures of Central Tendency.pptx for UGMeasures of Central Tendency.pptx for UG
Measures of Central Tendency.pptx for UGSoniaBajaj10
 
Introduction of Human Body & Structure of cell.pptx
Introduction of Human Body & Structure of cell.pptxIntroduction of Human Body & Structure of cell.pptx
Introduction of Human Body & Structure of cell.pptxMedical College
 
The Sensory Organs, Anatomy and Function
The Sensory Organs, Anatomy and FunctionThe Sensory Organs, Anatomy and Function
The Sensory Organs, Anatomy and FunctionJadeNovelo1
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Sérgio Sacani
 
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxGENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxRitchAndruAgustin
 
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfKDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfGABYFIORELAMALPARTID1
 
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPRPirithiRaju
 
complex analysis best book for solving questions.pdf
complex analysis best book for solving questions.pdfcomplex analysis best book for solving questions.pdf
complex analysis best book for solving questions.pdfSubhamKumar3239
 
Gas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGiovaniTrinidad
 
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2AuEnriquezLontok
 

Kürzlich hochgeladen (20)

Probability.pptx, Types of Probability, UG
Probability.pptx, Types of Probability, UGProbability.pptx, Types of Probability, UG
Probability.pptx, Types of Probability, UG
 
Environmental acoustics- noise criteria.pptx
Environmental acoustics- noise criteria.pptxEnvironmental acoustics- noise criteria.pptx
Environmental acoustics- noise criteria.pptx
 
Advances in AI-driven Image Recognition for Early Detection of Cancer
Advances in AI-driven Image Recognition for Early Detection of CancerAdvances in AI-driven Image Recognition for Early Detection of Cancer
Advances in AI-driven Image Recognition for Early Detection of Cancer
 
AZOTOBACTER AS BIOFERILIZER.PPTX
AZOTOBACTER AS BIOFERILIZER.PPTXAZOTOBACTER AS BIOFERILIZER.PPTX
AZOTOBACTER AS BIOFERILIZER.PPTX
 
Timeless Cosmology: Towards a Geometric Origin of Cosmological Correlations
Timeless Cosmology: Towards a Geometric Origin of Cosmological CorrelationsTimeless Cosmology: Towards a Geometric Origin of Cosmological Correlations
Timeless Cosmology: Towards a Geometric Origin of Cosmological Correlations
 
LAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary Microbiology
LAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary MicrobiologyLAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary Microbiology
LAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary Microbiology
 
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
 
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep LearningCombining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
 
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
 
Measures of Central Tendency.pptx for UG
Measures of Central Tendency.pptx for UGMeasures of Central Tendency.pptx for UG
Measures of Central Tendency.pptx for UG
 
Introduction of Human Body & Structure of cell.pptx
Introduction of Human Body & Structure of cell.pptxIntroduction of Human Body & Structure of cell.pptx
Introduction of Human Body & Structure of cell.pptx
 
The Sensory Organs, Anatomy and Function
The Sensory Organs, Anatomy and FunctionThe Sensory Organs, Anatomy and Function
The Sensory Organs, Anatomy and Function
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
 
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxGENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
 
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfKDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
 
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
 
complex analysis best book for solving questions.pdf
complex analysis best book for solving questions.pdfcomplex analysis best book for solving questions.pdf
complex analysis best book for solving questions.pdf
 
Gas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptx
 
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
 
Interferons.pptx.
Interferons.pptx.Interferons.pptx.
Interferons.pptx.
 

