SlideShare ist ein Scribd-Unternehmen logo
1 von 61
TERMOQUÍMICA A QUÍMICA  DOS EFEITOS  ENERGÉTICOS. Nelson José Paraná da Silva - Prof. de Química (UFBA-BA) Colégios: Militar de Salvador, CEFET-BA, Mundial, São Francisco de Alagoinhas, BETA vestibular Alagoinhas, Aprovação e Trajetória vestibular CATU-BA [email_address]
OS PRINCÍPIOS FUNDAMENTAIS DO  CALOR E DO TRABALHO SE APLICAM,  NO ESTUDO DE UMA REAÇÃO QUÍMICA  E NAS MUDANÇAS DO  ESTADO FÍSICO DE UMA SUBSTÂNCIA.
OBSERVE OS FENÔMENOS pilha
NELES,OCORREM TRANSFORMAÇÕES FÍSICAS E (OU) QUÍMICAS ENVOLVENDO VÁRIOS TIPOS DE ENERGIA,  INCLUSIVE  ENERGIA TÉRMICA.  [email_address]
CALOR  - energia que flui de um sistema com temperatura mais alta para o outro com temperatura mais baixa. SISTEMA  - tudo aquilo que se reserva do universo  para  estudo. ENERGIA QUÍMICA  - trabalho realizado por um sistema através de reações químicas. ENERGIA  - resultado do movimento e da força gravitacional existentes nas partículas formadoras da matéria. TRABALHO  - deslocamento de um corpo contra uma força  que se opõe a esse deslocamento. CONCEITOS IMPORTANTES
EM UM SISTEMA ISOLADO  A ENERGIA É SEMPRE A MESMA, ELA SE CONSERVA; PODE-SE DIZER ENTÃO QUE  A ENERGIA DO UNIVERSO É CONSTANTE.  [email_address]
ENTALPIA ENERGIA ACUMULADA POR UMA SUBSTÂNCIA SOB  PRESSÃO CONSTANTE , RESUMIDAMENTE, PODEMOS DIZER QUE É O  CONTÉUDO DE CALOR  DA SUBSTÂNCIA. ENERGIA INTERNA ENERGIA ACUMULADA POR UMA SUBSTÂNCIA SOB  VOLUME CONSTANTE . [email_address]
[email_address] O PROCESSO DE MEDIDA DOS CALORES DE REAÇÃO É  DENOMINADO  CALORIMETRIA. O APARELHO QUE MEDE A ENTALPIA DA REAÇÃO É  DENOMINADO  CALORÍMETRO .
CALORIA  é a quantidade de energia necessária para aumentar de 1ºC a temperatura  de 1 g de água. JOULE  é a quantidade de energia necessária para  deslocar uma massa de 1kg, inicialmente em repouso, fazendo percurso de 1 metro em 1 segundo. 1 cal = 4,18 J 1 kcal = 1000 cal 1 kJ = 1000 J
EFEITOS ENERGETICOS  NAS REACõES QUÍMICAS 6CO  2  +  6H 2 O      C 6 H 12 O 6   +  6O 2 LUZ CLOROFILA GLICOSE Na fotossíntese ocorre  absorção  de calor Na combustão do etanol ocorre  liberação  de calor ETANOL [email_address]
A  TERMOQUÍMICA  ESTUDA AS MUDANÇAS TÉRMICAS  ENVOLVIDAS NAS REAÇÕES QUÍMICAS * quando envolve liberação de calor, denomina-se REAÇÃO EXOTÉRMICA . * quando envolve absorção de calor, denomina-se REAÇÃO ENDOTÉRMICA.
EQUAÇÃO TERMOQUÍMICA É a representação de uma reação química  em que está especificado: * o estado físico de todas as substâncias. * o balanceamento da equação. * a variação de calor da reação (   H ). * as condições físicas em que ocorre a reação, ou seja, temperatura e pressão. ( 25ºC e 1atm  é o comum) * variedade alotrópica quando existir. Segue alguns exemplos...
REAÇÃO EXOTÉRMICA 2 C (s) +  3 H 2(g)  C 2 H 6(g)    H= – 20,2 kcal 2 C (s) +  3 H 2(g)  C 2 H 6(g) + 20,2 kcal REAÇÃO ENDOTÉRMICA Fe 3 O 4(s)  3 Fe (s) +  2 O 2(g)  H= + 267,0 kcal Fe 3 O 4(s)  3 Fe (s) +  2 O 2(g)   267,0 kcal 
OBSERVE  OS SINAIS OBSERVE  OS SINAIS REAÇÃO EXOTÉRMICA 2 C (s) +  3 H 2(g)  C 2 H 6(g)    H =  –  20,2 kcal 2 C (s) +  3 H 2(g)  C 2 H 6(g) +   20,2 kcal REAÇÃO ENDOTÉRMICA Fe 3 O 4(s)  3 Fe (s) +  2 O 2(g)  H =  +   267,0 kcal Fe 3 O 4(s)  3 Fe (s) +  2 O 2(g)   267,0 kcal 
CÁLCULO DA VARIAÇÃO DE ENTALPIA A  +  B     C  +  D    H R H P H P     ENTALPIA  PRODUTO H R     ENTALPIA  REAGENTE  H      VARIAÇÃO DE  ENTALPIA
  H R H R H P H P   [email_address] A  +  B     C  +  D  +  CALOR  REAÇÃO EXOTÉRMICA A  +  B  +  CALOR      C  +  D REAÇÃO ENDOTÉRMICA
Não esqueça: H P     ENTALPIA  PRODUTO H R     ENTALPIA  REAGENTE  H      VARIAÇÃO DE  ENTALPIA
H R H P REAÇÃO EXOTÉRMICA O SENTIDO DA SETA SERÁ SEMPRE DO REAGENTE PARA O PRODUTO CAMINHO DA REAÇÃO A  +  B     C  +  D  + H R H P > ENTÃO H R H P = +
A  +  B     C  +  D  +  CALOR  REAÇÃO EXOTÉRMICA [email_address] A  +  B  +  CALOR      C  +  D REAÇÃO   ENDOTÉRMICA
H P H R A  +  B  +     C  +  D  Hr REAÇÃO ENDOTÉRMICA O SENTIDO DA SETA SERÁ SEMPRE DO REAGENTE PARA O PRODUTO CAMINHO DA REAÇÃO Hp Hr > ENTÃO Hp = +
 H   =  H  (PRODUTOS)   –  H  (REAGENTES) Se  H R      H P    H   >  0  Se  H R   >  H P    H   <  0  [email_address]
 H   =  H  (PRODUTOS)   –  H  (REAGENTES) Se  H R      H P    H   >  0  Se  H R   >  H P    H   <  0  REAÇÃO  ENDOTÉRMICA REAÇÃO  EXOTÉRMICA
H R H P H R H P > Se  H   =  H  (PRODUTOS)   –  H  (REAGENTES)  H   <  0 CAMINHO DA REAÇÃO
H R H P  H   =  H  (PRODUTOS)   –  H  (REAGENTES)  H   <  0 CAMINHO DA REAÇÃO H R H P > Se REAÇÃO  EXOTÉRMICA
H P H R  H   =  H  (PRODUTOS)   –  H  (REAGENTES)  H   >  0 CAMINHO DA REAÇÃO Hp Hr > Se
H P H R Hp Hr > Se  H   =  H  (PRODUTOS)   –  H  (REAGENTES)  H   >  0 REAÇÃO  ENDOTÉRMICA CAMINHO DA REAÇÃO
* Convencionou-se entalpia zero para determinadas substâncias simples, em razão de não ser possível medir o valor real da entalpia de uma substância. * Foram escolhidas condições-padrão para estabelecer medidas relativas. * Terá entalpia zero  qualquer substância  simples que se apresente nos estados  físico e alotrópico mais comum, a 25ºC e 1atm de pressão. OBS.:
[email_address]
* A forma alotrópica menos estável tem entalpia maior que zero.
