SlideShare ist ein Scribd-Unternehmen logo
1 von 21
Sistemas de segundo orden
Sistemas de segundo orden

111111111111111111111111111111111111111111111111111111111111111111111111111

Los sistemas de segundo orden continuos son aquellos que responden a
una ecuación diferencial lineal de segundo orden

d 2 c (t )
dc(t )
d 2 r (t )
dr (t )
a0
+ a1
+ a2c(t ) = b0
+ b1
+ b2 r (t )
2
2
dt
dt
dt
dt
Sin pérdida de generalidad se analizará un caso muy común donde:

a0 = 1, a1 = p, a2 = b2 = K , b0 = b1 = 0.
Que corresponde al siguiente sistema de segundo orden:

R (s )

E (s )

K
s(s + p)

C (s )

donde

K

es una const.
que representa
una ganancia.

p

es una const. real
representa al polo
del sistema.
Sistemas de segundo orden

111111111111111111111111111111111111111111111111111111111111111111111111111

Su función de transferencia de lazo cerrado es:

C ( s)
K
= 2
R ( s ) s + ps + K
C ( s)
=
R( s) 
s + p +

2


K

p2
 s + p −
−K

4
2



p2
−K

4


Como se aprecia, los polos de lazo cerrado pueden ser de tres tipos
2

p
,
> K 2. Reales iguales si:
4
p2
<K
3. Complejos si
4

1. Reales diferentes si:

p2
=K
4

Para facilitar el análisis se realiza el siguiente cambio de variables
2
K = ωn

p = 2ζω n = 2σ
Sistemas de segundo orden

111111111111111111111111111111111111111111111111111111111111111111111111111

2
ωn
C ( s)
= 2
2
R ( s ) s + 2ζω n s + ω n

forma estándar del sistema
de segundo orden.

donde ω n es la frecuencia natural no amortiguada, σ se denomina
atenuación, ζ es el factor de amortiguamiento. Ahora el comportamiento
dinámico del sistema de segundo orden se describe en términos de los
parámetros ζ y ω n .
Se analizará la respuesta transitoria ante una entrada escalón unitario:

(0 < ζ < 1): en este caso C ( s ) R ( s ) se escribe
2
ωn
C (s)
=
R ( s ) ( s + ζω n + jω d )( s + ζω n − jω d )

(1) Caso subamortiguado

2

donde ω d = ω n 1 − ζ se denomina fracuencia natural amortiguada. Si
es una entrada escalón, entonces
2
ωn
C ( s) = 2
2
( s + 2ζω n s + ω n ) s

R (s )
Sistemas de segundo orden

111111111111111111111111111111111111111111111111111111111111111111111111111

Utilizando fracciones parciales

s + ζω n
ζω n
1
C (s) = −
−
2
2
2
s ( s + ζω n ) + ω d ( s + ζω n ) 2 + ω d
y conociendo que
-1 


s + ζω n
L 
= e −ζω nt cos ω d t
2
2
 ( s + ζω n ) + ω d 
-1 


ωd
L 
= e −ζω nt senω d t
2
( s + ζω n ) 2 + ω d 

Se obtiene la salida en el tiempo


1−ζ 2 

c (t ) = 1 −
sen ω d t + tan −1
2

ζ 
1−ζ


e −ζω nt

(t ≥ 0)
Sistemas de segundo orden
(2) Caso de amortiguamiento crítico (ζ

111111111111111111111111111111111111111111111111111111111111111111111111111

= 1) :

en este caso se tienen dos polos reales iguales y C (s ) ante un escalón es
2
ωn
C (s) =
(s + ω n )2 s

la transformada inversa arroja

c(t ) = 1 − e −ω nt (1 + ω nt )

(t ≥ 0)
Sistemas de segundo orden

111111111111111111111111111111111111111111111111111111111111111111111111111

(3) Caso sobreamortiguado (ζ > 1) :
en este caso se tienen dos polos reales negativos y diferentes. Para una
entrada escalón, C (s ) es

C (s) =

( s + ζω n + ω n

2
ωn
ζ 2 − 1)( s + ζω n − ω n ζ 2 − 1) s

La transformada inversa de Laplace de la ecuación anterior es

c (t ) = 1 +
−

1
2

2

2 ζ − 1(ζ + ζ − 1)
1
2

2

2 ζ − 1(ζ − ζ − 1)

e

e

−(ζ + ζ 2 −1)ω nt

−(ζ + ζ 2 −1)ω nt
Sistemas de segundo orden
2
1.8
1.6
1.4

111111111111111111111111111111111111111111111111111111111111111111111111111

ζ =0
ζ = 0.2
ζ = 0.4
ζ = 0.7

1.2

ζ = 0.8

1
0.8

ζ = 1 ca

0.6

ζ > 1 sa

0.4
0.2
0

0

2

4

6

8

10

Fig. Curvas de respuesta al escalón unitario.