NRG Calculation

  • 1. Numerical Renormalization-Group computation of magnetic relaxation rates Krissia de Zawadzki, Luiz Nunes de Oliveira, Jose Wilson M. Pinto Instituto de F´ısica de S˜ao Carlos - Universidade de S˜ao Paulo Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 1 / 11
  • 2. Introduction NRG calculations Numerical results Conclusions Acknowledgment Radius of Kondo screening cloud Radius of Kondo screening cloud 푅푘 LASZLO, B. PRB, 75 (2007). BOYCE, J.B; SLICHTER, C.P. PRL, 32, 61 (1974). Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 2 / 11
  • 3. Introduction NRG calculations Numerical results Conclusions Acknowledgment Radius of Kondo screening cloud Radius of Kondo screening cloud 푅푘 푅퐾 ∝ 푇−1 퐾 General consensus 푅퐾 = ~푣퐹 /푘퐵푇퐾 Boyce Slichter NMR: LASZLO, B. PRB, 75 (2007). BOYCE, J.B; SLICHTER, C.P. PRL, 32, 61 (1974). Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 2 / 11
  • 4. Introduction NRG calculations Numerical results Conclusions Acknowledgment Radius of Kondo screening cloud Radius of Kondo screening cloud 푅푘 푅퐾 ∝ 푇−1 퐾 General consensus 푅퐾 = ~푣퐹 /푘퐵푇퐾 Boyce Slichter NMR: LASZLO, B. PRB, 75 (2007). BOYCE, J.B; SLICHTER, C.P. PRL, 32, 61 (1974). Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 2 / 11
  • 5. Introduction NRG calculations Numerical results Conclusions Acknowledgment Radius of Kondo screening cloud Radius of Kondo screening cloud 푅푘 푅퐾 ∝ 푇−1 퐾 General consensus 푅퐾 = ~푣퐹 /푘퐵푇퐾 Boyce Slichter NMR: Experimental arrangement: NMR probe: 푅 from the impurity NRG computation of the spin lattice relaxation rate 1/(푇1푇) as function of 푇 and 푅 LASZLO, B. PRB, 75 (2007). BOYCE, J.B; SLICHTER, C.P. PRL, 32, 61 (1974). Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 2 / 11
  • 6. Introduction NRG calculations Numerical results Conclusions Acknowledgment Radius of Kondo screening cloud Radius of Kondo screening cloud 푅푘 푅퐾 ∝ 푇−1 퐾 General consensus 푅퐾 = ~푣퐹 /푘퐵푇퐾 Boyce Slichter NMR: Experimental arrangement: NMR probe: 푅 from the impurity NRG computation of the spin lattice relaxation rate 1/(푇1푇) as function of 푇 and 푅 Can we measure 푅퐾 via NMR? Our
  • 7. ndings: Yes, we can! T dependence changes as probe crosses 푅퐾 Phase of low-푇 Friedel oscillations also changes LASZLO, B. PRB, 75 (2007). BOYCE, J.B; SLICHTER, C.P. PRL, 32, 61 (1974). Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 2 / 11
  • 8. Introduction NRG calculations Numerical results Conclusions Acknowledgment The quantum system NRG Probe Single-impurity Anderson model 퐻 = 퐻푐표푛푑 ⏞Σ︁ ⏟ k 휀k푐† k푐k 휀 = 푣퐹 퐷 (푘 − 푘퐹 ) +퐷 −퐷 푘퐹 Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 3 / 11
  • 9. Introduction NRG calculations Numerical results Conclusions Acknowledgment The quantum system NRG Probe Single-impurity Anderson model 퐻 = 퐻푐표푛푑 ⏞Σ︁ ⏟ k 휀k푐† k푐k + 퐻푑 ⏞ ⏟ 휀푑푐† 푑푐푑 + 푈푛푑↑푛푑↓ 휀 = 푣퐹 퐷 (푘 − 푘퐹 ) +퐷 −퐷 푘퐹 Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 3 / 11