Observe a reação de formação (síntese ) de um mol de água, a 25ºC e 1 atm de pressão. H 2(g)  +  1/2O 2(g)      H 2 O (g) Cálculo da entalpia de formação:  H = H (produtos)  -  H (reagentes) [email_address]
 H = H (produtos)  –  H (reagentes)  H = Hº H 2 O (l)  –  (   Hº  H 2 (g)   +  1/2   Hº  O 2(g) ) Hº  H 2 (g ) =   Hº  O 2(g)  =  zero  H = Hº H 2 O (l) Hº H 2 O (l) =  – 68,4kcal/mol   COMO e ENTÃO  H =  – 68,4kcal/mol   H 2(g)  +  1/2   O 2(g)      H 2 O (g )   H = ?
 H  = H (produtos)  –  H (reagentes) H 2(g)  +  1/2   O 2(g)      H 2 O (g )   H  = ?  H  = Hº H 2 O (l)  –  (   Hº  H 2 (g)   +  1/2   Hº  O 2(g) ) Hº  H 2 (g ) =   Hº  O 2(g)  =  zero  H  = Hº H 2 O (l) Hº H 2 O (l) =  – 68,4kcal/mol    H  =  – 68,4kcal/mol
 H  = H (produtos)  –  H (reagentes) H 2(g)  +  1/2   O 2(g)      H 2 O (g )   H  =  –68,4kcal/mol    H  = Hº H 2 O (l)  –  (   Hº  H 2 (g)   +  1/2   Hº  O 2(g) ) Hº  H 2 (g ) =   Hº  O 2(g)  =  zero  H  = Hº H 2 O (l) Hº H 2 O (l) =  – 68,4kcal/mol    H  =  – 68,4kcal/mol
CÁLCULOS DA VARIAÇÃO DE ENTALPIA LEI DE HESS A entalpia de uma reação depende apenas dos estados iniciais  e finais da reação, não depende dos estados intermediários, ou seja a reação é  a mesma para uma ou mais etapas.  Ex. 1  - Cálculo da entalpia da reação de formação do gás carbônico: C (grafite) +  O 2(g)      CO 2(g)   H =  ?  kcal/mol
OBSERVE AS EQUAÇÕES: C (grafite) +  1/2O 2(g)      CO (g)   H = –  26,4kcal/mol CO (g)  +  1/2O 2(g)      CO 2(g)   H = –  67,6kcal/mol
EFETUAMOS A SOMA ALGÉBRICA  DAS MESMAS. 1ª etapa:   C (grafite) + 1/2O 2(g)      CO (g)   H 1  = –  26,4kcal/mol 2ª etapa:  CO (g)  +  1/2O 2(g)      CO 2(g)   H 2  = –  67,6kcal/mol  H = –  94,0kcal/mol CONCLUINDO  H  =   H 1  +   H 2  H = –  94,0kcal/mol Note que os termos semelhantes em membros opostos se anulam. Etapa final:  C (grafite) +  O 2(g)      CO 2(g)
1ª etapa  :  C (grafite) + 1/2O 2(g)      CO (g)   H 1  = - 26,4kcal/mol 2ª etapa  :  CO (g)  +  1/2O 2(g)      CO 2(g)   H 2  = - 67,6kcal/mol Etapa final:  C (grafite) +  O 2(g)      CO 2(g)   H = - 94,0kcal/mol Observe que o processo é puramente algébrico. [email_address]
1ª etapa  :  C (grafite) + 1/2O 2(g)      CO (g)   H 1  = - 26,4kcal/mol 2ª etapa  :  CO (g)  +  1/2O 2(g)      CO 2(g)   H 2  = - 67,6kcal/mol Etapa final:  C (grafite) +  O 2(g)      CO 2(g)   H = - 94,0kcal/mol Observe que o processo é puramente algébrico.  H =   H 1  +   H 2   = - 94,0kcal/mol
Ex 2  - Dadas as equações: C (grafite ) +  O 2(g)      CO 2(g)   H 1  =  –  94,0kcal/mol H 2(g)  +  1/2   O 2(g)    H 2 O (l)   H 2  =  –  68,4kcal/mol C (grafite) +  2H 2(g)      CH 4(g)   H 3  =  –  17,9kcal/mol Calcular a entalpia da reação: CH 4(g)  +  O 2(g)    CO 2(g) +  H 2 O (l)
Resolução: As equações dadas deverão ser arrumadas de tal modo que a sua soma resulte na equação-problema. C (grafite ) +  O 2(g)      CO 2(g)   H 1  = –  94,0kcal/mol H 2(g)  +  1/2   O 2(g)     H 2 O (l)   H 2  = –  68,4kcal/mol C (grafite) +  2H 2(g)      CH 4(g)   H 3  = –  17,9kcal/mol Equação-problema: I) II) III) Agora vamos identificá-las com algarismos romanos. CH 4(g)  +  O 2(g)    CO 2(g) +  H 2 O (l)
Agora, invertemos a equação  III  de modo a obter o metano (   CH 4  ) como reagente. CH 4(g)     C (grafite) +  2H 2(g)   H 3  =  +  17,9kcal/mol Observe a inversão de sinal do   H 3   Devemos manter a equação   I  pois dessa forma obteremos gás carbônico como produto. C (grafite ) +  O 2(g)      CO 2(g)   H 1  = –  94,0kcal/mol 2 (  H 2(g)  +  1/2   O 2(g)     H 2 O (l)   H 2  =  – 68,4kcal/mol ) Multiplicar por  2  a equação   II   para que os coeficientes fiquem ajustados. 2 H 2(g)  +  O 2(g)     2 H 2 O (l)   H 2  =  – 136,8 kcal/mol O   H 2 também é multiplicado
Finalmente aplica-se a soma algébrica das equações,  inclusive das variações de entalpia. CH 4(g)      C (grafite) +  2H 2(g)   H 3  =  +  17,9 kcal/mol C (grafite ) +  O 2(g)      CO 2(g)   H 1  =  –  94,0 kcal/mol 2 H 2(g)  +  O 2(g)     2 H 2 O (l)   H 2  =  – 136,8 kcal/mol _____________________________________________________________ [email_address]
CH 4(g)      C (grafite) +  2H 2(g)   H 3  =  +  17,9 kcal/mol C (grafite ) +  O 2(g)      CO 2(g)   H 1  =  –  94,0 kcal/mol 2 H 2(g)  +  O 2(g)     2 H 2 O (l)   H 2  =  – 136,8 kcal/mol _____________________________________________________________ Observe os cortes:  H =   H 1  +   H 2  +   H 3 CH 4(g)  +  2O 2(g)    CO 2(g) +  2H 2 O (l)   H  =  – 212,9 kcal/mol
CALORES  PADRÃO DE FORMAÇÃO  OU ENTALPIA-PADRÃO DE FORMAÇÃO  O índice sobrescrito  º  significa estado padrão. O índice subscrito  f  significa formação. . É o calor desenvolvido na formação de um mol de determinado composto, a partir das  substâncias  simples correspondentes no estado padrão. Representa-se por:   H f º
REAÇÃO DE FORMAÇÃO  - é aquela em que um mol de um único  composto é formado a partir de substâncias simples no  estado padrão. Exs.: C (grafite ) +  O 2(g)      CO 2(g) H 2(g)  +  1/2   O 2(g)     H 2 O (l) Os valores de   H   são pré-estabelecidos e encontrados em tabelas, para aqueles compostos que estejam na sua  forma mais estável a 1 atm de pressão, ou seja, no  estado padrão .  1 mol  1 mol 
 