12

Figura. Respuesta
al escalón de
diferentes sistemas
de segundo orden.
Sistemas de segundo orden

111111111111111111111111111111111111111111111111111111111111111111111111111

Respuesta impulsiva de sistemas de segundo orden
2
ωn
C ( s) = 2
2
s + 2ζω n s + ωn

Utilizando transformada inversa obtenemos las siguientes soluciones de c (t )
para (0 ≤ ζ < 1)

ωn
c (t ) =
e −ζωnt senωn 1 − ζ 2 t
1− ζ 2

(t ≥ 0)

para (ζ = 1)

ωn
c(t ) =
e −(ζ −
2 ζ 2 −1

ζ 2 −1)ζω nt

para (ζ > 1)
2
c(t ) = ωn te −ωnt

(t ≥ 0)

ωn
−
e −(ζ −
2 ζ 2 −1

ζ 2 −1)ζω nt

(t ≥ 0)
Sistemas de segundo orden
1

ζ =0

ζ = 0.2

0.8

111111111111111111111111111111111111111111111111111111111111111111111111111

ζ = 0.4

0.6

ζ = 0.7

0.4

ζ = 1 ca

0.2

ζ > 1 sa

0
-0.2
-0.4
-0.6
-0.8
-1
0

2

4

6

8

10

12

Figura. Respuesta
al impulso de
diferentes sistemas
de segundo orden.
Sistemas de segundo orden

111111111111111111111111111111111111111111111111111111111111111111111111111

Definición de los parámetros de la respuesta transitoria
Las características de desempeño de un sistema de control se comparan
basándose en el tiempo de la repuesta transitoria. La característica
transitoria de los sistemas dinámicos se presenta por la incapacidad de
responder de manera instantánea a las entradas o perturbaciones. La
respuesta transitoria es común clasificarla con base a los siguientes
parámetros.
1.4

c(t)

1.2

Mp
1

1. Tiempo de retardo

1

tr

2. Tiempo de crecimiento

0.8

tp

0.6

3. Tiempo pico

0.4

4. Sobreimpulso máximo

Mp

5. Tiempo de establecimiento

0.2

0

td

0
0

2
t r t p4

6

8

10

12

ts

14

16

18

20

ts

t

a continuación se definen…
Tiempo de retardo
, td . Es el tiempo que tarda la respuesta en alcanzar la mitad del
valor final por primera vez.
Sistemas de segundo orden

2.- Tiempo de crecimiento, . Es el tiempo requerido para que la respuesta
aumente de 0 a 100% para sistemas subamortiguados, del 5 al 95% o del
10 al 90% para sistemas críticamente amortiguados o sobreamortiguados.
El tiempo de crecimiento se obtiene dando un valor de uno en la ecuación
de respuesta de un sistema de segundo orden ante una entrada escalón.

c(t ) = 1 − e

−ζω ntr

ζ
(cos ωd t r +
senωd t r ) = 1
2
1− ζ

ζ
cos ωd t r +
senωd t r = 0
2
1− ζ
Sistemas de segundo orden

111111111111111111111111111111111111111111111111111111111111111111111111111

o bien



ζ
ζ
cos ωd t r +
cos ωd t r tan ωd t r = cos ωd t r 1 +
tan ωd t r  = 0
2
2
1− ζ
1−ζ


1 − ζ 2 ωd
tan ωd t r = −
=
ζ
−σ
el tiempo de crecimiento es

tr =

ω
1
π −β
tan −1  d  =
,


ωd
 − σ  ωd

β = tan −1

ωd
σ
ωd

β
σ
Sistemas de segundo orden

111111111111111111111111111111111111111111111111111111111111111111111111111

3.- Tiempo pico, t p . Es el tiempo requerido para que la respuesta alcance el
primer pico de sobreimpulso. El tiempo pico se obtiene derivando la ecuación
de respuesta c(t) e igualándola a cero, con lo que se obtiene

ωn
−ζω nt p
( senω d t p )
e
=0
2
1−ζ
senω d t p = 0 , los valores que satisfacen esta ecuación son
0,π , 2π , 3π , , se elige el primer sobreimpulso.
π
ωd t p = π
⇒ tp =
ωd
Sistemas de segundo orden
SOBREPASO

Mp

4.

Es el valor pico máximo de la curva de respuesta medido desde la unidad
o valor deseado. El sobreimpulso máximo se obtiene de la respuesta
evaluada en el tiempo pico.

M p = c(t p ) − 1
= −e

ts π
ζ
π
cos ω d
+
senω d
2

ωd
ωd
1−ζ


−ζω n (π ω d ) 


= e −ζ ( ω n

Mp=e

ωd )π

(

−ζ

= e −( σ

)

1−ζ 2 π

ωd )π





5.- Tiempo de establecimiento,
5.- Tiempo de establecimiento, . Es el tiempo mínimo donde la curva de
respuesta alcanza y se mantiene dentro de un rango de error preestablecido,
generalmente es del 2% o del 5%, el rango más común es el del 2%. Para
sistemas de primer y segundo orden, la respuesta se mantiene dentro del 2%
después de 4 constantes de tiempo:

4
4
t s = 4T =
=
ζω n σ
Sistemas de segundo orden

111111111111111111111111111111111111111111111111111111111111111111111111111

Ejemplo: Definir los parámetros de respuesta transitoria del sistema

R (s )

375
s ( s + 34)

C (s )

Desarrollo:
La función de transferencia de lazo cerrado es
C ( s)
375
= 2
R ( s) s + 34 s + 375

Se utiliza la siguiente igualdad
2
375
ωn
= 2
2
s 2 + 34 s + 375 s + 2ζω n s + ωn
Sistemas de segundo orden

111111111111111111111111111111111111111111111111111111111111111111111111111

se obtiene
2
ω n = 375

2ζω n = 34

ω n = 375

σ = 17

34
ζ =
= 0.877876
2 375

ω d = 86

A partir de aquí se obtienen los parámetros de respuesta transitoria

β = tan

−1 ω d

= 0.499 rad .