  • 10. Introduction NRG calculations Numerical results Conclusions Acknowledgment The quantum system NRG Probe Single-impurity Anderson model 퐻 = 퐻푐표푛푑 ⏞Σ︁ ⏟ k 휀k푐† k푐k + 퐻푑 ⏞ ⏟ 휀푑푐† 푑푐푑 + 푈푛푑↑푛푑↓ + 퐻푖푛푡 ⏞√︂ ⏟ Γ 휋 (푓† 0 푐푑 + 퐻.푐.) 휀 = 푣퐹 퐷 (푘 − 푘퐹 ) +퐷 −퐷 푘퐹 푓0 = 1 √ 휌 Σ︁ k 푐k Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 3 / 11
  • 11. Introduction NRG calculations Numerical results Conclusions Acknowledgment The quantum system NRG Probe Single-impurity Anderson model 퐻 = 퐻푐표푛푑 ⏞Σ︁ ⏟ k 휀k푐† k푐k + 퐻푑 ⏞ ⏟ 휀푑푐† 푑푐푑 + 푈푛푑↑푛푑↓ + 퐻푖푛푡 ⏞√︂ ⏟ Γ 휋 (푓† 0 푐푑 + 퐻.푐.) 퐻푝푟표푏푒 = −퐴 [︁ Ψ† ↑(⃗푅 )Ψ↓(⃗푅)퐼− + 퐻.푐. ]︁ Ψ휇 = Σ︁ k 푒푖k.R푐k 1 푇1 = 4휋 ~ Σ︁ 퐼,퐹 푒−훽퐸퐼 |⟨퐼|퐻푝푟표푏푒|퐹⟩|2훿(퐸퐼 − 퐸퐹 ) 푓0 = 1 √ 휌 Σ︁ k 푐k 푅 Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 3 / 11
  • 12. Introduction NRG calculations Numerical results Conclusions Acknowledgment Two-center basis Two-center basis Spherically symmetric operators 푐휀 = Σ︁ k 푐 k 훿(휀 − 휀k) (around impurity) 푑휀 = Σ︁ k 푐 k 푒푖k.R훿(휀 − 휀k) (around probe) 푐휀 푑휀 Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 4 / 11
  • 13. Introduction NRG calculations Numerical results Conclusions Acknowledgment Two-center basis Two-center basis Spherically symmetric operators 푐휀 = Σ︁ k 푐 k 훿(휀 − 휀k) (around impurity) 푑휀 = Σ︁ k 푐 k 푒푖k.R훿(휀 − 휀k) (around probe) 푐휀 푑휀 휀, 푑휀′} = sin(푘푅) {푐† 푘푅 훿(휀 − 휀′) Gram-Schmidt construction 푐¯휀휇 = √ 1 1−푊2 (푑휀휇 −푊푐휀휇) 푊 = 푊(휀,푅) = sin(푘푅) 푘푅 푘푅 = 푘퐹푅 (︀ 1 + 휀 퐷 )︀ Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 4 / 11
  • 14. Introduction NRG calculations Numerical results Conclusions Acknowledgment Two-center basis Two-center basis Spherically symmetric operators 푐휀 = Σ︁ k 푐 k 훿(휀 − 휀k) (around impurity) 푑휀 = Σ︁ k 푐 k 푒푖k.R훿(휀 − 휀k) (around probe) 푐휀 푑휀 NRG analytical 휀, 푑휀′} = sin(푘푅) {푐† 푘푅 훿(휀 − 휀′) Gram-Schmidt construction 푐¯휀휇 = √ 1 1−푊2 (푑휀휇 −푊푐휀휇) 푊 = 푊(휀,푅) = sin(푘푅) 푘푅 푘푅 = 푘퐹푅 (︀ 1 + 휀 퐷 )︀ Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 4 / 11
  • 15. Introduction NRG calculations Numerical results Conclusions Acknowledgment NRG and Lanczos basis NRG and Lanczos basis 퐻푁 = 1 풟푁 (︃ 푁Σ︁−1 푛=0 푡푛(푓†푛 푓푛+1 + 퐻.푐.) + √︂ Γ 휋 (푐† 푑푓0 + 퐻.푐.) + 퐻푑 )︃ NRG[4] 퐻푝푟표푏푒 = −퐴[ 휙† ↑휙↓ + Φ† ↑Φ↓ + (휙† ↑Φ↓ + Φ† ↑휙↓) ] I− + 퐻.푐. 휙휇(푅) ≡ ∫︁ 퐷 −퐷 푑휀 √︁ 1 −푊(휀,푅)¯푐휀휇 Φ휇(푅) ≡ Σ︁ 푛 훾푛푓푛 analytically numerically WILSON, K. Rev Mod Phys, 47, 773 (1975). Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 5 / 11
  • 16. Introduction NRG calculations Numerical results Conclusions Acknowledgment NRG and Lanczos basis NRG and Lanczos basis 퐻푁 = 1 풟푁 (︃ 푁Σ︁−1 푛=0 푡푛(푓†푛 푓푛+1 + 퐻.푐.) + √︂ Γ 휋 (푐† 푑푓0 + 퐻.푐.) + 퐻푑 )︃ NRG[4] 퐻푝푟표푏푒 = −퐴[ 휙† ↑휙↓ + Φ† ↑Φ↓ + (휙† ↑Φ↓ + Φ† ↑휙↓) ] I− + 퐻.푐. 휙휇(푅) ≡ ∫︁ 퐷 −퐷 푑휀 √︁ 1 −푊(휀,푅)¯푐휀휇 Φ휇(푅) ≡ Σ︁ 푛 훾푛푓푛 analytically numerically 1 푇1 = + + WILSON, K. Rev Mod Phys, 47, 773 (1975). Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 5 / 11