CALOR  PADRÃO DE COMBUSTÃO  OU ENTALPIA-PADRÃO DE COMBUSTÃO  É o calor liberado na combustão total de um mol de uma  substância em que os componentes dessa reação estão no estado-padrão. H 2(g)  +  1/2O 2(g)     H 2 O (l)   H = –68,4kcal/mol C 2 H 5 OH (l)  + 3O 2(g)     2CO 2(g)  + 3H 2 O (l)   H = –325 kcal/mol COMBUSTÃO - reação de uma substância com o oxigênio (O 2 ) em que ocorre liberação de energia.  ( REAÇÃO EXOTÉRMICA )
O PODER CALÓRICO DE ALGUMAS SUBSTÂNCIAS A gasolina possui maior poder clalorífico que o álcool.  Para cada litro de gasolina queimado são produzidos  aproximadamente 8000 quilocalorias, enquanto para cada litro de álcool queimado, temos a produção de  aproximadamente 5000 quilocalorias. Veja a tabela de calorias de alguns alimentos, a seguir. [email_address]
 
CALOR  DE DISSOLUÇÃO OU ENTALPIA DE DISSOLUÇÃO  É  o calor desenvolvido ( liberado ou absorvido) provocado pela dissolução  de um mol de substância, numa quantidade de água suficiente para se obter uma solução diluída, no  estado padrão . H 2 SO 4 (l)   +  aq     H 2 SO 4 (aq)   H =   – 22,9 kcal/mol   KNO 3(s)  +  aq     KNO 3(aq)   H =  +  8 ,5 kcal/mol
CALOR  DE NEUTRALIZAÇÃO OU ENTALPIA DE NEUTRALIZAÇÃO  É o calor liberado na neutralização de um equivalente-grama de um ácido por um equivalente-grama de uma base, ambos  em soluções aquosas diluídas, no  estado padrão . HCl (aq)  +  NaOH (aq)      NaCl (aq)  +  H 2 O (l)   H =   –13,8 kcal/eq-g   HNO 3(aq)  +  LiOH (aq)      LiNO 3(aq)  +  H 2 O (l)   H =   –13,8 kcal/eq-g   OBS.: Para ácidos e bases fortes o   H  será sempre o mesmo .
A variação de entalpia de uma reação pode ser  calculada, conhecendo-se apenas as entalpias  de formação dos seus reagentes e produtos.  H =   H (produtos)  –     H (reagentes)
C 3 H 8(g)  + 5O 2(g)     3CO 2(g)  +  4H 2 O (g)   H = ?  – kcal/mol Consultando a tabela de calores de formação: Observe a equação: SUBSTÂNCIAS C 3 H 8(g) CO 2(g) H 2 O (g) O 2(g)  -24,8kcal/mol -94,1kcal/mol -57,8kcal/mol zero
 H =   H (produtos)  –     H (reagentes)  H = [ 3(-94,1) + 4(-57,8)] - (-24,8 + zero)  H =  [ 3  H CO 2(g) +  4  H   H 2 O (g)   ] -   (    H C 3 H 8(g) +   5    H O 2(g)  )    H = - 488,7 kcal/mol [email_address]
ENERGIA DE LIGAÇÃO É A ENERGIA NECESSÁRIA PARA ROMPER UM MOL DE LIGAÇÃO DE UMA SUBSTÂNCIA  NO ESTADO GASOSO. EX.  Para romper um de ligação  H – O  são necessárias  110kcal. Para romper um de ligação  H – C  são necessárias  100kcal. Para romper um de ligação  O = O  são necessárias  118kcal. . * esses valores são tabelados
Para romper um mol de água no estado gasoso, teremos: H 2 O (l)     2H (g)  +   O (g)   H = ?  kcal/mol 110Kcal 110kcal  H 2 O (l)     2H (g)  +   O (g)   H = 220  kcal/mol [email_address] O H  H
Observe a reação em que todos os participantes estão no estado gasoso: Para romper as ligações intramoleculares do metanol e do oxigênio, serão absorvidos, para: 1 mol de  O — H      +464,0 kj  +  464,0 kj 1 mol de  C — O      +330,0 kj  +  330,0 kj 3 mols de  C — H      3 (+413,0 kj)  + 1239,0 kj  3/2 mols de  O = O      3/2 (+493,0 kj)  +  739,5 kj TOTAL ABSORVIDO   + 2772,5 kj H | C— O — H  +  3/2O 2     O = C = O  +  2H 2 O | H H—
Para formar as ligações intramoleculares do CO 2  e da água,  serão liberadas: 2 mols de  C = O      2  (-7444,0 kj)  -1 488,0 kj 2 mols de  H — O      2 ( - 464,0 kj)  - 928,0 kj TOTAL LIBERADO   -2 416,0 kj Cômputo dos produtos: H | C— O — H  +  3/2O 2     O = C = O  +  2H 2 O | H H—
 H =   H (reagentes)  +   H (produtos) O cálculo final será:  H = 2 772,5kj   +   (- 2 416kj) [email_address]  H = 356,5kj CALOR LIBERADO CALOR ABSORVIDO
A quebra de ligação  envolve absorção de calor Processo endotérmico A formação de ligação  envolve liberação de calor Processo  exotérmico H H — H H — [email_address]
CONTINUE ANTENADO NESSA HOME PAGE, UM  ABRAÇO. www.vestibular1.com.br   Nelson José Paraná da Silva - Prof. de Química (UFBA-BA) Colégios: Militar de Salvador, CEFET-BA, Mundial, São Francisco de Alagoinhas, BETA vestibular Alagoinhas, Aprovação e Trajetória vestibular CATU-BA [email_address]