σ
π −β
tr =
= 0.2849 segundos
ωd
π
tp =
= 0.33876 segundos
ωd

M p = e −( σ

ts =

ωd )π

= 0.00315 = 0.315%

4
= 0.23529 segundos
σ

Nota: Analizar porque t s

< tr < t p
Sistemas de segundo orden

111111111111111111111111111111111111111111111111111111111111111111111111111

Ejemplo: De los siguientes parámetros de respuesta transitoria obtener
la función de transferencia.
1.4

c(t)

1421.2
127

1

0.8

0.6

0.4

0.2

0 00

2

4

6

8

10

12

14

0.75

16

18

20

t

Desarrollo: de la gráfica

142 − 127
Mp =
= 0.1181
127

t s = 0.75 segundos

Estos dos
Parámetros
Son suficientes
Sistemas de segundo orden

111111111111111111111111111111111111111111111111111111111111111111111111111

ts
4
4
ts =
→ σ = = 5.3333
σ
ts

De

De

M p y conociendo σ

Mp =e

−( σ ω d ) π

− σπ
→ ωd =
= 7.84335
ln M p

Entonces

σ = 5.3333
ω d = 7.84335

2
ω n = σ 2 + ω d = 9.48486
σ
ζω n = σ → ζ =
= 0.56229
ωn

2
ωn
89.96256
G(s) = 2
= 2
2
s + 2ζω n s + ω n s + 10.666 s + 89.96256

Weitere ähnliche Inhalte

Was ist angesagt?

diagramas de bloque y funciones de transferencia
 diagramas de bloque y funciones de transferencia diagramas de bloque y funciones de transferencia
diagramas de bloque y funciones de transferenciaJorge Luis Jaramillo
 
Orden superior
Orden superiorOrden superior
Orden superiorUNEFA
 
Unidad III: Polos y Ceros de una función de transferencia.
Unidad III: Polos y Ceros de una función de transferencia.Unidad III: Polos y Ceros de una función de transferencia.
Unidad III: Polos y Ceros de una función de transferencia.Mayra Peña
 
Analisis circuitos eléctricos primer y segundo orden
Analisis circuitos eléctricos primer y segundo ordenAnalisis circuitos eléctricos primer y segundo orden
Analisis circuitos eléctricos primer y segundo ordenUniversidad Nacional de Loja
 
Sistemas de primer orden, segundo orden y orden superior
Sistemas de primer orden,  segundo orden y orden superiorSistemas de primer orden,  segundo orden y orden superior
Sistemas de primer orden, segundo orden y orden superiorMichelleAlejandroLeo
 
Sistemas de primer orden
Sistemas de primer ordenSistemas de primer orden
Sistemas de primer ordenHenry Alvarado
 
Sistemas lineales invariantes en el tiempo
Sistemas lineales invariantes en el tiempoSistemas lineales invariantes en el tiempo
Sistemas lineales invariantes en el tiempoMari Colmenares
 
Simplificacion+diagramas
Simplificacion+diagramasSimplificacion+diagramas
Simplificacion+diagramasUNEFA
 
Respuesta Transitoria (Ejercicios resueltos)
Respuesta Transitoria (Ejercicios resueltos)Respuesta Transitoria (Ejercicios resueltos)
Respuesta Transitoria (Ejercicios resueltos)johnkiki
 
Lugar geométrico de las raices control 1
Lugar geométrico de las raices control 1Lugar geométrico de las raices control 1
Lugar geométrico de las raices control 1Marvin Pariona
 
TEORIA PID CONTROL EN TIEMPO DISCRETO
TEORIA PID CONTROL EN TIEMPO DISCRETOTEORIA PID CONTROL EN TIEMPO DISCRETO
TEORIA PID CONTROL EN TIEMPO DISCRETOcesarcesitar
 
3 2 circuitos-disparo
3 2 circuitos-disparo3 2 circuitos-disparo
3 2 circuitos-disparoAxtridf Gs
 
Funciones singulares
Funciones singularesFunciones singulares
Funciones singularesKenyo Turco
 
Controladores (teoria de control)
Controladores (teoria de control)Controladores (teoria de control)
Controladores (teoria de control)martinezeduardo
 
Ingenieria de control moderna - Ogata 5ed
Ingenieria de control moderna - Ogata 5edIngenieria de control moderna - Ogata 5ed
Ingenieria de control moderna - Ogata 5edNa Chu
 
Simplificación de los diagramas de bloques
Simplificación de los diagramas de bloquesSimplificación de los diagramas de bloques
Simplificación de los diagramas de bloquesantovazp
 

Was ist angesagt? (20)

diagramas de bloque y funciones de transferencia
 diagramas de bloque y funciones de transferencia diagramas de bloque y funciones de transferencia
diagramas de bloque y funciones de transferencia
 
Orden superior
Orden superiorOrden superior
Orden superior
 
Unidad III: Polos y Ceros de una función de transferencia.
Unidad III: Polos y Ceros de una función de transferencia.Unidad III: Polos y Ceros de una función de transferencia.
Unidad III: Polos y Ceros de una función de transferencia.
 