  • 17. Introduction NRG calculations Numerical results Conclusions Acknowledgment NRG and Lanczos basis NRG and Lanczos basis 퐻푁 = 1 풟푁 (︃ 푁Σ︁−1 푛=0 푡푛(푓†푛 푓푛+1 + 퐻.푐.) + √︂ Γ 휋 (푐† 푑푓0 + 퐻.푐.) + 퐻푑 )︃ NRG[4] 퐻푝푟표푏푒 = −퐴[ 휙† ↑휙↓ + Φ† ↑Φ↓ + (휙† ↑Φ↓ + Φ† ↑휙↓) ] I− + 퐻.푐. 휙휇(푅) ≡ ∫︁ 퐷 −퐷 푑휀 √︁ 1 −푊(휀,푅)¯푐휀휇 Φ휇(푅) ≡ Σ︁ 푛 훾푛푓푛 analytically numerically 1 푇1 = (︂ 1 푇1 )︂ 휙휙 ⏟ ⏞ 1−푊2 퐹 + + cte 푊퐹 = sin(푘퐹푅) 푘퐹푅 WILSON, K. Rev Mod Phys, 47, 773 (1975). Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 5 / 11
  • 18. Introduction NRG calculations Numerical results Conclusions Acknowledgment NRG and Lanczos basis NRG and Lanczos basis 퐻푁 = 1 풟푁 (︃ 푁Σ︁−1 푛=0 푡푛(푓†푛 푓푛+1 + 퐻.푐.) + √︂ Γ 휋 (푐† 푑푓0 + 퐻.푐.) + 퐻푑 )︃ NRG[4] 퐻푝푟표푏푒 = −퐴[ 휙† ↑휙↓ + Φ† ↑Φ↓ + (휙† ↑Φ↓ + Φ† ↑휙↓) ] I− + 퐻.푐. 휙휇(푅) ≡ ∫︁ 퐷 −퐷 푑휀 √︁ 1 −푊(휀,푅)¯푐휀휇 Φ휇(푅) ≡ Σ︁ 푛 훾푛푓푛 analytically numerically 1 푇1 = (︂ 1 푇1 )︂ 휙휙 ⏟ ⏞ 1−푊2 퐹 + (︂ 1 푇1 )︂ ⏟ ⏞ ΦΦ 푊2 퐹 + cte 푘퐹 푅 ≪ 1 푊퐹 = sin(푘퐹푅) 푘퐹푅 WILSON, K. Rev Mod Phys, 47, 773 (1975). Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 5 / 11
  • 19. Introduction NRG calculations Numerical results Conclusions Acknowledgment NRG and Lanczos basis NRG and Lanczos basis 퐻푁 = 1 풟푁 (︃ 푁Σ︁−1 푛=0 푡푛(푓†푛 푓푛+1 + 퐻.푐.) + √︂ Γ 휋 (푐† 푑푓0 + 퐻.푐.) + 퐻푑 )︃ NRG[4] 퐻푝푟표푏푒 = −퐴[ 휙† ↑휙↓ + Φ† ↑Φ↓ + (휙† ↑Φ↓ + Φ† ↑휙↓) ] I− + 퐻.푐. 휙휇(푅) ≡ ∫︁ 퐷 −퐷 푑휀 √︁ 1 −푊(휀,푅)¯푐휀휇 Φ휇(푅) ≡ Σ︁ 푛 훾푛푓푛 analytically numerically 1 푇1 = (︂ 1 푇1 )︂ 휙휙 ⏟ ⏞ 1−푊2 퐹 + (︂ 1 푇1 )︂ ⏟ ⏞ ΦΦ 푊2 퐹 + (︂ 1 푇1 )︂ Φ휙 ⏟ ⏞ (1−푊퐹 )푊퐹 cte 푘퐹 푅 ≪ 1 푘퐹푅 ≫ 1 DULL SMALL 푊퐹 = sin(푘퐹푅) 푘퐹푅 WILSON, K. Rev Mod Phys, 47, 773 (1975). Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 5 / 11
  • 20. Introduction NRG calculations Numerical results Conclusions Acknowledgment Friedel oscillations Friedel oscillations 0.7 0.6 0.5 0.4 0.3 0.2 0.1 T=1.7569e−4 T=9.8711e−8 0.17 9.8 10.0 10.2 10.4 10.6 10.8 11.0 11.2 kF R ¼ 0.0 10.5¼ 10¼ 10.25¼ 10.0 10.5 11.0 0.16 1 T1 T (kF R)2 Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 6 / 11
  • 21. Introduction NRG calculations Numerical results Conclusions Acknowledgment Relaxation rate - temperature dependence 푘퐵푇퐾 = 1.25 × 10−5 7 6 5 T1 ´ kB T ³1 4 3 2 1 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 kB T 0 (101+0.25)¼ (102+0.25)¼ (103+0.25)¼ (104+0.25)¼ (105+0.25)¼ (106+0.25)¼ (107+0.25)¼ (kF R)2 Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 7 / 11
  • 22. Introduction NRG calculations Numerical results Conclusions Acknowledgment Interference relaxation rate Interference relaxation rate 7 6 5 1 kB T ³T1 ´ kB T 4 3 2 1 R¼RK outside inside 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 0 (kF R)2 kF R=(n+1 4 )¼ ¸B =2¼ vF kB T de Broglie n=102 n=105 n=107 Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 8 / 11