Weitere ähnliche Inhalte

Was ist angesagt?

Balanceamento de equações químicas
Balanceamento de equações químicasBalanceamento de equações químicas
Balanceamento de equações químicas
Rafael Nishikawa
 
Cinetica quimica
Cinetica quimicaCinetica quimica
Cinetica quimica
Liana Maia
 
Slides Termoquímica - Professor Robson Araujo (Robinho)
Slides Termoquímica - Professor Robson Araujo (Robinho)Slides Termoquímica - Professor Robson Araujo (Robinho)
Slides Termoquímica - Professor Robson Araujo (Robinho)
2CISBA
 
Reações químicas e classificações
Reações químicas e classificaçõesReações químicas e classificações
Reações químicas e classificações
Joanna de Paoli
 

Was ist angesagt? (20)

Equilíbrio iônico
Equilíbrio iônicoEquilíbrio iônico
Equilíbrio iônico
 
Balanceamento de equações químicas
Balanceamento de equações químicasBalanceamento de equações químicas
Balanceamento de equações químicas
 
Aula funções oxigenadas
Aula  funções oxigenadasAula  funções oxigenadas
Aula funções oxigenadas
 
Propriedades coligativas
Propriedades coligativasPropriedades coligativas
Propriedades coligativas
 
Entalpia
EntalpiaEntalpia
Entalpia
 
Equilíbrio químico
Equilíbrio químicoEquilíbrio químico
Equilíbrio químico
 
Cinetica quimica
Cinetica quimicaCinetica quimica
Cinetica quimica
 
termoquimica
termoquimicatermoquimica
termoquimica
 
Estequiometria
EstequiometriaEstequiometria
Estequiometria
 
Slides Termoquímica - Professor Robson Araujo (Robinho)
Slides Termoquímica - Professor Robson Araujo (Robinho)Slides Termoquímica - Professor Robson Araujo (Robinho)
Slides Termoquímica - Professor Robson Araujo (Robinho)
 
Concentração das soluções
Concentração  das soluçõesConcentração  das soluções
Concentração das soluções
 
Funções orgânicas slide
Funções orgânicas slideFunções orgânicas slide
Funções orgânicas slide
 
Aula 9 Mol Quantidade De Materia2
Aula 9   Mol   Quantidade De Materia2Aula 9   Mol   Quantidade De Materia2
Aula 9 Mol Quantidade De Materia2
 
Slides da aula de Química (Manoel) sobre Soluções
Slides da aula de Química (Manoel) sobre SoluçõesSlides da aula de Química (Manoel) sobre Soluções
Slides da aula de Química (Manoel) sobre Soluções
 
Gases
GasesGases
Gases
 
Calculo estequiometrico
Calculo estequiometricoCalculo estequiometrico
Calculo estequiometrico
 
INTRODUÇÃO A TERMOQUÍMICA.pdf
INTRODUÇÃO A TERMOQUÍMICA.pdfINTRODUÇÃO A TERMOQUÍMICA.pdf
INTRODUÇÃO A TERMOQUÍMICA.pdf
 
Reações Químicas
Reações QuímicasReações Químicas
Reações Químicas
 
Propriedades periodicas
Propriedades periodicas Propriedades periodicas
Propriedades periodicas
 
Reações químicas e classificações
Reações químicas e classificaçõesReações químicas e classificações
Reações químicas e classificações
 

Ähnlich wie Termoquimica

Professor José Roberto - Termoquímica completa
Professor José Roberto - Termoquímica completaProfessor José Roberto - Termoquímica completa
Professor José Roberto - Termoquímica completa
José Roberto Mattos
 
Termoquimica1
Termoquimica1Termoquimica1
Termoquimica1
luiz0309
 

Ähnlich wie Termoquimica (20)

Professor José Roberto - Termoquímica completa
Professor José Roberto - Termoquímica completaProfessor José Roberto - Termoquímica completa
Professor José Roberto - Termoquímica completa
 
Termoquimica 1 e 2
Termoquimica 1 e 2Termoquimica 1 e 2
Termoquimica 1 e 2
 
Termoquimica
TermoquimicaTermoquimica
Termoquimica
 
Termoquimica1
Termoquimica1Termoquimica1
Termoquimica1
 
TERMOQUÍMICA - EXERCÍCIOS
TERMOQUÍMICA - EXERCÍCIOSTERMOQUÍMICA - EXERCÍCIOS
TERMOQUÍMICA - EXERCÍCIOS
 
Equações Químicas.pptx
Equações Químicas.pptxEquações Químicas.pptx
Equações Químicas.pptx
 
Termoquimica.1
Termoquimica.1Termoquimica.1
Termoquimica.1
 
Slide de termoquímica
Slide de termoquímicaSlide de termoquímica
Slide de termoquímica
 
Termoquímica
TermoquímicaTermoquímica
Termoquímica
 
Aula de Termoquímica completa para ensino medio.pdf
Aula de Termoquímica completa para ensino medio.pdfAula de Termoquímica completa para ensino medio.pdf
Aula de Termoquímica completa para ensino medio.pdf
 
Termoquímica2
Termoquímica2Termoquímica2
Termoquímica2
 
Termoquímica3
Termoquímica3Termoquímica3
Termoquímica3
 
Termoquimica Estado Padrãa
Termoquimica Estado PadrãaTermoquimica Estado Padrãa
Termoquimica Estado Padrãa
 