Ejercicios circuitos i
Ejercicios circuitos iEjercicios circuitos i
Ejercicios circuitos i
 
Analisis circuitos eléctricos primer y segundo orden
Analisis circuitos eléctricos primer y segundo ordenAnalisis circuitos eléctricos primer y segundo orden
Analisis circuitos eléctricos primer y segundo orden
 
Sistemas de primer orden, segundo orden y orden superior
Sistemas de primer orden,  segundo orden y orden superiorSistemas de primer orden,  segundo orden y orden superior
Sistemas de primer orden, segundo orden y orden superior
 
Sistemas de primer orden
Sistemas de primer ordenSistemas de primer orden
Sistemas de primer orden
 
Sistemas lineales invariantes en el tiempo
Sistemas lineales invariantes en el tiempoSistemas lineales invariantes en el tiempo
Sistemas lineales invariantes en el tiempo
 
Simplificacion+diagramas
Simplificacion+diagramasSimplificacion+diagramas
Simplificacion+diagramas
 
Respuesta Transitoria (Ejercicios resueltos)
Respuesta Transitoria (Ejercicios resueltos)Respuesta Transitoria (Ejercicios resueltos)
Respuesta Transitoria (Ejercicios resueltos)
 
Lugar geométrico de las raices control 1
Lugar geométrico de las raices control 1Lugar geométrico de las raices control 1
Lugar geométrico de las raices control 1
 
Análisis de la respuesta del sistema
Análisis de la respuesta del sistemaAnálisis de la respuesta del sistema
Análisis de la respuesta del sistema
 
Control de sistemas no lineales
Control de sistemas no linealesControl de sistemas no lineales
Control de sistemas no lineales
 
TEORIA PID CONTROL EN TIEMPO DISCRETO
TEORIA PID CONTROL EN TIEMPO DISCRETOTEORIA PID CONTROL EN TIEMPO DISCRETO
TEORIA PID CONTROL EN TIEMPO DISCRETO
 
3 2 circuitos-disparo
3 2 circuitos-disparo3 2 circuitos-disparo
3 2 circuitos-disparo
 
Funciones singulares
Funciones singularesFunciones singulares
Funciones singulares
 
Controladores (teoria de control)
Controladores (teoria de control)Controladores (teoria de control)
Controladores (teoria de control)
 
Ingenieria de control moderna - Ogata 5ed
Ingenieria de control moderna - Ogata 5edIngenieria de control moderna - Ogata 5ed
Ingenieria de control moderna - Ogata 5ed
 
Simplificación de los diagramas de bloques
Simplificación de los diagramas de bloquesSimplificación de los diagramas de bloques
Simplificación de los diagramas de bloques
 
Senoides y fasores presentacion ppt
Senoides  y fasores presentacion pptSenoides  y fasores presentacion ppt
Senoides y fasores presentacion ppt
 

Andere mochten auch

Clase07 sistemas de segundo orden
Clase07 sistemas de segundo ordenClase07 sistemas de segundo orden
Clase07 sistemas de segundo ordenUNEFA
 
Movimiento subamortiguado
Movimiento subamortiguadoMovimiento subamortiguado
Movimiento subamortiguadojnicolers
 
Sistema críticamente amortiguado
Sistema críticamente amortiguadoSistema críticamente amortiguado
Sistema críticamente amortiguadojosemanuelaz77
 
Clase06 sistemas de primer orden
Clase06 sistemas de primer ordenClase06 sistemas de primer orden
Clase06 sistemas de primer ordenUNEFA
 
Guia de-ejercicios-sistemas-de-primer-orden
Guia de-ejercicios-sistemas-de-primer-ordenGuia de-ejercicios-sistemas-de-primer-orden
Guia de-ejercicios-sistemas-de-primer-ordenbyosfear
 
Dinamica de fluidos
Dinamica de fluidos Dinamica de fluidos
Dinamica de fluidos KevinRamone17
 
Ecuación del Movimiento Amortiguado.
Ecuación del Movimiento Amortiguado.Ecuación del Movimiento Amortiguado.
Ecuación del Movimiento Amortiguado.Saer C
 

Andere mochten auch (8)

Clase07 sistemas de segundo orden
Clase07 sistemas de segundo ordenClase07 sistemas de segundo orden
Clase07 sistemas de segundo orden
 
Movimiento subamortiguado
Movimiento subamortiguadoMovimiento subamortiguado
Movimiento subamortiguado
 
Sistemas dinamicos de orden superior
Sistemas dinamicos de orden superiorSistemas dinamicos de orden superior
Sistemas dinamicos de orden superior
 
Sistema críticamente amortiguado
Sistema críticamente amortiguadoSistema críticamente amortiguado
Sistema críticamente amortiguado
 
Clase06 sistemas de primer orden
Clase06 sistemas de primer ordenClase06 sistemas de primer orden
Clase06 sistemas de primer orden
 
Guia de-ejercicios-sistemas-de-primer-orden
Guia de-ejercicios-sistemas-de-primer-ordenGuia de-ejercicios-sistemas-de-primer-orden
Guia de-ejercicios-sistemas-de-primer-orden
 
Dinamica de fluidos
Dinamica de fluidos Dinamica de fluidos
Dinamica de fluidos
 
Ecuación del Movimiento Amortiguado.
Ecuación del Movimiento Amortiguado.Ecuación del Movimiento Amortiguado.
Ecuación del Movimiento Amortiguado.
 

Ähnlich wie Sistemas de segundo orden

Ingeniera de control: Análisis de la respuesta en el tiempo
Ingeniera de control: Análisis de la respuesta en el tiempo Ingeniera de control: Análisis de la respuesta en el tiempo
Ingeniera de control: Análisis de la respuesta en el tiempo SANTIAGO PABLO ALBERTO
 
Sistemas de primer y segundo orden
Sistemas de primer y segundo ordenSistemas de primer y segundo orden
Sistemas de primer y segundo ordenRafaelGainzaLeon
 
Respuesta transitoriadsdssdsssssssss.pdf
Respuesta transitoriadsdssdsssssssss.pdfRespuesta transitoriadsdssdsssssssss.pdf
Respuesta transitoriadsdssdsssssssss.pdfGonzalo780195
 
Respuesta en el tiempo
Respuesta en el tiempoRespuesta en el tiempo
Respuesta en el tiempoBryan Barriga
 