  • 23. Introduction NRG calculations Numerical results Conclusions Acknowledgment Friedel oscillations Friedel oscillations 1.72 1.70 1.68 1.66 1.64 1.62 1.60 0.00015 101 102 103 104 105 106 107 108 kF R ¼ 1.58 RK !TK =1.25e−05 n¼ (n+1/2)¼ 104 105 106 0.00010 +1.6131 1 T1 T (kF R)2 T¼5.62e−11 Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 9 / 11
  • 24. Introduction NRG calculations Numerical results Conclusions Acknowledgment Conclusions NMR to measure 푅퐾 : OK! Inside cloud, 푇-dependent rate follows universal curve Outside cloud, rate follows dierent curve Phase of Friedel oscillations reverses around 푅 = 푅퐾 Future prospects: Other geometries P-h symmetric case diers from assymetric ? Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 10 / 11
  • 25. Introduction NRG calculations Numerical results Conclusions Acknowledgment Acknowledgment Thank you! Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 11 / 11
  • 26. Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 1 / 4
  • 27. Additional results Relaxation rate - 풢푠푖푑푒(푇) profile 7 6 5 T1 ´ kB T ³1 4 3 2 1 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 kB T 0 (101+0.5)¼ (102+0.5)¼ (103+0.5)¼ (104+0.5)¼ (105+0.5)¼ (106+0.5)¼ (107+0.5)¼ (kF R)2 Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 2 / 4
  • 28. Additional results Relaxation rate - 풢푆퐸푇 (푇) profile 7 6 5 T1 ´ kB T ³1 4 3 2 1 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 kB T 0 101 ¼ 102 ¼ 103 ¼ 104 ¼ 105 ¼ 106 ¼ 107 ¼ (kF R)2 Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 3 / 4
  • 29. Additional results Particle-hole symmetric case Particle-hole symmetric case: 1/푇1 as function of 푇 푘퐹푅 = 푛휋 and 푘퐹푅 = (푛 + 1 2 )휋, 푛 = 10 7 6 5 T1 ´ kB T ³1 4 3 2 1 2.0 1.8 1.6 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 kB T 0 10-9 10-8 10-7 1.4 (kF R)2 Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 4 / 4
  • 30. Additional results Particle-hole symmetric case Particle-hole symmetric case: 1/푇1 as function of 푇 푘퐹푅 = 푛휋 and 푘퐹푅 = (푛 + 1 2 )휋, 푛 = 103 7 6 5 T1 ´ kB T ³1 4 3 2 1 2.0 1.8 1.6 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 kB T 0 10-8 10-7 1.4 (kF R)2 Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 4 / 4
  • 31. Additional results Particle-hole symmetric case Particle-hole symmetric case: 1/푇1 as function of 푇 푘퐹푅 = 푛휋 and 푘퐹푅 = (푛 + 1 2 )휋, 푛 = 105 7 6 5 T1 ´ kB T ³1 4 3 2 1 2.0 1.8 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 kB T 0 10-7 1.6 (kF R)2 Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 4 / 4
  • 32. Additional results Particle-hole symmetric case Particle-hole symmetric case: 1/푇1 as function of 푇 푘퐹푅 = 푛휋 and 푘퐹푅 = (푛 + 1 2 )휋, 푛 = 107 7 6 5 T1 ´ kB T ³1 4 3 2 1 4 3 2 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 kB T 0 10-9 1 (kF R)2 Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 4 / 4