Aulatermoquimica2
Aulatermoquimica2Aulatermoquimica2
Aulatermoquimica2
 
165
165165
165
 
Slides da aula de Química (Manoel) sobre Termoquímica
Slides da aula de Química (Manoel) sobre TermoquímicaSlides da aula de Química (Manoel) sobre Termoquímica
Slides da aula de Química (Manoel) sobre Termoquímica
 
termoquimica.pptx
termoquimica.pptxtermoquimica.pptx
termoquimica.pptx
 
AULA 09 - TERMOQUÍMICA.pptx
AULA 09 - TERMOQUÍMICA.pptxAULA 09 - TERMOQUÍMICA.pptx
AULA 09 - TERMOQUÍMICA.pptx
 
Termoquímica
TermoquímicaTermoquímica
Termoquímica
 
Termoquímica 2021.pdf
Termoquímica 2021.pdfTermoquímica 2021.pdf
Termoquímica 2021.pdf
 

Mehr von José Miguel Dos Santos

Este trabalho esta salvo em formto de power point 2003
Este trabalho esta salvo em formto de power point 2003Este trabalho esta salvo em formto de power point 2003
Este trabalho esta salvo em formto de power point 2003
José Miguel Dos Santos
 
Este trabalho esta salvo em formto de power point 2003
Este trabalho esta salvo em formto de power point 2003Este trabalho esta salvo em formto de power point 2003
Este trabalho esta salvo em formto de power point 2003
José Miguel Dos Santos
 

Mehr von José Miguel Dos Santos (20)

Projeto Pensar de Verdade
Projeto Pensar de VerdadeProjeto Pensar de Verdade
Projeto Pensar de Verdade
 
Trabalho de matemática
Trabalho de matemáticaTrabalho de matemática
Trabalho de matemática
 
Hipérbole
HipérboleHipérbole
Hipérbole
 
Escola estadual fernando corrêa
Escola estadual fernando corrêaEscola estadual fernando corrêa
Escola estadual fernando corrêa
 
Este trabalho esta salvo em formto de power point 2003
Este trabalho esta salvo em formto de power point 2003Este trabalho esta salvo em formto de power point 2003
Este trabalho esta salvo em formto de power point 2003
 
Trabalho de matematica 1
Trabalho de matematica 1Trabalho de matematica 1
Trabalho de matematica 1
 
Apresentação1
Apresentação1Apresentação1
Apresentação1
 
Este trabalho esta salvo em formto de power point 2003
Este trabalho esta salvo em formto de power point 2003Este trabalho esta salvo em formto de power point 2003
Este trabalho esta salvo em formto de power point 2003
 
Trabalho de matematica
Trabalho de matematicaTrabalho de matematica
Trabalho de matematica
 
Valdir
ValdirValdir
Valdir
 
Trabalho de matematica
Trabalho de matematicaTrabalho de matematica
Trabalho de matematica
 
Trabalho
TrabalhoTrabalho
Trabalho
 
Escola estadual fernando corrêa
Escola estadual fernando corrêaEscola estadual fernando corrêa
Escola estadual fernando corrêa
 
Geometria espacial
Geometria espacialGeometria espacial
Geometria espacial
 
Eratóstenes e a terra
Eratóstenes e a terraEratóstenes e a terra
Eratóstenes e a terra
 
Hiparco
Hiparco Hiparco
Hiparco
 
Eratóstenes e a terra
Eratóstenes e a terraEratóstenes e a terra
Eratóstenes e a terra
 
Número De Ouro
Número De OuroNúmero De Ouro
Número De Ouro
 
Número de Fibonacci
Número de FibonacciNúmero de Fibonacci
Número de Fibonacci
 
Aristarco
AristarcoAristarco
Aristarco
 

Kürzlich hochgeladen

Kürzlich hochgeladen (6)

ATIVIDADE 1 - GCOM - GESTÃO DA INFORMAÇÃO - 54_2024.docx
ATIVIDADE 1 - GCOM - GESTÃO DA INFORMAÇÃO - 54_2024.docxATIVIDADE 1 - GCOM - GESTÃO DA INFORMAÇÃO - 54_2024.docx
ATIVIDADE 1 - GCOM - GESTÃO DA INFORMAÇÃO - 54_2024.docx
 
Padrões de Projeto: Proxy e Command com exemplo
Padrões de Projeto: Proxy e Command com exemploPadrões de Projeto: Proxy e Command com exemplo
Padrões de Projeto: Proxy e Command com exemplo
 
ATIVIDADE 1 - ESTRUTURA DE DADOS II - 52_2024.docx
ATIVIDADE 1 - ESTRUTURA DE DADOS II - 52_2024.docxATIVIDADE 1 - ESTRUTURA DE DADOS II - 52_2024.docx
ATIVIDADE 1 - ESTRUTURA DE DADOS II - 52_2024.docx
 
ATIVIDADE 1 - CUSTOS DE PRODUÇÃO - 52_2024.docx
ATIVIDADE 1 - CUSTOS DE PRODUÇÃO - 52_2024.docxATIVIDADE 1 - CUSTOS DE PRODUÇÃO - 52_2024.docx
ATIVIDADE 1 - CUSTOS DE PRODUÇÃO - 52_2024.docx
 
ATIVIDADE 1 - LOGÍSTICA EMPRESARIAL - 52_2024.docx
ATIVIDADE 1 - LOGÍSTICA EMPRESARIAL - 52_2024.docxATIVIDADE 1 - LOGÍSTICA EMPRESARIAL - 52_2024.docx
ATIVIDADE 1 - LOGÍSTICA EMPRESARIAL - 52_2024.docx
 
Boas práticas de programação com Object Calisthenics
Boas práticas de programação com Object CalisthenicsBoas práticas de programação com Object Calisthenics
Boas práticas de programação com Object Calisthenics
 