CIRCUITOS DE SEGUNDO ORDEN RLC.pdf
CIRCUITOS DE SEGUNDO ORDEN RLC.pdfCIRCUITOS DE SEGUNDO ORDEN RLC.pdf
CIRCUITOS DE SEGUNDO ORDEN RLC.pdfgabyhuacac1
 
Especificaciones
EspecificacionesEspecificaciones
Especificacionespollonaism
 
Tema transitorios
Tema transitoriosTema transitorios
Tema transitoriosdeysitavib
 
Respuesta temporal feb08
Respuesta temporal feb08Respuesta temporal feb08
Respuesta temporal feb08Kathy Lazaro
 
TIME RESPONSE OF SECOND ORDER SYSTEM USING MATLAB
TIME RESPONSE OF SECOND ORDER SYSTEM USING MATLABTIME RESPONSE OF SECOND ORDER SYSTEM USING MATLAB
TIME RESPONSE OF SECOND ORDER SYSTEM USING MATLABsanjay kumar pediredla
 
Problemario de Series de Fourier
Problemario de Series de FourierProblemario de Series de Fourier
Problemario de Series de FourierKike Prieto
 
Especificaciones
EspecificacionesEspecificaciones
Especificacionespollonaism
 
Transparencias dinamica orden
Transparencias dinamica ordenTransparencias dinamica orden
Transparencias dinamica ordenMiguel
 
Tarea ecuaciones diferenciales
Tarea ecuaciones diferencialesTarea ecuaciones diferenciales
Tarea ecuaciones diferencialesSalMndez5
 

Ähnlich wie Sistemas de segundo orden (20)

Clase07 sistemas de segundo orden
Clase07 sistemas de segundo ordenClase07 sistemas de segundo orden
Clase07 sistemas de segundo orden
 
Diapositivas curso controles
Diapositivas curso controlesDiapositivas curso controles
Diapositivas curso controles
 
Ingeniera de control: Análisis de la respuesta en el tiempo
Ingeniera de control: Análisis de la respuesta en el tiempo Ingeniera de control: Análisis de la respuesta en el tiempo
Ingeniera de control: Análisis de la respuesta en el tiempo
 
Sistemas de primer y segundo orden
Sistemas de primer y segundo ordenSistemas de primer y segundo orden
Sistemas de primer y segundo orden
 
Respuesta transitoriadsdssdsssssssss.pdf
Respuesta transitoriadsdssdsssssssss.pdfRespuesta transitoriadsdssdsssssssss.pdf
Respuesta transitoriadsdssdsssssssss.pdf
 
Respuesta en el tiempo
Respuesta en el tiempoRespuesta en el tiempo
Respuesta en el tiempo
 
CIRCUITOS DE SEGUNDO ORDEN RLC.pdf
CIRCUITOS DE SEGUNDO ORDEN RLC.pdfCIRCUITOS DE SEGUNDO ORDEN RLC.pdf
CIRCUITOS DE SEGUNDO ORDEN RLC.pdf
 
Respuesta en el Tiempo.pptx
Respuesta en el Tiempo.pptxRespuesta en el Tiempo.pptx
Respuesta en el Tiempo.pptx
 
T3.2.sistemas 1er orden 1314 v02
T3.2.sistemas 1er orden 1314 v02T3.2.sistemas 1er orden 1314 v02
T3.2.sistemas 1er orden 1314 v02
 
T3.2.sistemas 1er orden 1314 v02
T3.2.sistemas 1er orden 1314 v02T3.2.sistemas 1er orden 1314 v02
T3.2.sistemas 1er orden 1314 v02
 
Especificaciones
EspecificacionesEspecificaciones
Especificaciones
 
Tema transitorios
Tema transitoriosTema transitorios
Tema transitorios
 
Respuesta temporal feb08
Respuesta temporal feb08Respuesta temporal feb08
Respuesta temporal feb08
 
TIME RESPONSE OF SECOND ORDER SYSTEM USING MATLAB
TIME RESPONSE OF SECOND ORDER SYSTEM USING MATLABTIME RESPONSE OF SECOND ORDER SYSTEM USING MATLAB
TIME RESPONSE OF SECOND ORDER SYSTEM USING MATLAB
 
Problemario de Series de Fourier
Problemario de Series de FourierProblemario de Series de Fourier
Problemario de Series de Fourier
 
Especificaciones
EspecificacionesEspecificaciones
Especificaciones
 
Transparencias dinamica orden
Transparencias dinamica ordenTransparencias dinamica orden
Transparencias dinamica orden
 
Tarea ecuaciones diferenciales
Tarea ecuaciones diferencialesTarea ecuaciones diferenciales
Tarea ecuaciones diferenciales
 
UNIDAD I CONTROL ANALOGO
UNIDAD I CONTROL ANALOGOUNIDAD I CONTROL ANALOGO
UNIDAD I CONTROL ANALOGO
 
S04+(rta.+tiempo)
S04+(rta.+tiempo)S04+(rta.+tiempo)
S04+(rta.+tiempo)
 

Mehr von Henry Alvarado

Demostracion estadistica-momentos
Demostracion estadistica-momentosDemostracion estadistica-momentos
Demostracion estadistica-momentosHenry Alvarado
 
Demostracion estadistica-desviacion-tipica
Demostracion estadistica-desviacion-tipicaDemostracion estadistica-desviacion-tipica
Demostracion estadistica-desviacion-tipicaHenry Alvarado
 
Analisis de error en estado estacionario
Analisis de error en estado estacionarioAnalisis de error en estado estacionario
Analisis de error en estado estacionarioHenry Alvarado
 