Termoquimica

  • 1. TERMOQUÍMICA A QUÍMICA DOS EFEITOS ENERGÉTICOS. Nelson José Paraná da Silva - Prof. de Química (UFBA-BA) Colégios: Militar de Salvador, CEFET-BA, Mundial, São Francisco de Alagoinhas, BETA vestibular Alagoinhas, Aprovação e Trajetória vestibular CATU-BA [email_address]
  • 2. OS PRINCÍPIOS FUNDAMENTAIS DO CALOR E DO TRABALHO SE APLICAM, NO ESTUDO DE UMA REAÇÃO QUÍMICA E NAS MUDANÇAS DO ESTADO FÍSICO DE UMA SUBSTÂNCIA.
  • 4. NELES,OCORREM TRANSFORMAÇÕES FÍSICAS E (OU) QUÍMICAS ENVOLVENDO VÁRIOS TIPOS DE ENERGIA, INCLUSIVE ENERGIA TÉRMICA. [email_address]
  • 5. CALOR - energia que flui de um sistema com temperatura mais alta para o outro com temperatura mais baixa. SISTEMA - tudo aquilo que se reserva do universo para estudo. ENERGIA QUÍMICA - trabalho realizado por um sistema através de reações químicas. ENERGIA - resultado do movimento e da força gravitacional existentes nas partículas formadoras da matéria. TRABALHO - deslocamento de um corpo contra uma força que se opõe a esse deslocamento. CONCEITOS IMPORTANTES
  • 6. EM UM SISTEMA ISOLADO A ENERGIA É SEMPRE A MESMA, ELA SE CONSERVA; PODE-SE DIZER ENTÃO QUE A ENERGIA DO UNIVERSO É CONSTANTE. [email_address]
  • 7. ENTALPIA ENERGIA ACUMULADA POR UMA SUBSTÂNCIA SOB PRESSÃO CONSTANTE , RESUMIDAMENTE, PODEMOS DIZER QUE É O CONTÉUDO DE CALOR DA SUBSTÂNCIA. ENERGIA INTERNA ENERGIA ACUMULADA POR UMA SUBSTÂNCIA SOB VOLUME CONSTANTE . [email_address]
  • 8. [email_address] O PROCESSO DE MEDIDA DOS CALORES DE REAÇÃO É DENOMINADO CALORIMETRIA. O APARELHO QUE MEDE A ENTALPIA DA REAÇÃO É DENOMINADO CALORÍMETRO .
  • 9. CALORIA é a quantidade de energia necessária para aumentar de 1ºC a temperatura de 1 g de água. JOULE é a quantidade de energia necessária para deslocar uma massa de 1kg, inicialmente em repouso, fazendo percurso de 1 metro em 1 segundo. 1 cal = 4,18 J 1 kcal = 1000 cal 1 kJ = 1000 J
  • 10. EFEITOS ENERGETICOS NAS REACõES QUÍMICAS 6CO 2 + 6H 2 O  C 6 H 12 O 6 + 6O 2 LUZ CLOROFILA GLICOSE Na fotossíntese ocorre absorção de calor Na combustão do etanol ocorre liberação de calor ETANOL [email_address]
  • 11. A TERMOQUÍMICA ESTUDA AS MUDANÇAS TÉRMICAS ENVOLVIDAS NAS REAÇÕES QUÍMICAS * quando envolve liberação de calor, denomina-se REAÇÃO EXOTÉRMICA . * quando envolve absorção de calor, denomina-se REAÇÃO ENDOTÉRMICA.
  • 12. EQUAÇÃO TERMOQUÍMICA É a representação de uma reação química em que está especificado: * o estado físico de todas as substâncias. * o balanceamento da equação. * a variação de calor da reação (  H ). * as condições físicas em que ocorre a reação, ou seja, temperatura e pressão. ( 25ºC e 1atm é o comum) * variedade alotrópica quando existir. Segue alguns exemplos...
  • 13. REAÇÃO EXOTÉRMICA 2 C (s) + 3 H 2(g)  C 2 H 6(g)  H= – 20,2 kcal 2 C (s) + 3 H 2(g)  C 2 H 6(g) + 20,2 kcal REAÇÃO ENDOTÉRMICA Fe 3 O 4(s)  3 Fe (s) + 2 O 2(g) H= + 267,0 kcal Fe 3 O 4(s)  3 Fe (s) + 2 O 2(g)  267,0 kcal 
  • 14. OBSERVE OS SINAIS OBSERVE OS SINAIS REAÇÃO EXOTÉRMICA 2 C (s) + 3 H 2(g)  C 2 H 6(g)  H = – 20,2 kcal 2 C (s) + 3 H 2(g)  C 2 H 6(g) + 20,2 kcal REAÇÃO ENDOTÉRMICA Fe 3 O 4(s)  3 Fe (s) + 2 O 2(g) H = + 267,0 kcal Fe 3 O 4(s)  3 Fe (s) + 2 O 2(g)  267,0 kcal 
  • 15. CÁLCULO DA VARIAÇÃO DE ENTALPIA A + B  C + D   H R H P H P  ENTALPIA PRODUTO H R  ENTALPIA REAGENTE  H  VARIAÇÃO DE ENTALPIA
  • 16.   H R H R H P H P   [email_address] A + B  C + D + CALOR REAÇÃO EXOTÉRMICA A + B + CALOR  C + D REAÇÃO ENDOTÉRMICA
  • 17. Não esqueça: H P  ENTALPIA PRODUTO H R  ENTALPIA REAGENTE  H  VARIAÇÃO DE ENTALPIA
  • 18. H R H P REAÇÃO EXOTÉRMICA O SENTIDO DA SETA SERÁ SEMPRE DO REAGENTE PARA O PRODUTO CAMINHO DA REAÇÃO A + B  C + D + H R H P > ENTÃO H R H P = +
  • 19. A + B  C + D + CALOR REAÇÃO EXOTÉRMICA [email_address] A + B + CALOR  C + D REAÇÃO ENDOTÉRMICA
  • 20. H P H R A + B +  C + D Hr REAÇÃO ENDOTÉRMICA O SENTIDO DA SETA SERÁ SEMPRE DO REAGENTE PARA O PRODUTO CAMINHO DA REAÇÃO Hp Hr > ENTÃO Hp = +
  • 21.  H = H (PRODUTOS) – H (REAGENTES) Se H R  H P  H > 0 Se H R > H P  H < 0 [email_address]
  • 22.  H = H (PRODUTOS) – H (REAGENTES) Se H R  H P  H > 0 Se H R > H P  H < 0 REAÇÃO ENDOTÉRMICA REAÇÃO EXOTÉRMICA
  • 23. H R H P H R H P > Se  H = H (PRODUTOS) – H (REAGENTES)  H < 0 CAMINHO DA REAÇÃO
  • 24. H R H P  H = H (PRODUTOS) – H (REAGENTES)  H < 0 CAMINHO DA REAÇÃO H R H P > Se REAÇÃO EXOTÉRMICA
  • 25. H P H R  H = H (PRODUTOS) – H (REAGENTES)  H > 0 CAMINHO DA REAÇÃO Hp Hr > Se
  • 26. H P H R Hp Hr > Se  H = H (PRODUTOS) – H (REAGENTES)  H > 0 REAÇÃO ENDOTÉRMICA CAMINHO DA REAÇÃO