Elementos lineales de traslado
Elementos lineales de trasladoElementos lineales de traslado
Elementos lineales de trasladoHenry Alvarado
 
Introduccion a los sistemas de control
Introduccion a los sistemas de controlIntroduccion a los sistemas de control
Introduccion a los sistemas de controlHenry Alvarado
 
Redes en escalera metodo 1
Redes en escalera metodo 1Redes en escalera metodo 1
Redes en escalera metodo 1Henry Alvarado
 

Mehr von Henry Alvarado (11)

Demostracion estadistica-momentos
Demostracion estadistica-momentosDemostracion estadistica-momentos
Demostracion estadistica-momentos
 
Demostracion estadistica-desviacion-tipica
Demostracion estadistica-desviacion-tipicaDemostracion estadistica-desviacion-tipica
Demostracion estadistica-desviacion-tipica
 
Diapositiva pid
Diapositiva pidDiapositiva pid
Diapositiva pid
 
Presentación control
Presentación controlPresentación control
Presentación control
 
Analisis de error en estado estacionario
Analisis de error en estado estacionarioAnalisis de error en estado estacionario
Analisis de error en estado estacionario
 
Clase9mod
Clase9modClase9mod
Clase9mod
 
Lugar de las raices
Lugar de las raicesLugar de las raices
Lugar de las raices
 
Elementos lineales de traslado
Elementos lineales de trasladoElementos lineales de traslado
Elementos lineales de traslado
 
Introduccion a los sistemas de control
Introduccion a los sistemas de controlIntroduccion a los sistemas de control
Introduccion a los sistemas de control
 
Redes en escalera metodo 1
Redes en escalera metodo 1Redes en escalera metodo 1
Redes en escalera metodo 1
 
Redes en escalera
Redes en escaleraRedes en escalera
Redes en escalera
 

Kürzlich hochgeladen

Ley 21.545 - Circular Nº 586.pdf circular
Ley 21.545 - Circular Nº 586.pdf circularLey 21.545 - Circular Nº 586.pdf circular
Ley 21.545 - Circular Nº 586.pdf circularMooPandrea
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADauxsoporte
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSjlorentemartos
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...JAVIER SOLIS NOYOLA
 
Éteres. Química Orgánica. Propiedades y reacciones
Éteres. Química Orgánica. Propiedades y reaccionesÉteres. Química Orgánica. Propiedades y reacciones
Éteres. Química Orgánica. Propiedades y reaccionesLauraColom3
 
Historia y técnica del collage en el arte
Historia y técnica del collage en el arteHistoria y técnica del collage en el arte
Historia y técnica del collage en el arteRaquel Martín Contreras
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfAngélica Soledad Vega Ramírez
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxlupitavic
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptxdeimerhdz21
 
CLASE - La visión y misión organizacionales.pdf
CLASE - La visión y misión organizacionales.pdfCLASE - La visión y misión organizacionales.pdf
CLASE - La visión y misión organizacionales.pdfJonathanCovena1
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptxFelicitasAsuncionDia
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfFrancisco158360
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfNancyLoaa
 
Ecosistemas Natural, Rural y urbano 2021.pptx
Ecosistemas Natural, Rural y urbano  2021.pptxEcosistemas Natural, Rural y urbano  2021.pptx
Ecosistemas Natural, Rural y urbano 2021.pptxolgakaterin
 
Sesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxSesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxMaritzaRetamozoVera
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dstEphaniiie
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.amayarogel
 
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptxTECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptxKarlaMassielMartinez
 

Kürzlich hochgeladen (20)

Ley 21.545 - Circular Nº 586.pdf circular
Ley 21.545 - Circular Nº 586.pdf circularLey 21.545 - Circular Nº 586.pdf circular
Ley 21.545 - Circular Nº 586.pdf circular
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDAD
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
 
Éteres. Química Orgánica. Propiedades y reacciones
Éteres. Química Orgánica. Propiedades y reaccionesÉteres. Química Orgánica. Propiedades y reacciones
Éteres. Química Orgánica. Propiedades y reacciones
 
Historia y técnica del collage en el arte
Historia y técnica del collage en el arteHistoria y técnica del collage en el arte
Historia y técnica del collage en el arte
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptx
 
Medición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptxMedición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptx
 
CLASE - La visión y misión organizacionales.pdf
CLASE - La visión y misión organizacionales.pdfCLASE - La visión y misión organizacionales.pdf
CLASE - La visión y misión organizacionales.pdf
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptx
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdf
 
Ecosistemas Natural, Rural y urbano 2021.pptx
Ecosistemas Natural, Rural y urbano  2021.pptxEcosistemas Natural, Rural y urbano  2021.pptx
Ecosistemas Natural, Rural y urbano 2021.pptx
 
Sesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxSesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docx
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes d
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.
 