  • 27. * Convencionou-se entalpia zero para determinadas substâncias simples, em razão de não ser possível medir o valor real da entalpia de uma substância. * Foram escolhidas condições-padrão para estabelecer medidas relativas. * Terá entalpia zero qualquer substância simples que se apresente nos estados físico e alotrópico mais comum, a 25ºC e 1atm de pressão. OBS.:
  • 29. * A forma alotrópica menos estável tem entalpia maior que zero.
  • 30. Observe a reação de formação (síntese ) de um mol de água, a 25ºC e 1 atm de pressão. H 2(g) + 1/2O 2(g)  H 2 O (g) Cálculo da entalpia de formação:  H = H (produtos) - H (reagentes) [email_address]
  • 31.  H = H (produtos) – H (reagentes)  H = Hº H 2 O (l) – ( Hº H 2 (g) + 1/2 Hº O 2(g) ) Hº H 2 (g ) = Hº O 2(g) = zero  H = Hº H 2 O (l) Hº H 2 O (l) = – 68,4kcal/mol COMO e ENTÃO  H = – 68,4kcal/mol H 2(g) + 1/2 O 2(g)  H 2 O (g )  H = ?
  • 32.  H = H (produtos) – H (reagentes) H 2(g) + 1/2 O 2(g)  H 2 O (g )  H = ?  H = Hº H 2 O (l) – ( Hº H 2 (g) + 1/2 Hº O 2(g) ) Hº H 2 (g ) = Hº O 2(g) = zero  H = Hº H 2 O (l) Hº H 2 O (l) = – 68,4kcal/mol  H = – 68,4kcal/mol
  • 33.  H = H (produtos) – H (reagentes) H 2(g) + 1/2 O 2(g)  H 2 O (g )  H = –68,4kcal/mol  H = Hº H 2 O (l) – ( Hº H 2 (g) + 1/2 Hº O 2(g) ) Hº H 2 (g ) = Hº O 2(g) = zero  H = Hº H 2 O (l) Hº H 2 O (l) = – 68,4kcal/mol  H = – 68,4kcal/mol
  • 34. CÁLCULOS DA VARIAÇÃO DE ENTALPIA LEI DE HESS A entalpia de uma reação depende apenas dos estados iniciais e finais da reação, não depende dos estados intermediários, ou seja a reação é a mesma para uma ou mais etapas. Ex. 1 - Cálculo da entalpia da reação de formação do gás carbônico: C (grafite) + O 2(g)  CO 2(g)  H = ? kcal/mol
  • 35. OBSERVE AS EQUAÇÕES: C (grafite) + 1/2O 2(g)  CO (g)  H = – 26,4kcal/mol CO (g) + 1/2O 2(g)  CO 2(g)  H = – 67,6kcal/mol
  • 36. EFETUAMOS A SOMA ALGÉBRICA DAS MESMAS. 1ª etapa: C (grafite) + 1/2O 2(g)  CO (g)  H 1 = – 26,4kcal/mol 2ª etapa: CO (g) + 1/2O 2(g)  CO 2(g)  H 2 = – 67,6kcal/mol  H = – 94,0kcal/mol CONCLUINDO  H =  H 1 +  H 2  H = – 94,0kcal/mol Note que os termos semelhantes em membros opostos se anulam. Etapa final: C (grafite) + O 2(g)  CO 2(g)
  • 37. 1ª etapa : C (grafite) + 1/2O 2(g)  CO (g)  H 1 = - 26,4kcal/mol 2ª etapa : CO (g) + 1/2O 2(g)  CO 2(g)  H 2 = - 67,6kcal/mol Etapa final: C (grafite) + O 2(g)  CO 2(g)  H = - 94,0kcal/mol Observe que o processo é puramente algébrico. [email_address]
  • 38. 1ª etapa : C (grafite) + 1/2O 2(g)  CO (g)  H 1 = - 26,4kcal/mol 2ª etapa : CO (g) + 1/2O 2(g)  CO 2(g)  H 2 = - 67,6kcal/mol Etapa final: C (grafite) + O 2(g)  CO 2(g)  H = - 94,0kcal/mol Observe que o processo é puramente algébrico.  H =  H 1 +  H 2 = - 94,0kcal/mol
  • 39. Ex 2 - Dadas as equações: C (grafite ) + O 2(g)  CO 2(g)  H 1 = – 94,0kcal/mol H 2(g) + 1/2 O 2(g)  H 2 O (l)  H 2 = – 68,4kcal/mol C (grafite) + 2H 2(g)  CH 4(g)  H 3 = – 17,9kcal/mol Calcular a entalpia da reação: CH 4(g) + O 2(g)  CO 2(g) + H 2 O (l)
  • 40. Resolução: As equações dadas deverão ser arrumadas de tal modo que a sua soma resulte na equação-problema. C (grafite ) + O 2(g)  CO 2(g)  H 1 = – 94,0kcal/mol H 2(g) + 1/2 O 2(g)  H 2 O (l)  H 2 = – 68,4kcal/mol C (grafite) + 2H 2(g)  CH 4(g)  H 3 = – 17,9kcal/mol Equação-problema: I) II) III) Agora vamos identificá-las com algarismos romanos. CH 4(g) + O 2(g)  CO 2(g) + H 2 O (l)
  • 41. Agora, invertemos a equação III de modo a obter o metano ( CH 4 ) como reagente. CH 4(g)  C (grafite) + 2H 2(g)  H 3 = + 17,9kcal/mol Observe a inversão de sinal do  H 3 Devemos manter a equação I pois dessa forma obteremos gás carbônico como produto. C (grafite ) + O 2(g)  CO 2(g)  H 1 = – 94,0kcal/mol 2 ( H 2(g) + 1/2 O 2(g)  H 2 O (l)  H 2 = – 68,4kcal/mol ) Multiplicar por 2 a equação II para que os coeficientes fiquem ajustados. 2 H 2(g) + O 2(g)  2 H 2 O (l)  H 2 = – 136,8 kcal/mol O  H 2 também é multiplicado
  • 42. Finalmente aplica-se a soma algébrica das equações, inclusive das variações de entalpia. CH 4(g)  C (grafite) + 2H 2(g)  H 3 = + 17,9 kcal/mol C (grafite ) + O 2(g)  CO 2(g)  H 1 = – 94,0 kcal/mol 2 H 2(g) + O 2(g)  2 H 2 O (l)  H 2 = – 136,8 kcal/mol _____________________________________________________________ [email_address]
  • 43. CH 4(g)  C (grafite) + 2H 2(g)  H 3 = + 17,9 kcal/mol C (grafite ) + O 2(g)  CO 2(g)  H 1 = – 94,0 kcal/mol 2 H 2(g) + O 2(g)  2 H 2 O (l)  H 2 = – 136,8 kcal/mol _____________________________________________________________ Observe os cortes:  H =  H 1 +  H 2 +  H 3 CH 4(g) + 2O 2(g)  CO 2(g) + 2H 2 O (l)  H = – 212,9 kcal/mol