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptxTECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
 
Sesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronósticoSesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronóstico
 

Sistemas de segundo orden

  • 2. Sistemas de segundo orden 111111111111111111111111111111111111111111111111111111111111111111111111111 Los sistemas de segundo orden continuos son aquellos que responden a una ecuación diferencial lineal de segundo orden d 2 c (t ) dc(t ) d 2 r (t ) dr (t ) a0 + a1 + a2c(t ) = b0 + b1 + b2 r (t ) 2 2 dt dt dt dt Sin pérdida de generalidad se analizará un caso muy común donde: a0 = 1, a1 = p, a2 = b2 = K , b0 = b1 = 0. Que corresponde al siguiente sistema de segundo orden: R (s ) E (s ) K s(s + p) C (s ) donde K es una const. que representa una ganancia. p es una const. real representa al polo del sistema.
  • 3. Sistemas de segundo orden 111111111111111111111111111111111111111111111111111111111111111111111111111 Su función de transferencia de lazo cerrado es: C ( s) K = 2 R ( s ) s + ps + K C ( s) = R( s)  s + p +  2  K  p2  s + p − −K  4 2   p2 −K  4  Como se aprecia, los polos de lazo cerrado pueden ser de tres tipos 2 p , > K 2. Reales iguales si: 4 p2 <K 3. Complejos si 4 1. Reales diferentes si: p2 =K 4 Para facilitar el análisis se realiza el siguiente cambio de variables 2 K = ωn p = 2ζω n = 2σ
  • 4. Sistemas de segundo orden 111111111111111111111111111111111111111111111111111111111111111111111111111 2 ωn C ( s) = 2 2 R ( s ) s + 2ζω n s + ω n forma estándar del sistema de segundo orden. donde ω n es la frecuencia natural no amortiguada, σ se denomina atenuación, ζ es el factor de amortiguamiento. Ahora el comportamiento dinámico del sistema de segundo orden se describe en términos de los parámetros ζ y ω n . Se analizará la respuesta transitoria ante una entrada escalón unitario: (0 < ζ < 1): en este caso C ( s ) R ( s ) se escribe 2 ωn C (s) = R ( s ) ( s + ζω n + jω d )( s + ζω n − jω d ) (1) Caso subamortiguado 2 donde ω d = ω n 1 − ζ se denomina fracuencia natural amortiguada. Si es una entrada escalón, entonces 2 ωn C ( s) = 2 2 ( s + 2ζω n s + ω n ) s R (s )
  • 5. Sistemas de segundo orden 111111111111111111111111111111111111111111111111111111111111111111111111111 Utilizando fracciones parciales s + ζω n ζω n 1 C (s) = − − 2 2 2 s ( s + ζω n ) + ω d ( s + ζω n ) 2 + ω d y conociendo que -1   s + ζω n L  = e −ζω nt cos ω d t 2 2  ( s + ζω n ) + ω d  -1   ωd L  = e −ζω nt senω d t 2 ( s + ζω n ) 2 + ω d   Se obtiene la salida en el tiempo  1−ζ 2   c (t ) = 1 − sen ω d t + tan −1 2  ζ  1−ζ   e −ζω nt (t ≥ 0)
  • 6. Sistemas de segundo orden (2) Caso de amortiguamiento crítico (ζ 111111111111111111111111111111111111111111111111111111111111111111111111111 = 1) : en este caso se tienen dos polos reales iguales y C (s ) ante un escalón es 2 ωn C (s) = (s + ω n )2 s la transformada inversa arroja c(t ) = 1 − e −ω nt (1 + ω nt ) (t ≥ 0)
  • 7. Sistemas de segundo orden 111111111111111111111111111111111111111111111111111111111111111111111111111 (3) Caso sobreamortiguado (ζ > 1) : en este caso se tienen dos polos reales negativos y diferentes. Para una entrada escalón, C (s ) es C (s) = ( s + ζω n + ω n 2 ωn ζ 2 − 1)( s + ζω n − ω n ζ 2 − 1) s La transformada inversa de Laplace de la ecuación anterior es c (t ) = 1 + − 1 2 2 2 ζ − 1(ζ + ζ − 1) 1 2 2 2 ζ − 1(ζ − ζ − 1) e e −(ζ + ζ 2 −1)ω nt −(ζ + ζ 2 −1)ω nt
  • 8. Sistemas de segundo orden 2 1.8 1.6 1.4 111111111111111111111111111111111111111111111111111111111111111111111111111 ζ =0 ζ = 0.2 ζ = 0.4 ζ = 0.7 1.2 ζ = 0.8 1 0.8 ζ = 1 ca 0.6 ζ > 1 sa 0.4 0.2 0 0 2 4 6 8 10 Fig. Curvas de respuesta al escalón unitario. 12 Figura. Respuesta al escalón de diferentes sistemas de segundo orden.
  • 9. Sistemas de segundo orden 111111111111111111111111111111111111111111111111111111111111111111111111111 Respuesta impulsiva de sistemas de segundo orden 2 ωn C ( s) = 2 2 s + 2ζω n s + ωn Utilizando transformada inversa obtenemos las siguientes soluciones de c (t ) para (0 ≤ ζ < 1) ωn c (t ) = e −ζωnt senωn 1 − ζ 2 t 1− ζ 2 (t ≥ 0) para (ζ = 1) ωn c(t ) = e −(ζ − 2 ζ 2 −1 ζ 2 −1)ζω nt para (ζ > 1) 2 c(t ) = ωn te −ωnt (t ≥ 0) ωn − e −(ζ − 2 ζ 2 −1 ζ 2 −1)ζω nt (t ≥ 0)
  • 10. Sistemas de segundo orden 1 ζ =0 ζ = 0.2 0.8 111111111111111111111111111111111111111111111111111111111111111111111111111 ζ = 0.4 0.6 ζ = 0.7 0.4 ζ = 1 ca 0.2 ζ > 1 sa 0 -0.2 -0.4 -0.6 -0.8 -1 0 2 4 6 8 10 12 Figura. Respuesta al impulso de diferentes sistemas de segundo orden.
  • 11. Sistemas de segundo orden 111111111111111111111111111111111111111111111111111111111111111111111111111 Definición de los parámetros de la respuesta transitoria Las características de desempeño de un sistema de control se comparan basándose en el tiempo de la repuesta transitoria. La característica transitoria de los sistemas dinámicos se presenta por la incapacidad de responder de manera instantánea a las entradas o perturbaciones. La respuesta transitoria es común clasificarla con base a los siguientes parámetros. 1.4 c(t) 1.2 Mp 1 1. Tiempo de retardo 1 tr 2. Tiempo de crecimiento 0.8 tp 0.6 3. Tiempo pico 0.4 4. Sobreimpulso máximo Mp 5. Tiempo de establecimiento 0.2 0 td 0 0 2 t r t p4 6 8 10 12 ts 14 16 18 20 ts t a continuación se definen…
  • 12. Tiempo de retardo , td . Es el tiempo que tarda la respuesta en alcanzar la mitad del valor final por primera vez.
  • 13. Sistemas de segundo orden 2.- Tiempo de crecimiento, . Es el tiempo requerido para que la respuesta aumente de 0 a 100% para sistemas subamortiguados, del 5 al 95% o del 10 al 90% para sistemas críticamente amortiguados o sobreamortiguados. El tiempo de crecimiento se obtiene dando un valor de uno en la ecuación de respuesta de un sistema de segundo orden ante una entrada escalón. c(t ) = 1 − e −ζω ntr ζ (cos ωd t r + senωd t r ) = 1 2 1− ζ ζ cos ωd t r + senωd t r = 0 2 1− ζ
  • 14. Sistemas de segundo orden 111111111111111111111111111111111111111111111111111111111111111111111111111 o bien   ζ ζ cos ωd t r + cos ωd t r tan ωd t r = cos ωd t r 1 + tan ωd t r  = 0 2 2 1− ζ 1−ζ   1 − ζ 2 ωd tan ωd t r = − = ζ −σ el tiempo de crecimiento es tr = ω 1 π −β tan −1  d  = ,   ωd  − σ  ωd β = tan −1 ωd σ ωd β σ
  • 15. Sistemas de segundo orden 111111111111111111111111111111111111111111111111111111111111111111111111111 3.- Tiempo pico, t p . Es el tiempo requerido para que la respuesta alcance el primer pico de sobreimpulso. El tiempo pico se obtiene derivando la ecuación de respuesta c(t) e igualándola a cero, con lo que se obtiene ωn −ζω nt p ( senω d t p ) e =0 2 1−ζ senω d t p = 0 , los valores que satisfacen esta ecuación son 0,π , 2π , 3π , , se elige el primer sobreimpulso. π ωd t p = π ⇒ tp = ωd
  • 16. Sistemas de segundo orden SOBREPASO Mp 4. Es el valor pico máximo de la curva de respuesta medido desde la unidad o valor deseado. El sobreimpulso máximo se obtiene de la respuesta evaluada en el tiempo pico. M p = c(t p ) − 1 = −e ts π ζ π cos ω d + senω d 2  ωd ωd 1−ζ  −ζω n (π ω d )   = e −ζ ( ω n Mp=e ωd )π ( −ζ = e −( σ ) 1−ζ 2 π ωd )π    
  • 17. 5.- Tiempo de establecimiento, 5.- Tiempo de establecimiento, . Es el tiempo mínimo donde la curva de respuesta alcanza y se mantiene dentro de un rango de error preestablecido, generalmente es del 2% o del 5%, el rango más común es el del 2%. Para sistemas de primer y segundo orden, la respuesta se mantiene dentro del 2% después de 4 constantes de tiempo: 4 4 t s = 4T = = ζω n σ
  • 18. Sistemas de segundo orden 111111111111111111111111111111111111111111111111111111111111111111111111111 Ejemplo: Definir los parámetros de respuesta transitoria del sistema R (s ) 375 s ( s + 34) C (s ) Desarrollo: La función de transferencia de lazo cerrado es C ( s) 375 = 2 R ( s) s + 34 s + 375 Se utiliza la siguiente igualdad 2 375 ωn = 2 2 s 2 + 34 s + 375 s + 2ζω n s + ωn
  • 19. Sistemas de segundo orden 111111111111111111111111111111111111111111111111111111111111111111111111111 se obtiene 2 ω n = 375 2ζω n = 34 ω n = 375 σ = 17 34 ζ = = 0.877876 2 375 ω d = 86 A partir de aquí se obtienen los parámetros de respuesta transitoria β = tan −1 ω d = 0.499 rad . σ π −β tr = = 0.2849 segundos ωd π tp = = 0.33876 segundos ωd M p = e −( σ ts = ωd )π = 0.00315 = 0.315% 4 = 0.23529 segundos σ Nota: Analizar porque t s < tr < t p
  • 20. Sistemas de segundo orden 111111111111111111111111111111111111111111111111111111111111111111111111111 Ejemplo: De los siguientes parámetros de respuesta transitoria obtener la función de transferencia. 1.4 c(t) 1421.2 127 1 0.8 0.6 0.4 0.2 0 00 2 4 6 8 10 12 14 0.75 16 18 20 t Desarrollo: de la gráfica 142 − 127 Mp = = 0.1181 127 t s = 0.75 segundos Estos dos Parámetros Son suficientes
  • 21. Sistemas de segundo orden 111111111111111111111111111111111111111111111111111111111111111111111111111 ts 4 4 ts = → σ = = 5.3333 σ ts De De M p y conociendo σ Mp =e −( σ ω d ) π − σπ → ωd = = 7.84335 ln M p Entonces σ = 5.3333 ω d = 7.84335 2 ω n = σ 2 + ω d = 9.48486 σ ζω n = σ → ζ = = 0.56229 ωn 2 ωn 89.96256 G(s) = 2 = 2 2 s + 2ζω n s + ω n s + 10.666 s + 89.96256