  • 44. CALORES PADRÃO DE FORMAÇÃO OU ENTALPIA-PADRÃO DE FORMAÇÃO O índice sobrescrito º significa estado padrão. O índice subscrito f significa formação. . É o calor desenvolvido na formação de um mol de determinado composto, a partir das substâncias simples correspondentes no estado padrão. Representa-se por:  H f º
  • 45. REAÇÃO DE FORMAÇÃO - é aquela em que um mol de um único composto é formado a partir de substâncias simples no estado padrão. Exs.: C (grafite ) + O 2(g)  CO 2(g) H 2(g) + 1/2 O 2(g)  H 2 O (l) Os valores de  H são pré-estabelecidos e encontrados em tabelas, para aqueles compostos que estejam na sua forma mais estável a 1 atm de pressão, ou seja, no estado padrão . 1 mol  1 mol 
  • 46.  
  • 47. CALOR PADRÃO DE COMBUSTÃO OU ENTALPIA-PADRÃO DE COMBUSTÃO É o calor liberado na combustão total de um mol de uma substância em que os componentes dessa reação estão no estado-padrão. H 2(g) + 1/2O 2(g)  H 2 O (l)  H = –68,4kcal/mol C 2 H 5 OH (l) + 3O 2(g)  2CO 2(g) + 3H 2 O (l)  H = –325 kcal/mol COMBUSTÃO - reação de uma substância com o oxigênio (O 2 ) em que ocorre liberação de energia. ( REAÇÃO EXOTÉRMICA )
  • 48. O PODER CALÓRICO DE ALGUMAS SUBSTÂNCIAS A gasolina possui maior poder clalorífico que o álcool. Para cada litro de gasolina queimado são produzidos aproximadamente 8000 quilocalorias, enquanto para cada litro de álcool queimado, temos a produção de aproximadamente 5000 quilocalorias. Veja a tabela de calorias de alguns alimentos, a seguir. [email_address]
  • 49.  
  • 50. CALOR DE DISSOLUÇÃO OU ENTALPIA DE DISSOLUÇÃO É o calor desenvolvido ( liberado ou absorvido) provocado pela dissolução de um mol de substância, numa quantidade de água suficiente para se obter uma solução diluída, no estado padrão . H 2 SO 4 (l) + aq  H 2 SO 4 (aq)  H = – 22,9 kcal/mol KNO 3(s) + aq  KNO 3(aq)  H = + 8 ,5 kcal/mol
  • 51. CALOR DE NEUTRALIZAÇÃO OU ENTALPIA DE NEUTRALIZAÇÃO É o calor liberado na neutralização de um equivalente-grama de um ácido por um equivalente-grama de uma base, ambos em soluções aquosas diluídas, no estado padrão . HCl (aq) + NaOH (aq)  NaCl (aq) + H 2 O (l)  H = –13,8 kcal/eq-g HNO 3(aq) + LiOH (aq)  LiNO 3(aq) + H 2 O (l)  H = –13,8 kcal/eq-g OBS.: Para ácidos e bases fortes o  H será sempre o mesmo .
  • 52. A variação de entalpia de uma reação pode ser calculada, conhecendo-se apenas as entalpias de formação dos seus reagentes e produtos.  H =  H (produtos) –  H (reagentes)
  • 53. C 3 H 8(g) + 5O 2(g)  3CO 2(g) + 4H 2 O (g)  H = ? – kcal/mol Consultando a tabela de calores de formação: Observe a equação: SUBSTÂNCIAS C 3 H 8(g) CO 2(g) H 2 O (g) O 2(g)  -24,8kcal/mol -94,1kcal/mol -57,8kcal/mol zero
  • 54.  H =  H (produtos) –  H (reagentes)  H = [ 3(-94,1) + 4(-57,8)] - (-24,8 + zero)  H = [ 3  H CO 2(g) + 4  H H 2 O (g) ] - (  H C 3 H 8(g) + 5  H O 2(g) )  H = - 488,7 kcal/mol [email_address]
  • 55. ENERGIA DE LIGAÇÃO É A ENERGIA NECESSÁRIA PARA ROMPER UM MOL DE LIGAÇÃO DE UMA SUBSTÂNCIA NO ESTADO GASOSO. EX. Para romper um de ligação H – O são necessárias 110kcal. Para romper um de ligação H – C são necessárias 100kcal. Para romper um de ligação O = O são necessárias 118kcal. . * esses valores são tabelados
  • 56. Para romper um mol de água no estado gasoso, teremos: H 2 O (l)  2H (g) + O (g)  H = ? kcal/mol 110Kcal 110kcal H 2 O (l)  2H (g) + O (g)  H = 220 kcal/mol [email_address] O H H
  • 57. Observe a reação em que todos os participantes estão no estado gasoso: Para romper as ligações intramoleculares do metanol e do oxigênio, serão absorvidos, para: 1 mol de O — H  +464,0 kj + 464,0 kj 1 mol de C — O  +330,0 kj + 330,0 kj 3 mols de C — H  3 (+413,0 kj) + 1239,0 kj 3/2 mols de O = O  3/2 (+493,0 kj) + 739,5 kj TOTAL ABSORVIDO + 2772,5 kj H | C— O — H + 3/2O 2  O = C = O + 2H 2 O | H H—
  • 58. Para formar as ligações intramoleculares do CO 2 e da água, serão liberadas: 2 mols de C = O  2 (-7444,0 kj) -1 488,0 kj 2 mols de H — O  2 ( - 464,0 kj) - 928,0 kj TOTAL LIBERADO -2 416,0 kj Cômputo dos produtos: H | C— O — H + 3/2O 2  O = C = O + 2H 2 O | H H—
  • 59.  H =  H (reagentes) +  H (produtos) O cálculo final será:  H = 2 772,5kj + (- 2 416kj) [email_address]  H = 356,5kj CALOR LIBERADO CALOR ABSORVIDO
  • 60. A quebra de ligação envolve absorção de calor Processo endotérmico A formação de ligação envolve liberação de calor Processo exotérmico H H — H H — [email_address]
  • 61. CONTINUE ANTENADO NESSA HOME PAGE, UM ABRAÇO. www.vestibular1.com.br Nelson José Paraná da Silva - Prof. de Química (UFBA-BA) Colégios: Militar de Salvador, CEFET-BA, Mundial, São Francisco de Alagoinhas, BETA vestibular Alagoinhas, Aprovação e Trajetória vestibular CATU-BA [email_address]